JPH10185157A - Method and device for judging refuse quality, and combustion control device of refuse incinerator - Google Patents

Method and device for judging refuse quality, and combustion control device of refuse incinerator

Info

Publication number
JPH10185157A
JPH10185157A JP8340998A JP34099896A JPH10185157A JP H10185157 A JPH10185157 A JP H10185157A JP 8340998 A JP8340998 A JP 8340998A JP 34099896 A JP34099896 A JP 34099896A JP H10185157 A JPH10185157 A JP H10185157A
Authority
JP
Japan
Prior art keywords
quality
dust
refuse
value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8340998A
Other languages
Japanese (ja)
Other versions
JP3356946B2 (en
Inventor
Kiyoyuki Kawato
清之 川戸
Masanori Sakamoto
正則 酒本
Nobuyuki Nishiguchi
信幸 西口
Masataka Shichiri
雅隆 七里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP34099896A priority Critical patent/JP3356946B2/en
Publication of JPH10185157A publication Critical patent/JPH10185157A/en
Application granted granted Critical
Publication of JP3356946B2 publication Critical patent/JP3356946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for judging the refuse quality, and a combustion control device of a refuse incinerator capable of performing the continuous and stable refuse combustion control by detecting the quality of the refuse which is the one immediately after the combustion is started and on the upstream side of the center position of combustion to estimate the future condition of combustion. SOLUTION: An infrared ray detecting means 24a to detect the radiation temperature of the refuse in the ignition starting region in a stoker mechanism 6 is provided, and a lower calorific value presuming means 24 to presume the lower calorific value of the refuse based on the mean value per the prescribed time period of the detected temperature by the infrared ray detecting means 24a is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉内に投入された
ゴミを搬送しながら焼却処理するストーカ機構と、前記
ストーカ機構の上流側のゴミに下方から乾燥用ガスを供
給する風箱とを備えたゴミ焼却炉において、投入された
ゴミの性状を判定するゴミ質判定方法、ゴミ質判定装
置、及び、前記ゴミ質判定方法又はゴミ質判定装置を使
用したゴミ焼却炉の燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stoker mechanism for carrying out incineration while transporting refuse introduced into a furnace, and a wind box for supplying drying gas to refuse upstream from the stoker mechanism from below. The present invention relates to a garbage quality determination method and a garbage quality determination device for determining the properties of garbage input in a provided garbage incinerator, and a combustion control device for a garbage incinerator using the garbage quality determination method or the garbage quality determination device.

【0002】[0002]

【従来の技術】従来のゴミ焼却炉の燃焼制御装置として
は、一日のゴミの目標処理量を達成するための計画線に
沿って、押し込み投入機構による炉内へのゴミの投入
量、ストーカ機構によるゴミの搬送速度、及び、風箱か
らの燃焼用ガス(通常は空気)量を調節するものや、廃
熱ボイラを併設するものでは炉内で生じた燃焼熱による
生成蒸気量が目標蒸気量となるように、前記押し込み投
入機構によるゴミの投入量、ストーカ機構によるゴミの
搬送速度、及び、風箱からの燃焼用ガス(通常は空気)
量を調節するものがあった。そして、前記ストーカ機構
の下流側からゴミの燃焼火炎の終端位置、つまりガス化
燃焼の終了する燃え切り位置を検出する撮像手段を設け
て、燃え切り位置が所定範囲に入るように、前記調節さ
れたゴミの投入量、搬送速度、燃焼用ガス量を増減する
補正手段を設けることにより、熱灼減量の目標値を達成
しながらも、目標処理量や目標蒸気量を確保するように
構成していた。
2. Description of the Related Art As a conventional combustion control device for a refuse incinerator, a push-in mechanism is used to control the amount of refuse introduced into a furnace along a schedule line for achieving a target amount of garbage processed in a day. For those that adjust the garbage transport speed by the mechanism and the amount of combustion gas (usually air) from the wind box, and those that have a waste heat boiler, the amount of steam generated by the combustion heat generated in the furnace is the target steam. The amount of dust input by the pushing-in mechanism, the speed of transporting the dust by the stoker mechanism, and the combustion gas (usually air) from the wind box
There was something to adjust the amount. Then, an imaging means for detecting the end position of the combustion flame of the garbage from the downstream side of the stoker mechanism, that is, the burn-out position at which the gasification combustion ends, is provided, and the adjustment is performed so that the burn-out position falls within a predetermined range. By providing correction means for increasing or decreasing the amount of garbage charged, the conveying speed, and the amount of combustion gas, the target processing amount and the target steam amount are secured while achieving the target value of the cauterization loss. Was.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
技術によれば、補正手段は、撮像手段により入力された
燃焼画像から判断されるゴミの現在の燃え切り位置に基
づいて補正量を決定するものであり、検出された燃え切
り位置よりも上流側のゴミの燃焼状態を考慮するもので
はなかったために、現在検出されている燃え切り位置よ
りも上流側に存在するゴミの質が大きく異なる場合等に
は、長時間にわたり燃焼状態が悪化するおそれがあっ
た。例えば、現在の燃え切り位置が下流側にあれば、ゴ
ミ投入量、搬送速度を減少補正することになるが、その
ときに上流側に質の良いゴミが多量に存在している場合
には、急激に燃え切り位置が上流側に移行して炉内残存
ゴミ量が少なくなるゴミ切れ状態となり、現在の燃え切
り位置が上流側にあれば、ゴミ投入量、搬送速度を増加
補正することになるが、そのときに上流側に質の悪いゴ
ミが多量に存在している場合には、急激に燃え切り位置
が下流側に移行して炉内残存ゴミ量が多くなるゴミ山盛
り状態となり、いずれの場合も回復が容易でなくなるの
である。そこで、押し込み投入機構の上方に設置された
ゴミホッパへゴミを搬送するクレーン機構に重量検出機
構を設置して、その重量検出機構による検出ゴミ重量と
クレーン容積に基づいてゴミのみかけ比重を求め、その
値に基づいて燃焼前のゴミ質を判断することが提案され
ているが、クレーンでのつかみ容積が不均一であるため
十分にゴミ質を判断できていないばかりか、ゴミホッパ
へ搬送されたゴミが炉内に投入されるまでの時間が不確
定であるために、この方法ではゴミ質変化を十分に制御
しきれない。本発明の目的は、上述した従来欠点を解消
し、燃焼開始直後のゴミであって、燃焼中心位置よりも
上流側にあるゴミの質を検知することにより、今後の燃
焼状態を予測して継続的に安定したゴミ燃焼制御を行う
ことができるゴミ質判定方法、装置、及び、ゴミ焼却炉
の燃焼制御装置を提供する点にある。
However, according to the above-mentioned prior art, the correction means determines the correction amount based on the current burn-off position of the dust determined from the combustion image input by the imaging means. If the quality of the dust present upstream of the currently detected burn-off position is significantly different because the combustion state of the dust upstream of the detected burn-off position is not taken into account. In some cases, the combustion state may deteriorate over a long period of time. For example, if the current burn-off position is on the downstream side, the amount of dust input and the transport speed will be corrected to decrease, but if there is a large amount of high-quality dust on the upstream side at that time, The burn-out position suddenly shifts to the upstream side, resulting in a dust-out state in which the amount of residual dust in the furnace is reduced. If the current burn-out position is on the upstream side, the dust input amount and the transport speed are increased and corrected. However, if there is a large amount of poor quality garbage on the upstream side at that time, the burnout position shifts to the downstream side abruptly, and the garbage piles up in which the amount of garbage remaining in the furnace increases, In some cases, recovery is not easy. Therefore, a weight detection mechanism is installed in the crane mechanism that transports the dust to the dust hopper installed above the push-in mechanism, and the apparent specific gravity of the dust is calculated based on the dust weight detected by the weight detection mechanism and the crane volume. It is proposed to judge the garbage quality before combustion based on the value.However, not only is the garbage quality not fully determined due to the uneven gripping volume of the crane, Since the time until the introduction into the furnace is uncertain, this method cannot sufficiently control the change in waste quality. An object of the present invention is to solve the conventional drawbacks described above and detect the quality of dust immediately after the start of combustion and located upstream of the combustion center position, thereby predicting the future combustion state and continuing. It is an object of the present invention to provide a refuse quality determination method and apparatus, and a refuse incinerator combustion control apparatus capable of performing stable refuse combustion control.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
本発明によるゴミ質判定方法の第一の特徴構成は、炉内
に装入されたゴミを搬送しながら焼却処理するストーカ
機構と、前記ストーカ機構の上流側のゴミに下方から乾
燥用ガスを供給する風箱とを備えたゴミ焼却炉におい
て、炉内へ装入されたゴミの性状を判定するゴミ質判定
方法であって、前記ストーカ機構における着火開始領域
のゴミの放射温度を検出し、検出された放射温度に基づ
いてゴミの低位発熱量を推定する点にある。ゴミ質判定
方法の第二の特徴構成は、第一の特徴構成に加えて、着
火開始領域のゴミの放射温度の所定時間当たりの平均値
が、予め設定された第一基準温度以下であれば想定値よ
り低い低位発熱量の低質ゴミであり、第一基準温度から
それよりも高温の第二基準温度の範囲にあれば想定値を
満たす低位発熱量の基準ゴミであり、第二基準温度以上
であれば想定値より高い低位発熱量の高質ゴミであると
判定する点にある。ゴミ質判定方法の第三の特徴構成
は、第二の特徴構成に加えて、前記第一基準温度及び第
二基準温度が、前記風箱から供給される乾燥用ガスのガ
ス流量を変数とする所定の関数で決定される点にある。
ゴミ質判定方法の第四の特徴構成は、第一から第三の特
徴構成に加えて、着火開始領域のゴミの放射温度の前記
所定時間よりも短い第二の所定時間当たりの変化率が、
予め設定された所定値よりも正に大であればゴミ質が高
質ゴミに急変し、予め設定された所定値よりも負に大で
あればゴミ質が低質ゴミに急変すると判定する点にあ
る。
In order to achieve the above object, a first characteristic configuration of a waste quality determination method according to the present invention is a stoker mechanism for performing incineration while transporting dust loaded in a furnace; In a refuse incinerator provided with a wind box for supplying drying gas from below to refuse on the upstream side of the stalker mechanism, a refuse quality determination method for determining properties of refuse charged into the furnace, wherein the stoker The point is that the radiation temperature of the dust in the ignition start region in the mechanism is detected, and the lower heating value of the dust is estimated based on the detected radiation temperature. The second characteristic configuration of the dust quality determination method includes, in addition to the first characteristic configuration, an average value of the radiation temperature of the dust in the ignition start area per predetermined time is equal to or less than a first reference temperature set in advance. Low-quality refuse with a lower heating value lower than the assumed value.If the refuse is in the range from the first reference temperature to the second reference temperature, which is higher than the first reference temperature, the refuse is a low-value heating refuse satisfying the assumed value. If this is the case, the point is that it is determined to be high-quality dust having a lower heating value higher than the assumed value. The third characteristic configuration of the refuse quality determination method is such that, in addition to the second characteristic configuration, the first reference temperature and the second reference temperature each have a variable gas flow rate of the drying gas supplied from the wind box. The point is determined by a predetermined function.
The fourth characteristic configuration of the dust quality determination method, in addition to the first to third characteristic configurations, a change rate per second predetermined time shorter than the predetermined time of the radiation temperature of the dust in the ignition start area,
If the dust quality is more positive than the predetermined value, the dust quality suddenly changes to high-quality waste, and if the dust quality is more negative than the predetermined value, the dust quality suddenly changes to low-quality waste. is there.

【0005】本発明によるゴミ質判定装置の第一の特徴
構成は、炉内に装入されたゴミを搬送しながら焼却処理
するストーカ機構と、前記ストーカ機構の上流側のゴミ
に下方から乾燥用ガスを供給する風箱とを備えたゴミ焼
却炉において、炉内へ装入されたゴミの性状を判定する
ゴミ質判定装置であって、前記焼却処理部における着火
開始領域のゴミの放射温度を検出する赤外線検知手段を
設け、前記赤外線検知手段による検出温度に基づいてゴ
ミの低位発熱量を推定する低位発熱量推定手段とを設け
てある点にある。ゴミ質判定装置の第二の特徴構成は、
第一の特徴構成に加えて、前記低位発熱量推定手段は、
前記赤外線検知手段による検出温度の所定時間当たりの
平均値が、予め設定された第一基準温度以下であれば想
定値より低い低位発熱量の低質ゴミであり、第一基準温
度からそれよりも高温の第二基準温度の範囲にあれば想
定値を満たす低位発熱量の基準ゴミであり、第二基準温
度以上であれば想定値より高い低位発熱量の高質ゴミで
あると判定する点にある。ゴミ質判定装置の第三の特徴
構成は、第二の特徴構成に加えて、前記第一基準温度及
び第二基準温度が、前記風箱から供給される乾燥用ガス
のガス流量を変数とする所定の関数で決定される点にあ
る。ゴミ質判定装置の第四の特徴構成は、第一から第三
の特徴構成に加えて、前記低位発熱量推定手段は、前記
赤外線検知手段による検出温度の前記所定時間よりも短
い第二の所定時間当たりの変化率が、予め設定された所
定値よりも正に大であればゴミ質が高質ゴミに急変し、
予め設定された所定値よりも負に大であればゴミ質が低
質ゴミに急変すると判定する点にある。
A first characteristic configuration of the refuse quality determination apparatus according to the present invention includes a stoker mechanism for incineration while transporting refuse charged in a furnace, and a stoker mechanism for drying refuse on the upstream side of the stoker mechanism from below. In a refuse incinerator provided with a wind box for supplying gas, a refuse quality determination device that determines the properties of refuse charged into the furnace, wherein the radiant temperature of refuse in an ignition start area in the incineration processing unit is determined. An infrared detecting means for detecting is provided, and a low heat generation amount estimating means for estimating a low heat generation amount of dust based on a temperature detected by the infrared detecting means is provided. The second characteristic configuration of the garbage quality determination device is:
In addition to the first characteristic configuration, the lower heating value estimating means includes:
If the average value of the temperature detected by the infrared detecting means per predetermined time is equal to or lower than a preset first reference temperature, it is a low-quality refuse having a lower heating value lower than an assumed value, and is higher than the first reference temperature. If the temperature is within the range of the second reference temperature, it is determined that the dust is a low heat generation reference dust that satisfies the assumed value, and if the temperature is equal to or higher than the second reference temperature, the dust is high quality dust having a low heat generation that is higher than the assumed value. . The third characteristic configuration of the refuse quality determination device is such that, in addition to the second characteristic configuration, the first reference temperature and the second reference temperature each have a variable gas flow rate of the drying gas supplied from the wind box. The point is determined by a predetermined function. The fourth characteristic configuration of the dust quality determination device is the same as the first to third characteristic configurations, wherein the lower heating value estimating unit is configured to perform a second predetermined time shorter than the predetermined time of the temperature detected by the infrared detecting unit. If the rate of change per time is exactly greater than a predetermined value, the garbage quality suddenly changes to high-quality garbage,
If the value is more negative than a predetermined value, it is determined that the dust quality suddenly changes to low quality dust.

【0006】本発明によるゴミ焼却炉の燃焼制御装置の
特徴構成は、炉内に装入されたゴミを搬送しながら焼却
処理するストーカ機構と、前記ストーカ機構の下方に配
置された風箱とを備え、前記ストーカ機構によるゴミの
搬送速度、及び、前記風箱からゴミに供給される燃焼用
ガス供給量を、予め想定されたゴミの低位発熱量に基づ
いて決定して作動させるゴミ焼却炉の燃焼制御装置であ
って、上述の第一から第四の特徴構成のいずれかのゴミ
質判定装置を備え、そのゴミ質判定装置により判定され
たゴミ質に基づいて、前記搬送速度又は前記燃焼用ガス
供給量を決定して作動させるように構成してある点にあ
る。
[0006] The characteristic configuration of the combustion control device for a refuse incinerator according to the present invention is that a stoker mechanism for incineration processing while transporting the refuse charged in the furnace, and a wind box disposed below the stoker mechanism. A garbage incinerator that is provided with a garbage incinerator that operates by determining the transfer speed of garbage by the stoker mechanism and the amount of combustion gas supplied to the garbage from the wind box based on a low heat generation amount of garbage assumed in advance. A combustion control device, comprising: the dust quality determination device according to any one of the first to fourth characteristic configurations described above, based on the dust quality determined by the dust quality determination device, the transfer speed or the combustion speed. The point is that the gas supply amount is determined to operate.

【0007】以下に、本発明の作用を説明する。炉内に
投入直後のゴミの放射温度ではゴミ質による顕著な相違
がみられず、また、投入後、着火前のゴミの放射温度で
は水分の影響を把握することができてもゴミの保有する
熱量を判断できない。例えば、水分が多くても発熱量が
多い破砕ゴミ等のように、含水量の程度のみを検出して
もその後の燃焼状態を適性に予測できないのであるが、
赤外線検知手段により検知された着火開始領域のゴミの
放射温度によれば、後述の実施例に示すように、高カロ
リーゴミであれば相対的に燃焼温度が高く、低カロリー
ゴミであれば相対的に燃焼温度が低いと検出されるの
で、その値に基づいてその後の燃焼状態が推定できる。
Hereinafter, the operation of the present invention will be described. There is no significant difference in the radiation temperature of the garbage immediately after being put into the furnace due to the quality of the garbage. The amount of heat cannot be determined. For example, even if the amount of water is large, such as crushed garbage with a large amount of heat generation, even if only the degree of water content is detected, the subsequent combustion state cannot be properly predicted,
According to the radiant temperature of the dust in the ignition start area detected by the infrared detecting means, as shown in the embodiment described later, the combustion temperature is relatively high for high-calorie garbage, and relatively low for low-calorie garbage. Is detected as a low combustion temperature, the subsequent combustion state can be estimated based on the detected value.

【0008】具体的には、着火開始領域のゴミの放射温
度の所定時間当たりの平均値を求め、その値が予め設定
された第一基準温度以下であれば想定値より低い低位発
熱量の低質ゴミであり、第一基準温度からそれよりも高
温の第二基準温度の範囲にあれば想定値を満たす低位発
熱量の基準ゴミであり、第二基準温度以上であれば想定
値より高い低位発熱量の高質ゴミであると判定できるの
である。ここで、操炉の安定性という観点から、所定時
間は、ゴミ質を判断する際に、低カロリーゴミを示す第
一基準温度以下、または、高カロリーゴミを示す第二基
準温度以上である状態がその後の燃焼状態に重大な影響
を与えると予測される時間よりも、短い時間に設定する
ことが必要である。さらに、後述の実施例に示すよう
に、前記第一基準温度及び第二基準温度が、前記風箱か
ら供給される乾燥用ガスのガス流量とほぼ相関関係があ
ることが確認されたので、それら基準温度を該ガス流量
を変数とする所定の関数で決定することにより、外乱の
影響を回避してゴミ質の判定を正確に行うことができる
のである。そして、前記赤外線検知手段による検出温度
の所定時間当たりの平均値に基づいて判定されたゴミ質
であっても、極端なゴミ質変動があれば燃焼状態に大き
な影響が現れるために、前記所定時間よりも短い第二の
所定時間当たりの変化率が予め設定された所定値よりも
正に大であれば、ゴミ質が高質ゴミに急変し、予め設定
された所定値よりも負に大であればゴミ質が低質ゴミに
急変すると優先的に判定することにより、より迅速且つ
正確にゴミ質を判定できるようになるのである。
More specifically, an average value of the radiation temperature of dust in the ignition start area per predetermined time is obtained, and if the average value is equal to or lower than a preset first reference temperature, a low quality heat generation lower than the assumed value is obtained. It is garbage and is a reference garbage with a low calorific value that satisfies the assumed value if it is in the range from the first reference temperature to the second reference temperature higher than it. It can be determined that the amount is high-quality garbage. Here, from the viewpoint of the stability of the furnace operation, the predetermined time is equal to or lower than the first reference temperature indicating low-calorie garbage or equal to or higher than the second reference temperature indicating high-calorie garbage when judging the garbage quality. It is necessary to set the time shorter than the time that is expected to have a significant effect on the subsequent combustion state. Furthermore, as shown in the examples described later, it was confirmed that the first reference temperature and the second reference temperature had substantially a correlation with the gas flow rate of the drying gas supplied from the wind box. By determining the reference temperature by a predetermined function using the gas flow rate as a variable, the influence of disturbance can be avoided and the quality of dust can be accurately determined. Further, even if the dust quality is determined based on the average value of the temperature detected by the infrared detecting means per predetermined time, if there is an extreme change in the dust quality, the combustion state is greatly affected. If the rate of change per second predetermined time shorter than the predetermined value is more positive than the predetermined value, the dust quality suddenly changes to high-quality waste, and is negatively larger than the predetermined value. If there is, it is possible to more quickly and accurately determine the dust quality by preferentially determining that the dust quality suddenly changes to low-quality waste.

【0009】炉内に装入されたゴミを搬送しながら焼却
処理するストーカ機構と、前記ストーカ機構の下方に配
置された風箱とを備え、前記ストーカ機構によるゴミの
搬送速度、及び、前記風箱からゴミに供給される燃焼用
ガス供給量を、予め想定されたゴミの低位発熱量に基づ
いて決定して作動させるゴミ焼却炉の燃焼制御装置にお
いては、上述のゴミ質判定方法、装置を採用することに
より、判定されたゴミ質、つまりゴミの低位発熱量に基
づいて、前記搬送速度又は前記燃焼用ガス供給量を決定
して作動させることができ、これにより継続的に安定し
たゴミ燃焼制御を行うことができるのである。ここに、
判定されたゴミの低位発熱量に基づいた搬送速度又は燃
焼用ガス供給量の決定に際しては、当初想定されたゴミ
の低位発熱量に基づいて決定された搬送速度又は燃焼用
ガス供給量を補正するものであってもよいし、当初想定
されたゴミの低位発熱量そのものを判定されたゴミの低
位発熱量で置き換えてもよい。
A stoker mechanism for incinerating the refuse charged in the furnace while transporting the refuse; and a wind box disposed below the stoker mechanism. In a combustion control device of a refuse incinerator which operates by determining a supply amount of combustion gas supplied to refuse from a box based on a low heat value of refuse assumed in advance, the above-described refuse quality determination method and device are used. By adopting, it is possible to determine and operate the transport speed or the supply amount of the combustion gas based on the determined refuse quality, that is, the lower heating value of the refuse. Control can be performed. here,
When determining the transport speed or the combustion gas supply amount based on the determined lower heat generation amount of dust, the transfer speed or the combustion gas supply amount determined based on the initially assumed lower heat generation amount of the dust is corrected. Alternatively, the lower heat generation amount of dust assumed at first may be replaced with the lower heat generation amount of the determined dust.

【0010】[0010]

【発明の効果】従って、本発明によれば、燃焼開始直後
のゴミであって、燃焼中心位置よりも上流側の着火領域
にあるゴミの質を検知することにより、継続的に安定し
たゴミ燃焼制御を行い得るゴミ焼却炉の燃焼制御装置を
提供することができるようになった。
Therefore, according to the present invention, the quality of the refuse immediately after the start of combustion and located in the ignition region on the upstream side of the combustion center position is detected, whereby the refuse is continuously and stably burned. It has become possible to provide a combustion control device for a refuse incinerator that can perform control.

【0011】[0011]

【発明の実施の形態】以下に発明の実施の形態を説明す
る。ゴミ焼却炉は、図1に示すように、底部に押し込み
投入機構5を備えたゴミホッパ3と、前記押し込み投入
機構5により投入されたゴミを搬送しながら焼却処理す
るストーカ機構で構成される焼却処理帯6,7,8と、
前記焼却処理帯6,7,8による処理済の灰を集める灰
ピット4と、前記焼却処理帯6,7,8の上方空間に形
成された煙道2に備えた廃熱ボイラ16、排ガス処理装
置17等により構成してある。
Embodiments of the present invention will be described below. As shown in FIG. 1, the refuse incinerator includes a refuse hopper 3 provided with a push-in mechanism 5 at the bottom thereof, and a stoker mechanism configured to incinerate while transporting the trash introduced by the push-in mechanism 5. Obi 6,7,8,
Ash pit 4 for collecting ash treated by the incineration zones 6, 7, 8; waste heat boiler 16 provided in a flue 2 formed above the incineration zones 6, 7, 8; It is constituted by the device 17 and the like.

【0012】前記押し込み投入機構5は、前記ゴミホッ
パ3に投入されたゴミをゴミ投入口1に向けて押し込む
押し込み作用体(図示せず)を油圧シリンダC1により
往復作動させてゴミを炉内に投入するように構成してあ
る。前記焼却処理帯6,7,8は、前記投入口1から投
入されたゴミを搬送しながら乾燥させる乾燥帯6と、前
記乾燥帯6で乾燥されたゴミを搬送しながら燃焼させる
燃焼帯7と、前記燃焼帯7で燃焼されたゴミを灰化する
後燃焼帯8とを段差部d1,d2を介して連設して構成
してあり、各処理帯は斜め上下姿勢に配置された火格子
Gを油圧シリンダC2,C3,C4で斜め上下方向に往
復移動させるストーカ機構で構成してある。各焼却処理
帯6,7,8の下部には各別に風箱12を設けて、送風
機13により乾燥・燃焼用の空気を、調温用の熱交換器
Tを配した供給路14を介して供給するよう構成してあ
り、各風箱12には空気供給量を調節するダンパDを設
けてある。前記後燃焼帯8で灰化された残渣は、灰シュ
ート10に落下してコンベア機構により前記灰ピット4
に集積される。前記廃熱ボイラ16は、前記煙道2で二
次燃焼された燃焼排ガスの保有する熱エネルギーにより
蒸気を生成し、生成蒸気により発電機18に接続された
蒸気タービンを駆動して発電する。前記廃熱ボイラ16
を通過した排ガスはバグフィルタや洗煙装置等の排ガス
処理装置17を経て煙突(図示せず)から排気される。
The pushing-in mechanism 5 reciprocates a pushing action body (not shown) for pushing the dust put in the dust hopper 3 toward the dust inlet 1 by the hydraulic cylinder C1 to put dust into the furnace. It is configured to do so. The incineration zones 6, 7, and 8 include a drying zone 6 for drying while transporting the dust input from the input port 1 and a combustion zone 7 for transporting and burning the dust dried in the drying zone 6. A post-combustion zone 8 for incineration of the refuse burned in the combustion zone 7 is connected to the combustion zone 8 via steps d1 and d2. The stoker mechanism is configured to reciprocate G in a diagonal up and down direction by hydraulic cylinders C2, C3 and C4. Each of the incineration zones 6, 7, 8 is provided with a separate air box 12 at a lower portion thereof, and air for drying and combustion is supplied by a blower 13 through a supply path 14 provided with a heat exchanger T for temperature control. Each wind box 12 is provided with a damper D for adjusting the air supply amount. The residue incinerated in the post-combustion zone 8 falls on an ash chute 10 and is conveyed to the ash pit 4 by a conveyor mechanism.
Will be integrated. The waste heat boiler 16 generates steam by using thermal energy possessed by the flue gas that has been secondarily burned in the flue 2, and drives the steam turbine connected to the generator 18 to generate power by the generated steam. The waste heat boiler 16
The exhaust gas passing through the exhaust gas is exhausted from a chimney (not shown) through an exhaust gas treatment device 17 such as a bag filter or a smoke washing device.

【0013】上述のゴミ焼却炉には、目標処理量のゴミ
を焼却処理するべく、前記廃熱ボイラ16に設けられた
蒸気量検出センサ(図示せず)による検出蒸気量を指標
として、その検出蒸気量が、前記廃熱ボイラ16で生成
されるべき蒸気量として演算導出された目標蒸気量とな
るように、前記押し込み投入機構によるゴミの投入量、
及び前記焼却処理帯6,7,8によるゴミの搬送速度を
調節するゴミ搬送制御手段22、及び、前記各風箱12
からの送風量を調節する供給空気量制御手段23等でな
る燃焼制御装置20を設けてある。ここに、前記目標蒸
気量は、予め想定されたゴミの低位発熱量、燃焼用空気
による入熱量、等の全入熱量と、排ガスによる出熱量、
損失熱量等の全出熱量の差にボイラ効率を乗じた値を蒸
気生成に供される熱量として求め、その熱量により生成
される蒸気量を演算して求められる。
The above-mentioned refuse incinerator uses an amount of steam detected by a steam amount detection sensor (not shown) provided in the waste heat boiler 16 as an index to incinerate a target amount of refuse. The amount of refuse introduced by the pushing-in mechanism, so that the amount of steam becomes a target amount of steam calculated and derived as the amount of steam to be generated in the waste heat boiler 16;
And a dust transport control means 22 for adjusting the transport speed of the dust by the incineration zones 6, 7, 8;
A combustion control device 20 including a supply air amount control means 23 for adjusting the amount of air blown from the air is provided. Here, the target steam amount is a low heat generation amount of waste assumed in advance, a total heat input amount such as a heat input amount by combustion air, and a heat output amount by an exhaust gas,
The value obtained by multiplying the difference in the total heat output such as the heat loss by the boiler efficiency is obtained as the heat amount used for steam generation, and the steam amount generated based on the heat amount is calculated and obtained.

【0014】前記乾燥帯6の天井壁には、前記乾燥帯6
に臨ませて赤外線検知手段としての赤外線カメラ24a
を設けてあり、前記焼却処理帯における着火開始領域の
ゴミ表面の放射温度を検出する。詳述すると、前記赤外
線検知手段24aは、図2に示すような黒体輻射エネル
ギーに相当する炉内からの輻射エネルギーを検出して温
度を求めるもので、図3に示すように火炎中のCO,C
2 ,NOx,SOx、さらには、H2 Oによる赤外線
エネルギー吸収帯域を回避すべく、前記赤外線カメラに
透過波長が約3.9(3.6〜4)μmのフィルタ(図
示せず)を取り付けてあり、以て、前記乾燥帯6での燃
焼火炎を透過して輻射エネルギーを計測可能なように構
成してある。前記赤外線カメラ24aにより、検出した
温度が約600℃以上の領域を着火領域と判断し、その
領域におけるゴミ表面温度の所定時間(本実施形態では
30分)当たりの平均値を求めその値に基づいてゴミの
低位発熱量を推定する低位発熱量推定手段24を設けて
ある。詳述すると、前記乾燥帯6の風箱からの送風量が
基準流量(炉により固有の値)の場合には、図4(イ)
に示すように、ゴミ表面温度の所定時間当たりの平均値
が第一基準温度である900℃以下であれば低位発熱量
の小さな低質ゴミであり、第二基準温度である1000
℃以上であれば低位発熱量の大きな高質ゴミであり、9
00℃〜1000℃の範囲であれば予め想定された通り
の低位発熱量の基準ゴミであると推定され、さらに、図
4(ロ)に示すように、上述の平均値にかかわらず、前
記所定時間(本実施形態では30分)よりも短い第二の
所定時間(本実施形態では10分)当たりの変化率が正
に100℃以上であれば低位発熱量の大きな高質ゴミに
急転し、負に100℃以上であれば低位発熱量の小さな
低質ゴミに急転すると推定される。尚、着火領域の検出
温度、第一、第二の各基準温度、変化率の基準量は炉に
応じて適宜設定されるもので上述の値に固定するもので
はない。さらに、上述の基準温度は、前記乾燥帯6の風
箱からの送風量(ガス流量)を変数とする後述の実施例
で示される所定の関数で決定されるものであり、一定値
ではない。
On the ceiling wall of the drying zone 6, the drying zone 6
Camera 24a as infrared detecting means
And detects the radiation temperature of the dust surface in the ignition start area in the incineration zone. More specifically, the infrared detecting means 24a detects the radiant energy from the inside of the furnace corresponding to the blackbody radiant energy as shown in FIG. 2 and obtains the temperature. As shown in FIG. , C
In order to avoid an infrared energy absorption band due to O 2 , NOx, SOx, and H 2 O, a filter (not shown) having a transmission wavelength of about 3.9 (3.6 to 4) μm is provided in the infrared camera. It is configured so that the radiant energy can be measured by transmitting the combustion flame in the drying zone 6. The infrared camera 24a determines an area where the detected temperature is about 600 ° C. or higher as an ignition area, calculates an average value of the dust surface temperature in the area per predetermined time (30 minutes in the present embodiment), and based on that value. A low heat generation amount estimating means 24 for estimating the low heat generation amount of the dust is provided. More specifically, when the amount of air blown from the wind box of the drying zone 6 is a reference flow rate (a value specific to the furnace), FIG.
As shown in the figure, if the average value of the surface temperature of the dust per predetermined time is 900 ° C. or less, which is the first reference temperature, the dust is a low-quality waste having a small lower heating value and 1000 as the second reference temperature.
If the temperature is higher than ℃, the waste is high quality waste with a large lower heating value.
If the temperature is in the range of 00 ° C. to 1000 ° C., it is estimated that the dust is a reference dust having a low calorific value as expected, and furthermore, as shown in FIG. If the rate of change per second predetermined time (10 minutes in the present embodiment) shorter than the time (30 minutes in the present embodiment) is exactly 100 ° C. or more, it rapidly turns into high-quality dust having a large lower heating value, If the temperature is negatively 100 ° C. or higher, it is presumed that the dust rapidly turns into low-quality dust having a small lower heating value. Note that the detected temperature of the ignition region, the first and second reference temperatures, and the reference amounts of the rate of change are appropriately set in accordance with the furnace, and are not fixed to the above values. Further, the above-mentioned reference temperature is determined by a predetermined function shown in an embodiment described later using the amount of air (gas flow rate) from the wind box in the drying zone 6 as a variable, and is not a constant value.

【0015】前記低位発熱量推定手段24(24a,2
4b)により単位時間当たりの平均温度値から推定され
るゴミの低位発熱量に基づいて、前記ゴミ搬送制御手段
22により決定された値に対して、前記押し込み投入機
構によるゴミの投入量、即ち、前記油圧シリンダC1の
単位時間当たりの作動回数、及び、前記ストーカ機構に
よるゴミの搬送速度、即ち、前記油圧シリンダC2,C
3の単位時間当たりの作動回数を補正する第一補正手段
22aを設けてあり、低質ゴミであると判断された場合
には、前記油圧シリンダC1,C2,C3の単位時間当
たりの作動回数を所定範囲で段階的に下方に補正するこ
とによりゴミの投入量、搬送速度を減少させて燃焼不良
状態に移行するのを回避する一方、高質ゴミと判断され
た場合には、前記油圧シリンダC1,C2,C3の単位
時間当たりの作動回数を所定範囲で段階的に上方に補正
することによりゴミの投入量、搬送速度を増大させてゴ
ミ切れ状態に移行するのを回避することにより、発生蒸
気量の安定化を目指す。さらに、単位時間当たりの変化
率から推定されるゴミの低位発熱量に基づいて、第一補
正手段22aによる補正値をさらに補正する第二補正手
段22bを設けて、発生蒸気量の急激な変動や燃え切り
点の変動を抑制する。つまり、平均温度値から推定され
るゴミ質(高質、基準、低質)に対して変化率から推定
されるゴミ質(高質、低質)への変動の程度が大きけれ
ば、それぞれの状況に適した補正を加える。例えば、平
均温度値から推定されるゴミ質が高質であり、変化率か
ら推定されるゴミ質が高質であれば、さらに発生蒸気量
が増加すると判断し、第二補正手段22bは第一補正手
段22aによる補正値を下方に補正し、平均温度値から
推定されるゴミ質が高質であり、変化率から推定される
ゴミ質が低質であれば、今後急激に発生蒸気量が減少す
ると判断し、第二補正手段22bは第一補正手段22a
による補正値を上方に補正するのである。逆に、平均温
度値から推定されるゴミ質が低質であり、変化率から推
定されるゴミ質が高質であれば、今後急激なごみ不足と
発生蒸気量の減少が生じると判断し、第二補正手段22
bは第一補正手段22aによる補正値を上方に補正し、
平均温度値から推定されるゴミ質が低質であり、変化率
から推定されるゴミ質が低質であれば、今後さらに発生
蒸気量が減少し、未燃が生じる可能性があると判断し、
第二補正手段22bは第一補正手段22aによる補正値
を下方に補正するのである。
The lower heating value estimating means 24 (24a, 2a)
4b), based on the lower heat generation amount of the dust estimated from the average temperature value per unit time, based on the lower heat generation amount of the dust, the amount of dust input by the push-in mechanism, The number of operations of the hydraulic cylinder C1 per unit time, and the transfer speed of dust by the stoker mechanism, that is, the hydraulic cylinders C2 and C
A first correcting means 22a for correcting the number of operations per unit time of the hydraulic cylinders C1, C2, and C3 when it is determined that the dust is low-quality dust. By gradually lowering the range, the amount of dust and the transport speed are reduced to avoid shifting to a poor combustion state. On the other hand, when it is determined that the dust is high quality, the hydraulic cylinders C1, The number of operations of C2 and C3 per unit time is corrected stepwise upward within a predetermined range, thereby increasing the amount of dust input and the transport speed to avoid shifting to a dust-out state, thereby reducing the amount of generated steam. Aim to stabilize Further, a second correction means 22b for further correcting the correction value by the first correction means 22a based on the lower heat generation amount of dust estimated from the rate of change per unit time is provided, so Suppress the fluctuation of the burn-off point. In other words, if the degree of change in the garbage quality (high quality, low quality) estimated from the average temperature value to the garbage quality (high quality, low quality) estimated from the change rate is large, it is suitable for each situation. Make corrections. For example, if the dust quality estimated from the average temperature value is high quality and the dust quality estimated from the change rate is high quality, it is determined that the generated steam amount further increases, and the second correction unit 22b determines If the correction value by the correction means 22a is corrected downward and the dust quality estimated from the average temperature value is high quality and the dust quality estimated from the change rate is low quality, the amount of generated steam will rapidly decrease in the future. It is determined that the second correction means 22b is
Is corrected upward. Conversely, if the waste quality estimated from the average temperature value is low quality and the waste quality estimated from the change rate is high quality, it is determined that there will be a sudden shortage of waste and a decrease in the amount of generated steam in the future. Correction means 22
b corrects the correction value by the first correction means 22a upward,
If the garbage quality estimated from the average temperature value is low quality and the garbage quality estimated from the change rate is low quality, it is determined that the amount of generated steam will further decrease in the future, and that there is a possibility that unburned fuel will be generated.
The second correction means 22b corrects the correction value of the first correction means 22a downward.

【0016】前記低位発熱量推定手段24により単位時
間当たりの平均温度値から推定されるゴミの低位発熱量
に基づいて、供給空気量制御手段23により予め設定さ
れた各風箱への乾燥用、燃焼用の空気量を増減補正する
第一補正手段23aを設けてあり、低質ゴミであると判
断された場合には、ダンパ機構Dの開度を増大させて供
給量を増大して、乾燥、燃焼を促進して、燃焼不良状態
に移行するのを回避する一方、高質ゴミと判断された場
合には、ダンパ機構Dの開度を減少させて供給量を減少
して燃焼を抑制することにより異常な高温燃焼となるの
を回避する。さらに、単位時間当たりの変化率から推定
されるゴミの低位発熱量に基づいて、第一補正手段23
aによる補正値をさらに補正する第二補正手段23bを
設けて、発生蒸気量の急激な変動や燃え切り点の変動を
抑制する。つまり、平均温度値から推定されるゴミ質
(高質、基準、低質)に対して変化率から推定されるゴ
ミ質(高質、低質)への変動の程度が大きければ、それ
ぞれの状況に適した補正を加える。例えば、平均温度値
から推定されるゴミ質が高質であり、変化率から推定さ
れるゴミ質が高質であれば、さらに発生蒸気量が多くな
ると判断し、第二補正手段23bは第一補正手段23a
による補正値をさらに減少方向に補正し、平均温度値か
ら推定されるゴミ質が高質であり、変化率から推定され
るゴミ質が低質であれば、今後急激に発生蒸気量が少な
くなると判断し、第二補正手段23bは第一補正手段2
3aによる補正値を増大方向に補正するのである。逆
に、平均温度値から推定されるゴミ質が低質であり、変
化率から推定されるゴミ質が高質であれば、今後急激に
発生蒸気量が多くなると判断し、第二補正手段23bは
第一補正手段23aによる補正値を減少方向に補正し、
平均温度値から推定されるゴミ質が低質であり、変化率
から推定されるゴミ質が低質であれば、今後さらに発生
蒸気量が少なくなると判断し、第二補正手段23bは第
一補正手段23aによる補正値を増大方向に補正するの
である。つまり、上述の第一補正手段22a,23aは
ともに低位発熱量の変動が小さな定常状態での蒸気発生
量の安定性を確保するものであり、第二補正手段22
b,23bはともに低位発熱量の変動の大きな過渡状態
での蒸気発生量の安定性を確保するものであり、補正量
は各炉の特性に応じて決定されるものである。
On the basis of the lower heat generation amount of the dust estimated from the average temperature value per unit time by the lower heat generation amount estimating means 24, the supply air amount control means 23 pre-sets drying for each wind box, A first correction unit 23a for increasing and decreasing the amount of air for combustion is provided, and when it is determined that the waste is low-quality dust, the opening degree of the damper mechanism D is increased to increase the supply amount, and drying, While promoting combustion and avoiding transition to a poor combustion state, if it is determined that the waste is high quality, reduce the amount of supply by reducing the opening of the damper mechanism D to suppress combustion. To avoid abnormal high-temperature combustion. Further, based on the lower heating value of the dust estimated from the rate of change per unit time, the first correction unit 23
The second correction means 23b for further correcting the correction value according to a is provided to suppress a sudden change in the generated steam amount and a change in the burn-off point. In other words, if the degree of change in the garbage quality (high quality, low quality) estimated from the average temperature value to the garbage quality (high quality, low quality) estimated from the change rate is large, it is suitable for each situation. Make corrections. For example, if the dust quality estimated from the average temperature value is high quality and the dust quality estimated from the change rate is high quality, it is determined that the generated steam amount is further increased, and the second correction unit 23b determines Correction means 23a
If the dust quality estimated from the average temperature value is high quality and the dust quality estimated from the change rate is low quality, it is determined that the amount of generated steam will rapidly decrease in the future. And the second correction means 23b
The correction value according to 3a is corrected in the increasing direction. Conversely, if the dust quality estimated from the average temperature value is low quality and the dust quality estimated from the change rate is high quality, it is determined that the amount of generated steam will rapidly increase in the future, and the second correction unit 23b determines The correction value by the first correction unit 23a is corrected in a decreasing direction,
If the dust quality estimated from the average temperature value is low quality and the dust quality estimated from the change rate is low quality, it is determined that the generated steam amount will be further reduced in the future, and the second correction unit 23b will determine the first correction unit 23a. Is corrected in the increasing direction. In other words, both of the above-described first correction means 22a and 23a ensure the stability of the steam generation amount in the steady state where the fluctuation of the lower heating value is small, and
Both b and 23b ensure the stability of the steam generation amount in the transient state where the fluctuation of the lower heating value is large, and the correction amount is determined according to the characteristics of each furnace.

【0017】上述した燃焼制御装置20を構成する各機
能実現手段の一部または全部は、マイクロコンピュータ
等の各種コンピュータ、メモリ回路、その他の公知の周
辺回路技術を用いて構成されるものである。
A part or all of the function realizing means constituting the above-described combustion control device 20 is configured using various computers such as microcomputers, memory circuits, and other known peripheral circuit technologies.

【0018】以下に、別実施形態を説明する。上述の実
施形態では、赤外線検知手段を、波長3.9μmのフィ
ルタを備えているとしたが、フィルタとしては、波長
3.9μmのフィルタでなくとも計測対象物と放射温度
計測器1との間に介在するガスによる赤外線エネルギー
吸収帯域を回避できる波長であれば任意である。さらに
は、赤外線検知手段は赤外線カメラに限定するものでは
なく、適宜公知の赤外線検知素子を用いて構成できる。
例えば、スポット型赤外線センサを、前記乾燥帯6の天
井壁に形成した計測孔から炉内に臨むように設けて、前
記乾燥帯6上のゴミ表面温度を数十mm〜数百mmのス
ポット径で複数箇所計測するように構成してもよい。
Hereinafter, another embodiment will be described. In the above-described embodiment, the infrared detecting means is provided with the filter having the wavelength of 3.9 μm. However, the filter may be provided between the object to be measured and the radiation temperature measuring instrument 1 even if it is not a filter having the wavelength of 3.9 μm. Any wavelength can be used as long as it can avoid the infrared energy absorption band by the gas interposed in the gas. Furthermore, the infrared detecting means is not limited to an infrared camera, and can be configured using a known infrared detecting element as appropriate.
For example, a spot-type infrared sensor is provided so as to face the inside of the furnace from a measurement hole formed in the ceiling wall of the drying zone 6, and the surface temperature of the dust on the drying zone 6 is set to a spot diameter of several tens mm to several hundred mm. May be configured to measure at a plurality of locations.

【0019】[0019]

【実施例】以下に実施例を説明する。120t/day
の処理能力を持つ連続運転型の実炉において、ゴミホッ
パに投入する直前のゴミをサンプリングして低位発熱量
を分析し、そのゴミに対する炉内での着火開始領域のゴ
ミの放射温度を測定した。尚、乾燥帯空気供給量は約2
50((Nm3 )/m2 )一定とし、ゴミホッパ投入か
ら測定点までの搬送時間遅れは、クレーン掴み重量、ホ
ッパ容積、ゴミ搬送速度(一定)から推定演算により求
めた。その結果、図5に示すように、ゴミ表面温度と低
位発熱量との間に一定の相関関係があることが判明し
た。このことから、従来のゴミ自動燃焼制御では対処困
難となっていた発熱量が約1500Kcal/kgとい
う低質ゴミと、発熱量が約2000Kcal/kgとい
う高質ゴミを識別するには充分な推定が可能であること
が明らかとなった。次に、実際の運転時には、ゴミ搬送
速度、乾燥帯空気流量が変動するために、それらの要因
で測定値がどのように変動するかを評価した。その結
果、図6に示すように、乾燥帯ストーカ機構の搬送速度
を変化させても殆ど影響は見られず、図7に示すよう
に、乾燥帯空気流量の増加に伴い測定値は低下する傾向
が見られた。即ち、測定値は、通常の炉の運転状態にお
ける緩急いずれの乾燥帯空気流量の増加であっても、そ
れに伴い、約200℃から300℃の振幅を保持しなが
ら低下することが判明した。従って、流量増加の影響
は、全体的にほぼ一定の温度低下を生じるだけで、ゴミ
質による表面温度の振幅には殆ど影響がないと考えら
れ、流量に応じて図4(イ)に示した第一、第二基準温
度を変更することにより容易に補正可能となる。具体的
には、図8に示すように、図7で下限上限に引いた接線
(数1、2)を基準とし、そこからそれぞれ高質領域
(ΔTtop)、低質領域(ΔTbtm)分だけ下・上
に移動した評価基準線(数3、4)と乾燥帯空気流量か
ら表面温度評価基準値、即ち、第一第二基準温度を計算
変更することで、乾燥帯空気流量の影響を補正できる。
Embodiments will be described below. 120t / day
In a continuous operation type real furnace having a processing capacity of 1, the dust immediately before being put into the dust hopper was sampled, the lower heating value was analyzed, and the emission temperature of the dust in the ignition start region in the furnace for the dust was measured. The dry air supply is about 2
50 ((Nm 3 ) / m 2 ) constant, and the transport time delay from the dust hopper input to the measurement point was obtained by an estimation calculation from the crane grip weight, the hopper volume, and the dust transport speed (constant). As a result, as shown in FIG. 5, it was found that there was a certain correlation between the dust surface temperature and the lower heating value. From this, it is possible to make a sufficient estimation for discriminating low-quality waste having a calorific value of about 1500 Kcal / kg and high-quality waste with a calorific value of about 2000 Kcal / kg, which were difficult to cope with with the conventional automatic garbage combustion control. It became clear that it was. Next, during the actual operation, since the dust transport speed and the dry zone air flow rate fluctuated, how the measured values fluctuated due to these factors was evaluated. As a result, as shown in FIG. 6, even if the transport speed of the drying zone stoker mechanism is changed, almost no effect is observed, and as shown in FIG. 7, the measured value tends to decrease with an increase in the drying zone air flow rate. It was observed. That is, it has been found that the measured value decreases while maintaining the amplitude of about 200 ° C. to 300 ° C., regardless of whether the air flow rate in the drying zone is gradually increased or decreased in a normal furnace operation state. Therefore, it is considered that the effect of the increase in the flow rate only causes a substantially constant temperature decrease as a whole, and has little effect on the amplitude of the surface temperature due to the dust quality, and is shown in FIG. The correction can be easily performed by changing the first and second reference temperatures. Specifically, as shown in FIG. 8, the tangents (Equations 1 and 2) drawn to the lower and upper limits in FIG. By calculating and changing the surface temperature evaluation reference value, that is, the first and second reference temperatures, from the evaluation reference lines (Equations 3 and 4) shifted upward and the dry zone air flow rate, the influence of the dry zone air flow rate can be corrected.

【0020】[0020]

【数1】下限接線;(表面温度)=−0.6(乾燥帯空
気流量)+930
## EQU1 ## Lower limit tangent; (surface temperature) =-0.6 (dry zone air flow rate) +930

【0021】[0021]

【数2】上限接線;(表面温度)=−0.6(乾燥帯空
気流量)+1200
## EQU2 ## Upper limit tangent; (surface temperature) =-0.6 (dry zone air flow rate) +1200

【0022】[0022]

【数3】第一基準温度 (低質側基準温度)=−0.6(乾燥帯空気流量)+9
30+ΔTbtm
## EQU3 ## First reference temperature (low-quality side reference temperature) =-0.6 (dry zone air flow rate) +9
30 + ΔTbtm

【0023】[0023]

【数4】第二基準温度 (高質側基準温度)=−0.6(乾燥帯空気流量)+1
200+ΔTtop
## EQU4 ## Second reference temperature (high-quality side reference temperature) =-0.6 (dry zone air flow rate) +1
200 + ΔTtop

【0024】ここで、上述の式で表された定数は実験に
基づくものであり、各炉に応じて適宜定まる値である。
Here, the constants represented by the above equations are based on experiments, and are values that are appropriately determined according to each furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ゴミ焼却炉の概略構成図FIG. 1 is a schematic configuration diagram of a garbage incinerator.

【図2】黒体輻射エネルギーの波長特性図FIG. 2 is a graph showing wavelength characteristics of black body radiation energy.

【図3】大気の透過率の特性図FIG. 3 is a characteristic diagram of the transmittance of the atmosphere.

【図4】低位発熱量推定テーブルを示す説明図FIG. 4 is an explanatory diagram showing a lower heating value estimation table.

【図5】ゴミ表面温度と低位発熱量との相関を示す説明
FIG. 5 is an explanatory diagram showing a correlation between a dust surface temperature and a lower heating value.

【図6】ゴミ搬送速度の変動に伴うゴミ表面温度の特性
を示す説明図
FIG. 6 is an explanatory diagram showing characteristics of dust surface temperature due to a change in dust transport speed.

【図7】乾燥帯空気の変動に伴うゴミ表面温度の特性を
示す説明図
FIG. 7 is an explanatory diagram showing a characteristic of dust surface temperature due to fluctuation of dry zone air.

【図8】ゴミ質評価のための基準温度設定の説明図FIG. 8 is an explanatory diagram of setting a reference temperature for evaluating waste quality.

【符号の説明】[Explanation of symbols]

6,7,8 ストーカ機構 12 風箱 24a 赤外線検知手段 24 低位発熱量推定手段 6, 7, 8 Stalker mechanism 12 Wind box 24a Infrared ray detecting means 24 Low heat generation amount estimating means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七里 雅隆 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masataka Shichiri 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 炉内に投入されたゴミを搬送しながら焼
却処理するストーカ機構と、前記ストーカ機構の上流側
のゴミに下方から乾燥用ガスを供給する風箱とを備えた
ゴミ焼却炉において、炉内に投入されたゴミの性状を判
定するゴミ質判定方法であって、 前記ストーカ機構における着火開始領域のゴミの放射温
度を検出し、検出された放射温度の所定時間当たりの平
均値に基づいてゴミの低位発熱量を推定するゴミ質判定
方法。
1. A refuse incinerator provided with a stoker mechanism for incineration processing while transporting refuse introduced into the furnace, and a wind box for supplying drying gas to refuse upstream from the stoker mechanism from below. A trash quality determination method for determining the properties of trash introduced into the furnace, wherein the stoker mechanism detects the radiant temperature of the refuse in the ignition start area, and converts the detected radiant temperature to an average value per a predetermined time. A garbage quality determination method for estimating the lower heating value of garbage based on the garbage.
【請求項2】 着火開始領域のゴミの放射温度の所定時
間当たりの平均値が、予め設定された第一基準温度以下
であれば想定値より低い低位発熱量の低質ゴミであり、
第一基準温度からそれよりも高温の第二基準温度の範囲
にあれば想定値を満たす低位発熱量の基準ゴミであり、
第二基準温度以上であれば想定値より高い低位発熱量の
高質ゴミであると判定する請求項1記載のゴミ質判定方
法。
2. If the average value of the radiation temperature of the dust in the ignition start area per predetermined time is equal to or lower than a first reference temperature set in advance, it is low-quality dust having a lower heating value lower than an assumed value,
If it is in the range from the first reference temperature to the second reference temperature higher than that, it is a reference waste with a lower heating value that satisfies the assumed value,
2. The dust quality determination method according to claim 1, wherein if the temperature is equal to or higher than the second reference temperature, the dust is determined to be high quality dust having a lower heating value higher than an assumed value.
【請求項3】 前記第一基準温度及び第二基準温度が、
前記風箱から供給される乾燥用ガスのガス流量を変数と
する所定の関数で決定される請求項2記載のゴミ質判定
方法。
3. The first reference temperature and the second reference temperature,
3. The dust quality determination method according to claim 2, wherein the dust quality is determined by a predetermined function using a gas flow rate of the drying gas supplied from the wind box as a variable.
【請求項4】 着火開始領域のゴミの放射温度の所定時
間当たりの平均値にかかわらず、着火開始領域のゴミの
放射温度の前記所定時間よりも短い第二の所定時間当た
りの変化率が予め設定された所定値よりも正に大であれ
ば、ゴミ質が高質ゴミに急変し、予め設定された所定値
よりも負に大であればゴミ質が低質ゴミに急変すると判
定する請求項1から3記載のゴミ質判定方法。
4. A change rate of the radiation temperature of dust in the ignition start area per second predetermined time shorter than the predetermined time regardless of the average value of the radiation temperature of dust in the ignition start area per predetermined time. It is determined that the trash quality is suddenly changed to high-quality garbage if the garbage quality is larger than a predetermined value, and that the garbage quality is suddenly changed to a low-quality garbage if the garbage quality is more negative than a predetermined value. A trash quality determination method according to any one of 1 to 3.
【請求項5】 炉内に投入されたゴミを搬送しながら焼
却処理するストーカ機構と、前記ストーカ機構の上流側
のゴミに下方から乾燥用ガスを供給する風箱とを備えた
ゴミ焼却炉において、炉内に投入されたゴミの性状を判
定するゴミ質判定装置であって、 前記ストーカ機構における着火開始領域のゴミの放射温
度を検出する赤外線検知手段を設け、前記赤外線検知手
段による検出温度の所定時間当たりの平均値に基づいて
ゴミの低位発熱量を推定する低位発熱量推定手段とを設
けてあるゴミ質判定装置。
5. A refuse incinerator provided with a stoker mechanism for incineration processing while transporting refuse introduced into the furnace, and a wind box for supplying a drying gas to refuse on the upstream side of the stoker mechanism from below. A dust quality determination device that determines the properties of dust put into the furnace, provided with infrared detection means for detecting the radiation temperature of the dust in the ignition start area in the stoker mechanism, the detection temperature of the infrared detection means A dust quality determination device provided with low heat generation amount estimating means for estimating a low heat generation amount of dust based on an average value per predetermined time.
【請求項6】 前記低位発熱量推定手段は、前記赤外線
検知手段による検出温度の所定時間当たりの平均値が、
予め設定された第一基準温度以下であれば想定値より低
い低位発熱量の低質ゴミであり、第一基準温度からそれ
よりも高温の第二基準温度の範囲にあれば想定値を満た
す低位発熱量の基準ゴミであり、第二基準温度以上であ
れば想定値より高い低位発熱量の高質ゴミであると判定
する請求項5記載のゴミ質判定装置。
6. The low heat generation amount estimating means, wherein an average value of a temperature detected by the infrared detecting means per predetermined time is:
If the temperature is equal to or lower than the preset first reference temperature, it is low-quality waste having a lower heating value lower than the expected value, and if the temperature is in the range of the second reference temperature higher than the first reference temperature, the lower heating value satisfying the expected value. 6. The dust quality determination device according to claim 5, wherein the amount of the reference dust is equal to or higher than the second reference temperature, and is determined to be a high-quality dust having a lower heating value higher than an assumed value.
【請求項7】 前記第一基準温度及び第二基準温度が、
前記風箱から供給される乾燥用ガスのガス流量を変数と
する所定の関数で決定される請求項6記載のゴミ質判定
装置。
7. The first reference temperature and the second reference temperature,
7. The dust quality determination device according to claim 6, wherein the dust quality determination device is determined by a predetermined function using a gas flow rate of the drying gas supplied from the wind box as a variable.
【請求項8】 前記低位発熱量推定手段は、前記赤外線
検知手段による検出温度の所定時間当たりの平均値にか
かわらず、前記赤外線検知手段による検出温度の前記所
定時間よりも短い第二の所定時間当たりの変化率が、予
め設定された所定値よりも正に大であればゴミ質が高質
ゴミに急変し、予め設定された所定値よりも負に大であ
ればゴミ質が低質ゴミに急変すると判定する請求項5か
ら7記載のゴミ質判定装置。
8. The second predetermined time shorter than the predetermined time of the temperature detected by the infrared detecting means, regardless of an average value of the temperature detected by the infrared detecting means per predetermined time, If the change rate per hit is positively larger than a predetermined value, the trash quality is suddenly changed to high-quality garbage, and if the change rate is larger than negative than a predetermined value, the trash quality is changed to low-quality garbage. The trash quality determination apparatus according to claim 5, wherein the trash quality determination apparatus determines that a sudden change occurs.
【請求項9】 炉内に投入されたゴミを搬送しながら焼
却処理するストーカ機構と、前記ストーカ機構の下方に
配置された風箱とを備え、前記ストーカ機構によるゴミ
の搬送速度、及び、前記風箱からゴミに供給される燃焼
用ガス供給量を、予め想定されたゴミの低位発熱量に基
づいて決定して作動させるゴミ焼却炉の燃焼制御装置で
あって、 請求項5から8のいずれかに記載されたゴミ質判定装置
を備え、そのゴミ質判定装置により判定されたゴミ質に
基づいて、前記搬送速度又は前記燃焼用ガス供給量を決
定して作動させるように構成してあるゴミ焼却炉の燃焼
制御装置。
9. A stoker mechanism for performing incineration processing while transporting refuse introduced into a furnace, and a wind box disposed below the stoker mechanism, wherein a trash transport speed of the stoker mechanism, and It is a combustion control device of a refuse incinerator that operates by determining a supply amount of combustion gas supplied from a wind box to refuse based on a low heat value of refuse assumed in advance. And a refuse configured to operate by determining the transport speed or the supply amount of the combustion gas based on the refuse quality determined by the refuse quality determination apparatus. Combustion control device for incinerator.
JP34099896A 1996-12-20 1996-12-20 Garbage quality determination method and apparatus, and combustion control device for garbage incinerator Expired - Fee Related JP3356946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34099896A JP3356946B2 (en) 1996-12-20 1996-12-20 Garbage quality determination method and apparatus, and combustion control device for garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34099896A JP3356946B2 (en) 1996-12-20 1996-12-20 Garbage quality determination method and apparatus, and combustion control device for garbage incinerator

Publications (2)

Publication Number Publication Date
JPH10185157A true JPH10185157A (en) 1998-07-14
JP3356946B2 JP3356946B2 (en) 2002-12-16

Family

ID=18342264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34099896A Expired - Fee Related JP3356946B2 (en) 1996-12-20 1996-12-20 Garbage quality determination method and apparatus, and combustion control device for garbage incinerator

Country Status (1)

Country Link
JP (1) JP3356946B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243128A (en) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd Combustion control method and device thereof
JP2006518464A (en) * 2003-01-31 2006-08-10 マイクロン インフラレッド インコーポレイテッド Infrared imaging device
JP2007271185A (en) * 2006-03-31 2007-10-18 Chugoku Electric Power Co Inc:The Melting furnace control method and melting furnace control system
JP2018021686A (en) * 2016-08-01 2018-02-08 株式会社タクマ Combustion control device including garbage moving speed detection function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208306A (en) * 1990-11-30 1992-07-30 Hitachi Ltd Method for controlling combustion in solid item combustion device
JPH07301413A (en) * 1994-04-29 1995-11-14 Kawasaki Heavy Ind Ltd Refuse characteristic estimating method and device of refuse incinerator
JPH0849830A (en) * 1994-08-04 1996-02-20 Sumitomo Heavy Ind Ltd Waste quality-estimating system of waste incinerator
JPH08178247A (en) * 1994-12-28 1996-07-12 Kubota Corp Method of detecting nature of refuse in incinerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208306A (en) * 1990-11-30 1992-07-30 Hitachi Ltd Method for controlling combustion in solid item combustion device
JPH07301413A (en) * 1994-04-29 1995-11-14 Kawasaki Heavy Ind Ltd Refuse characteristic estimating method and device of refuse incinerator
JPH0849830A (en) * 1994-08-04 1996-02-20 Sumitomo Heavy Ind Ltd Waste quality-estimating system of waste incinerator
JPH08178247A (en) * 1994-12-28 1996-07-12 Kubota Corp Method of detecting nature of refuse in incinerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243128A (en) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd Combustion control method and device thereof
JP2006518464A (en) * 2003-01-31 2006-08-10 マイクロン インフラレッド インコーポレイテッド Infrared imaging device
JP2007271185A (en) * 2006-03-31 2007-10-18 Chugoku Electric Power Co Inc:The Melting furnace control method and melting furnace control system
JP2018021686A (en) * 2016-08-01 2018-02-08 株式会社タクマ Combustion control device including garbage moving speed detection function

Also Published As

Publication number Publication date
JP3356946B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
JP6927127B2 (en) Waste incinerator method
JP2008064361A (en) Stoker-type incinerator and combustion control method therefor
JP4448799B2 (en) A waste combustion state detection method using a grate temperature in a stoker type incinerator, a waste incineration control method and a grate temperature control method using the method.
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP2788394B2 (en) Garbage incinerator
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
JP2955431B2 (en) Incinerator combustion control device
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP3669778B2 (en) Combustion control device for garbage incinerator
JP2005024126A (en) Combustion control method
JP6624451B2 (en) Waste treatment furnace equipment
JP2003161420A (en) Combustion control method and combustion control device of stoker incinerator
JP3315036B2 (en) Combustion control device of garbage incinerator
JP3669779B2 (en) Combustion control device for garbage incinerator
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP5767486B2 (en) Heat recovery plant and operation control method thereof
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
KR102470121B1 (en) Garbage incinerator and its control method
JP4036768B2 (en) Combustion control device for incinerator
JP2800871B2 (en) Incinerator combustion control device
JPH08233241A (en) Trash character-detecting method for trash incineration furnace
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2955436B2 (en) Method of detecting moisture content of garbage in garbage incinerator
JP3825148B2 (en) Combustion control method and apparatus in refuse incinerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees