JPH04208306A - Method for controlling combustion in solid item combustion device - Google Patents

Method for controlling combustion in solid item combustion device

Info

Publication number
JPH04208306A
JPH04208306A JP2340002A JP34000290A JPH04208306A JP H04208306 A JPH04208306 A JP H04208306A JP 2340002 A JP2340002 A JP 2340002A JP 34000290 A JP34000290 A JP 34000290A JP H04208306 A JPH04208306 A JP H04208306A
Authority
JP
Japan
Prior art keywords
combustion
amount
quality
grate
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2340002A
Other languages
Japanese (ja)
Other versions
JPH079287B2 (en
Inventor
Tsukane Miyazoe
宮添 束
Keiji Yajima
矢嶋 啓二
Kenji Kaketa
健二 掛田
Takao Kashiyouji
嘉祥寺 隆夫
Makoto Fujiyoshi
誠 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Zosen Corp
Original Assignee
Hitachi Ltd
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Zosen Corp filed Critical Hitachi Ltd
Priority to JP2340002A priority Critical patent/JPH079287B2/en
Publication of JPH04208306A publication Critical patent/JPH04208306A/en
Publication of JPH079287B2 publication Critical patent/JPH079287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/52Fuzzy logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To provide an automatic and accurate restriction over a variation in combustion for a long period of time and also a variation for a short period of time and perform a stable combustion by a method wherein a thickness of fuel layer, a speed of hearth grid and an amount of feedback control of an amount of supplying air are corrected in response to a result of normal estimation of tendency of quality of dust quality or the like through a fuzzy calculation based on outputs of various sensors. CONSTITUTION:A detected signal of each of sensors at a sensor part 31 is collected and processed at an input processing part 28a of a calculation part 28. The detected signals are processed into each of detected values required for producing a feed-back control signal at a detected amount calculation part 28b and a fuzzy calculation for determining a corrected value or the like and then the values are supplied to a controlling amount calculation part 28c and a fuzzy control part 29. A present furnace temperature is always estimated at a dust quality sensing part 29a at the fuzzy control part 29 and an actual trend of dust quality during combustion is always estimated through a fuzzy calculation based on the thickness of the dust layer or the like. Various correction values such as a thickness of dust layer or the like are determined to the most appropriate values corresponding to the actual dust quality at the estimated time when the tendency of the dust quality is estimated under a total judgement at the correction value output part 29b based on each of the estimated tendencies. Each of the corrected values automatically adjusted in response to the determination is supplied from a corrected value outputting part 29b to an adding part 30, and then each of feed-back control signals at the calculation part 28 is corrected to a control signal of the most appropriate combustion state corresponding to the dust quality.

Description

【発明の詳細な説明】 口産業上の利用分野〕 本発明は、ごみ焼却装置等の固形燃焼装置の自動燃焼制
御に適用される固形燃焼装置の燃焼制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a combustion control method for a solid combustion device, which is applied to automatic combustion control of a solid combustion device such as a garbage incinerator.

〔従来の技術〕[Conventional technology]

従来、ごみ焼却装置の炉はほぼ第5図に示すように構成
され、ごみピットからクレーンで搬送された燃料として
のごみは焼却炉(11の投入ホッパ(2)に投入される
Conventionally, the furnace of a garbage incinerator is constructed approximately as shown in FIG. 5, and garbage as fuel is transported by a crane from a garbage pit and is charged into an input hopper (2) of the incinerator (11).

そして、投入されたごみは後述の各火格子のごみ送り(
燃料送り)により、図中の斜線に示すように堆゛積した
状態で徐々に下方に送られる。
Then, the thrown garbage is sent to each grate (described later).
As shown by the diagonal lines in the figure, the fuel is gradually sent downward in an accumulated state.

この送りに基づき、最初は投入されたごみが乾燥火格子
(3)に送られ、この火格子(3)により、下方の風箱
(4)からの熱風で乾燥される。
Based on this feeding, initially the thrown garbage is sent to the drying grate (3), and is dried by this grate (3) with hot air from the air box (4) below.

さらに、火格子(3)の乾燥されたごみは、燃焼火格子
(5)に送られて燃焼される。
Furthermore, the dried waste on the grate (3) is sent to the combustion grate (5) to be burned.

なお、火格子(5)は前段格子(5a)と後段格子(5
b)とからなり、両路子(5a) 、 (5b)にそれ
ぞれの下方の風箱(6a) 、 (6b)からの燃焼用
の熱風が送られる。
In addition, the grate (5) is a front-stage grate (5a) and a rear-stage grate (5).
b), and hot air for combustion is sent from the lower wind boxes (6a) and (6b) to the two terminals (5a) and (5b), respectively.

そして、火格子(5)で燃焼゛されたごみは、完全に燃
焼するため、後燃焼火格子(7)に送られてさらに燃焼
される。
In order to completely combust the garbage burned in the grate (5), it is sent to the post-combustion grate (7) for further combustion.

なお、火格子(7)にも下方の風箱(8)からの燃焼用
の熱風が送られる。
Incidentally, hot air for combustion is also sent to the fire grate (7) from the lower air box (8).

また、火格子(7)の燃焼により生じた灰は、炉内の灰
ピット(9)に堆積する。
Also, the ash produced by the combustion of the grate (7) is deposited in the ash pit (9) in the furnace.

そして、炉内の熱によりボイラ00)で蒸気が発注し、
この蒸気が蒸気管路αυを介して外部に送られ、利用さ
れる。
Then, due to the heat in the furnace, steam is produced in boiler 00),
This steam is sent to the outside via the steam line αυ and used.

ところで、各風箱14) 、 (6a) 、 (6b)
 、、(8)に適当な熱風を供給するため、空気管路■
の1次空気がエアヒータθ(至)により加熱され、エア
ヒータダンパ00及び風箱(41、(6a) 、 (6
b) 、 (81の下部の乾燥火格子ダンパα5)、燃
焼空気ダンパ(16a)、燃焼火格子ダンパ(16b)
By the way, each wind box 14), (6a), (6b)
,, In order to supply suitable hot air to (8), air pipe ■
The primary air of is heated by the air heater θ (to), and the air heater damper 00 and the wind boxes (41, (6a), (6)
b) , (lower dry grate damper α5 of 81), combustion air damper (16a), combustion grate damper (16b)
.

α刀により分配調整されて風箱(4) 、 (6a) 
、 (6b) 、 (8ンそれぞれに送られる。
The distribution is adjusted by the α sword and the wind box (4), (6a)
, (6b) , (sent to each of the 8 channels.

また、炉内には空気管路0印の2次空気が送風ダンパ0
鴫を介して直接供給される。
In addition, the secondary air in the air pipe line marked 0 is in the furnace and the blow damper is 0.
Supplied directly through the stream.

一方、焼却炉(1)の燃焼を制御するため、炉内の温度
、圧力が温度センサ(20)、圧力センサ(21)によ
り検出され、風箱(4)、(6a)の圧力が圧力センサ
(22) 、 (23)それぞれにより検出される。
On the other hand, in order to control combustion in the incinerator (1), the temperature and pressure inside the furnace are detected by a temperature sensor (20) and a pressure sensor (21), and the pressure in the wind boxes (4) and (6a) is detected by a pressure sensor. (22) and (23), respectively.

また、ボイラ00)の発止蒸気量が流量セン+ (24
)により検出され、1次空気、2次空気の量が流量セン
サ(25a) 、 (25b)により検出される。
Also, the starting steam amount of boiler 00) is the flow rate sensor + (24
), and the amounts of primary air and secondary air are detected by flow rate sensors (25a) and (25b).

なお、第5図において、(1)゛ は炉内の仕切壁、(
26)はボイラQOIに接続された水管群を示す。
In addition, in Fig. 5, (1) ゛ is the partition wall inside the furnace, (
26) shows a group of water pipes connected to the boiler QOI.

そして、焼却炉(1)の各センサ(20)〜(25b)
等の検出信号(センサ出力)は、図外の自動燃焼の制御
装置に供給される。
And each sensor (20) to (25b) of the incinerator (1)
These detection signals (sensor outputs) are supplied to an automatic combustion control device (not shown).

この制御装置は、ごみ投入量等の燃焼条件をフィードバ
ック制御するため、各センサ出力に基づ<PID処理に
より、ダンパ04)、 O5)・・・等の種々のアクチ
ュエータの帰還制御の信号を形成する。
This control device uses PID processing to form feedback control signals for various actuators such as damper 04), O5), etc. based on the output of each sensor in order to perform feedback control of combustion conditions such as the amount of garbage input. do.

このとき、火格子(5)のごみ層厚(燃料層厚)を目標
値に引込んで一定値に保持するため、生に火格子(5)
のごみ層厚、各火格子(3L (51,(71のごみ送
りの火格子速度の制御信号が形成される。
At this time, in order to pull the garbage layer thickness (fuel layer thickness) of the grate (5) to the target value and maintain it at a constant value, the grate (5)
The control signal for the grate speed of the garbage feed of each grate (3L (51, (71) is formed).

また、1次空気配分比に基づいて各風箱(4) 、 (
6a) 。
In addition, each wind box (4), (
6a).

(6b)、 (8)に分配供給される1次空気及び焼却
炉(1)内に直接供給される2次空気の量を目標値に引
込んで一定に保持するため、ダンパ04)、 O5)・
・・を調整する1次、2次空気量比の制御信号等が形成
される。
In order to draw the amount of primary air distributed and supplied to (6b), (8) and secondary air directly supplied into the incinerator (1) to the target value and keep it constant, dampers 04), O5) are used.・
. . . A control signal for the primary and secondary air amount ratio, etc., for adjusting the... is generated.

そして、各制御信号に基づくダンパQ4)、 QSl、
・・・等の種々のアクチュエータの調整により、焼却炉
(1)内の燃焼が自動制御される。
Then, dampers Q4), QSl, based on each control signal
By adjusting various actuators such as..., combustion in the incinerator (1) is automatically controlled.

ところで、最適燃焼状態の前記ごみ層厚、火格子速度及
び1次、2次空気量等は、実際には、投入されるごみの
材質、乾燥状態等の質(ごみ質)に応じて変化する。
By the way, the above-mentioned garbage layer thickness, grate speed, primary and secondary air amount, etc. in the optimum combustion state actually change depending on the material of the input garbage, the drying state, etc. quality (the garbage quality). .

そして、焼却炉(1)の排出ガスに含まれるNOx、C
0を極力少なくして安定な燃焼を持続するため、ごみ質
に応じて各制御信号の帰還制御量を補正する必要がある
Then, NOx and C contained in the exhaust gas of the incinerator (1)
In order to maintain stable combustion by minimizing 0, it is necessary to correct the feedback control amount of each control signal depending on the quality of the waste.

この補正は、最も簡単には、例えば1日1回実際にごみ
ピットのごみを採集(サンプリング)してごみ質を直接
測定し、この測定の結果に基づき、1日毎に各制御信号
に加減算する帰還制御量の各補正値を手動操作で設定し
て行わnる。
The simplest way to perform this correction is to directly measure the quality of the garbage by actually sampling it once a day, for example, and then add or subtract it to each control signal on a daily basis based on the results of this measurement. This is done by manually setting each correction value of the feedback control amount.

この場合、測定さnるごみ質が燃焼中の時々刻々変化す
る動的な実際のごみ風でないため、補正の精度が極めて
低い。
In this case, the accuracy of the correction is extremely low because the measured waste quality is not the dynamic actual waste wind that changes from moment to moment during combustion.

そこで、ごみ焼却装置等のこの種固形燃焼装置において
は、従来、つぎに説明する熱量計測により燃焼中のごみ
質等の燃料の質を推定して前記の補正が施される。
Therefore, in this type of solid combustion device such as a garbage incinerator, the above-mentioned correction is conventionally performed by estimating the quality of fuel such as the quality of garbage during combustion by calorimetry, which will be described below.

すなわち、第5図のごみ焼却装置の場合は、例えば焼却
炉(1)の人出熱量比を2〜3時間程度の時間間隔の熱
量計測から求め、その結果からゾ就焼量の大小を1判定
して時間平均のごみ質を推定し、この推定の結果に基づ
き前記各補正値が必要に応じて手動で可変調整される。
In other words, in the case of the waste incinerator shown in Fig. 5, for example, the human output heat ratio of the incinerator (1) is determined by measuring the calorific value at time intervals of about 2 to 3 hours, and from the results, the magnitude of the incineration amount is determined by 1. The time-average waste quality is estimated by the judgment, and the correction values are manually variably adjusted as necessary based on the estimation results.

この可変調整に基づき、ン布]焼量に応じた補正が施さ
れる。
Based on this variable adjustment, corrections are made in accordance with the amount of cloth printed.

なお、各補正値としては、例えば、火格子(3)。Note that each correction value is, for example, grate (3).

(5)の火格子速度の比を決定してごみ投入量(燃料投
入量)を調整するごみ層厚、火格子速度調整用のすべり
係数及び供給空気量を調整する1次、2次空気量比、1
次空気配分比の補正係数等がある。
(5) Determine the grate speed ratio to adjust the garbage input amount (fuel input amount), the garbage layer thickness, the slip coefficient for grate speed adjustment, and the primary and secondary air amount to adjust the supply air amount. ratio, 1
There are correction coefficients for the air distribution ratio, etc.

藪だ、前記熱量計測に基づく補正を行う場合の燃焼制御
のフローチャートは第6図に示すようになり、ごみ質の
変化等に基づき蒸気量、炉温か変 。
The flowchart for combustion control when correction is performed based on the calorimetry is shown in Figure 6, and the amount of steam and furnace temperature are changed based on changes in the quality of the waste.

動して燃焼が不安定になると、その直前の熱量計測で推
定されたごみ質に基づき、各補正値が手動操作で調整さ
れて補正される。
When combustion becomes unstable due to movement, each correction value is manually adjusted and corrected based on the waste quality estimated from the previous calorimetry.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来のごみ焼却装置のメ′L焼制御方法の場合、熱
量計測の補正を施すときにも、この補正が実際のごみ質
ではなく、燃焼量に基づくみかけのごみ質に応′じて補
正が施されるため、補正精度が低い。
In the case of the conventional waste incineration control method described above, even when the calorimetry is corrected, this correction is not based on the actual waste quality but on the apparent waste quality based on the amount of combustion. is applied, so the correction accuracy is low.

しかも、ごみ質の更新が2〜3時間程度の比較的長い時
間間隔でしか行えないため、ごみ質の時間周期程度の長
期変動については補正が追従するが、分周期のような過
渡的な短期変動については補正が追従せず、補正の追従
応答性が悪い。
Furthermore, since the waste quality can only be updated at relatively long time intervals of about 2 to 3 hours, the correction can follow long-term fluctuations in the waste quality such as the time period, but transient short-term changes such as minute cycles can be corrected. The correction does not follow the fluctuation, and the follow-up response of the correction is poor.

したがって、ごみ質に応じた最適な燃焼制御が行えず、
制御性能が低くコ燃焼が不安定になって排出ガス中のN
Ox、 COが増加する問題点がある。
Therefore, it is not possible to perform optimal combustion control according to the waste quality.
Due to poor control performance, combustion becomes unstable and N in the exhaust gas is reduced.
There is a problem that Ox and CO increase.

さらに、手動操作で各補正値の調整(修正)が行われる
ため、省人化が図れない問題点もある。
Furthermore, since each correction value is adjusted (corrected) manually, there is also the problem that labor savings cannot be achieved.

そして、ごみ焼却装置以〆の産業廃棄物、木屑(パーク
)9石炭塊、バーガス等の種々の固形燃料を使用する燃
焼装置の燃焼制御方法においても、ごみ質等の燃料の質
に応じて燃焼制御を補正するときは、前記と同様の問題
点が生じる。
Also, in the combustion control method of combustion equipment that uses various solid fuels such as industrial waste, wood chips (park), coal blocks, and bar gas, combustion is controlled according to the quality of the fuel such as garbage quality. When correcting the control, problems similar to those described above arise.

本発明は、燃焼中のごみ質等の燃料の質の傾向を精度よ
く推定し、その結果に基づく自動制御により、ごみ質の
長期変動、短期変動のいずれに対しても最適な補正を施
し、制御性能の向上を図るようにした固形燃焼装置の燃
焼制御方法を提供することを目的とする。
The present invention accurately estimates trends in the quality of fuel, such as the quality of garbage during combustion, and performs automatic control based on the results to optimally correct both long-term and short-term fluctuations in garbage quality. An object of the present invention is to provide a combustion control method for a solid combustion device that improves control performance.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明の固形燃焼装置の燃
焼制御方法においては、各センサ出力から求まる現在の
炉温、燃料層厚等に基づくファジィ演算により、ごみ質
傾向等の燃料の質の傾向を常時推定し、 前記燃料層厚、火格子速度の帰還制御量を前記推定の結
果により補正して燃焼の長期変動を抑制前記空気量の帰
還制御量を前記推定の結果により補正して燃焼の短期変
動を抑制する。
In order to achieve the above object, the combustion control method for a solid combustion apparatus of the present invention uses fuzzy calculations based on the current furnace temperature, fuel layer thickness, etc. found from each sensor output to determine fuel quality such as waste quality trends. The tendency is constantly estimated, and the feedback control amount of the fuel layer thickness and grate speed is corrected based on the results of the estimation to suppress long-term fluctuations in combustion.The feedback control amount of the air amount is corrected based on the estimation result to control combustion. suppress short-term fluctuations in

〔作 用〕[For production]

前記のように構成された本発明の固形燃焼装置の燃焼制
御方法の場合、ファジィ演算によりごみ質傾向等の燃料
の質の傾向が高い精度で常時推定される。
In the case of the combustion control method for a solid combustion apparatus of the present invention configured as described above, trends in fuel quality such as trends in waste quality can be constantly estimated with high accuracy by fuzzy calculation.

そして、推定された傾向に基づき、等価的に、各時点の
燃焼中の実際の燃料の質1例えばごみ質がリアルタイム
で精度よく求められる。
Then, based on the estimated tendency, the actual fuel quality 1, for example, the waste quality during combustion at each point in time is equivalently determined in real time with high precision.

さらに、推定された最新のごみ質傾向に基づき、ごみ層
厚、火格子速度及び供給空気量の帰還制御量が自動的に
応答性よく適正に補正される。
Further, based on the latest estimated waste quality trends, the feedback control amounts of the waste layer thickness, grate speed, and supply air amount are automatically and appropriately corrected with good responsiveness.

そして、ごみ層厚、火格子速度の帰還制御量の補正によ
って燃焼の長期変動が確実に抑制され、供給空気量の帰
還制御量の補正によって突発的な短期変動も確実に抑制
されるため、燃焼の制御性能が著しく向上して燃焼が極
めて安定化する。
In addition, long-term fluctuations in combustion are reliably suppressed by correcting the feedback control amount of the dust layer thickness and grate speed, and sudden short-term fluctuations are also reliably suppressed by correcting the feedback control amount of the supply air amount. control performance is significantly improved and combustion becomes extremely stable.

〔実施例〕〔Example〕

1実施例について、第1図ないし第4図を参照して説明
する。
One embodiment will be described with reference to FIGS. 1 to 4.

第1図は第5図のごみ焼却装置に適用した場合の制御構
成を示し、コンピュータ等で形成された制御装置(27
)はPID演翼部(28) 、ファジィ制御部(29)
 、加算部(30)からなる。
Fig. 1 shows a control configuration when applied to the waste incineration device shown in Fig. 5, and shows a control device (27
) are the PID acting unit (28) and the fuzzy control unit (29).
, an adder (30).

そして、第5図の各センサ(20)〜(25b)等が形
成するセンサ部(31)の各センi出信号は演算部(2
8)の入力処理部(28a)で収集処理され、・検出量
算出部(28b)によりフィードバック制御の信号の生
成及び補正値決定のファジィ演算等に必要な各検出値に
加工されて制御量算出部(28c)及びファジィ制御部
(29)に供給される。
Then, each sensor i output signal of the sensor unit (31) formed by each sensor (20) to (25b) etc. in FIG.
8) is collected and processed by the input processing unit (28a), and processed by the detected amount calculation unit (28b) into each detected value necessary for generating feedback control signals and fuzzy calculations for determining correction values, etc. to calculate the control amount. (28c) and a fuzzy control unit (29).

このとき、制御量算出部<28c)は各検出値に基づ<
PID制御の各帰還制御量の演算により、従来と同様の
PID処理で各帰還制御の信号を形成する。
At this time, the control amount calculation unit <28c) is based on each detected value.
By calculating each feedback control amount of PID control, each feedback control signal is formed by PID processing similar to the conventional one.

そして、制御量算出部(28c)の各信号は加算部(3
0)を介して第5図の各ダンパ圓、 Q51.・・・等
が形成するアクチュエータ部(32)に供給され、この
供給に基づき、各ダンパ04J、・・・の調整量等が制
御されてごみ供給量、燃焼状態等が調整さn、焼却炉(
1)の燃焼がフィードバック制御される。
Each signal of the control amount calculation section (28c) is
0) through each damper circle in FIG. 5, Q51. Based on this supply, the amount of adjustment of each damper 04J, etc. is controlled to adjust the amount of garbage supplied, the combustion state, etc. n, the incinerator. (
1) Combustion is feedback controlled.

一方、ファジィ制御部(29)はごみ質検知部(29a
)及び補正値出力部(29b)からなり、ごみ質検知部
(29a)により、現在の炉温、ごみ層厚等に基づくフ
ァジィ演算で燃焼中の実際のごみ質傾向を常時推定する
On the other hand, the fuzzy control section (29) controls the waste quality detection section (29a).
) and a correction value output section (29b), and the waste quality detection section (29a) constantly estimates the actual tendency of waste quality during combustion using fuzzy calculations based on the current furnace temperature, waste layer thickness, etc.

この推定に用いるファジィ演算のマトリックスの組合せ
は、例えば、つぎの表1のケース11表2のケース29
表3のケース3で示される。
The combination of fuzzy operation matrices used for this estimation is, for example, case 11 in Table 1 and case 29 in Table 2.
This is shown in case 3 of Table 3.

なお、各表において、VB(νery Big)は非常
に大きい、 L B (Little Big)はやや
大きい、ME(Medium):;;中間、  L S
 (Little Small)はやや小さい。
In each table, VB (νery Big) is very large, LB (Little Big) is slightly large, ME (Medium):; medium, L S
(Little Small) is slightly small.

VS(νery Small)は非常に小さいを示し、
(>B;異常値(通常二=使わない値)を示す。
VS (νery Small) indicates very small,
(>B: Indicates an abnormal value (usually 2 = unused value).

また、ごみ質傾向の値のメンハーシソプ関数の1例は、
全範囲をO〜3000とした場合、つぎのようになる。
In addition, an example of the Menharsisop function for the value of waste quality tendency is
When the entire range is O to 3000, it is as follows.

V B =2350.1450< M E < 155
0. Vs=650さらに、炉温は温度センサ(20)
の検出温度から求まり、火格子(5)のごみ層厚は圧力
センサ(21) 、 (23)の検出圧力の差から求ま
り、蒸気量は流量センサ(24)の検出流量から求まり
、時間平均ごみ質は従来と同様の熱量計測から求まる。
V B =2350.1450< M E <155
0. Vs=650 Furthermore, the furnace temperature is measured by a temperature sensor (20)
The thickness of the garbage layer on the grate (5) is determined from the difference in the pressure detected by the pressure sensors (21) and (23), and the amount of steam is determined from the flow rate detected by the flow rate sensor (24). The quality can be determined by measuring the calorific value in the same way as before.

そして、例えばケース1のマトリックスの組合せを用い
たときは、現在の炉温と火格子(5)のごみ層厚とによ
り、時々刻々変化するごみ質傾向がリアルタ、イム処理
で決定されて推定される。
For example, when using the combination of matrices in Case 1, the tendency of the waste quality, which changes from time to time, is determined and estimated by real time processing based on the current furnace temperature and the thickness of the waste layer on the grate (5). Ru.

ところで、前記ケース1〜3のどの組合せを用いるかは
、推定したごみ質傾向の用途に応じて決まる。
By the way, which combination of Cases 1 to 3 is used depends on the intended use of the estimated waste quality tendency.

そして、種々の実験等の結果、ごみ質の比較的緩やかな
長期変動に追従した補正により、ごみの乾燥の促進とご
み層厚の安定化とを図り、長期変動に基づく排出ガス中
のNOxを低減するには、長期対応ルールとして前記ケ
ース1の組合せが適している。
As a result of various experiments, we have promoted the drying of garbage and stabilized the thickness of the garbage layer by making corrections that follow relatively gradual long-term fluctuations in garbage quality, and have reduced NOx in exhaust gas due to long-term fluctuations. To reduce this, the combination of Case 1 is suitable as a long-term response rule.

また、投入されるごみに破砕ごみ、高プラスチック類が
含まれ始め、ごみ質が急変して蒸気量。
In addition, the garbage being thrown in began to contain shredded garbage and high-quality plastics, and the quality of the garbage suddenly changed and the amount of steam increased.

炉゛温が大きく急変する短期変動時に、これらの急変を
迅速に抑えて燃焼の安定化を図り、排出ガス中のCOを
低減するには、短期対応ルールとして前記ケース2又は
3の組合せが適している。
During short-term fluctuations in which the furnace temperature changes greatly and suddenly, the combination of Cases 2 and 3 above is suitable as a short-term response rule in order to quickly suppress these sudden changes, stabilize combustion, and reduce CO in exhaust gas. ing.

そして、燃焼の長期の安定化及び短期の安定化を図るた
め、ごみ質検知B(29a)は例えばケース1.2の組
合せを用いて長期用、短期用の2種類のごみ質傾向を精
度よく常時推定する。
In order to achieve long-term and short-term stabilization of combustion, the waste quality detection B (29a) uses, for example, the combination of case 1.2 to accurately detect two types of waste quality trends, long-term and short-term. Always estimate.

さらに、ごみ質検知部(29a)のごみ質傾向が補正値
出力部(29b)に供給され、この出力部(29)によ
り、推定された長期用、短期用の最新のごみ質傾向を用
いたつぎの表4の長期対応ルール、表5の短期対応ルー
ルそれぞれのファジィ演算のマトリックスの組−合せに
基づき、最適燃焼状態に制御するための制御量補正の指
標として、すべり係数と燃荒空気温度の傾向、(1次空
気量)/(1次空気量+2次空気量)と(前段格子(5
a)の空気量)/(後段格子(5b)の空気量)の傾向
が常時推定される。
Further, the waste quality trend of the waste quality detection unit (29a) is supplied to the correction value output unit (29b), and this output unit (29) uses the latest estimated long-term and short-term waste quality trends. Based on the combination of matrices of fuzzy calculations for the long-term response rules in Table 4 and the short-term response rules in Table 5, the slip coefficient and rough combustion air temperature are used as indicators for correcting the control amount to control the optimum combustion state. The tendency of (primary air amount) / (primary air amount + secondary air amount) and (front stage grid (5
The tendency of air amount in a)/(air amount in rear grid (5b)) is constantly estimated.

なお、表41表517)VB、ME、 ・−・は表19
表2、表3と同じ傾向を示し、()は次善の選択を示す
In addition, Table 41 Table 517) VB, ME, ... are Table 19
It shows the same tendency as Tables 2 and 3, and () indicates the next best selection.

表4(長期対応;トル) 表5(短期対応トル) そして、推定された各傾向に基づく補正値出力部(29
b)の総合的な判定により、ごみ質傾向が推定さnる毎
に、ごみ層厚、火格子速度の補正用のすべり係数及び供
給空気量補正用の1次、2次空気量比、1次空気配分比
等の種々の補正値がその時点の実際のごみ質に応した最
遠値に決定さnる。
Table 4 (Long-term correspondence; Tor) Table 5 (Short-term correspondence; Tor) And the correction value output unit (29
Based on the comprehensive judgment in b), every time the waste quality trend is estimated, the waste layer thickness, the slip coefficient for correction of the grate speed, and the primary and secondary air amount ratio for correction of the supply air amount, 1 Various correction values such as the next air distribution ratio are determined to be the furthest values corresponding to the actual waste quality at that time.

この決定に基づいて自動的に調整された各補正値が補正
値出力部(29b)から加算部(30) 番こ供給され
、加算部(30)の加減算により、演算部(28)の各
帰還制御の信号が、ごみ質に応じた最適燃焼状態の制御
信号になるように補正される。
Each correction value automatically adjusted based on this determination is supplied from the correction value output section (29b) to the addition section (30), and the addition and subtraction of the addition section (30) causes each correction value to be returned to the calculation section (28). The control signal is corrected so that it becomes the control signal for the optimum combustion state depending on the quality of the waste.

そして、すべり係数に基づくごみ層厚、火格子速度の補
正により、燃焼の長期変動が抑えられて長期の安定化が
図られ、排出ガス中のNOxが極めて少なくなる。
By correcting the dust layer thickness and grate speed based on the slip coefficient, long-term fluctuations in combustion are suppressed, long-term stability is achieved, and NOx in exhaust gas is extremely reduced.

また、1次、2次空気量比及び1次空気配分比に基づく
供給空気量のフィードフォワード的な補正により、燃焼
の短期変動が極めて迅速な応答によって確実に抑えられ
、短期変動に伴なう排出力゛ス中のCOも極めて少なく
なる。
In addition, by feedforward correction of the supply air amount based on the primary and secondary air amount ratio and the primary air distribution ratio, short-term fluctuations in combustion are reliably suppressed with an extremely quick response, and the The amount of CO in the exhaust gas will also be extremely low.

なお、過大な変動が発生し、ファジィ制御部(29)の
自動補正で抑えられないときは、この自動補正が変動開
始から一定時間継続した後、すべり係数及び1次、2次
空気量比、1次空気配分比等が手動操作で調整されて修
正される。
If an excessive fluctuation occurs and cannot be suppressed by the automatic correction of the fuzzy control unit (29), after this automatic correction continues for a certain period of time from the start of the fluctuation, the slip coefficient and the primary/secondary air amount ratio, The primary air distribution ratio etc. are manually adjusted and corrected.

そして、前記の制御のフローチャートは、例えば第2図
に示すようになり、ごみ質傾向の推定に基づく各時点の
推定ごみ質により、燃焼が変動して不安定になると、各
補正値が変動に応じて自動調整される。
The flowchart of the above-mentioned control becomes, for example, as shown in Fig. 2. When combustion fluctuates and becomes unstable due to the estimated waste quality at each point in time based on the estimation of waste quality trends, each correction value fluctuates. automatically adjusted accordingly.

ところで、第1図の制御装置(27) 、従来の制御装
置の制御特性の実測結果は、燃焼の安定しているときに
第3図(a)、 (b)それぞれに示すようになり、長
時間運転時に第4図(al、 (b)それぞれに示すよ
うになった。
By the way, the actual measurement results of the control characteristics of the control device (27) in Fig. 1 and the conventional control device are as shown in Figs. 3 (a) and (b) respectively when combustion is stable, During hourly operation, the conditions were as shown in Figures 4 (al) and (b).

第3図(a)、 (b)において、実線α、βは炉温、
蒸気量の制御量を示し、それぞれの炉温変動幅、蒸気量
変動幅は同図(a) ?約30(度)、約2 (T/H
)、同図(blで約80度、約3 (T/H)である。
In Fig. 3 (a) and (b), solid lines α and β indicate the furnace temperature,
Figure (a) shows the control amount of steam amount, and the range of furnace temperature fluctuation and steam amount fluctuation. Approximately 30 (degrees), approximately 2 (T/H
), the same figure (about 80 degrees in bl, about 3 (T/H)).

また、第4図(a)、 (b)において、実線i、  
ii、  iiiは炉温(℃)、蒸気量偏差(T/H)
、燃焼空気流量(KN耐/H)を示す。
In addition, in FIGS. 4(a) and 4(b), solid lines i,
ii and iii are furnace temperature (℃) and steam amount deviation (T/H)
, indicates the combustion air flow rate (KN resistance/H).

そして、ファジィ演算のマトリックスの組合せ等は実施
例に限定されるものではない。
Furthermore, the combinations of matrices for fuzzy operations are not limited to the embodiments.

また、前記実施例ではごみ燃焼装置の制御に適用したが
、固形燃料を使用するスカート式炉、キルン炉、流動床
炉等の種々の炉で構成される燃焼装置の制御に適用でき
るのは勿論である。
In addition, although the above embodiment was applied to control of a waste combustion device, it can of course be applied to control of combustion devices composed of various types of furnaces that use solid fuel, such as skirt furnaces, kiln furnaces, and fluidized bed furnaces. It is.

:発明の効果〕 本発明は、以上説明したように構成されているため、以
下に記載する効果を奏する。
:Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below.

各種のセンサ出力に基づくファジィ演算により、ごみ質
傾向等の燃料の質の傾向を常時推定し、この推定の結果
に基づき、燃料層厚、火格子速度及び各火格子の風箱、
炉内に供給される空気量の帰還制御量を補正したため、
燃料の質の傾向を正確に把握して燃焼の長期変動、短期
変動を自動的に精度よく抑制し、燃焼の安定化を図ると
ともに、排気ガス中のNOx、 Coを極力抑えて制御
性能の向上を図ることができ、しかも、省人化を図るこ
とができる。
Using fuzzy calculations based on various sensor outputs, fuel quality trends such as waste quality trends are constantly estimated, and based on the results of this estimation, fuel layer thickness, grate speed, wind box of each grate, etc.
Since the feedback control amount for the amount of air supplied to the furnace was corrected,
Accurately grasp trends in fuel quality and automatically and accurately suppress long-term and short-term fluctuations in combustion to stabilize combustion and improve control performance by minimizing NOx and Co in exhaust gas. In addition, it is possible to achieve labor savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の固形燃焼装置の燃焼制御
方法の1実施例を示し、第1図はブロック図、第2図は
フローチャート、第3図(al、 (b)及び第4図(
a)、 (blは制御特性の実測図、第5図はごみ焼却
装置のブロック図、第6図は従来例のフローチャートで
ある。 (1)・・・焼却炉、(27)・・−制御装置、(28
)・・・演算部、(29)・・・ファジィ制御部、(3
0)・・・加算部、(31)・・・センサ部、(32)
・・・アクチュエータ部。 代理人  弁理士   藤1)龍太部 第1図 1  、、  d!7’;             
    29  ・  7□、、’4制御riPQ27
・・・ψn卸畷1           29G・  
ご涛41撲天中28・ PID璋11.紳      
 29b・・神jI:速払力即28Q、、−)、7)x
a7           30 ・   〃D1ア2
8b・・ ff戯を算ム9     31・  でンイ
抑28c・4’1軒量1*f7732−1’7+−x−
717第21!11 第3図 昆L+問 第4図 (a) 紅遵峙間    (r) 第5図
1 to 4 show one embodiment of the combustion control method for a solid combustion device of the present invention, in which FIG. 1 is a block diagram, FIG. 2 is a flowchart, and FIGS. figure(
a), (bl is an actual measurement diagram of control characteristics, Fig. 5 is a block diagram of a garbage incinerator, and Fig. 6 is a flow chart of a conventional example. (1)...Incinerator, (27)...-Control device, (28
)...Arithmetic section, (29)...Fuzzy control section, (3
0)...addition section, (31)...sensor section, (32)
...actuator section. Agent Patent Attorney Fuji 1) Ryutabe Figure 1 1 ,, d! 7';
29 ・ 7□,,'4 control riPQ27
...ψn wholesale 1 29G・
Goto 41 Boutenchu 28, PID Sho 11. Gentleman
29b...God jI: Quick payment power immediately 28Q,,-),7)x
a7 30 ・ D1 a2
8b... Calculate ff play 9 31. 28c, 4'1 eaves amount 1*f7732-1'7+-x-
717 No. 21! 11 Figure 3 Kun L + Question Figure 4 (a) Benijunchima (r) Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)投入されたごみ等の固形の燃料を炉内の乾燥火格
子、燃焼火格子等の各火格子に順に送って燃焼するごみ
焼却装置等の固形燃焼装置に適用され、種々のセンサ出
力に基づき、燃料層厚、燃料送りの火格子速度及び前記
各火格子の風箱、炉内に供給される空気量等を帰還制御
して燃焼状態を調整する固形燃焼装置の燃焼制御方法に
おいて、前記各センサ出力から求まる現在の炉温、前記
燃料層厚等に基づくファジィ演算により、ごみ質傾向等
の燃料の質の傾向を常時推定し、 前記燃料層厚、前記火格子速度の帰還制御量を前記推定
の結果により補正して燃焼の長期変動を抑制し、 前記空気量の帰還制御量を前記推定の結果により補正し
て燃焼の短期変動を抑制する ことを特徴とする固形燃焼装置の燃焼制御方法。
(1) Applicable to solid combustion devices such as garbage incinerators that sequentially send solid fuel such as garbage to each grate in the furnace, such as a drying grate and a combustion grate, for combustion, and various sensor outputs. In a combustion control method for a solid combustion device, the combustion state is adjusted by feedback controlling the fuel layer thickness, the grate speed of fuel feeding, the wind box of each grate, the amount of air supplied to the furnace, etc. based on the above, Fuel quality trends such as waste quality trends are constantly estimated by fuzzy calculations based on the current furnace temperature, fuel layer thickness, etc. found from the sensor outputs, and feedback control amounts of the fuel layer thickness and grate speed are determined. is corrected by the result of the estimation to suppress long-term fluctuations in combustion, and the feedback control amount of the air amount is corrected by the result of the estimation to suppress short-term fluctuations in combustion. Control method.
JP2340002A 1990-11-30 1990-11-30 Combustion control method for solid combustion device Expired - Lifetime JPH079287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340002A JPH079287B2 (en) 1990-11-30 1990-11-30 Combustion control method for solid combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340002A JPH079287B2 (en) 1990-11-30 1990-11-30 Combustion control method for solid combustion device

Publications (2)

Publication Number Publication Date
JPH04208306A true JPH04208306A (en) 1992-07-30
JPH079287B2 JPH079287B2 (en) 1995-02-01

Family

ID=18332809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340002A Expired - Lifetime JPH079287B2 (en) 1990-11-30 1990-11-30 Combustion control method for solid combustion device

Country Status (1)

Country Link
JP (1) JPH079287B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835630A (en) * 1993-12-29 1996-02-06 Martin Gmbh Fuer Umwelt & Energietech Adjusting method of discrete or whole factor having effect on combustion on grate of combustion furnace
JPH10185157A (en) * 1996-12-20 1998-07-14 Kubota Corp Method and device for judging refuse quality, and combustion control device of refuse incinerator
US6435113B1 (en) 1996-12-06 2002-08-20 Nkk Corporation Incineration apparatus and method which suppress generation of dioxins
WO2020045520A1 (en) * 2018-08-31 2020-03-05 日立造船株式会社 Crane control device, control method for crane control device, control program, and recording medium
CN114646217A (en) * 2022-04-25 2022-06-21 中南大学 Cloud edge cooperative intelligent control method and system for roasting furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835630A (en) * 1993-12-29 1996-02-06 Martin Gmbh Fuer Umwelt & Energietech Adjusting method of discrete or whole factor having effect on combustion on grate of combustion furnace
US6435113B1 (en) 1996-12-06 2002-08-20 Nkk Corporation Incineration apparatus and method which suppress generation of dioxins
JPH10185157A (en) * 1996-12-20 1998-07-14 Kubota Corp Method and device for judging refuse quality, and combustion control device of refuse incinerator
WO2020045520A1 (en) * 2018-08-31 2020-03-05 日立造船株式会社 Crane control device, control method for crane control device, control program, and recording medium
JP2020038012A (en) * 2018-08-31 2020-03-12 日立造船株式会社 Crane controller, method of controlling crane controller, control program, and recording medium
CN114646217A (en) * 2022-04-25 2022-06-21 中南大学 Cloud edge cooperative intelligent control method and system for roasting furnace

Also Published As

Publication number Publication date
JPH079287B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
US6752093B2 (en) Method for operating a refuse incineration plant
JP4292126B2 (en) Combustion information monitoring and control system for stoker-type waste incinerator
JPH079288B2 (en) Fuel supply control method for solid combustion device
JPH04208306A (en) Method for controlling combustion in solid item combustion device
HU212738B (en) Method for operating incinerator with grate and controlling system and incineractor for carrying out that method
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JPS6116889B2 (en)
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
CN115479276A (en) Control device, waste incineration facility, control method, and program
JPH0323806B2 (en)
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JPS61143617A (en) Method of controlling combustion in refuse incinerator
JPH06300238A (en) Controller of mixed sludge incinerator
JPH0476307A (en) Method of burner control
JP3839304B2 (en) Waste pyrolysis apparatus and control method thereof
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JPS6357690B2 (en)
JPH04208305A (en) Method for controlling solid product combustion device
JPH11257634A (en) Operation-supporting device for combustion controller in waste incinerating furnace
SU1016646A1 (en) Method of automatic control of loose material drying process
JPH07190302A (en) Exhaust gas temperature controller for coal-fired boiler
JPH0481688B2 (en)
JPH01217101A (en) Control device of drum type boiler used for solid fuel such as coal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 16

EXPY Cancellation because of completion of term