JP4036768B2 - Combustion control device for incinerator - Google Patents

Combustion control device for incinerator Download PDF

Info

Publication number
JP4036768B2
JP4036768B2 JP2003036851A JP2003036851A JP4036768B2 JP 4036768 B2 JP4036768 B2 JP 4036768B2 JP 2003036851 A JP2003036851 A JP 2003036851A JP 2003036851 A JP2003036851 A JP 2003036851A JP 4036768 B2 JP4036768 B2 JP 4036768B2
Authority
JP
Japan
Prior art keywords
combustion
dust
amount
furnace
correction factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003036851A
Other languages
Japanese (ja)
Other versions
JP2004245519A (en
Inventor
義明 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003036851A priority Critical patent/JP4036768B2/en
Publication of JP2004245519A publication Critical patent/JP2004245519A/en
Application granted granted Critical
Publication of JP4036768B2 publication Critical patent/JP4036768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ゴミを焼却処理する焼却炉の燃焼制御装置に関し、炉内保有ゴミ量を適正範囲に維持するため、特に、炉内で焼却処理するゴミの目標焼却量及び炉内にゴミを供給する給塵手段のゴミ供給量(例えば往復動作を繰り返してゴミ供給する給塵装置の1往復すなわち1サイクル当りのゴミ供給量)を表わす給塵効率に基づいて前記給塵手段の基準動作速度を求め、その基準動作速度に基づいて前記給塵手段の動作を制御する制御手段が設けられた焼却炉の燃焼制御装置に関する。
【0002】
【従来の技術】
上記焼却炉の燃焼制御装置に関連する第1の従来技術では、廃熱ボイラの蒸気発生量、炉内の燃焼状況を監視するITV画像の輝度情報、後燃焼火格子下圧力と炉内圧との圧力差、後燃焼火格子温度、主煙道温度に基づいて、火格子速度、火格子ストローク長、後燃焼空気ダンパを制御して、蒸気発生量の安定と未燃ゴミの低減を実現するようにしていた(特許文献1参照)。
【0003】
また、第2の従来技術では、炉内にゴミを供給する給塵手段の動作速度とゴミ供給量の履歴から給塵効率(給塵装置1往復当りの実績ゴミ供給量)を推定し、その給塵効率に基づいて判断したゴミ質の変化に応じて適切な給塵速度に制御しながら、目標ゴミ焼却量を実現するようにしていた(特許文献2参照)。
【0004】
また、第3の従来技術では、ホッパ内をレーザ式距離計で計測して投入ゴミの容積を演算し、この投入ゴミの容積と別途計測した投入ゴミの重量からゴミの比重を求めてゴミの発熱量(炉内供給熱量)を推定し、この炉内供給熱量を一定に保つようにゴミ供給速度を制御していた(非特許文献1参照)。
【0005】
【特許文献1】
特開平10−332121号公報(第2−9頁、図1−図12)
【特許文献2】
特開平7−269834号公報(第2−4頁、図1−図4)
【非特許文献1】
辻本進一,他2名,「焼却炉におけるごみ供給熱量制御」,学会誌「EICA」,2002年10月31日,第7巻,第2号(2002),p.75−78
【0006】
【発明が解決しようとする課題】
しかしながら、上記第1の従来技術では、炉内へのゴミ供給速度を制御していないため、炉内の保有ゴミ量が過剰になったとき、火格子の速度とストローク長を制御してゴミ層の層厚バランスを変えることはできるものの、ゴミ供給速度が同じなら炉内の保有ゴミ量が減らないため、未燃ゴミが発生する不都合があった。すなわち、蒸気発生量が目標より低下すると、ゴミ送り速度が常に速くなるため、通気性の低いゴミに対しては、炉内保有ゴミ量が急増して、ますます通気性が低下し、燃焼が悪化するという問題点を抱えていた。
【0007】
第2の従来技術では、目標ゴミ焼却量と給塵効率から給塵手段の基準動作速度を求めて、給塵手段の実動作速度をその基準動作速度に制御していたため、発熱量の低いゴミに対して目標ゴミ焼却量を高く設定した場合に、炉の焼却処理能力を超えるゴミを供給してしまう可能性があった。
また、第3の従来技術においても、供給熱量一定制御のため、第2の従来技術と同様に、ゴミの発熱量が低い場合に、結果的に目標ゴミ焼却量が高く設定され、炉の焼却処理能力を超えるゴミを供給してしまう可能性があった。
【0008】
本発明は、上記実情に鑑みてなされたものであり、その目的は、炉内へのゴミの供給過剰や供給不足による燃焼状態の悪化を回避し、安定した燃焼を実現することが可能となる焼却炉の燃焼制御装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を実現するための焼却炉の燃焼制御装置の請求項1に係る発明は、炉内で焼却処理するゴミの目標焼却量及び炉内にゴミを供給する給塵手段のゴミ供給量を表わす給塵効率に基づいて前記給塵手段の基準動作速度を求め、その基準動作速度に基づいて前記給塵手段の動作を制御する制御手段が設けられたものであって、その特徴構成は、炉内でのゴミの燃焼状態を表わす燃焼指標に基づいて前記基準動作速度を補正して前記給塵手段の実動作速度を求め、ゴミ焼却量の実績値、もしくは、ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて、炉内へのゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように前記実動作速度を制限するにあたり、前記制御手段が、前記燃焼指標として、複数の燃焼パターンを設定し、前記複数の燃焼パターンの1つが継続して現れる場合に前記基準動作速度を補正する補正率を累積して増加もしくは減少させる累積補正率を求め、前記ゴミ焼却量の実績値もしくは前記ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて設定した上限値及び下限値によって前記累積補正率を制限しつつ、当該累積補正率を用いて前記基準動作速度を補正して前記実動作速度を求める点にある。
【0010】
すなわち、燃焼指標に基づいて、炉内保有ゴミの不足が予想される時は、炉内のゴミが不足しないように基準動作速度を増加側に補正して給塵手段の実動作速度を速くし、一方、炉内保有ゴミの過剰が予想される時は、炉内のゴミが過剰にならないように基準動作速度を減少側に補正して給塵手段の実動作速度を遅くする。
さらに、ゴミ焼却量の実績値もしくはゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて、例えば、定格燃焼ペースに対して、過去1〜2時間におけるゴミ焼却量の実績値が大きい時は、上記給塵手段の実動作速度を低速になるように制限して、炉内へのゴミ供給量が炉の焼却処理能力の適正範囲上限を外れないようにし、一方、ゴミ焼却量の実績値が小さい時は、上記給塵手段の実動作速度を高速になるように制限して、炉内へのゴミ供給量が炉の焼却処理能力の適正範囲下限を外れないようにする。
【0011】
従って、目標ゴミ焼却量と給塵効率に基づいて求めた給塵手段の基準動作速度に対して、炉内のゴミの燃焼状態に応じた補正を行って実動作速度を求め、さらに、ゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように、ゴミ焼却量の実績値等に基づいて上記給塵手段の実動作速度を制限するので、炉内へのゴミの供給過剰や供給不足による燃焼状態の悪化を回避し、安定した燃焼を実現することが可能となる焼却炉の燃焼制御装置が提供される。
【0013】
すなわち、上記複数の燃焼パターンは燃焼による発生熱量、炉内保有ゴミ量等の異なる燃焼状態を表わすものであり、例えば、蒸気発生量が目標を上回り、かつ、燃切点が乾燥帯側の上流に位置する燃焼パターンが継続して現れる場合は、ゴミ発熱量が上昇して燃焼速度が速いと判断して累積補正率を累積して増加させ、一方、蒸気発生量が低下し、かつ、燃切点が後燃焼側の下流に位置する燃焼パターンが継続して現れる場合は、ゴミ発熱量が下降して燃焼速度が遅いと判断して累積補正率を累積して減少させるように、この累積補正率に炉内の安定した燃焼状態あるいは燃焼状態の緩やかな変化を反映させて、適切な実動作速度を求めることができ、しかも、ゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように、定格燃焼ペースに対するゴミ焼却量の実績値等に基づいて上記累積補正率に上限値と下限値の制限を設けるので、上記燃焼パターンの1つが継続した場合でも、給塵手段の実動作速度が適正速度から大きく外れることもない。
従って、複数の燃焼パターンと累積補正率の2つのパラメータを用いて、給塵手段の基準動作速度から実動作速度を簡便且つ適切に求めることが可能であり、焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0014】
請求項に係る発明の特徴構成は、請求項1に係る発明において、前記制御手段が、前記基準動作速度を補正する際に、前記累積補正率に加えて、前記燃焼パターンの1つが現れたときに前記基準動作速度を補正する補正率を一時的に設する一時補正率を用いる点にある。
【0015】
上記構成によれば、前記制御手段が、前記複数の燃焼パターンの1つが現われたときに一時補正率に一時的に値を設定し、その一時補正率と前記累積補正率の両方を用いて前記基準動作速度を補正して前記給塵手段の実動作速度を求める。すなわち、上記一時補正率は、前記累積補正率と異なり、複数の燃焼パターンの1つが1回現われただけで値が設定されるので、例えば蒸気量が上昇し過剰燃焼への急激な変化を示す燃焼パターンが現われ、給塵速度を急減させる必要がある場合に、値が累積して増加もしくは減少する前記累積補正率では対応できないが、上記一時補正率に一時的に大きな値を設定することで、上記急激な燃焼状態の変化に対応して給塵手段の実動作速度を確実に制限することができる。
従って、前記累積補正率に加えて一時補正率を用いることで、炉内の燃焼状態の急激な変化に対しても給塵手段の実動作速度を適切に設定することが可能となり、焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0016】
請求項に係る発明の特徴構成は、請求項又はに係る発明において、前記制御手段が、前記複数の燃焼パターンとして、炉内での発生熱量の評価指標と炉内のゴミ滞留量の評価指標とを組み合わせた二次元マトリックス情報を用いる点にある。
【0017】
炉内での発生熱量だけでは炉内のゴミの燃焼状態が適正か否かを判断することは難しく、例えば発生熱量が小さいときにこの発熱量小の原因が炉内のゴミの燃焼不良にあるのか、あるいは、炉内のゴミ滞留量が少ないことによるかが判断できないが、炉内での発生熱量と炉内のゴミ滞留量を組み合わせることで、例えば、炉内のゴミ滞留量が少なくないにもかかわらず、発生熱量が小さいときは、通気性低下等による炉内のゴミの燃焼不良と判断できる。
従って、前記複数の燃焼パターンとして炉内での発生熱量と炉内のゴミ滞留量の情報を組み合わせることで、炉内のゴミが適正な燃焼状態にあるか否かを適切に判断して、炉内の燃焼状態に応じて給塵手段の実動作速度を適切に設定することが可能となり、焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0018】
【発明の実施の形態】
以下、本発明に係る焼却炉の燃焼制御装置の実施の形態を図面に基づいて説明する。
図1に示すように、ゴミピット20に集積されたゴミを掴み上げて搬送するバケット1と、このバケット1で掴み上げたゴミが投入されるホッパー2と、このホッパー2内のゴミを焼却炉3内に押し込み供給するために往復作動する給塵手段としてのプッシャ機構4と、プッシャ機構4によって炉内に供給されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯5と、この焼却処理帯5からの焼却灰を回収する灰ピット6とを備えると共に、炉内で発生した熱を回収する廃熱ボイラ7から蒸気が供給される蒸気タービン8と、この蒸気タービン8で駆動される発電機9を備え、また、焼却炉3からの排ガスをバグフィルター等を有する排ガス処理部10で処理した後、煙突11から排出するようにして、ゴミ焼却設備が構成されている。
【0019】
図面には示さないが、前記廃熱ボイラ7からの蒸気は、焼却炉3からの排ガスを送る煙道に配置された蒸気加熱器で加熱されて乾燥蒸気化した状態で蒸気溜めに貯留され、この蒸気溜めからの蒸気を前記蒸気タービン8に供給して前記発電機9の駆動を行った後に、復水して最終的には廃熱ボイラ7に戻すよう蒸気サイクルが構成されている。また、上記廃熱ボイラ7から蒸気タービン8に供給される蒸気路に、発生蒸気量を検出する蒸気量センサ14が設けられている。
【0020】
前記焼却処理帯5には、炉内でのゴミの搬送方向に沿って上手側(プッシャ機構4の側)から、供給されたゴミを乾燥させて着火点近くまで加熱する乾燥処理帯5aと、乾燥ゴミを燃焼させる燃焼処理帯5bと、燃焼したゴミを灰化させる後燃焼処理帯5cが順次配置されている。焼却処理帯5は、搬送方向の下手側ほど低いレベルとなるように、各処理帯5a、5b、5cは階段状に形成されている。夫々の処理帯5a、5b、5cは固定状態の固定火格子と、固定火格子に対して摺動自在な可動火格子とを備え、油圧シリンダ(図示せず)の作動により可動火格子を固定火格子に対して往復摺動させて焼却処理帯上のゴミを乾燥処理帯5a、燃焼処理帯5b、後燃焼処理帯5c夫々の方向に順次移送しながらゴミの撹拌を行う。そして、後燃焼処理帯5cで灰化したゴミは灰押し機構12の部位に落下し、灰出しコンベア13によって前記灰ピット6に搬送集積される。
【0021】
上記焼却処理帯5の下方にはゴミの燃焼を促進するための一次燃焼空気が供給される。具体的には、前記夫々の処理帯5a、5b、5cの下方に配置した複数の風箱23に複数の流路22が接続され、この各流路22には、図示しないブロアによって送風され必要に応じて加熱された空気が供給される。そして、この各流路22に供給された空気は風箱23から各処理帯5a、5b、5cを上方に通過することによりゴミの燃焼が促進される。
【0022】
また、前記焼却炉3内でのゴミの燃焼に伴い生成した燃焼ガスを二次燃焼させるために、前記焼却処理帯5の上方の炉内部に二次燃焼空気を供給する二次燃焼空気供給手段27が設けられている。そして、前記焼却炉3からの排ガスの煙道に、上記二次燃焼された後の排ガス中の酸素濃度を検出する酸素濃度センサ26が設置され、さらに、前記焼却炉3の炉出口位置における排ガス温度即ち炉出口温度を計測する熱電対式等のガス温度センサ25が設けられている。
【0023】
前記焼却炉3のプッシャ機構4の位置とは反対の後燃焼帯側炉壁には、前記焼却処理帯5におけるゴミの燃切点の位置を検出するためのテレビカメラ15が設置されている。具体的には、図2に示すように、テレビカメラ15は、炉内においてゴミのガス燃焼末端を示す燃切点mkが位置する燃焼処理帯5bを撮像範囲とする。そして、後述の制御装置30(図3参照)内に設けた画像処理部によって、テレビカメラ15の画像データを炎と炎以外に二値化して燃焼火炎を抽出し、その燃焼火炎の下流側の末端を燃切点mkと判断する。
【0024】
図3に示すように、マイクロプロセッサや半導体メモリ等で構成された制御装置30が設けられ、この制御装置30に、前記蒸気量センサ14、前記テレビカメラ15、ガス温度センサ25、酸素濃度センサ26、及び、前記バケット1で掴み上げられて炉内に投入されるゴミの重量を検出する重量センサ24(図1参照)の各検出情報が入力されている。一方、制御装置30からは、前記バケット1及びプッシャ機構4等に対する駆動信号が出力されている。
【0025】
上記制御装置30内に、炉内にゴミを供給する前記プッシャ機構4の1サイクル当りのゴミ供給量を表わす給塵効率を算出する給塵効率算出手段Dが構成されている。給塵効率は、前記プッシャ機構4の動作速度とゴミ投入量の実績値から推定される。具体的には、ホッパー2から燃焼処理帯5にかけて滞留し、今後乾燥及び燃焼プロセスに入ると予想されるある一定のゴミ量を想定し、そのゴミ量を投入するのに必要な所定時間におけるプッシャ機構4によるゴミの投入重量(トン/時間)を、同じ所定時間におけるプッシャ機構4の動作速度(サイクル/時間)の移動平均値で除算して、給塵効率(トン/サイクル)を求めている。
【0026】
また、上記制御装置30内に、下式のように、炉内で焼却処理するゴミの目標焼却量(以下、目標焼却ペースという)及び前記給塵効率算出手段Dが算出した給塵効率に基づいて前記プッシャ機構4の基準動作速度Vk(サイクル/時間)を求め、その基準動作速度Vkに基づいて前記プッシャ機構4の動作を制御する制御手段Cが設けられている。尚、式中の係数Kは、例えば1.1〜1.3の範囲の値に設定する。
【0027】
【数1】
Vk=K・目標焼却ペース(トン/時間)/給塵効率(トン/サイクル)
【0028】
さらに、前記制御手段Cは、炉内でのゴミの燃焼状態を示す燃焼指標に基づいて前記基準動作速度Vkを補正して前記プッシャ機構4の実動作速度Vjを求め、さらに、ゴミ焼却量の実績値に基づいて、炉内へのゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように上記実動作速度Vjを制限する。以下、説明する。
【0029】
上記プッシャ機構4の実動作速度Vjを制限する制御構成について説明すれば、前記制御手段Cが、前記燃焼指標として、複数の燃焼パターンを設定し、その複数の燃焼パターンの1つが継続して現れる場合に累積して増加もしくは減少する累積補正率H1と、前記複数の燃焼パターンの1つが現れたときに一時的に値が設定される一時補正率H2を求め、前記ゴミ焼却量の実績値に基づいて設定した上限値及び下限値によって前記累積補正率H1を制限しつつ、当該累積補正率H1及び前記一時補正率H2を用いて前記基準動作速度Vkを補正して前記実動作速度Vjを求めている。
【0030】
上記制御手段Cは、前記複数の燃焼パターンとして、蒸気量と燃切点mk等、炉内での発生熱量の評価指標と炉内のゴミ滞留量の評価指標とを組み合わせた二次元マトリック情報を用いる。具体的には、図4に示すように、炉内での発生熱量は前記蒸気量センサ14によって検出される発生蒸気量(適正値からの蒸気量偏差)を用い、炉内のゴミ滞留量は前記テレビカメラ15によって検出される燃切点mkの位置情報(燃焼処理帯5bの長さを100%としたときの先端からの位置であり、また適正位置に対して上流側か下流側かで表わす)を用い、No.1〜6の6つの燃焼パターンを設定している。従って、蒸気量偏差が負側から正側になるほど総発生熱量の多い高燃焼レベルとなり、燃切点mkの位置が下流側に位置するほど炉内ゴミ量が多い高負荷レベルとなる。
【0031】
そして、上記6つの燃焼パターンに対して、制御周期における前記累積補正率H1の増加又は減少のゲイン(%)と一時補正率H2のゲイン(%)の値を設定した一例を図5に示す。図5では、高燃焼レベルであるNo.1,2の燃焼パターンに対して、燃焼でゴミ量が急激に消費されてゴミ不足になることを防止するために、累積補正率H1のゲインとしてプラスの値を設定し、またゴミ送り量を急減させることで蒸気量を抑制するために、一時補正率H2のゲインとしてマイナスの大きな値を設定している。
【0032】
図6に上記燃焼パターン4から5への変化に対して累積補正率H1(%)と一時補正率H2(%)を求める場合の一例を示す。この例では、燃焼パターン4から5に変化した時点(時間0の時点)で一時補正率H2が20%に設定されるとともに、同一燃焼パターン5が継続する時は5分の制御周期で0%に戻り、一方、同一燃焼パターン5が継続する時は累積補正率H1は5分の制御周期で5%減少するので、この一時補正率H2と累積補正率H1を合計した補正率は図の太い実線で示すように、始め20%まで一時的に増加したのち5分経過時に−5%(95%)に減少する。そして、5分後にも同一燃焼パターン5が継続している時は、上記と同様に、一時補正率H2が20%に設定されるとともに累積補正率H1が減少し、合計の補正率はのこぎり波形で変化する
【0033】
さらに、図6には、時間0の時点から6分後に燃焼パターン5から燃焼パターン4に変化した場合を破線で示している。この燃焼パターン4に対して、一時補正率H2は0%に設定されるため、燃焼パターン4が継続する時は、一時補正率H2は0%で固定され、一方、累積補正率H1は、燃焼パターン4に対するゲインが0%のため、現時点での累積補正率H1の値−6%がそのまま保持されるので、この一時補正率H2と累積補正率H1を合計した補正率は図の太い破線で示すようになる。
【0034】
次に、上記のように求めた累積補正率H1を実績焼却ペース(トン/時間)に基づいて上限及び下限値を設定して制限する。通常、ある範囲に設定されたゴミ発熱量に対して、定格焼却量を達成するように焼却炉は設計される。したがって、発熱量の上下限値で焼却処理能力100%、その他の時は、100から120%程度の処理能力を持つ。そのため、焼却ペースが定格焼却ペースから大きく乖離しないことが、安定燃焼維持にとって重要である。具体的には、図7に示すように、目標焼却ペース(トン/時間)に対する実績焼却ペース(トン/時間)の定格比(%)が適正範囲(95%〜105%)では、累積補正率上限を20%、累積補正率下限をマイナス20%と大きめの値にしているが、上記比が105%を超えて大きくなると、累積補正率下限は変化させず累積補正率上限をマイナス側にシフトさせ、逆に、上記比が95%よりも小さくなると、累積補正率上限は変化させず累積補正率下限をプラス側にシフトさせている。
【0035】
最後に、上記のように求めた累積補正率H1(%)と一時補正率H2(%)を用いて、下式により、前記基準動作速度Vk(サイクル/時間)を補正して実動作速度Vj(サイクル/時間)を求める。
【0036】
【数2】
Vj=Vk・〔(100+H1+H2)/100
【0037】
図8に給塵速度制御の制御フローを示す。
先ず、給塵速度(プッシャ機構4の動作速度)とゴミ投入量の実績値から給塵効率を演算し、この給塵効率と目標焼却ペースから基準給塵速度Vkを演算する(ステップ#1〜#2)。
次に、蒸気発生量と燃切点により燃焼パターンを判断し、この燃焼パターンに対して前記累積補正率H1を演算し、さらに、この演算した累積補正率H1に対して前記上限及び下限のリミット処理を実行する(ステップ#3〜#5)。
一方、上記燃焼パターンに対して前記一時補正率H2を演算し、この一時補正率H2と上記累積補正率H1を用いて前記基準給塵速度Vkを補正して実給塵速度Vjを演算し、操作量として制御出力する(ステップ#6〜#8)。
【0038】
図9に蒸気発生量の制御結果の一例を示すが、1週間の連続運転実績で、下式で表わされる蒸気発生量の1日変動(%)の標準偏差として、安定燃焼指標とされる5%を大幅に下回る3%以下(1.5〜2.8%)の良好な結果を得た。
【0039】
【数3】
蒸気発生量の変動(%)=(|実績値−目標値|/目標値)・100
【0040】
〔別実施の形態〕
上記実施形態では、前記制御手段Cが、炉内へのゴミ供給量が炉の焼却処理能力の適正範囲内に収まるように給塵手段4の実動作速度Vjをゴミ焼却量の実績値(実績焼却ペース)に基づいて制限するように構成したが、図8のステップ#5に記載しているように、ゴミ焼却量の実績値とゴミの発熱量の両方に基づいて上記給塵手段4の実動作速度Vjを制限するように構成してもよい。
【0041】
また、上記実施形態では、炉内でゴミの燃焼状態を示す燃焼指標として、炉内での発生熱量と炉内のゴミ滞留量を組み合わせた二次元マトリック情報を用いて複数の燃焼パターンを設定したが、燃焼指標はこれに限るものではない。例えば、上記炉内での発生熱量と炉内のゴミ滞留量のいずれか一方を用いてもよく、あるいは、これ以外に、焼却炉出口における排ガス温度を検出するガス温度センサ25の検出情報や、二次燃焼後の排ガス中の酸素濃度を検出する酸素濃度センサ26の検出情報等を上記燃焼指標として用いてもよい。
【図面の簡単な説明】
【図1】ゴミ焼却装置の全体構成を示す模式図
【図2】焼却炉内の燃焼ゴミの燃切点を検出する状態を示す平面図
【図3】制御系のブロック回路図
【図4】燃焼パターンの一例を示す図
【図5】累積補正率と一時補正率の設定値を示す図
【図6】累積補正率と一時補正率の設定値の変化例を示すグラフ
【図7】累積補正率に対する上限及び下限値の設定例を示すグラフ
【図8】制御のフローチャート図
【図9】蒸気発生量の制御結果の一例を示す図
【符号の説明】
3 焼却炉
4 給塵手段
C 制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion control device for an incinerator that incinerates garbage, and in order to maintain the amount of garbage in the furnace within an appropriate range, in particular, the target incineration amount of garbage to be incinerated in the furnace and supply of garbage to the furnace. The reference operation speed of the dust supply means is determined based on the dust supply efficiency representing the dust supply amount of the dust supply means (for example, the dust supply amount per one reciprocation of the dust supply device for supplying dust by repeating the reciprocating operation). The present invention relates to a combustion control device for an incinerator provided with a control means for determining and controlling the operation of the dust supply means based on the reference operation speed.
[0002]
[Prior art]
In the first related art related to the combustion control device for the incinerator, the steam generation amount of the waste heat boiler, the luminance information of the ITV image for monitoring the combustion state in the furnace, the pressure below the post-combustion grate and the pressure in the furnace Based on the pressure difference, post-combustion grate temperature, and main flue temperature, control the grate speed, grate stroke length, and post-combustion air damper to achieve stable steam generation and reduction of unburned garbage (See Patent Document 1).
[0003]
In the second prior art, the dust supply efficiency (actual dust supply amount per round trip of the dust supply device) is estimated from the history of the operation speed of the dust supply means for supplying the dust into the furnace and the supply amount of the dust. The target dust incineration amount was realized while controlling to an appropriate dust supply speed according to the change in dust quality determined based on the dust supply efficiency (see Patent Document 2).
[0004]
In the third prior art, the inside of the hopper is measured with a laser distance meter to calculate the volume of the input waste, and the specific gravity of the waste is obtained from the input waste volume and the separately measured input weight. The amount of heat generated (the amount of heat supplied in the furnace) was estimated, and the dust supply speed was controlled so as to keep the amount of heat supplied in the furnace constant (see Non-Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-332121 (page 2-9, FIGS. 1 to 12)
[Patent Document 2]
JP 7-269834 A (page 2-4, FIGS. 1 to 4)
[Non-Patent Document 1]
Shinichi Enomoto and two others, “Control of Waste Heat Supply in Incinerator”, Journal of Society “EICA”, October 31, 2002, Vol. 7, No. 2 (2002), p. 75-78
[0006]
[Problems to be solved by the invention]
However, in the first prior art, since the dust supply speed into the furnace is not controlled, when the amount of dust in the furnace becomes excessive, the speed and stroke length of the grate are controlled to control the dust layer. Although it is possible to change the layer thickness balance, there is an inconvenience that unburned garbage is generated because the amount of refuse held in the furnace is not reduced if the dust supply speed is the same. In other words, if the steam generation rate falls below the target, the waste feed rate will always increase, so the amount of waste in the furnace will increase rapidly for waste with low air permeability, resulting in a further decrease in air permeability and combustion. I had the problem of getting worse.
[0007]
In the second prior art, the reference operation speed of the dust supply means is obtained from the target dust incineration amount and dust supply efficiency, and the actual operation speed of the dust supply means is controlled to the reference operation speed. In contrast, when the target waste incineration amount is set high, there is a possibility that the waste exceeding the incineration processing capacity of the furnace may be supplied.
Also in the third prior art, because of the constant control of the amount of heat supplied, as in the case of the second prior art, when the heat generation amount of the dust is low, the target waste incineration amount is set high as a result, and the furnace incineration is performed. There was a possibility of supplying garbage exceeding the processing capacity.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to avoid deterioration of the combustion state due to excessive supply or insufficient supply of dust into the furnace and realize stable combustion. An object of the present invention is to provide a combustion control device for an incinerator.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 of the combustion control device of the incinerator for realizing the above object represents the target incineration amount of the waste to be incinerated in the furnace and the dust supply amount of the dust supplying means for supplying the waste into the furnace. obtains a reference operation speed of the paper dust means based on Kyuchiri efficiency, there is a control means for controlling the operation of the paper dust means based on the reference operating speed is provided, the characterizing feature is, the furnace The actual operating speed of the dust supply means is obtained by correcting the reference operating speed based on a combustion index representing the combustion state of dust in the interior, and the actual value of the incineration amount or the actual value of the incineration amount and the dust In limiting the actual operation speed so that the amount of dust supplied to the furnace is within an appropriate range with respect to the incineration processing capacity of the furnace based on both of the estimated values of the calorific value of, the control means, Set multiple combustion patterns as combustion indicators When one of the plurality of combustion patterns continuously appears, a cumulative correction factor for accumulating or increasing the correction factor for correcting the reference operation speed is obtained, and the actual value of the waste incineration amount or the waste incineration amount is obtained. The cumulative correction factor is limited by the upper limit value and the lower limit value set based on both the actual value and the estimated value of the amount of heat generated from the dust, and the reference operation speed is corrected using the cumulative correction factor to The point is to determine the operating speed .
[0010]
In other words, based on the combustion index, when it is predicted that there will be a shortage of garbage in the furnace, the actual operating speed of the dust supply means will be increased by correcting the standard operating speed to an increase side so that there is no shortage of garbage in the furnace. On the other hand, when it is expected that the amount of dust in the furnace will be excessive, the actual operating speed of the dust supply means is reduced by correcting the reference operating speed to a decreasing side so that the dust in the furnace does not become excessive.
Further, based on both the actual value of the incineration amount or the actual value of the incineration amount and the estimated value of the heat generation amount of the waste, for example, the actual value of the incineration amount in the past 1 to 2 hours with respect to the rated combustion pace. Is large, the actual operation speed of the dust supply means is limited to a low speed so that the amount of dust supplied to the furnace does not deviate from the upper limit of the appropriate range for the incineration capacity of the furnace. When the actual amount is small, limit the actual operating speed of the dust supply means so that the amount of dust supplied to the furnace does not deviate from the lower limit of the appropriate range of the incineration capacity of the furnace. .
[0011]
Therefore, the actual operating speed is obtained by correcting the reference operating speed of the dust supply means determined based on the target waste incineration amount and dust supply efficiency according to the combustion state of the dust in the furnace, and further supplying the dust. The actual operation speed of the dust supply means is limited based on the actual value of the incineration amount so that the amount falls within the appropriate range for the incineration capacity of the furnace. A combustion control device for an incinerator capable of avoiding deterioration of the combustion state due to insufficient supply and realizing stable combustion is provided.
[0013]
That is, the plurality of combustion patterns represent different combustion states such as the amount of heat generated by combustion and the amount of dust held in the furnace. For example, the amount of steam generated exceeds the target, and the fuel cutoff point is upstream of the dry zone side. If the combustion pattern located at continually appears, the heat generation amount of dust rises and the combustion speed is judged to be fast, and the cumulative correction factor is cumulatively increased, while the steam generation amount is reduced and the combustion rate is reduced. If the combustion pattern where the cut point is located downstream of the post-combustion side appears continuously, it is determined that the waste heat generation amount will fall and the combustion speed will be slow, and this cumulative correction factor will be accumulated and reduced. Reflecting the stable combustion state in the furnace or a gradual change in the combustion state in the correction factor, an appropriate actual operation speed can be obtained, and the amount of dust supply is within the appropriate range for the incineration processing capacity of the furnace. Rated combustion to fit into Since the upper limit value and the lower limit value are limited to the cumulative correction rate based on the actual value of the amount of garbage incinerated with respect to the waste, even if one of the combustion patterns continues, the actual operating speed of the dust supply means is the appropriate speed. It will not deviate greatly from.
Therefore, it is possible to easily and appropriately obtain the actual operation speed from the reference operation speed of the dust supply means using two parameters of a plurality of combustion patterns and cumulative correction factors, which is suitable for a combustion control apparatus for an incinerator. Embodiments are provided.
[0014]
A characteristic configuration of the invention according to claim 2 is that, in the invention according to claim 1, when the control means corrects the reference operation speed, one of the combustion patterns appears in addition to the cumulative correction rate. It lies in using a temporary correction factor to temporarily set the correction factor for correcting the reference operation speed when.
[0015]
According to the above configuration, the control unit temporarily sets a temporary correction factor when one of the plurality of combustion patterns appears, and uses both the temporary correction factor and the cumulative correction factor. The actual operation speed of the dust supplying means is obtained by correcting the reference operation speed. That is, unlike the cumulative correction factor, the temporary correction factor is set only when one of the plurality of combustion patterns appears once, so that, for example, the amount of steam rises and shows a sudden change to excessive combustion. When the combustion pattern appears and it is necessary to rapidly reduce the dust supply speed, the cumulative correction factor that increases or decreases as the value accumulates cannot be handled, but by temporarily setting a large value for the temporary correction factor, The actual operation speed of the dust supplying means can be surely limited in response to the sudden change in the combustion state.
Therefore, by using the temporary correction factor in addition to the cumulative correction factor, it is possible to appropriately set the actual operation speed of the dust supply means even for a sudden change in the combustion state in the furnace, and the incinerator A preferred embodiment of a combustion control device is provided.
[0016]
According to a third aspect of the present invention, in the invention according to the first or second aspect , the control means includes, as the plurality of combustion patterns, an evaluation index of the amount of heat generated in the furnace and the amount of dust accumulated in the furnace. The two-dimensional matrix information combined with the evaluation index is used.
[0017]
It is difficult to determine whether the combustion state of the waste in the furnace is appropriate only by the amount of heat generated in the furnace. For example, when the amount of generated heat is small, the cause of the small amount of heat generation is defective combustion of the waste in the furnace. However, it is not possible to determine whether the amount of dust in the furnace is small, but by combining the amount of heat generated in the furnace and the amount of dust in the furnace, for example, the amount of dust in the furnace is not small. Nevertheless, when the amount of generated heat is small, it can be determined that the waste in the furnace is poorly burned due to a decrease in air permeability.
Therefore, by combining information on the amount of heat generated in the furnace and the amount of accumulated dust in the furnace as the plurality of combustion patterns, it is possible to appropriately determine whether or not the garbage in the furnace is in an appropriate combustion state. It is possible to appropriately set the actual operation speed of the dust supply means according to the combustion state in the inside, and a preferred embodiment of the combustion control device for the incinerator is provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an incinerator combustion control apparatus according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a bucket 1 that picks up and conveys the dust accumulated in the garbage pit 20, a hopper 2 into which the garbage picked up by the bucket 1 is put, and an incinerator 3 for removing the dust in the hopper 2. A pusher mechanism 4 as dust supplying means that reciprocates to push in and supply, a stoker-type incineration treatment zone 5 that incinerates while conveying dust supplied into the furnace by the pusher mechanism 4, and this incineration treatment An ash pit 6 for recovering incinerated ash from the belt 5, a steam turbine 8 to which steam is supplied from a waste heat boiler 7 for recovering heat generated in the furnace, and power generation driven by the steam turbine 8 The waste incineration equipment is configured so that the exhaust gas from the incinerator 3 is processed by the exhaust gas processing unit 10 having a bag filter or the like and then discharged from the chimney 11. .
[0019]
Although not shown in the drawings, the steam from the waste heat boiler 7 is heated in a steam heater disposed in a flue for sending the exhaust gas from the incinerator 3 and is stored in a steam reservoir in a dry vaporized state. A steam cycle is configured such that steam from the steam reservoir is supplied to the steam turbine 8 to drive the generator 9, and then condensate and finally return to the waste heat boiler 7. In addition, a steam amount sensor 14 that detects the amount of generated steam is provided in a steam path that is supplied from the waste heat boiler 7 to the steam turbine 8.
[0020]
The incineration zone 5 includes a drying zone 5a that dries the supplied dust from the upper side (the pusher mechanism 4 side) along the direction of dust transport in the furnace and heats it to near the ignition point. A combustion treatment zone 5b for burning garbage and a post-combustion treatment zone 5c for ashing the burned waste are sequentially arranged. Each of the treatment zones 5a, 5b, and 5c is formed in a staircase shape so that the incineration treatment zone 5 has a lower level toward the lower side in the transport direction. Each processing zone 5a, 5b, 5c has a fixed grate in a fixed state and a movable grate slidable with respect to the fixed grate, and the movable grate is fixed by operation of a hydraulic cylinder (not shown). The dust on the incineration zone is slid back and forth with respect to the grate, and the dust is agitated while being sequentially transferred in the directions of the drying zone 5a, the combustion zone 5b, and the post-burn zone 5c. The dust ashed in the post-combustion treatment zone 5 c falls on the site of the ash pushing mechanism 12 and is conveyed and accumulated in the ash pit 6 by the ash removal conveyor 13.
[0021]
Below the incineration zone 5 is supplied primary combustion air for promoting the combustion of garbage. Specifically, a plurality of flow paths 22 are connected to a plurality of wind boxes 23 arranged below the respective treatment zones 5a, 5b, 5c, and each of the flow paths 22 needs to be blown by a blower (not shown). In response to this, heated air is supplied. The air supplied to each flow path 22 passes through the treatment zones 5a, 5b, and 5c from the wind box 23 to promote the combustion of dust.
[0022]
Also, secondary combustion air supply means for supplying secondary combustion air to the interior of the furnace above the incineration treatment zone 5 in order to cause secondary combustion of the combustion gas generated with combustion of garbage in the incinerator 3 27 is provided. An oxygen concentration sensor 26 for detecting the oxygen concentration in the exhaust gas after the secondary combustion is installed in the flue of the exhaust gas from the incinerator 3, and further, the exhaust gas at the furnace outlet position of the incinerator 3 A gas temperature sensor 25 such as a thermocouple that measures the temperature, that is, the furnace outlet temperature, is provided.
[0023]
A television camera 15 for detecting the position of the burnout point of the garbage in the incineration treatment zone 5 is installed on the furnace wall on the rear combustion zone side opposite to the position of the pusher mechanism 4 of the incinerator 3. Specifically, as shown in FIG. 2, the television camera 15 sets a combustion processing zone 5 b where a burnout point mk indicating a gas combustion end of dust is located in the furnace as an imaging range. Then, an image processing unit provided in a control device 30 (see FIG. 3) to be described later binarizes the image data of the TV camera 15 other than the flame and the flame to extract the combustion flame, and the downstream side of the combustion flame. The end is determined to be the burnout point mk.
[0024]
As shown in FIG. 3, a control device 30 composed of a microprocessor, a semiconductor memory, and the like is provided. The control device 30 includes the vapor amount sensor 14, the television camera 15, a gas temperature sensor 25, and an oxygen concentration sensor 26. And each detection information of the weight sensor 24 (refer FIG. 1) which detects the weight of the waste picked up by the said bucket 1 and thrown in in a furnace is input. On the other hand, the control device 30 outputs drive signals for the bucket 1, the pusher mechanism 4, and the like.
[0025]
In the control device 30, dust supply efficiency calculating means D for calculating dust supply efficiency representing the amount of dust supplied per cycle of the pusher mechanism 4 for supplying dust into the furnace is configured. The dust supply efficiency is estimated from the operating speed of the pusher mechanism 4 and the actual value of the amount of dust input. Specifically, assuming a certain amount of dust that stays from the hopper 2 to the combustion treatment zone 5 and is expected to enter the drying and combustion process in the future, the pusher at a predetermined time required to input the amount of dust is assumed. The dust input efficiency (ton / cycle) is obtained by dividing the input weight (ton / hour) of dust by the mechanism 4 by the moving average value of the operating speed (cycle / hour) of the pusher mechanism 4 at the same predetermined time. .
[0026]
In addition, based on the target incineration amount (hereinafter referred to as target incineration pace) of dust to be incinerated in the furnace and the dust supply efficiency calculated by the dust supply efficiency calculation means D in the control device 30 as shown in the following equation. A control means C is provided for obtaining a reference operating speed Vk (cycle / time) of the pusher mechanism 4 and controlling the operation of the pusher mechanism 4 based on the reference operating speed Vk. The coefficient K in the equation is set to a value in the range of 1.1 to 1.3, for example.
[0027]
[Expression 1]
Vk = K ・ Target incineration pace (ton / hour) / dust supply efficiency (ton / cycle)
[0028]
Further, the control means C obtains the actual operating speed Vj of the pusher mechanism 4 by correcting the reference operating speed Vk on the basis of a combustion index indicating the combustion state of dust in the furnace. Based on the actual value, the actual operation speed Vj is limited so that the amount of dust supplied to the furnace is within an appropriate range with respect to the incineration processing capacity of the furnace. This will be described below.
[0029]
Explaining the control configuration for limiting the actual operating speed Vj of the pusher mechanism 4, the control means C sets a plurality of combustion patterns as the combustion index, and one of the plurality of combustion patterns appears continuously. In this case, the cumulative correction rate H1 that increases or decreases cumulatively and the temporary correction rate H2 that is temporarily set when one of the plurality of combustion patterns appears is obtained, and the actual value of the incineration amount is obtained. The actual operation speed Vj is obtained by correcting the reference operation speed Vk using the accumulation correction ratio H1 and the temporary correction ratio H2 while limiting the accumulation correction ratio H1 with the upper limit value and the lower limit value set based on the upper limit value and the lower limit value. ing.
[0030]
The control means C uses, as the plurality of combustion patterns, two-dimensional matrix information that combines an evaluation index for the amount of heat generated in the furnace, such as a steam amount and a fuel cutoff point mk, and an evaluation index for the amount of debris in the furnace. Use. Specifically, as shown in FIG. 4, the amount of heat generated in the furnace is the amount of generated steam detected by the steam amount sensor 14 (deviation of steam amount from an appropriate value), and the amount of dust staying in the furnace is Position information of the fuel cut point mk detected by the TV camera 15 (position from the tip when the length of the combustion treatment zone 5b is 100%, and whether it is upstream or downstream relative to the appropriate position) No.) and No. Six combustion patterns 1 to 6 are set. Therefore, the higher the steam amount deviation from the negative side to the positive side, the higher the combustion level with a larger total heat generation amount, and the higher the level of the in-furnace waste amount, the higher the fuel cut point mk located on the downstream side.
[0031]
An example in which the gain (%) of the increase or decrease of the cumulative correction factor H1 and the gain (%) of the temporary correction factor H2 in the control cycle are set for the above six combustion patterns is shown in FIG. In FIG. 5, No. which is a high combustion level. For the combustion patterns 1 and 2, in order to prevent the amount of dust from being consumed suddenly due to combustion and causing a shortage of dust, a positive value is set as the gain of the cumulative correction factor H1, and the dust feed amount is set to In order to suppress the amount of steam by rapidly decreasing, a large negative value is set as the gain of the temporary correction factor H2.
[0032]
FIG. 6 shows an example of obtaining the cumulative correction rate H1 (%) and the temporary correction rate H2 (%) with respect to the change from the combustion pattern 4 to 5. In this example, the temporary correction factor H2 is set to 20% when the combustion pattern 4 changes to 5 (time 0), and when the same combustion pattern 5 continues, 0% with a control period of 5 minutes. On the other hand, when the same combustion pattern 5 continues, the cumulative correction rate H1 decreases by 5% in a control period of 5 minutes, so the correction rate obtained by adding the temporary correction rate H2 and the cumulative correction rate H1 is thick in the figure. As indicated by the solid line, it temporarily increases to 20% at the beginning and then decreases to -5% (95%) after 5 minutes. When the same combustion pattern 5 continues after 5 minutes, the temporary correction factor H2 is set to 20% and the cumulative correction factor H1 is reduced as described above, and the total correction factor is a sawtooth waveform. It changes with .
[0033]
Further, in FIG. 6, a broken line indicates a case where the combustion pattern 5 changes to the combustion pattern 4 after 6 minutes from the time 0. Since the temporary correction factor H2 is set to 0% with respect to this combustion pattern 4, when the combustion pattern 4 continues, the temporary correction factor H2 is fixed at 0%, while the cumulative correction factor H1 is the combustion factor. Since the gain for the pattern 4 is 0%, the current value of the cumulative correction factor H1 of -6% is maintained as it is, and the correction factor obtained by adding the temporary correction factor H2 and the cumulative correction factor H1 is indicated by a thick broken line in the figure. As shown.
[0034]
Next, the cumulative correction factor H1 obtained as described above is limited by setting an upper limit and a lower limit based on the actual incineration pace (ton / hour). Usually, an incinerator is designed so as to achieve a rated incineration amount for a waste heat generation amount set within a certain range. Therefore, the incineration processing capacity is 100% at the upper and lower limits of the calorific value, and at other times, the processing capacity is about 100 to 120%. Therefore, it is important for maintaining stable combustion that the incineration pace does not deviate significantly from the rated incineration pace. Specifically, as shown in FIG. 7, when the rated ratio (%) of the actual incineration pace (ton / hour) to the target incineration pace (ton / hour) is within an appropriate range (95% to 105%), the cumulative correction factor The upper limit is set to a large value of 20% and the lower limit of the cumulative correction factor is minus 20%. However, if the above ratio exceeds 105%, the lower limit of the cumulative correction factor is not changed and the upper limit of the cumulative correction factor is shifted to the negative side. Conversely, when the ratio is smaller than 95%, the upper limit of the cumulative correction factor is not changed, and the lower limit of the cumulative correction factor is shifted to the plus side.
[0035]
Finally, using the cumulative correction rate H1 (%) and the temporary correction rate H2 (%) obtained as described above, the reference operation speed Vk (cycle / hour) is corrected by the following equation to obtain the actual operation speed Vj. (Cycle / hour) is determined.
[0036]
[Expression 2]
Vj = Vk · [(100 + H1 + H2 ) / 100 ]
[0037]
FIG. 8 shows a control flow of dust supply speed control.
First, the dust supply efficiency is calculated from the actual value of the dust supply speed (the operating speed of the pusher mechanism 4) and the amount of dust input, and the reference dust supply speed Vk is calculated from the dust supply efficiency and the target incineration pace (steps # 1 to # 1). # 2).
Next, a combustion pattern is determined based on the steam generation amount and the fuel cutoff point, the cumulative correction factor H1 is calculated for the combustion pattern, and the upper and lower limit limits are calculated for the calculated cumulative correction factor H1. Processing is executed (steps # 3 to # 5).
On the other hand, the temporary correction rate H2 is calculated for the combustion pattern, the reference dust supply rate Vk is corrected using the temporary correction rate H2 and the cumulative correction rate H1, and the actual dust supply rate Vj is calculated. Control output is performed as an operation amount (steps # 6 to # 8).
[0038]
FIG. 9 shows an example of the control result of the steam generation amount, which is a stable combustion index as a standard deviation of the daily fluctuation (%) of the steam generation amount expressed by the following formula in the continuous operation results for one week. %, A good result of 3% or less (1.5 to 2.8%) was obtained.
[0039]
[Equation 3]
Change in steam generation rate (%) = (| Actual value−Target value | / Target value) · 100
[0040]
[Another embodiment]
In the above embodiment, the control means C sets the actual operation speed Vj of the dust supply means 4 so that the amount of dust supplied to the furnace falls within the appropriate range of the incineration processing capacity of the furnace. Although it is configured to limit based on the incineration pace), as described in Step # 5 of FIG. 8, the dust supply means 4 is based on both the actual value of the incineration amount and the heat generation amount of the dust. The actual operation speed Vj may be limited.
[0041]
Further, in the above-described embodiment, a plurality of combustion patterns are set using two-dimensional matrix information that combines the amount of heat generated in the furnace and the amount of accumulated dust in the furnace as a combustion index indicating the combustion state of garbage in the furnace. However, the combustion index is not limited to this. For example, either the amount of heat generated in the furnace or the amount of accumulated dust in the furnace may be used, or in addition to this, detection information of the gas temperature sensor 25 that detects the exhaust gas temperature at the incinerator outlet, Information detected by the oxygen concentration sensor 26 that detects the oxygen concentration in the exhaust gas after the secondary combustion may be used as the combustion index.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of a waste incinerator. FIG. 2 is a plan view showing a state where a burnout point of combustion waste in an incinerator is detected. FIG. 3 is a block circuit diagram of a control system. FIG. 5 is a diagram illustrating an example of a combustion pattern. FIG. 5 is a diagram illustrating a set value of the cumulative correction factor and the temporary correction factor. FIG. 6 is a graph illustrating an example of a change in the cumulative correction factor and the temporary correction factor. FIG. 8 is a flow chart of the control. FIG. 9 is a diagram showing an example of the control result of the steam generation amount.
3 Incinerator 4 Dust supply means C Control means

Claims (3)

炉内で焼却処理するゴミの目標焼却量及び炉内にゴミを供給する給塵手段のゴミ供給量を表わす給塵効率に基づいて前記給塵手段の基準動作速度を求め、その基準動作速度に基づいて前記給塵手段の動作を制御する制御手段が設けられた焼却炉の燃焼制御装置であって、
炉内でのゴミの燃焼状態を表わす燃焼指標に基づいて前記基準動作速度を補正して前記給塵手段の実動作速度を求め、ゴミ焼却量の実績値、もしくは、ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて、炉内へのゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように前記実動作速度を制限するにあたり、前記制御手段が、前記燃焼指標として、複数の燃焼パターンを設定し、前記複数の燃焼パターンの1つが継続して現れる場合に前記基準動作速度を補正する補正率を累積して増加もしくは減少させる累積補正率を求め、前記ゴミ焼却量の実績値もしくは前記ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて設定した上限値及び下限値によって前記累積補正率を制限しつつ、当該累積補正率を用いて前記基準動作速度を補正して前記実動作速度を求める焼却炉の燃焼制御装置。
Based on the target incineration amount of the waste to be incinerated in the furnace and the dust supply efficiency representing the dust supply amount of the dust supply means for supplying the dust into the furnace, the reference operation speed of the dust supply means is obtained, and the reference operation speed is obtained. A combustion control device for an incinerator provided with a control means for controlling the operation of the dust supply means based on,
The actual operating speed of the dust supply means is obtained by correcting the reference operating speed based on a combustion index representing the combustion state of dust in the furnace, and the actual value of the incineration amount or the actual value of the incineration amount In limiting the actual operation speed so that the amount of dust supplied to the furnace is within an appropriate range with respect to the incineration processing capacity of the furnace, based on both the estimated values of the heat generation amount of the garbage, the control means, As the combustion index, a plurality of combustion patterns are set, and when one of the plurality of combustion patterns continues to appear, a cumulative correction factor for accumulating or increasing a correction factor for correcting the reference operation speed is obtained. While limiting the cumulative correction rate by the upper limit value and the lower limit value set based on the actual value of the waste incineration amount or both the actual value of the waste incineration amount and the estimated value of the heat generation amount of the waste, Before using Combustion control device for incinerators that the reference operation speed by correcting seek the actual operation speed.
前記制御手段が、前記基準動作速度を補正する際に、前記累積補正率に加えて、前記燃焼パターンの1つが現れたときに前記基準動作速度を補正する補正率を一時的に設する一時補正率を用いる請求項記載の焼却炉の燃焼制御装置。 One said control means, when correcting the reference operating speed, in addition to the cumulative correction factor, one of the combustion pattern is temporarily set the correction factor for correcting the reference operation speed when it appears combustion control apparatus for an incinerator of claim 1, wherein using the time correction factor. 前記制御手段が、前記複数の燃焼パターンとして、炉内での発生熱量の評価指標と炉内のゴミ滞留量の評価指標とを組み合わせた二次元マトリックス情報を用いる請求項又は記載の焼却炉の燃焼制御装置。It said control means as said plurality of combustion patterns, incinerator according to claim 1 or 2, wherein using a two-dimensional matrix information which is a combination of an evaluation index of the waste holdup in metrics and furnace generating heat in the furnace Combustion control device.
JP2003036851A 2003-02-14 2003-02-14 Combustion control device for incinerator Expired - Lifetime JP4036768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036851A JP4036768B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036851A JP4036768B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Publications (2)

Publication Number Publication Date
JP2004245519A JP2004245519A (en) 2004-09-02
JP4036768B2 true JP4036768B2 (en) 2008-01-23

Family

ID=33021829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036851A Expired - Lifetime JP4036768B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Country Status (1)

Country Link
JP (1) JP4036768B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249214A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Control method, device and program for incinerator
JP5521918B2 (en) * 2010-09-06 2014-06-18 Jfeエンジニアリング株式会社 Incinerator operation control method
KR101480130B1 (en) * 2013-06-28 2015-01-07 (주) 태종 엔이씨 Incineration facility for heat calculate, design program and operator(Operater) analysis of the operation of the form and diagnosis and control of solid fuel boilers and equipment life-cycle management system and method
JP6628667B2 (en) * 2016-03-31 2020-01-15 日立造船株式会社 Automatic combustion control method for incineration facilities

Also Published As

Publication number Publication date
JP2004245519A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
CN107543174B (en) The control method of garbage incinerating system and garbage incinerating system
JP6153090B2 (en) Waste incinerator and waste incineration method
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP4036768B2 (en) Combustion control device for incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
JP7028844B2 (en) Waste combustion equipment and waste combustion method
JP3669778B2 (en) Combustion control device for garbage incinerator
CN113227654B (en) Garbage incinerator and control method thereof
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP2021143768A (en) Waste incineration device and waste incineration method
WO2020137598A1 (en) Garbage supply speed estimation device and garbage supply speed estimation method
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP3669779B2 (en) Combustion control device for garbage incinerator
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP3315036B2 (en) Combustion control device of garbage incinerator
JP2006125759A (en) Operation control device for incinerator
JP3916572B2 (en) Combustion control device for incinerator
JP3916570B2 (en) Garbage incinerator
JP3928709B2 (en) Combustion control device for waste incinerator
JP2023091983A (en) Combustion control device for refuse incinerator and combustion control method for refuse incinerator
JP3176211B2 (en) Combustion control method of garbage incinerator
JP2004232960A (en) Refuse incinerator
JPH08261431A (en) Method and device for estimating thickness of waste on incinerating zone in incinerator
JP2003114016A (en) Refuse incineration device
JP2005164121A (en) Combustion control method for incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Ref document number: 4036768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term