JP2004132648A - Combustion control method and combustion control device for gasification melting furnace - Google Patents

Combustion control method and combustion control device for gasification melting furnace Download PDF

Info

Publication number
JP2004132648A
JP2004132648A JP2002298875A JP2002298875A JP2004132648A JP 2004132648 A JP2004132648 A JP 2004132648A JP 2002298875 A JP2002298875 A JP 2002298875A JP 2002298875 A JP2002298875 A JP 2002298875A JP 2004132648 A JP2004132648 A JP 2004132648A
Authority
JP
Japan
Prior art keywords
char
melting furnace
gas
combustion
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002298875A
Other languages
Japanese (ja)
Inventor
Makoto Morishima
森嶋 誠
Hiroyasu Enomoto
榎本 博康
Hideji Mori
守 秀治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002298875A priority Critical patent/JP2004132648A/en
Publication of JP2004132648A publication Critical patent/JP2004132648A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion control method and combustion control device for gasification melting furnace capable of suppressing the generation of unburnt gas, efficiently performing the melting treatment of char and surely making refuse pollution-free by stabilizing the combustion temperature and melting temperature. <P>SOLUTION: A controller 11 analyzes CO concentration in unburnt gas at the outlet of a gasification furnace 4 by an exhaust gas analyzer 7, calculates the combustion air quantity necessary for combustion of decomposed gas in a melting furnace 15 based on the analytic result, and adjusts combustion air regulating valves 12 and 14 to control the combustion air quantity to be supplied to the melting furnace 1. The controller further measures the outlet temperature of a melting part 32 by a thermometer 16, calculates the deviation of the measured temperature from a set target temperature, and controls the supply quantity of char by a char constant-rate feeder 10 based on the result, whereby the decomposed gas is perfectly burnt, and the temperature of the melting part is kept at a proper value to enable the sure melting of ash. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、ごみを熱分解することにより可燃性ガス化した後、灰分とチャーを含む可燃性ガス化を燃焼すると共に、灰分を溶融するガス化溶融炉の燃焼制御方法および燃焼制御装置に係り、特に燃焼温度及び灰溶融温度を最適な状態に維持できるようにした燃焼制御技術に関する。
【0002】
【従来の技術】
一般家庭や企業から排出されるごみ処理は社会問題となっており、特にその塩化ビニール等の焼却処理過程で発生するダイオキシンの対策については深刻な問題である。さらに、多量のごみを焼却した際に発生する灰の処分についても大きな課題となっている。そこで、従来からごみをガス化炉で熱分解して灰分とチャーを含む可燃性ガスを生成し、次にこの灰分とチャーを含む可燃性ガスを溶融炉にて1300〜1400℃で燃焼させ、灰分を溶融させた後、水砕スラグとして排出すると共に、燃焼排ガスも無害な状態にして大気中に放出する技術の開発が進められている。
【0003】
これに関連するものとして、例えば特許文献1に記載されている提案がある。この提案は燃焼炉出口の酸素濃度で燃焼空気流量を制御しており、分解ガス中の可燃性ガスの成分量を分析したものではないため、燃焼温度、灰溶融温度が一定にならなかった。
【0004】
【特許文献1】
特開平10−169947号公報
【0005】
【発明が解決しようとする課題】
しかしながら上記従来技術においては、燃焼温度及び灰溶融の温度を一定に維持するのが難しく、様々な要因により炉内温度が不安定となり、その結果、未燃ガスが発生したり、灰溶融を十分に行えない状態が発生していた。
【0006】
本発明の目的は、燃焼温度及び灰溶融温度の安定化を図り、溶融炉出口からの未燃ガスの発生を抑制し、灰の溶融処理を効率よく行うことができ、確実にごみを無害化処理できるガス化溶融炉の燃焼制御方法および燃焼制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するためにガス化溶融炉の燃焼制御方法に係る本発明は、ガス化炉でのごみの熱分解により発生したチャーを溶融炉中に定量供給すると共に、分解ガス中の可燃性ガスの成分量を分析し、該分析結果に基づいて分解ガスの完全燃焼に必要な空気量を演算し、溶融炉に供給される分解ガス燃焼用の空気量を制御したものであり、好ましくは、溶融炉の溶融部の下流の温度を計測し、該計測温度と目標温度との偏差に基づいてチャーの溶融炉への定量供給量を制御し、さらに、溶融炉の下流に連なる煙道を流れる排ガス中の酸素濃度を計測し、該計測酸素濃度と目標酸素濃度との偏差に応じて前記溶融炉に供給するガス燃焼用の空気量を制御したものである。
【0008】
また、ガス化溶融炉の燃焼制御装置に係る本発明は、チャーを溶融炉中に定量供給するチャー定量供給装置と、ガス化炉から流出した分解ガス中の可燃性ガスの成分量を分析するガス分析手段と、溶融炉の溶融部の下流の温度を計測する温度計と、ガス分析手段が分析した分析結果に基づいて分解ガスの完全燃焼に必要な空気量を演算し、溶融炉に供給される分解ガス燃焼用の空気量を制御すると共に、温度計が計測した計測温度と目標温度との偏差に基づいてチャー定量供給装置によるチャーの溶融炉への定量供給量を制御する制御手段とを有したものである。
【0009】
【発明の実施の形態】
本発明では、ガス化炉で生成された分解ガスからチャー分離器によりチャーを分離し、分離したチャーをホッパおよびチャー定量供給装置を経て溶融炉に供給することによりチャーの供給量が変動することを防止するようにしている。
【0010】
その上で、分解ガス中の可燃性ガス濃度を分析し、該分析結果に基づいて溶融炉での分解ガスの燃焼に必要な燃焼空気量を算出する。この燃焼空気量の演算結果に基づいて溶融炉に供給する燃焼空気量を制御し、これにチャーの溶融に必要な燃焼空気量を併せて演算し、その結果に基づいて溶融炉に供給する燃焼空気量を制御することにより、分解ガスの完全燃焼、即ち、排出される排ガスの無害化を図る。
【0011】
また、溶融炉の溶融部出口、即ち、灰が溶融する場所の下流のできる限り近い場所で、かつダスト等の周囲の環境に影響の受け難い場所に温度計を設置して、そこの温度を計測する。溶融場所により近い場所の温度を計測し、目標温度と比較してチャーの定量供給量を制御することでチャーの燃焼により灰の溶融に適した温度を維持することができる。
【0012】
さらに溶融炉の後段に接続された煙道の酸素濃度を分析し、設定した目標値との偏差に応じて溶融炉の二次燃焼室に供給する燃焼空気量を補正することにより、未燃ガスが残らないように、その完全燃焼化を図ることができる。
【0013】
以下、図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の実施形態に係るごみの溶融炉を含むごみ処理装置の全体構成を示す構成図である。
【0014】
同図に示すように、ごみ処理装置はごみを定量供給する給塵装置1、ごみをガス化するガス化炉4、生成された分解ガス中の可燃性固形物であるチャーを分離するサイクロンセパレータ(チャー分離器)8、サイクロンセパレータ8で分離されたチャーを溶融炉15に定量供給するチャー定量供給装置10、分解ガスとチャーを燃焼、灰溶融する溶融部32、溶融部32から出た排ガス中の未燃分を燃焼する二次燃焼室19、二次燃焼室19から排出された排ガスを処理する空気予熱器21、減温塔24やバグフィルタ25等の各装置から構成される。
【0015】
ごみは、定量供給装置である給塵装置1によりガス化炉4に供給される。ガス化炉4の下方には空気と再循環ガスが噴出する散気管31と、散気管31の受入口には各々の流量を調節するダンパ3,5と流量検出計2,6がそれぞれ設けられており、散気管31からの空気及び再循環ガスの流量を調整することにより、ごみの熱分解が行なわれる。
【0016】
ガス化炉4の出口にはガス分析計7が設けられると共に、分解ガスからチャーを分離するサイクロンセパレータ8が設けられている。サイクロンセパレータ8の下部には分離されたチャーを一時貯留するチャーホッパ9及びチャーを溶融炉15に定量供給するチャー定量供給装置10が設けられており、分解ガス中のチャーは分解ガスとは分離されて溶融炉15に定量供給可能となっている。
【0017】
溶融炉15にはチャーを旋回溶融させる溶融部32と、その下流には排ガス中の未燃部を完全燃焼するための二次燃焼室19があり、チャーの燃焼により溶融炉15の燃焼、灰溶融温度を維持する。また、溶融部32と二次燃焼室19の間にはスラグを回収するスラグスクリーン17が設けられており、溶融部32の出口とスラグスクリーン17との間のガスパス部に温度計16が設置されている。溶融部32にはチャー量が不足したときの温度維持のために助燃する助燃バーナ13が設けられている。二次燃焼室19の下流には各種排ガス処理装置、即ち、空気予熱器21、減温塔24、バグフィルタ25等が設けられ、煙道にはO濃度計26、CO濃度計27が設置されている。
【0018】
煙道を通って流れる排ガスの大部分は煙突30から大気中に放出されるが、その一部はガス再循環ファン29によりダンパ3を介して散気管31からガス化炉4内に供給する。また、流量検出計2,6、ガス分析計7、温度計16およびO濃度計26、CO濃度計27からの検出信号はコントローラ11に入力され、コントローラ11は演算結果に基づいて各チャー定量供給装置10、助燃バーナ13、燃焼空気調節弁12,14,20への出力を制御する。
【0019】
図中の18は空気予熱器、22は押込送風機、23は二次押込送風機、28は誘引送風機である。
【0020】
図2は、前記コントローラ11の入出力信号と演算内容を示す処理系統図である。
押込送風機22からの空気流量を流量検出計6で検出した流動化空気流量と、ガス再循環ファン29からの排ガス流量を流量検出計2で検出した再循環ガス流量と、ガス化炉4出口のガス分析計7で検出した可燃性ガス濃度とをコントローラ11に入力することにより、可燃性ガス量、理論燃焼空気量を演算し、可燃性ガス燃焼空気調整弁14を制御する。
【0021】
また、O 濃度計26により二次空気の空気流量補正量を演算し、二次空気流量調整弁20を制御し、CO濃度計27によりCO濃度を監視する。さらに溶融部32の出口温度を温度計16により検出し、チャー供給量の補正量を演算し、チャー定量供給装置10での供給量を制御する。
【0022】
さらにまた必要な場合は、助燃バーナ制御量を演算し、助燃バーナ制御盤で助燃バーナ13の燃焼量を制御する。前記チャー供給量の補正値は現在のチャー供給量を補正することで、チャー理論燃焼空気量(補正値)を演算し、チャー燃焼空気調整弁12を制御する。
【0023】
次に上記した構成のごみ処理装置のガス化溶融工程の燃焼制御について説明する。給塵装置1により投入されたごみがガス化炉4でガス化される時に発生する分解ガス量は、凡そ流量検出計2,6により検出された、散気管31から流入する流動化空気と再循環ガスの流量の和に等しい。
【0024】
さらに分解ガス中の可燃性ガスの成分量を分析することにより、分解ガス中の可燃性ガスの流量を算出できる。本実施形態では分解ガスに含まれる可燃性ガスとしてCOが約8〜10%あり、他の分解ガスも炭素の化合物であることから、ガス化炉4の出口における可燃性ガス濃度をガス分析計7で分析して、可燃性ガスの燃焼に必要な空気量を理論的に演算する。
【0025】
分解ガスに含まれるチャーはサイクロンセパレータ8により分離されて分解ガスと別に溶融部32に供給されるため、上記演算により算出された可燃性ガス流量により、二次燃焼室19で焼却される分解ガスの燃焼に必要な理論的燃焼空気量を独立して算出することができる。チャーについては組成が安定しており、理論的燃焼空気量は別途決定されるチャー定量供給量により算出できる。上記演算結果に基づいてコントローラ11は各々の燃焼空気調節弁12,14を制御し、燃焼の安定化及び燃焼温度の維持を図っている。
【0026】
さらに、溶融炉15では溶融部32の温度を直接精度良く計測することは非常に難しいため、チャーの溶融領域に近い溶融部32の出口温度を温度計16で計測して、設定した目標温度に対する計測温度との偏差を演算し、その結果に基づいてチャーの供給量を制御する。灰分は1250℃以上で溶融するが、1300〜1350°Cが溶融に適温とされており、この温度範囲が目標値となる。チャーホッパ9に蓄積されているチャーの量が十分で、溶融温度が1250℃以上あれば、溶融温度が若干低下しても助燃バーナ13に頼らず、チャー定量供給装置10によるチャーの供給量を増やすことにより発熱量が増加するから、チャーの溶融温度を維持することができる。ただし、チャーの量が不足しているか若しくは溶融部の温度が1250℃に達していない場合は、助燃バーナ13により溶融部32の温度制御を行って溶融温度を維持する。
【0027】
このように溶融炉15の燃焼制御を実施することにより、各部の燃焼状態が安定し、燃焼温度も適温に維持されるが、さらに、煙道部に設けたO濃度計26によりO濃度と設定目標濃度(例えば12%)との偏差により、未燃ガス発生の有無を判断する。即ち、O濃度が12%未満であれば、空気量が不足となっており、不完全燃焼を起こしているため燃焼空気量を増やす。12%を越えている場合、空気量が過剰となっているため燃焼空気量を減らす。これらの制御は二次燃焼室19に供給される燃焼空気量を空気調節弁20の開口量で調整することにより行われ、これにより分解ガスの完全燃焼化を図る。
【0028】
ところで、ガス化炉4で生成される分解ガスはN,CO,CO,H,H O,CH等の化合物から成っており、CO及びCOを除けばその殆どがNである。従って、生成ガス量からNの量を引けば凡そのCO及びCOの量となる。つまり、生成ガス中のNの濃度を分析することによっても、上述のガス化溶融工程における燃焼制御と同様の制御が行える。
【0029】
【発明の効果】
以上説明したように請求項1記載の手段によれば、分解ガス中の可燃性ガスの成分量を分析した結果に基づいて分解ガスの完全燃焼に必要な空気量を演算し、溶融炉に供給される分解ガス燃焼用の空気量を制御したので、溶融炉で燃焼する分解ガスの燃焼に必要な空気量が最適に保たれるから、排ガス中に未燃ガスが排出されるのを防止して、排ガスの無害化を図ることができる。
【0030】
請求項2記載の手段によれば、溶融炉における溶融部の下流の温度を計測し、該計測温度と目標温度との偏差に基づいてチャーの溶融炉への定量供給量を制御したので、溶融炉の溶融部の温度が若干低下したときは、不必要な燃料を使うことなく、溶融部の温度を適温に維持することができる。
【0031】
請求項3記載の手段によれば、溶融炉の下流に連なる煙道を流れる排ガス中の酸素濃度を計測し、該計測酸素濃度と目標酸素濃度との偏差に応じて溶融炉に供給するガス燃焼用の空気量を制御したので、何かの原因で分解ガスが不完全燃焼を起こした場合でも、直ちに必要な空気量を供給できるから、分解ガスの完全燃焼を達成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るごみ処理装置の全体構成を示す構成図である。
【図2】本発明の実施形態に係るコントローラの入出力信号と演算内容を示す処理系統図である。
【符号の説明】
1:給塵装置、2,6:流量検出計、3,5: ダンパ、4:ガス化炉、7:ガス分析計、8:サイクロンセパレータ(チャー分離器)、9:チャーホッパ、10:チャー定量供給装置、11:コントローラ、12,14,20:燃焼空気調整弁、13:助燃バーナ、15:溶融炉、16:温度計、17:スラグスクリーン、18:空気予熱器、19:二次燃焼室、21:空気予熱器、22,23:押込送風機、24:減温塔、25:バグフィルタ、26:O濃度計、27:CO濃度計、28:誘引送風機、29:ガス再循環ファン、30:煙突、31:散気管、32:溶融部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combustion control method and a combustion control device for a gasification and melting furnace that combusts combustible gasification containing ash and char, after combustible gasification by pyrolyzing refuse, and melting ash. More particularly, the present invention relates to a combustion control technique capable of maintaining a combustion temperature and an ash melting temperature in an optimum state.
[0002]
[Prior art]
Disposal of refuse from households and businesses has become a social problem, and in particular, measures against dioxins generated during the incineration process of vinyl chloride and the like are serious problems. Furthermore, disposal of ash generated when a large amount of garbage is incinerated is also a major issue. Therefore, conventionally, refuse is thermally decomposed in a gasification furnace to generate a combustible gas containing ash and char, and then the combustible gas containing ash and char is burned at 1300 to 1400 ° C. in a melting furnace. A technique for melting ash, discharging the ash as granulated slag, and releasing combustion exhaust gas into the atmosphere in a harmless state has been developed.
[0003]
Related to this is a proposal described in Patent Document 1, for example. In this proposal, the combustion air flow rate was controlled by the oxygen concentration at the combustion furnace outlet, and the combustion temperature and ash melting temperature were not constant because the analysis did not analyze the amount of combustible gas components in the decomposition gas.
[0004]
[Patent Document 1]
JP 10-169947 A [0005]
[Problems to be solved by the invention]
However, in the above prior art, it is difficult to keep the combustion temperature and the ash melting temperature constant, and the furnace temperature becomes unstable due to various factors. As a result, unburned gas is generated or ash melting is not sufficiently performed. A state that cannot be performed has occurred.
[0006]
An object of the present invention is to stabilize the combustion temperature and the ash melting temperature, suppress the generation of unburned gas from the melting furnace outlet, efficiently perform the ash melting process, and surely detoxify garbage. An object of the present invention is to provide a combustion control method and a combustion control device for a gasification and melting furnace that can be processed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a combustion control method for a gasification and melting furnace, which supplies a quantity of char generated by thermal decomposition of refuse in a gasification furnace into a melting furnace, and supplies flammable gas in a decomposition gas. The amount of gas components is analyzed, the amount of air required for complete combustion of the cracked gas is calculated based on the analysis result, and the amount of air for burning the cracked gas supplied to the melting furnace is controlled. Measuring the temperature downstream of the melting part of the melting furnace, controlling the fixed amount of supply of char to the melting furnace based on the deviation between the measured temperature and the target temperature, and further controlling the flue downstream of the melting furnace. The oxygen concentration in the flowing exhaust gas is measured, and the amount of gas combustion air supplied to the melting furnace is controlled in accordance with the deviation between the measured oxygen concentration and the target oxygen concentration.
[0008]
Further, the present invention according to the combustion control device of the gasification and melting furnace analyzes the amount of combustible gas components in the cracked gas flowing out of the gasification furnace and the char quantitative supply device that supplies the char into the melting furnace. A gas analyzer, a thermometer that measures the temperature downstream of the melting part of the melting furnace, and the amount of air required for complete combustion of the cracked gas is calculated based on the analysis results analyzed by the gas analyzer and supplied to the melting furnace. Control means for controlling the amount of air for the decomposition gas combustion to be performed, and controlling the quantitative supply amount of the char to the melting furnace by the char quantitative supply device based on the deviation between the measured temperature measured by the thermometer and the target temperature. It has.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the char is separated from the cracked gas generated in the gasification furnace by the char separator, and the separated char is supplied to the melting furnace through the hopper and the char quantitative supply device, whereby the supply amount of the char varies. Try to prevent.
[0010]
Then, the concentration of combustible gas in the cracked gas is analyzed, and the amount of combustion air required for burning the cracked gas in the melting furnace is calculated based on the analysis result. The amount of combustion air supplied to the melting furnace is controlled based on the calculation result of the amount of combustion air, and the amount of combustion air required for melting the char is also calculated based on the result, and the combustion supplied to the melting furnace is calculated based on the result. By controlling the amount of air, complete combustion of the decomposition gas, that is, harmlessness of the discharged exhaust gas is achieved.
[0011]
In addition, a thermometer is installed at the outlet of the melting part of the melting furnace, that is, as close as possible downstream of the place where the ash is melted, and at a place that is not easily affected by the surrounding environment such as dust, and the temperature of the thermometer is measured. measure. By measuring the temperature at a location closer to the melting location and controlling the quantitative supply of the char as compared to the target temperature, it is possible to maintain a temperature suitable for melting the ash by burning the char.
[0012]
Furthermore, by analyzing the oxygen concentration of the flue connected downstream of the melting furnace and correcting the amount of combustion air supplied to the secondary combustion chamber of the melting furnace according to the deviation from the set target value, the unburned gas Can be completely combusted so as not to remain.
[0013]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram illustrating an entire configuration of a waste treatment apparatus including a waste melting furnace according to an embodiment of the present invention.
[0014]
As shown in the figure, the waste treatment apparatus includes a dust supply device 1 for supplying a fixed amount of waste, a gasification furnace 4 for gasifying the waste, and a cyclone separator for separating char, which is a combustible solid in the generated decomposition gas. (Char separator) 8, Char quantitative supply device 10 for quantitatively supplying char separated by cyclone separator 8 to melting furnace 15, Melting section 32 for burning decomposed gas and char and melting ash, Exhaust gas discharged from melting section 32 It comprises a secondary combustion chamber 19 for burning unburned components therein, an air preheater 21 for processing exhaust gas discharged from the secondary combustion chamber 19, a cooling tower 24 and a bag filter 25.
[0015]
The refuse is supplied to the gasification furnace 4 by a dust supply device 1 which is a fixed-rate supply device. A diffuser 31 from which air and recirculated gas are blown out is provided below the gasifier 4, and dampers 3 and 5 and flow detectors 2 and 6 for adjusting respective flow rates are provided at the inlet of the diffuser 31. By adjusting the flow rates of the air and the recirculated gas from the air diffuser 31, thermal decomposition of the refuse is performed.
[0016]
At the outlet of the gasification furnace 4, a gas analyzer 7 is provided, and a cyclone separator 8 for separating char from decomposed gas is provided. Below the cyclone separator 8, a char hopper 9 for temporarily storing the separated char and a char quantitative supply device 10 for supplying a constant amount of the char to the melting furnace 15 are provided, and the char in the decomposed gas is separated from the decomposed gas. Thus, a fixed amount can be supplied to the melting furnace 15.
[0017]
The melting furnace 15 has a melting part 32 for swirling and melting the char, and a secondary combustion chamber 19 downstream of the melting part 32 for completely burning the unburned part in the exhaust gas. Maintain the melting temperature. Further, a slag screen 17 for collecting slag is provided between the melting part 32 and the secondary combustion chamber 19, and a thermometer 16 is installed in a gas path between the outlet of the melting part 32 and the slag screen 17. ing. The melting portion 32 is provided with an auxiliary burner 13 that assists in maintaining the temperature when the amount of char is insufficient. Downstream of the secondary combustion chamber 19, various exhaust gas treatment devices, that is, an air preheater 21, a cooling tower 24, a bag filter 25, and the like are provided, and an O 2 concentration meter 26 and a CO concentration meter 27 are provided in the flue. Have been.
[0018]
Most of the exhaust gas flowing through the flue is discharged from the chimney 30 into the atmosphere, and a part of the exhaust gas is supplied into the gasification furnace 4 from the diffuser 31 via the damper 3 by the gas recirculation fan 29. Further, detection signals from the flow rate detectors 2 and 6, the gas analyzer 7, the thermometer 16, the O 2 concentration meter 26, and the CO concentration meter 27 are inputted to the controller 11, and the controller 11 determines each char based on the calculation result. The output to the supply device 10, the auxiliary burner 13, and the combustion air control valves 12, 14, 20 is controlled.
[0019]
In the figure, 18 is an air preheater, 22 is a push-in blower, 23 is a secondary push-in blower, and 28 is an induction blower.
[0020]
FIG. 2 is a processing system diagram showing input / output signals of the controller 11 and calculation contents.
The flow rate of the fluidized air detected by the flow detector 6 from the air blower 22, the flow rate of the exhaust gas from the gas recirculation fan 29 detected by the flow detector 2, the flow rate of the recirculated gas, The flammable gas concentration and the theoretical combustion air amount are calculated by inputting the flammable gas concentration detected by the gas analyzer 7 to the controller 11, and the flammable gas combustion air regulating valve 14 is controlled.
[0021]
Further, the correction amount of the secondary air flow rate is calculated by the O 2 concentration meter 26, the secondary air flow adjustment valve 20 is controlled, and the CO concentration is monitored by the CO concentration meter 27. Further, the temperature of the outlet of the melting section 32 is detected by the thermometer 16, the correction amount of the char supply amount is calculated, and the supply amount of the char fixed amount supply device 10 is controlled.
[0022]
If necessary, the control amount of the auxiliary burner is calculated, and the combustion amount of the auxiliary burner 13 is controlled by the auxiliary burner control panel. The correction value of the char supply amount corrects the current char supply amount to calculate the char theoretical combustion air amount (correction value), and controls the char combustion air adjustment valve 12.
[0023]
Next, a description will be given of combustion control in the gasification and melting step of the waste treatment apparatus having the above-described configuration. The amount of decomposition gas generated when the dust introduced by the dust supply device 1 is gasified in the gasification furnace 4 is approximately equal to the amount of the fluidized air flowing from the diffuser 31 and detected by the flow rate detectors 2 and 6. Equal to the sum of the flow rates of the circulating gas.
[0024]
Further, by analyzing the component amount of the combustible gas in the cracked gas, the flow rate of the combustible gas in the cracked gas can be calculated. In the present embodiment, CO is about 8 to 10% as a combustible gas contained in the cracked gas, and the other cracked gases are also compounds of carbon. Therefore, the concentration of the combustible gas at the outlet of the gasification furnace 4 is determined by a gas analyzer. Analysis is performed in step 7 to theoretically calculate the amount of air required for burning the combustible gas.
[0025]
Since the char contained in the decomposed gas is separated by the cyclone separator 8 and supplied to the melting part 32 separately from the decomposed gas, the decomposed gas incinerated in the secondary combustion chamber 19 according to the combustible gas flow rate calculated by the above calculation. The theoretical amount of combustion air required for combustion of the fuel can be calculated independently. The composition of the char is stable, and the theoretical amount of combustion air can be calculated from the fixed amount of char which is separately determined. The controller 11 controls each of the combustion air control valves 12 and 14 based on the above calculation results to stabilize combustion and maintain the combustion temperature.
[0026]
Furthermore, since it is very difficult to directly and accurately measure the temperature of the melting portion 32 in the melting furnace 15, the outlet temperature of the melting portion 32 close to the melting region of the char is measured by the thermometer 16, and the temperature with respect to the set target temperature is measured. The deviation from the measured temperature is calculated, and the supply amount of char is controlled based on the result. The ash melts at 1250 ° C. or higher, but 1300 to 1350 ° C. is suitable for melting, and this temperature range is the target value. If the amount of char accumulated in the char hopper 9 is sufficient and the melting temperature is 1250 ° C. or more, the supply amount of the char by the char quantitative supply device 10 is increased without depending on the auxiliary burner 13 even if the melting temperature is slightly lowered. As a result, the calorific value increases, and the melting temperature of the char can be maintained. However, if the amount of char is insufficient or the temperature of the melting portion has not reached 1250 ° C., the temperature of the melting portion 32 is controlled by the auxiliary combustion burner 13 to maintain the melting temperature.
[0027]
By carrying out such combustion control of the melting furnace 15, each part of the combustion state is stabilized, but the combustion temperature is also maintained at an appropriate temperature, further, the O 2 concentration by the O 2 concentration meter 26 provided in the flue portion And whether or not unburned gas is generated is determined based on the deviation between the set target concentration and the set target concentration (eg, 12%). That is, if the O 2 concentration is less than 12%, the amount of air is insufficient and incomplete combustion occurs, so that the amount of combustion air is increased. If it exceeds 12%, the amount of combustion air is reduced because the amount of air is excessive. These controls are performed by adjusting the amount of combustion air supplied to the secondary combustion chamber 19 by the opening amount of the air control valve 20, thereby achieving complete combustion of the decomposition gas.
[0028]
Incidentally, the decomposition gas generated in the gasification furnace 4 is N 2, CO 2, CO, H 2, H 2 O, and consists of the compounds of the CH or the like, most of which in N 2 with the exception of CO 2, and CO is there. Therefore, if the amount of N 2 is subtracted from the amount of generated gas, the approximate amounts of CO 2 and CO are obtained. That is, the same control as the above-described combustion control in the gasification melting step can be performed by analyzing the concentration of N 2 in the generated gas.
[0029]
【The invention's effect】
As described above, according to the first aspect of the present invention, the amount of air required for complete combustion of the decomposed gas is calculated based on the result of analyzing the component amount of the combustible gas in the decomposed gas and supplied to the melting furnace. The amount of air for combustion of the cracked gas is controlled, so that the amount of air required for the combustion of the cracked gas burned in the melting furnace is kept optimal, preventing the emission of unburned gas in the exhaust gas. As a result, the exhaust gas can be rendered harmless.
[0030]
According to the second aspect of the present invention, the temperature downstream of the melting part in the melting furnace is measured, and the fixed amount of char supplied to the melting furnace is controlled based on the deviation between the measured temperature and the target temperature. When the temperature of the melting part of the furnace is slightly lowered, the temperature of the melting part can be maintained at an appropriate temperature without using unnecessary fuel.
[0031]
According to the third aspect of the present invention, the oxygen concentration in the exhaust gas flowing through the flue downstream of the melting furnace is measured, and the gas combustion supplied to the melting furnace according to the deviation between the measured oxygen concentration and the target oxygen concentration. Since the amount of air for use is controlled, even if the decomposed gas causes incomplete combustion for some reason, the required amount of air can be immediately supplied, so that complete combustion of the decomposed gas can be achieved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an overall configuration of a refuse treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a processing system diagram showing input / output signals and operation contents of a controller according to the embodiment of the present invention.
[Explanation of symbols]
1: dust supply device, 2, 6: flow rate detector, 3, 5: damper, 4: gasifier, 7: gas analyzer, 8: cyclone separator (char separator), 9: char hopper, 10: char quantitative Supply device, 11: controller, 12, 14, 20: combustion air regulating valve, 13: auxiliary burner, 15: melting furnace, 16: thermometer, 17: slag screen, 18: air preheater, 19: secondary combustion chamber , 21: air preheater, 22, 23: forced draft fan, 24: temperature reducing tower 25: bag filter, 26: O 2 concentration meter, 27: CO concentration meter, 28: induced draft machine 29: gas recirculation fan, 30: chimney, 31: diffuser pipe, 32: melting part

Claims (4)

ごみをガス化炉中で熱分解させて生成した灰分とチャーとを含む分解ガスからチャーを分離し、該チャーと前記分解ガスを共に溶融炉中に導いて灰分を溶融させるガス化溶融炉の燃焼制御方法において、
前記チャーを前記溶融炉中に定量供給すると共に、前記分解ガス中の可燃性ガスの成分量を分析し、該分析結果に基づいて前記分解ガスの完全燃焼に必要な空気量を演算し、前記溶融炉に供給される前記分解ガス燃焼用の空気量を制御したことを特徴とするガス化溶融炉の燃焼制御方法。
A gasification melting furnace that separates a char from a decomposition gas containing ash and char generated by thermally decomposing garbage in a gasification furnace and guides the char and the decomposition gas together into a melting furnace to melt the ash. In the combustion control method,
While quantitatively supplying the char into the melting furnace, analyze the component amount of the combustible gas in the decomposition gas, calculate the amount of air required for complete combustion of the decomposition gas based on the analysis result, A method for controlling combustion of a gasification and melting furnace, wherein an amount of air for combustion of the cracked gas supplied to the melting furnace is controlled.
請求項1記載のガス化溶融炉の燃焼制御方法において、前記溶融炉の溶融部の下流の温度を計測し、該計測温度と目標温度との偏差に基づいてチャーの前記溶融炉への定量供給量を制御したことを特徴とするガス化溶融炉の燃焼制御方法。2. The combustion control method for a gasification and melting furnace according to claim 1, wherein a temperature downstream of a melting portion of the melting furnace is measured, and a fixed amount of char is supplied to the melting furnace based on a deviation between the measured temperature and a target temperature. A combustion control method for a gasification and melting furnace, characterized in that the amount is controlled. 請求項1記載のガス化溶融炉の燃焼制御方法において、前記溶融炉の下流に連なる煙道を流れる排ガス中の酸素濃度を計測し、該計測酸素濃度と目標酸素濃度との偏差に応じて前記溶融炉に供給するガス燃焼用の空気量を制御したことを特徴とするガス化溶融炉の燃焼制御方法。The method for controlling combustion of a gasification and melting furnace according to claim 1, wherein an oxygen concentration in an exhaust gas flowing through a flue downstream of the melting furnace is measured, and the oxygen concentration is measured according to a deviation between the measured oxygen concentration and a target oxygen concentration. A combustion control method for a gasification and melting furnace, wherein an amount of gas combustion air supplied to the melting furnace is controlled. ゴミを熱分解させるためのガス化炉と、該ガス化炉で生成された灰分とチャーとを含む分解ガスからチャーを分離するチャー分離器とを具え、前記チャーと前記分解ガスを共に導いて溶融させるガス化溶融炉の燃焼制御装置において、
前記チャーを前記溶融炉中に定量供給するチャー定量供給装置と、前記ガス化炉から流出した分解ガス中の可燃性ガスの成分量を分析するガス分析手段と、前記溶融炉の溶融部の下流の温度を計測する温度計と、前記ガス分析手段が分析した分析結果に基づいて前記分解ガスの完全燃焼に必要な空気量を演算し、前記溶融炉に供給される前記分解ガス燃焼用の空気量を制御すると共に、前記温度計が計測した計測温度と目標温度との偏差に基づいて前記チャー定量供給装置によるチャーの前記溶融炉への定量供給量を制御する制御手段とを有したことを特徴とするガス化溶融炉の燃焼制御装置。
A gasifier for thermally decomposing garbage, and a char separator for separating char from a cracked gas containing ash and char generated in the gasifier, and guiding both the char and the cracked gas In the combustion control device of the gasification melting furnace to melt,
A char quantitative supply device for quantitatively supplying the char into the melting furnace, a gas analyzing means for analyzing a component amount of a combustible gas in a cracked gas flowing out of the gasification furnace, and a downstream of a melting part of the melting furnace. A thermometer that measures the temperature of the gas, and calculates the amount of air required for complete combustion of the decomposed gas based on the analysis result analyzed by the gas analysis means, and supplies the air for the decomposed gas combustion supplied to the melting furnace. Control means for controlling the amount of the char, and controlling the quantitative supply of char to the melting furnace by the char quantitative supply device based on a deviation between the measured temperature measured by the thermometer and the target temperature. A combustion control device for a gasification and melting furnace.
JP2002298875A 2002-10-11 2002-10-11 Combustion control method and combustion control device for gasification melting furnace Pending JP2004132648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298875A JP2004132648A (en) 2002-10-11 2002-10-11 Combustion control method and combustion control device for gasification melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298875A JP2004132648A (en) 2002-10-11 2002-10-11 Combustion control method and combustion control device for gasification melting furnace

Publications (1)

Publication Number Publication Date
JP2004132648A true JP2004132648A (en) 2004-04-30

Family

ID=32288169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298875A Pending JP2004132648A (en) 2002-10-11 2002-10-11 Combustion control method and combustion control device for gasification melting furnace

Country Status (1)

Country Link
JP (1) JP2004132648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433160A (en) * 2011-08-30 2012-05-02 张建超 Control method for biomass gasification equipment
CN102443441A (en) * 2011-09-23 2012-05-09 方新成 Fuming treatment system of garbage fuel and control method thereof
CN102563713A (en) * 2011-09-23 2012-07-11 方新成 Refuse-derived fuel fuming furnace system and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433160A (en) * 2011-08-30 2012-05-02 张建超 Control method for biomass gasification equipment
CN102433160B (en) * 2011-08-30 2013-10-02 张建超 Control method for biomass gasification equipment
CN102443441A (en) * 2011-09-23 2012-05-09 方新成 Fuming treatment system of garbage fuel and control method thereof
CN102563713A (en) * 2011-09-23 2012-07-11 方新成 Refuse-derived fuel fuming furnace system and control method
CN102563713B (en) * 2011-09-23 2014-01-08 方新成 Refuse-derived fuel fuming furnace system and control method

Similar Documents

Publication Publication Date Title
EP1726876B1 (en) Improved method of combusting solid waste
KR100852507B1 (en) Treatment method and treatment apparatus for combustible gas in waste melting furnace
US5762008A (en) Burning fuels, particularly for incinerating garbage
WO2008038492A1 (en) Operating method and operation control apparatus for gasification melting furnace
CA2026927A1 (en) Fluidized-bed combustion furnace
EP1956292B1 (en) Secondary combustion method and unit in incineration system
JP2004132648A (en) Combustion control method and combustion control device for gasification melting furnace
JP3868315B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JP3868206B2 (en) Waste gasification combustion apparatus and combustion method
JP2009058216A (en) Gasification melting system, and its combustion control method
JP3944389B2 (en) Combustion air volume control system in pyrolysis gasification melting furnace
JP3027694B2 (en) Combustion control method for waste melting furnace
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP4009151B2 (en) Combustion control method and apparatus for gasification melting furnace
JP3621792B2 (en) Combustion control method for waste melting furnace generated gas combustion furnace
JP2004278941A (en) Waste gasifying and melting device
JP3825148B2 (en) Combustion control method and apparatus in refuse incinerator
JP4233212B2 (en) High-temperature swirl combustion method and waste treatment apparatus
JP3548994B2 (en) Control method and apparatus for gasification melting processing plant
JP3807882B2 (en) Combustion control method and combustion control apparatus for waste melting furnace
JP3868205B2 (en) Waste gasification combustion apparatus and combustion method
JPH1114027A (en) Method of controlling combustion of incinerator
JP2011021834A (en) Method of controlling vapor content in waste melting furnace and vapor content control device for waste melting furnace facility
JPH11351538A (en) Method and apparatus for controlling combustion of melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507