JP3669778B2 - Combustion control device for garbage incinerator - Google Patents

Combustion control device for garbage incinerator Download PDF

Info

Publication number
JP3669778B2
JP3669778B2 JP20438996A JP20438996A JP3669778B2 JP 3669778 B2 JP3669778 B2 JP 3669778B2 JP 20438996 A JP20438996 A JP 20438996A JP 20438996 A JP20438996 A JP 20438996A JP 3669778 B2 JP3669778 B2 JP 3669778B2
Authority
JP
Japan
Prior art keywords
dust
amount
push
temperature
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20438996A
Other languages
Japanese (ja)
Other versions
JPH1047633A (en
Inventor
清之 川戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP20438996A priority Critical patent/JP3669778B2/en
Publication of JPH1047633A publication Critical patent/JPH1047633A/en
Application granted granted Critical
Publication of JP3669778B2 publication Critical patent/JP3669778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ゴミ供給口からゴミを炉内に押し込み投入する押し込み投入機構と、前記押し込み投入機構により投入されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯と、目標処理量のゴミを焼却処理するべく前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を調節するゴミ搬送制御手段とを備えてあるゴミ焼却炉の燃焼制御装置に関する。
【0002】
【従来の技術】
従来のゴミ焼却炉の燃焼制御装置におけるゴミ搬送制御手段としては、一日のゴミの目標処理量を達成するための計画線に沿って、前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を調節するものや、炉内で生じた燃焼熱により蒸気を生成する廃熱ボイラからの生成蒸気量が目標蒸気量となるように、前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を調節するものがあった。
そして、前記焼却処理帯の下流側からゴミの燃焼火炎の終端位置、つまりガス化燃焼の終了する燃え切り位置を検出する撮像手段を設けて、燃え切り位置が所定範囲に入るように、前記ゴミ搬送制御手段により決定された前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を増減調節する補正手段を設けることにより熱灼減量の目標値を達成していた。
例えば、燃え切り位置が下流側に移動すると熱灼減量が多くなるおそれがあるために、前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を減少補正し、燃え切り位置が上流側に移動するとゴミ切れにより火格子燃焼率が低下するおそれがあるために、前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を増大補正していた。
【0003】
【発明が解決しようとする課題】
しかし、上述した従来技術によれば、補正手段は、撮像手段により入力された燃焼画像から判断されるゴミの現在の燃え切り位置に基づいて補正量を決定するものであり、検出された燃え切り位置よりも上流側のゴミの燃焼状態を考慮するものではなかったために、現在検出されている燃え切り位置よりも上流側に存在するゴミの質が大きく異なる場合等には、長時間にわたり燃焼状態が悪化するおそれがあった。
例えば、現在の燃え切り位置が下流側にあれば、ゴミ投入量、搬送速度を減少補正することになるが、そのときに上流側に質の良いゴミが多量に存在している場合には、急激に燃え切り位置が上流側に移行して炉内残存ゴミ量が少なくなるゴミ切れ状態となり、現在の燃え切り位置が上流側にあれば、ゴミ投入量、搬送速度を増加補正することになるが、そのときに上流側に質の悪いゴミが多量に存在している場合には、急激に燃え切り位置が下流側に移行して炉内残存ゴミ量が多くなるゴミ山盛り状態となり、いずれの場合も回復が容易でなくなるのである。
そこで、前記押し込み投入機構の上方に設置されたゴミホッパへゴミを搬送するクレーン機構に重量検出機構を設置して、その重量検出機構による検出ゴミ重量に基づいてゴミのみかけ比重を求め、その値に基づいて燃焼前のゴミ質を判断することが提案されているが、ゴミホッパ内でゴミが圧密になるばかりか、ゴミホッパへ搬送されたゴミがいつ炉内に投入されるのかが明確ではないために、ゴミの質を正確に判断できるものではないという欠点があった。
本発明の目的は、上述した従来欠点を解消し、燃焼開始直後のゴミであって、燃焼中心位置よりも上流側にあるゴミの質を検知することにより、今後の燃焼状態を予測して継続的に安定したゴミ燃焼制御を行い得るゴミ焼却炉の燃焼制御装置を提供する点にある。
【0004】
【課題を解決するための手段】
この目的を達成するため本発明によるゴミ焼却炉の燃焼制御装置の特徴構成は、ゴミ供給口からゴミを炉内に押し込み投入する押し込み投入機構と、前記押し込み投入機構により投入されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯と、目標処理量のゴミを焼却処理するべく前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を調節するゴミ搬送制御手段とを備えてあり、前記焼却処理帯における着火開始領域のゴミの放射温度を検出する赤外線検知手段を設け、前記赤外線検知手段による検出ゴミ表面温度に基づいて、前記ゴミ搬送制御手段により決定された前記押し込み投入機構によるゴミの投入量、または、目標処理量を補正する補正手段を設けてある点にある。
また、前記補正手段は、前記検出ゴミ表面温度が低温側基準温度よりも低い状態が所定時間継続した場合に、前記押し込み投入機構によるゴミの投入量、または、目標処理量を減量側に補正するものであることが好ましい。
さらに、前記補正手段は、前記検出ゴミ表面温度が高温側基準温度よりも高い状態が所定時間継続した場合に、前記押し込み投入機構によるゴミの投入量、または、目標処理量を増量側に補正するものであることが好ましい。
【0005】
以下に作用を説明する。
炉内に投入直後のゴミの放射温度ではゴミ質による顕著な相違がみられず、また、投入後、着火前のゴミの放射温度では水分の影響を把握することができてもゴミの保有する熱量を判断できない。例えば、水分が多くても発熱量が多い破砕ゴミ等のように、含水量の程度のみを検出してもその後の燃焼状態を適性に予測できないのであるが、赤外線検知手段により検知された着火開始領域のゴミの放射温度によれば、高カロリーゴミであれば燃焼温度が高く、低カロリーゴミであれば燃焼温度が低いと検出されるので、その値に基づいてその後の燃焼状態が推定できる。
一方、投入されるゴミの質は、通常、それほど極端に変動しないので、前記赤外線検知手段による検出ゴミ温度に基づいて、以後の燃焼状態を予測しつつ事前にゴミの供給量を調節することができるようになるのであり、投入されるゴミの質が極端に変動した場合であっても、放射温度の検出領域がゴミ供給口からそれほど離れていないためにその影響を少なく抑えることも可能になるのである。
さらに、ゴミ質を判断する際に、検出ゴミ温度が、低カロリーゴミを示す低温側基準温度よりも低い温度であり、または、高カロリーゴミを示す高温側基準温度よりも高い温度である状態が短時間であれば、その後の燃焼状態に重大な影響を与えることがないと判断されるので、それらの状態が所定時間継続した場合に限り補正をかけるようにすれば過補正を回避できるのである。
【0006】
【発明の効果】
従って、本発明によれば、燃焼開始直後のゴミであって、燃焼中心位置よりも上流側の着火領域にあるゴミの質を検知することにより、継続的に安定したゴミ燃焼制御を行い得るゴミ焼却炉の燃焼制御装置を提供することができるようになった。
【0007】
【発明の実施の形態】
以下に発明の実施の形態を説明する。
ゴミ焼却炉は、図1に示すように、底部に押し込み投入機構5を備えたゴミホッパ3と、前記押し込み投入機構5により投入されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯6,7,8と、前記焼却処理帯6,7,8による処理済の灰を集める灰ピット4と、前記焼却処理帯6,7,8の上方空間に形成された煙道2に備えた廃熱ボイラ16、排ガス処理装置17等により構成してある。
【0008】
前記押し込み投入機構5は、前記ゴミホッパ3に投入されたゴミをゴミ供給口1に向けて押し込む押し込み作用体(図示せず)を油圧シリンダC1により往復作動させてゴミを炉内に投入するように構成してある。
前記焼却処理帯6,7,8は、前記投入口1から投入されたゴミを搬送しながら乾燥させる乾燥帯6と、前記乾燥帯6で乾燥されたゴミを搬送しながら燃焼させる燃焼帯7と、前記燃焼帯7で燃焼されたゴミを灰化する後燃焼帯8を段差部d1,d2を介して連設して構成してあり、各処理帯は斜め上下姿勢に配置された火格子Gを油圧シリンダC2,C3,C4で斜め上下方向に往復移動させるストーカ機構で構成してある。
各焼却処理帯6,7,8の下部には各別に風箱12を設けて、送風機13により乾燥・燃焼用の空気を供給路14を介して供給するよう構成してあり、各風箱12には空気供給量を調節するダンパDを設けてある。前記供給路14には、乾燥・燃焼用の空気を調温する熱交換器Tを配してあり、ゴミ質により加熱温度を調節する温度制御手段30を設けてある。
前記後燃焼帯8で灰化された残渣は、灰シュート10に落下してコンベア機構により前記灰ピット4に集積される。
前記廃熱ボイラ16は、前記煙道2で二次燃焼された燃焼排ガスの保有する熱エネルギーにより蒸気を生成し、発電機18に接続された蒸気タービンを駆動する。前記廃熱ボイラ16を通過した排ガスはバグフィルタや洗煙装置等の排ガス処理装置17を経て煙突(図示せず)から排気される。
【0009】
上述のゴミ焼却炉には、目標処理量のゴミを焼却処理するべく、前記廃熱ボイラ16に設けられた蒸気量検出センサ(図示せず)による検出蒸気量が、前記廃熱ボイラ16で生成されるべき蒸気量として演算導出された目標蒸気量となるように、前記押し込み投入機構によるゴミの投入量、及び前記焼却処理帯6,7,8によるゴミの搬送速度を調節するゴミ搬送制御手段20、及び、前記各風箱12からの送風量を調節する供給空気量制御手段(図示せず)等を設けてある。
ここに、前記目標蒸気量は、予め想定されたゴミの平均保有熱量、燃焼用空気による入熱量、等の全熱量と、排ガスによる出熱量、損失熱量等の全出熱量の差にボイラ効率を乗じた値を蒸気生成に供される熱量として求め、その熱量により生成される蒸気量を演算して求める。
【0010】
前記後燃焼帯8の下流側側壁には、前記燃焼帯7における燃焼火炎を検出する撮像手段としてのテレビカメラ21を設けてあり、前記テレビカメラ21により入力された燃焼火炎の画像を画像処理手段(図示せず)により処理してガス化燃焼の終了位置、即ち、燃え切り位置を検出する。
前記画像処理手段により検出された燃え切り位置に基づいて、前記ゴミ搬送制御手段20による前記乾燥帯6または前記燃焼帯7における搬送速度、即ち前記油圧シリンダC2,C3の単位時間当たりの作動回数を補正する第一補正手段20aを設けてあり、検出燃え切り位置が許容範囲より下流側にくれば目標熱灼減量を確保すべく燃え切り位置が上流側にくるように単位時間当たりの作動回数を減少補正し、検出燃え切り位置が許容範囲より上流側にくれば火格子燃焼率の低下を回避すべく燃え切り位置が下流側にくるように単位時間当たりの作動回数を増加補正する。
【0011】
前記乾燥帯6の天井壁には、前記乾燥帯6に臨ませて赤外線検知手段としての赤外線カメラIを設けてあり、前記焼却処理帯における着火開始領域のゴミの放射温度を検出する。
詳述すると、前記赤外線検知手段は、図2に示すような黒体輻射エネルギーに相当する炉内からの輻射エネルギーを検出して温度を求めるもので、図3に示すように、前記乾燥帯6上で着火する火炎中のCO,CO2 ,NOx,SOx、さらには、H2 Oによる赤外線エネルギー吸収帯域を回避すべく、前記赤外線カメラに透過波長が約3.9(3.6〜4)μmのフィルタ(図示せず)を取り付けてあり、以て、前記乾燥帯6での燃焼火炎を透過して輻射エネルギーを計測可能なように構成してある。
前記赤外線カメラIにより、前記フィルタを介した画像と前記フィルタを介さない画像とを撮影し、画像処理手段(図示せず)によりそれら両画像における乾燥帯6上の温度差が検出された領域を着火領域と判断し、そのすぐ上流側の所定幅の領域を着火開始領域とし、その領域おける前記フィルタを介した画像におけるゴミ表面温度の平均値を求める。
前記平均値に基づいて、前記ゴミ搬送制御手段20により決定された前記押し込み投入機構によるゴミの投入量、即ち、前記油圧シリンダC1の単位時間当たりの作動回数を補正する第二補正手段20bを設けてあり、低温側基準温度よりも低い状態が所定時間継続した場合には、その温度、時間の程度により前記油圧シリンダC1の単位時間当たりの作動回数を10から30%の範囲で段階的に下方に補正することによりゴミの投入量を減少させて燃焼不良状態に移行するのを回避する一方、高温側基準温度よりも高い状態が所定時間継続した場合には、その温度、時間の程度により前記油圧シリンダC1の単位時間当たりの作動回数を10から30%の範囲で段階的に上方に補正することによりゴミの投入量を増大させてゴミ切れ状態に移行するのを回避する。前記燃え切り位置が適正領域に収まると補正動作を解除する。
【0012】
さらに、前記温度制御手段30は、前記平均値に基づいて前記熱交換器Tによる乾燥・燃焼用の空気を調温するものであり、常時は約70℃から100℃に維持される空気温度を、前記平均値が低温側基準温度よりも低い状態が所定時間継続した場合には、その程度により乾燥・燃焼用の空気温度を約150℃から200℃に高めてゴミの乾燥・燃焼を促進することにより燃焼不良状態に移行するのを回避する一方、前記平均値が高温側基準温度よりも高い状態が所定時間継続した場合には、その程度により乾燥・燃焼用の空気温度を常温に下げて高温燃焼による火格子の焼損するのを防止する。
【0013】
以上説明したように、ゴミ焼却炉の燃焼制御装置は、ゴミ供給口1からゴミを炉内に押し込み投入する押し込み投入機構5と、前記押し込み投入機構5により投入されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯と、目標処理量のゴミを焼却処理するべく前記押し込み投入機構5によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を調節するゴミ搬送制御手段20とを備えて構成され、前記焼却処理帯における着火開始領域のゴミの放射温度を検出する赤外線検知手段Iを設け、前記赤外線検知手段Iによる検出ゴミ温度に基づいて、前記ゴミ搬送制御手段20により決定された前記押し込み投入機構5によるゴミの投入量、または、目標処理量を補正する補正手段20bを設けて構成されるものである。
【0014】
上述したゴミ搬送制御手段、燃え切り位置検出手段、赤外線検知手段、補正手段等の各機能実現手段の一部または全部は、マイクロコンピュータ等の各種コンピュータ、メモリ回路、その他の公知の周辺回路技術を用いて構成されるものである。
【0015】
以下に、別実施形態を説明する。
上述の実施形態では、赤外線検知手段を、波長3.9μmのフィルタを備え、装着状態と非装着状態とに切り換えて使用する赤外線カメラで構成するものを説明したが、フィルタとしては、波長3.9μmのフィルタでなくとも計測対象物と放射温度計測器1との間に介在するガスによる赤外線エネルギー吸収帯域を回避できる波長であれば任意であり、また、波長3.9μmのフィルタを装着した赤外線カメラと該フィルタを装着しない赤外線カメラとの二台の赤外線カメラを設けて各別に撮影するように構成してもよい。さらには、赤外線検知手段は赤外線カメラに限定するものではなく、適宜公知の赤外線検知素子を用いて構成できる。例えば、スポット型赤外線センサを、前記乾燥帯6の天井壁に形成した計測孔から炉内に臨むように設けて、前記乾燥帯6上のゴミ表面温度を数十mm〜数百mmのスポット径で複数箇所計測するように構成してもよい。
【0016】
第二補正手段20bにおける低温側基準温度は約900℃が好ましく、高温側基準温度は約1000℃が好ましいが、この値に限るものではなく各ゴミ焼却炉で処理されるゴミの平均的な質に基づいて適宜定めればよい。また、その際の所定時間は15から30分程度が好ましいが、炉の規模に応じて適宜定めることができる。
【0017】
上述の実施形態では、第二補正手段20bは、ゴミ搬送制御手段20により決定された前記押し込み投入機構によるゴミの投入量、即ち、前記油圧シリンダC1の単位時間当たりの作動回数を補正するものを説明したが、目標処理量を補正するように構成してもよい。つまり、低温側基準温度よりも低い状態が所定時間継続した場合には、その程度により目標処理量を最大10%の範囲で下方に補正することによりゴミの投入量を減少させて燃焼不良状態に移行するのを回避する一方、高温側基準温度よりも高い状態が所定時間継続した場合には、その程度により目標処理量を最大10%の範囲で上方に補正することによりゴミの投入量を増大させてゴミ切れ状態に移行するのを回避するのである。
【0018】
尚、特許請求の範囲の項に図面との対照を便利にする為に符号を記すが、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】ゴミ焼却炉の概略構成図
【図2】黒体輻射エネルギーの波長特性図
【図3】大気の透過率の特性図
【符号の説明】
1 ゴミ供給口
5 押し込み投入機構
20 ゴミ搬送制御手段
20b 補正手段
I 赤外線検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a push-in mechanism that pushes dust into a furnace through a dust supply port, a stoker-type incineration treatment zone that carries out incineration while conveying the waste thrown in by the push-in mechanism, and a target processing amount of garbage. The present invention relates to a combustion control apparatus for a waste incinerator, comprising: a dust transfer control means for adjusting a dust input amount by the push-in mechanism and a dust transfer speed by the incineration zone to incinerate the waste.
[0002]
[Prior art]
As the dust transport control means in the combustion control device of the conventional dust incinerator, the amount of dust input by the push-in mechanism and the incineration process along the plan line for achieving the target amount of daily garbage processing The amount of dust input by the push-in mechanism is such that the amount of generated steam from the waste heat boiler that adjusts the speed of transporting the waste by the belt and the steam generated by the combustion heat generated in the furnace becomes the target amount of steam. And adjusting the conveying speed of the garbage by the incineration treatment zone.
Then, an imaging means is provided for detecting the end position of the combustion flame of dust from the downstream side of the incineration zone, that is, the burnout position where gasification combustion ends, so that the burnout position falls within a predetermined range. The target value of heat loss was achieved by providing correction means for increasing or decreasing the amount of dust input by the push-in mechanism determined by the transport control means and the speed of transport of dust by the incineration treatment zone.
For example, if the burnout position moves to the downstream side, the amount of heat loss may increase, so the amount of dust input by the push-in mechanism and the dust conveyance speed by the incineration zone are corrected to decrease and burnout. If the position moves to the upstream side, there is a risk that the grate burning rate will decrease due to the out of dust, so the amount of dust input by the push-in mechanism and the transport speed of dust by the incineration zone are corrected to increase.
[0003]
[Problems to be solved by the invention]
However, according to the above-described prior art, the correction means determines the correction amount based on the current burnout position of the dust determined from the combustion image input by the imaging means, and the detected burnout is determined. If the quality of the dust that exists upstream from the currently detected burnout position differs significantly because the combustion state of the dust upstream from the position is not considered, the combustion state for a long time There was a risk of worsening.
For example, if the current burnout position is on the downstream side, the dust input amount and the conveyance speed will be corrected to decrease, but at that time if there is a large amount of good quality garbage on the upstream side, If the burnout position suddenly shifts to the upstream side and the amount of remaining garbage in the furnace decreases, and if the current burnout position is on the upstream side, the amount of dust thrown in and the conveyance speed will be corrected to increase. However, if there is a large amount of bad quality waste on the upstream side at that time, the burnout position will suddenly shift to the downstream side and the amount of waste remaining in the furnace will increase. Even in this case, recovery is not easy.
Therefore, a weight detection mechanism is installed in the crane mechanism that transports the garbage to the garbage hopper installed above the push-in mechanism, and the apparent specific gravity of the dust is calculated based on the detected garbage weight by the weight detection mechanism, and the value is obtained. It is proposed to judge the quality of garbage before combustion based on this, but not only is it compacted in the garbage hopper, but it is not clear when the garbage transferred to the garbage hopper is put into the furnace There is a drawback that the quality of garbage cannot be accurately judged.
The object of the present invention is to eliminate the above-mentioned conventional drawbacks and to detect the quality of the dust immediately after the start of combustion, which is upstream from the combustion center position, thereby predicting the future combustion state and continuing. The object of the present invention is to provide a combustion control device for a waste incinerator capable of performing stable dust combustion control.
[0004]
[Means for Solving the Problems]
In order to achieve this object, the characteristic configuration of the combustion control apparatus for a refuse incinerator according to the present invention includes a push-in mechanism for pushing dust into the furnace from a dust supply port, and conveying the dust thrown in by the push-in mechanism. A stoker-type incineration treatment zone for incineration, a waste transport control means for adjusting the amount of dust input by the push-in mechanism to incinerate a target amount of waste, and a waste transport speed by the incineration zone Provided with infrared detection means for detecting the emission temperature of the dust in the ignition start area in the incineration treatment zone, and based on the detected dust surface temperature by the infrared detection means, the dust conveyance control means determined by the dust conveyance control means A correction means for correcting the amount of dust input by the push-in mechanism or the target processing amount is provided.
Further, the correction means corrects the amount of dust input by the push-in mechanism or the target processing amount to the reduction side when the detected dust surface temperature is lower than the low temperature side reference temperature for a predetermined time. It is preferable.
Further, the correction means corrects the amount of dust input by the push-in mechanism or the target processing amount to the increase side when the detected dust surface temperature is higher than the high-temperature side reference temperature for a predetermined time. It is preferable.
[0005]
The operation will be described below.
There is no noticeable difference due to the quality of the garbage immediately after it is put into the furnace, and it is retained even if the influence of moisture can be grasped at the radiation temperature of the garbage after being charged and before ignition. The amount of heat cannot be determined. For example, even if only the moisture content is detected, such as crushed garbage with a large amount of heat even if it contains a lot of water, the subsequent combustion state cannot be predicted properly, but the ignition start detected by the infrared detection means According to the radiation temperature of the dust in the region, it is detected that the combustion temperature is high if it is high calorie dust, and the combustion temperature is low if it is low calorie dust, so that the subsequent combustion state can be estimated based on that value.
On the other hand, since the quality of the thrown-in waste usually does not fluctuate so much, it is possible to adjust the amount of dust supplied in advance while predicting the subsequent combustion state based on the temperature of dust detected by the infrared detection means. Even if the quality of the thrown-in dust changes drastically, the radiation temperature detection area is not so far from the dust supply port, so that the influence can be reduced. It is.
Furthermore, when judging the garbage quality, there is a state in which the detected garbage temperature is lower than the low temperature side reference temperature indicating low calorie garbage or higher than the high temperature side reference temperature indicating high calorie garbage. If it is a short time, it is determined that there will be no significant influence on the subsequent combustion state, so overcorrection can be avoided if correction is made only when those states continue for a predetermined time. .
[0006]
【The invention's effect】
Therefore, according to the present invention, dust that has just started combustion and that can perform stable dust combustion control continuously by detecting the quality of dust in the ignition region upstream of the combustion center position. An incinerator combustion control device can be provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the invention will be described below.
As shown in FIG. 1, the refuse incinerator includes a waste hopper 3 having a push-in mechanism 5 at the bottom, and a stoker-type incineration treatment zone 6 for incinerating the waste thrown in by the push-in mechanism 5 while conveying it. 7, 8, ash pit 4 for collecting ash treated by the incineration zones 6, 7, 8, and waste heat provided in the flue 2 formed in the space above the incineration zones 6, 7, 8 The boiler 16 and the exhaust gas treatment device 17 are configured.
[0008]
The push-in mechanism 5 reciprocates a push-in action member (not shown) that pushes the dust thrown into the dust hopper 3 toward the dust supply port 1 by the hydraulic cylinder C1 so as to throw the dust into the furnace. It is configured.
The incineration treatment zones 6, 7, and 8 include a drying zone 6 that dries while feeding the dust introduced from the inlet 1, and a combustion zone 7 that burns while carrying the dust dried in the drying zone 6. In addition, a post combustion zone 8 for ashing the waste burned in the combustion zone 7 is connected through stepped portions d1 and d2, and each processing zone is a grate G arranged in a slanting vertical position. Is constituted by a stoker mechanism that reciprocally moves the cylinder in a slanting vertical direction with hydraulic cylinders C2, C3, and C4.
A wind box 12 is separately provided at the lower part of each incineration treatment zone 6, 7, 8, and is configured such that air for drying and combustion is supplied by a blower 13 through a supply path 14. Is provided with a damper D for adjusting the air supply amount. The supply path 14 is provided with a heat exchanger T for adjusting the temperature of the drying / combustion air, and is provided with temperature control means 30 for adjusting the heating temperature according to the quality of dust.
The residue ashed in the post-combustion zone 8 falls on the ash chute 10 and is accumulated in the ash pit 4 by a conveyor mechanism.
The waste heat boiler 16 generates steam by the thermal energy held in the combustion exhaust gas secondary-combusted in the flue 2 and drives a steam turbine connected to the generator 18. The exhaust gas that has passed through the waste heat boiler 16 is exhausted from a chimney (not shown) through an exhaust gas treatment device 17 such as a bag filter or a smoke washing device.
[0009]
In the above-mentioned waste incinerator, the amount of steam detected by a steam amount detection sensor (not shown) provided in the waste heat boiler 16 is generated in the waste heat boiler 16 in order to incinerate the target amount of waste. Waste transport control means for adjusting the amount of dust input by the push-in mechanism and the speed of transport of dust by the incineration treatment zones 6, 7, and 8 so that the target steam amount calculated and derived as the amount of steam to be generated 20 and a supply air amount control means (not shown) for adjusting the amount of air blown from each wind box 12 are provided.
Here, the target steam amount is the efficiency of the boiler due to the difference between the total heat quantity such as the average retained heat quantity of dust, the heat input quantity by combustion air, etc., and the total heat quantity such as the heat output quantity by exhaust gas and the loss heat quantity. The multiplied value is obtained as the amount of heat provided for steam generation, and the amount of steam generated by the amount of heat is calculated and obtained.
[0010]
On the downstream side wall of the rear combustion zone 8, there is provided a television camera 21 as an imaging means for detecting the combustion flame in the combustion zone 7, and an image of the combustion flame input by the television camera 21 is image processing means. The end position of gasification combustion, that is, the burnout position is detected by processing (not shown).
Based on the burnout position detected by the image processing means, the transport speed in the drying zone 6 or the combustion zone 7 by the dust transport control means 20, that is, the number of operations per unit time of the hydraulic cylinders C2 and C3 is determined. The first correcting means 20a for correcting is provided, and if the detected burnout position is on the downstream side of the allowable range, the number of operations per unit time is set so that the burnout position is on the upstream side in order to secure the target heat reduction amount. If the detected burnout position is on the upstream side of the allowable range, the number of operations per unit time is increased and corrected so that the burnout position is on the downstream side in order to avoid a decrease in the grate combustion rate.
[0011]
On the ceiling wall of the drying zone 6 is provided an infrared camera I as an infrared detection means facing the drying zone 6 to detect the radiation temperature of dust in the ignition start area in the incineration treatment zone.
More specifically, the infrared detecting means detects the radiation energy from the furnace corresponding to the black body radiation energy as shown in FIG. 2, and obtains the temperature. As shown in FIG. In order to avoid the infrared energy absorption band due to CO, CO 2 , NOx, SOx, and H 2 O in the flame ignited above, the infrared camera has a transmission wavelength of about 3.9 (3.6 to 4). A filter (not shown) of μm is attached, so that the radiant energy can be measured through the combustion flame in the dry zone 6.
The infrared camera I captures an image that passes through the filter and an image that does not pass through the filter, and an image processing means (not shown) detects a region where a temperature difference on the drying zone 6 in both images is detected. The region is determined to be an ignition region, and a region having a predetermined width immediately upstream is set as an ignition start region, and an average value of dust surface temperatures in the image through the filter in the region is obtained.
Based on the average value, there is provided second correction means 20b for correcting the amount of dust input by the push-in mechanism determined by the dust transport control means 20, that is, the number of operations per unit time of the hydraulic cylinder C1. When the temperature lower than the low temperature side reference temperature continues for a predetermined time, the number of operations per unit time of the hydraulic cylinder C1 is lowered stepwise in a range of 10 to 30% depending on the temperature and time. In this case, it is possible to reduce the amount of dust input and avoid the transition to the poor combustion state.On the other hand, when the state higher than the high-temperature side reference temperature continues for a predetermined time, the temperature and time are By correcting the number of operations per unit time of the hydraulic cylinder C1 upward in a range of 10 to 30%, the amount of dust input is increased to make the dust run out. To avoid the line. When the burnout position falls within the appropriate region, the correction operation is canceled.
[0012]
Further, the temperature control means 30 adjusts the temperature of the drying / combustion air by the heat exchanger T based on the average value, and the air temperature that is normally maintained at about 70 ° C. to 100 ° C. is adjusted. When the state in which the average value is lower than the low temperature side reference temperature continues for a predetermined time, the air temperature for drying / combustion is increased from about 150 ° C. to 200 ° C. according to the degree, thereby promoting the drying / combustion of garbage. However, if the average value is higher than the high temperature side reference temperature for a predetermined time, the air temperature for drying / combustion is lowered to room temperature depending on the degree. Prevents grate burnout due to high temperature combustion.
[0013]
As described above, the combustion control device for a garbage incinerator has a push-in mechanism 5 that pushes dust into the furnace through the dust supply port 1 and an incineration process while conveying the garbage thrown in by the push-in mechanism 5. A stoker-type incineration treatment zone, and a trash conveyance control means 20 for adjusting a trash introduction amount by the push-in mechanism 5 and a trash conveyance speed by the incineration treatment zone to incinerate a target amount of trash. Provided with infrared detection means I for detecting the radiation temperature of the dust in the ignition start area in the incineration treatment zone, and is determined by the dust transport control means 20 based on the detected dust temperature by the infrared detection means I. Further, a correction means 20b for correcting the amount of dust input by the push-in mechanism 5 or the target processing amount is provided.
[0014]
A part or all of the function realizing means such as the dust conveyance control means, burnout position detection means, infrared detection means, correction means, etc. described above are various computers such as microcomputers, memory circuits, and other known peripheral circuit techniques. It is configured by using.
[0015]
Another embodiment will be described below.
In the above-described embodiment, the infrared detecting means is provided with a filter having a wavelength of 3.9 μm and is configured to be used with an infrared camera that is switched between a mounted state and a non-mounted state. The wavelength is not limited to a 9 μm filter, and any wavelength can be used as long as it can avoid the infrared energy absorption band due to the gas interposed between the object to be measured and the radiation temperature measuring instrument 1, and an infrared ray equipped with a filter having a wavelength of 3.9 μm Two infrared cameras, that is, a camera and an infrared camera not equipped with the filter, may be provided to shoot separately. Furthermore, the infrared detection means is not limited to the infrared camera, and can be configured using a known infrared detection element as appropriate. For example, a spot type infrared sensor is provided so as to face the inside of the furnace from a measurement hole formed in the ceiling wall of the drying zone 6, and the dust surface temperature on the drying zone 6 has a spot diameter of several tens mm to several hundreds mm. A plurality of locations may be measured.
[0016]
The low temperature side reference temperature in the second correction means 20b is preferably about 900 ° C., and the high temperature side reference temperature is preferably about 1000 ° C., but is not limited to this value, and the average quality of the waste treated in each waste incinerator It may be determined appropriately based on the above. In addition, the predetermined time at that time is preferably about 15 to 30 minutes, but can be appropriately determined according to the scale of the furnace.
[0017]
In the above-described embodiment, the second correction unit 20b corrects the amount of dust input by the push-in mechanism determined by the dust transport control unit 20, that is, the number of operations per unit time of the hydraulic cylinder C1. As described above, the target processing amount may be corrected. In other words, if the temperature lower than the low temperature side reference temperature continues for a predetermined time, the target processing amount is corrected downward in the range of a maximum of 10% depending on the degree, thereby reducing the amount of dust input and causing a poor combustion state. While avoiding the transition, if the temperature higher than the high temperature side reference temperature continues for a predetermined time, the amount of dust input is increased by correcting the target processing amount upward within a range of up to 10% depending on the degree. To avoid going out of garbage.
[0018]
In addition, although the code | symbol is written in order to make contrast with drawing convenient for the term of a claim, this invention is not limited to the structure of an accompanying drawing by this entry.
[Brief description of the drawings]
[Fig. 1] Schematic configuration diagram of garbage incinerator [Fig. 2] Wavelength characteristic diagram of black body radiation energy [Fig. 3] Air permeability characteristic diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dust supply port 5 Push-in mechanism 20 Dust conveyance control means 20b Correction means I Infrared detection means

Claims (3)

ゴミ供給口(1)からゴミを炉内に押し込み投入する押し込み投入機構(5)と、前記押し込み投入機構(5)により投入されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯と、目標処理量のゴミを焼却処理するべく前記押し込み投入機構(5)によるゴミの投入量、及び前記焼却処理帯によるゴミの搬送速度を調節するゴミ搬送制御手段(20)とを備えてあるゴミ焼却炉の燃焼制御装置であって、
前記焼却処理帯における着火開始領域のゴミの放射温度を検出する赤外線検知手段(I)を設け、前記赤外線検知手段(I)による検出ゴミ表面温度に基づいて、前記ゴミ搬送制御手段(20)により決定された前記押し込み投入機構(5)によるゴミの投入量、または、前記目標処理量を補正する補正手段(20b)を設けてあるゴミ焼却炉の燃焼制御装置。
A push-in mechanism (5) that pushes dust into the furnace through the dust supply port (1), a stoker-type incineration treatment zone that incinerates the dust thrown in by the push-in mechanism (5), Waste incineration provided with waste transfer control means (20) for adjusting the amount of dust input by the push-in mechanism (5) and the speed of transfer of dust by the incineration zone to incinerate a target amount of waste. A furnace combustion control device,
Infrared detection means (I) for detecting the emission temperature of dust in the ignition start area in the incineration treatment zone is provided, and based on the detected dust surface temperature by the infrared detection means (I), the dust conveyance control means (20) A combustion control apparatus for a refuse incinerator provided with correction means (20b) for correcting the determined amount of dust input by the push-in mechanism (5) or the target processing amount.
前記補正手段(20b)は、前記検出ゴミ表面温度が低温側基準温度よりも低い状態が所定時間継続した場合に、前記押し込み投入機構(5)によるゴミの投入量、または、目標処理量を減量側に補正するものである請求項1記載のゴミ焼却炉の燃焼制御装置。The correction means (20b) reduces the amount of dust input or the target processing amount by the push-in mechanism (5) when the detected dust surface temperature is lower than the low temperature side reference temperature for a predetermined time. 2. A combustion control apparatus for a refuse incinerator according to claim 1, wherein the combustion control apparatus corrects to the side. 前記補正手段(20b)は、前記検出ゴミ表面温度が高温側基準温度よりも高い状態が所定時間継続した場合に、前記押し込み投入機構(5)によるゴミの投入量、または、目標処理量を増量側に補正するものである請求項1又は2記載のゴミ焼却炉の燃焼制御装置。The correction means (20b) increases the amount of dust input by the push-in mechanism (5) or the target processing amount when the detected dust surface temperature is higher than the high temperature side reference temperature for a predetermined time. The combustion control apparatus for a refuse incinerator according to claim 1 or 2, wherein the combustion control apparatus corrects the side.
JP20438996A 1996-08-02 1996-08-02 Combustion control device for garbage incinerator Expired - Fee Related JP3669778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20438996A JP3669778B2 (en) 1996-08-02 1996-08-02 Combustion control device for garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20438996A JP3669778B2 (en) 1996-08-02 1996-08-02 Combustion control device for garbage incinerator

Publications (2)

Publication Number Publication Date
JPH1047633A JPH1047633A (en) 1998-02-20
JP3669778B2 true JP3669778B2 (en) 2005-07-13

Family

ID=16489735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20438996A Expired - Fee Related JP3669778B2 (en) 1996-08-02 1996-08-02 Combustion control device for garbage incinerator

Country Status (1)

Country Link
JP (1) JP3669778B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243128A (en) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd Combustion control method and device thereof
JP4970859B2 (en) * 2006-06-30 2012-07-11 株式会社タクマ Combustion control method and combustion control system for combustion furnace
JP6723864B2 (en) * 2016-08-01 2020-07-15 株式会社タクマ Combustion control device equipped with a garbage moving speed detection function
JP7193231B2 (en) * 2017-11-09 2022-12-20 川崎重工業株式会社 Combustion control device and method for stoker furnace, and fuel transfer amount detection device and method
JP7051792B2 (en) * 2019-12-18 2022-04-11 三菱重工業株式会社 Combustion equipment condition identification device, condition identification method and program

Also Published As

Publication number Publication date
JPH1047633A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP2788394B2 (en) Garbage incinerator
JP3669778B2 (en) Combustion control device for garbage incinerator
JP3669779B2 (en) Combustion control device for garbage incinerator
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP3315036B2 (en) Combustion control device of garbage incinerator
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP2955436B2 (en) Method of detecting moisture content of garbage in garbage incinerator
JP4036768B2 (en) Combustion control device for incinerator
JP2800871B2 (en) Incinerator combustion control device
JP2889833B2 (en) Measurement method of combustion flame of garbage incinerator
JP3825148B2 (en) Combustion control method and apparatus in refuse incinerator
JP3669781B2 (en) Combustion control method for garbage incinerator
JPH08233241A (en) Trash character-detecting method for trash incineration furnace
JP3173963B2 (en) Garbage incineration equipment
JPH08285242A (en) Incinerator
JP2624912B2 (en) Incinerator combustion control device
JP2761187B2 (en) Garbage incinerator
KR102470121B1 (en) Garbage incinerator and its control method
JP7347339B2 (en) Grate type waste incinerator and waste incineration method using grate type waste incinerator
JPH08261431A (en) Method and device for estimating thickness of waste on incinerating zone in incinerator
JPH07332642A (en) Garbage incinerator
JPH06331120A (en) Incinerator
JP2788387B2 (en) Incinerator combustion state detector
JPH0894055A (en) Combustion controller
JPH06331122A (en) Incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees