JP3916572B2 - Combustion control device for incinerator - Google Patents

Combustion control device for incinerator Download PDF

Info

Publication number
JP3916572B2
JP3916572B2 JP2003036508A JP2003036508A JP3916572B2 JP 3916572 B2 JP3916572 B2 JP 3916572B2 JP 2003036508 A JP2003036508 A JP 2003036508A JP 2003036508 A JP2003036508 A JP 2003036508A JP 3916572 B2 JP3916572 B2 JP 3916572B2
Authority
JP
Japan
Prior art keywords
combustion
dust
combustion air
air
primary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003036508A
Other languages
Japanese (ja)
Other versions
JP2004245517A (en
Inventor
義明 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003036508A priority Critical patent/JP3916572B2/en
Publication of JP2004245517A publication Critical patent/JP2004245517A/en
Application granted granted Critical
Publication of JP3916572B2 publication Critical patent/JP3916572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、給塵手段によって炉内に供給されたゴミの燃焼状態を示す燃焼指標に基づいて、ゴミを焼却処理する焼却処理帯の下方に供給する一次燃焼空気の供給量や一次燃焼空気の加熱温度を調整する焼却炉の燃焼制御装置に関する。
【0002】
【従来の技術】
上記焼却炉の燃焼制御装置では、第1の従来技術として、排ガス中の酸素濃度が通常値の時(上限濃度以下の通常燃焼時)には、ゴミの発熱量に基づいて一次燃焼空気の加熱温度を制御するとともに、ボイラー内の蒸気発生量に基づいて一次燃焼空気の供給量をPID制御するフィードバック制御を実行し、排ガス中の酸素濃度が上限濃度よりも上昇した時は、その酸素濃度の上昇量に基づいて一次燃焼空気の加熱温度を高温側に補正するとともに、一次燃焼空気の供給量を上限値でリミット処理するものがあった(特許文献1参照)。
【0003】
また、第2の従来技術として、炉内にゴミを供給する給塵手段の動作速度とゴミ供給量の履歴から給塵効率(給塵手段のゴミ供給量)を推定し、目標ゴミ焼却量を実現するために、給塵効率に基づいて給塵手段の動作速度を制御するもの(特許文献2参照)があり、第3の従来技術として、上記給塵効率とゴミの発熱量と炉内での目標発熱量に基づいて給塵手段の動作速度を制御するもの(特許文献3参照)があった。
【0004】
【特許文献1】
特開平10−61932号公報(第2−5頁、図1−図6)
【特許文献2】
特開平7−269834号公報(第2−4頁、図1−図4)
【特許文献3】
特開2002−349827号公報(第1−5頁、図1−図2)
【0005】
【発明が解決しようとする課題】
しかしながら、上記第1の従来技術では、酸素濃度が通常値の時に、発熱量が低い値でなく且つゴミピット内で圧縮されて凝縮した通気性の低いゴミが供給された場合、対応が遅れる不具合があった。即ち、酸素濃度が通常値の時はゴミの発熱量の変化が現れないため、ゴミの発熱量に基づく一次燃焼空気の加熱温度の制御が行われず、上記通気性の低いゴミが供給されて、燃焼用空気が触れるゴミの表面積が少なくなり、炉内の燃焼量が低下して酸素濃度が上昇した後でしか、一次燃焼用空気の温度を上昇させる制御が行われないからである。
なお、上記通気性の低いゴミが供給されるときは、給塵効率は上昇するが、第2及び第3の従来技術には、給塵効率が上昇した場合に、上記通気性の低いゴミに対する一次燃焼空気の制御については特に記載されていない。
【0006】
本発明は、上記実情に鑑みてなされたものであり、その目的は、凝縮した通気性の低いゴミが供給された場合に、迅速に対応して燃焼量の低下を回避することが可能となる焼却炉の燃焼制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を実現するための焼却炉の燃焼制御装置の請求項1に係る発明では、給塵手段によって炉内に供給されたゴミを焼却処理する焼却処理帯の下方に一次燃焼空気を供給する一次燃焼空気供給手段と、炉内のゴミの燃焼状態を示す燃焼指標に基づいて前記一次燃焼空気供給手段による一次燃焼空気の供給量を調整する制御手段とが設けられ、その特徴構成は、前記制御手段が、前記給塵手段のゴミ供給量を表わす給塵効率が上昇したときに、前記一次燃焼空気供給手段による一次燃焼空気の供給量を増加側に補正する点にある。
【0008】
上記構成によれば、制御手段が、炉内のゴミの燃焼状態を示す燃焼指標に基づいて、一次燃焼空気供給手段による一次燃焼空気の供給量を調整する制御を行っているときに、上記給塵手段のゴミ供給量を表わす給塵効率が上昇したときは、上記空気供給量の調整制御において、一次燃焼空気供給手段による一次燃焼空気の供給量を増加側に補正する。
すなわち、給塵効率の上昇時は、ゴミの比重が増加し、通気性の低下が予測されるので、焼却処理帯の下方に供給する一次燃焼空気の供給量を増加させて流速を速くし、ゴミに対する通気性を高めることによって、酸素が触れるゴミ表面積を増加させて燃焼を促進させ、燃焼低下の発生を防止することができる。
従って、凝縮した通気性の低いゴミが供給された場合に、迅速に対応して燃焼量の低下を回避することが可能となる焼却炉の燃焼制御装置が提供される。
【0009】
請求項2に係る発明の特徴構成は、請求項1に係る発明において、前記焼却処理帯に、ゴミの搬送方向に沿って上手側から乾燥処理帯、燃焼処理帯、後燃焼処理帯が順次配置され、前記制御手段が、前記乾燥処理帯に対する空気供給量、前記燃焼処理帯に対する空気供給量、及び、全ての処理帯に対する空気供給総量のうち、少なくとも1つを増加側に補正する点にある。
【0010】
すなわち、給塵効率の上昇時に、乾燥処理帯に対する空気供給量を増加させることによって、乾燥処理帯でのゴミの乾燥速度を速くし、通気性低下に伴う燃焼低下の発生を防止することができる。
また、給塵効率の上昇時に、燃焼処理帯に対する空気供給量を増加させることによって、燃焼処理帯でのゴミの燃焼量が増え、輻射熱の上昇による燃焼が促進され、通気性低下に伴う燃焼低下の発生を防止することができる。
また、給塵効率の上昇時に、全ての処理帯に対する空気供給量を増加させることによって、乾燥処理帯ではゴミの乾燥速度を速くし、燃焼処理帯ではゴミの燃焼量が増え、輻射熱の上昇による燃焼が促進され、通気性低下に伴う燃焼低下の発生を防止することができる。
従って、凝縮した通気性の低いゴミが供給された場合の燃焼量の低下を回避することが可能となる焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0011】
請求項3に係る発明では、給塵手段によって炉内に供給されたゴミを焼却処理する焼却処理帯の下方に供給される一次燃焼空気を加熱する一次燃焼空気加熱手段と、炉内のゴミの燃焼状態を示す燃焼指標に基づいて前記一次燃焼空気加熱手段による一次燃焼空気の加熱温度を調整する制御手段とが設けられ、その特徴構成は、前記制御手段が、前記給塵手段のゴミ供給量を表わす給塵効率が上昇したときに、前記一次燃焼空気加熱手段による一次燃焼空気の加熱温度を高温側に補正する点にある。
【0012】
すなわち、給塵効率の上昇時は、ゴミの比重が増加し、通気性の低下が予測されるので、焼却処理帯の下方に供給する一次燃焼空気の加熱温度を高くする。その結果、ボイルシャルルの法則により空気が膨張し、流速が速くなり、ゴミに対する通気性を高めることによって、酸素が触れるゴミ表面積を増加させて燃焼を促進させ、燃焼低下の発生を防止することができる。
従って、凝縮した通気性の低いゴミが供給された場合に、迅速に対応して燃焼量の低下を回避することが可能となる焼却炉の燃焼制御装置が提供される。
【0013】
請求項4に係る発明の特徴構成は、請求項3に係る発明において、前記制御手段が、前記燃焼指標に基づく前記一次燃焼空気加熱温度の調整制御として、炉出口温度を前記燃焼指標として検出する炉出口温度検出手段の検出情報に基づいて、前記炉出口温度が低いときは前記一次燃焼空気の加熱温度を高くし、前記炉出口温度が高いときは前記一次燃焼空気の加熱温度を低くする調整制御を実行する点にある。
【0014】
請求項3の構成で示したごとく、前記給塵効率が上昇したときは、上記調整制御における一次燃焼空気の加熱温度を高温側に補正するものであるが、本請求項4の構成では、さらに、前記給塵効率が上昇したときに、炉出口温度に基づく一次燃焼空気加熱温度の目標値を高温側に補正することによって、給塵効率の上昇に対応する燃焼促進制御と炉出口温度に基づく一次燃焼空気の加熱温度制御を両立させることができる。
従って、凝縮した通気性の低いゴミが供給された場合の燃焼量の低下を回避することが可能となる焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0015】
【発明の実施の形態】
以下、本発明に係る焼却炉の燃焼制御装置の実施の形態を図面に基づいて説明する。
図1に示すように、ゴミピット20に集積されたゴミを掴み上げて搬送するバケット1と、このバケット1で掴み上げたゴミが投入されるホッパー2と、このホッパー2内のゴミを焼却炉3内に押し込み供給するために往復作動する給塵手段としてのプッシャ機構4と、プッシャ機構4によって炉内に供給されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯5と、この焼却処理帯5からの焼却灰を回収する灰ピット6とを備えると共に、炉内で発生した熱を回収する廃熱ボイラ7から蒸気が供給される蒸気タービン8と、この蒸気タービン8で駆動される発電機9を備え、また、焼却炉3からの排ガスをバグフィルター等を有する排ガス処理部10で処理した後、煙突11から排出するようにして、ゴミ焼却設備が構成されている。
【0016】
図面には示さないが、前記廃熱ボイラ7からの蒸気は、焼却炉3からの排ガスを送る煙道に配置された蒸気加熱器で加熱されて乾燥蒸気化した状態で蒸気溜めに貯留され、この蒸気溜めからの蒸気を前記蒸気タービン8に供給して前記発電機9の駆動を行った後に、復水して最終的には廃熱ボイラ7に戻すよう蒸気サイクルが構成されている。
【0017】
前記焼却処理帯5には、炉内でのゴミの搬送方向に沿って上手側(プッシャ機構4の側)から、供給されたゴミを乾燥させて着火点近くまで加熱する乾燥処理帯5aと、乾燥ゴミを燃焼させる燃焼処理帯5bと、燃焼したゴミを灰化させる後燃焼処理帯5cが順次配置されている。焼却処理帯5は、搬送方向の下手側ほど低いレベルとなるように、各処理帯5a、5b、5cは階段状に形成されている。
【0018】
夫々の処理帯5a、5b、5cは固定状態の固定火格子と、固定火格子に対して摺動自在な可動火格子とを備え、油圧シリンダ(図示せず)の作動により可動火格子を固定火格子に対して往復摺動させて焼却処理帯上のゴミを乾燥処理帯5a、燃焼処理帯5b、後燃焼処理帯5c夫々の方向に順次移送しながらゴミの撹拌を行う。そして、後燃焼処理帯5cで灰化したゴミは灰押し機構12の部位に落下し、灰出しコンベア13によって前記灰ピット6に搬送集積される。
【0019】
次に、上記焼却処理帯5の下方に一次燃焼空気を供給する一次燃焼空気供給手段Aと、上記焼却処理帯5の下方に供給される一次燃焼空気を加熱する一次燃焼空気加熱手段Bとが設けられている。以下、具体的に説明する。
【0020】
ブロワ15から送り出される空気を空気予備加熱器14に通流させる主流路16と、この主流路16の上流側から分岐して空気を送り、空気予備加熱器14の下流部位に合流するバイパス流路17とを形成し、この主流路16に流通する空気量を制御する主ダンパ18とバイパス流路17に流通する空気量を制御する副ダンパ19を備え、空気予備加熱器14の下流側の主流路16に対して流通する空気の温度を計測するサーミスタや熱電対で成る主温度センサTmを備えている。尚、上記空気予備加熱器14には前記蒸気溜めに貯留した蒸気を送って空気を加熱するように蒸気供給系を構成している。
【0021】
上記主ダンパ18の開度と副ダンパ19の開度により、主流路16で送られて前記空気予備加熱器14で加熱された空気と、バイパス流路17で送られる常温の空気との混合比が変化し、この混合比によって混合空気の温度が調節できる。従って、上記主流路16、バイパス流路17、主ダンパ18、副ダンパ19等によって、前記一次燃焼空気加熱手段Bが構成される。
【0022】
前記主流路16とバイパス流路17の合流点の下流側箇所に第1流路21を接続し、第1流路21の下流側には前記各処理帯5a、5b、5cの下方に配置した複数の風箱23に空気を導く複数の分配路22を分岐形成し、夫々の分配路22に対して空気の流量を計測する流量センサF1と、空気の流量を制御する分岐ダンパD1とを備えている。そして、この各分配路22に供給された空気は風箱23から各処理帯5a、5b、5cを上方に通過することによりゴミの燃焼を促進する。従って、上記第1流路21、複数の分配路22、複数の風箱23、複数の分岐ダンパD1等によって、前記一次燃焼空気供給手段Aが構成される。
【0023】
図面には特に示していないが、上記の主ダンパ18、副ダンパ19、複数の分岐ダンパD1は夫々、油圧シリンダ、あるいは、電動モータの駆動力によって任意の開度に設定して風量を調節自在に構成されている。又、流量センサF1は羽車式や、渦式や、ピトー管式を用いることで単位時間内の空気の流量を電気信号として出力するよう構成されている。
【0024】
なお、前記焼却炉3内でのゴミの燃焼に伴い生成した燃焼ガスを二次燃焼させるために、前記焼却処理帯5の上方の炉内部に二次燃焼空気を供給する二次燃焼空気供給手段27が設けられている。そして、前記焼却炉3からの排ガスの煙道に、上記二次燃焼された後の排ガス中の酸素濃度を検出する酸素濃度センサ26が設置されている。
【0025】
前記焼却炉3の炉出口位置における排ガス温度即ち炉出口温度を計測する熱電対式等のガス温度センサ25が設けられている。そして、炉内でのゴミの燃焼状態が良好であれば上記排ガス温度は適正値であるが、炉内でのゴミの燃焼状態が悪化して燃焼量が低下すると上記排ガス温度が低下することから、上記ガス温度センサ25によって、炉内のゴミの燃焼状態を示す燃焼指標として上記炉出口温度を検出する炉出口温度検出手段が構成される。
【0026】
図2に示すように、マイクロプロセッサや半導体メモリ等で構成された制御装置30が設けられ、この制御装置30に、前記主温度センサTm、複数の流量センサF1、ガス温度センサ25、酸素濃度センサ26、及び、前記バケット1で掴み上げられて炉内に投入されるゴミの重量を検出する重量センサ24(図1参照)の各検出情報が入力されている。一方、制御装置30からは、前記バケット1、プッシャ機構4、主ダンパ18、副ダンパ19、複数の分岐ダンパD1等に対する駆動信号が出力されている。
【0027】
上記制御装置30内に、前記プッシャ機構4のゴミ供給量を表わす給塵効率を算出する給塵効率算出手段Dが構成されている。給塵効率は、前記プッシャ機構4の動作速度とゴミ投入量の実績値から推定される。具体的には、ホッパー2から燃焼処理帯5にかけて滞留し、今後乾燥及び燃焼プロセスに入ると予想されるある一定のゴミ量を想定し、そのゴミ量を投入するのに必要な所定時間におけるプッシャ機構4によるゴミの投入重量(トン/時間)を、同じ所定時間におけるプッシャ機構4の動作速度(サイクル/時間)の移動平均値で除算して、給塵効率(トン/サイクル)を求めている。詳細は、前述の特許文献2及び特許文献3に記載されている。
【0028】
また、上記制御装置30内に、炉内のゴミの燃焼状態を示す燃焼指標に基づいて前記一次燃焼空気供給手段Aによる一次燃焼空気の供給量を調整する空気量調整制御と、炉内のゴミの燃焼状態を示す燃焼指標に基づいて前記一次燃焼空気加熱手段Bによる一次燃焼空気の加熱温度を調整する温度調整制御を実行する制御手段Cが構成されている。
【0029】
上記空気量調整制御は、具体的には、図3のグラフの実線に示すように、前記制御手段Cが、物質収支・熱収支によって推定したゴミ発熱量(kJ/kg)から基準となる一次燃焼空気量を算出し、さらに蒸気量(廃熱ボイラ7からの発生蒸気量)、炉出口温度、燃切点(燃焼処理帯5b上でのゴミの燃切点)等による補正を行って一次燃焼空気の供給量の目標値を設定する。
また、上記温度調整制御は、具体的には、図4の実線のグラフに示すように、前記制御手段Cが、前記燃焼指標に基づく前記一次燃焼空気加熱温度の調整制御として、前記ガス温度センサ25の検出情報に基づいて、前記炉出口温度が低いときは前記一次燃焼空気の加熱温度(目標値)を高くし、前記炉出口温度が高いときは前記一次燃焼空気の加熱温度(目標値)を低くする調整制御を実行する。
【0030】
そして、図3のグラフの仮想線に示すように、前記制御手段Cは、前記給塵効率(トン/サイクル)が上昇したときに、前記空気量調整制御において前記一次燃焼空気供給手段Aによる一次燃焼空気の供給量の目標値を増加側に補正する。すなわち、図5に示すように、前記燃焼処理帯5の全ての処理帯5a,5b,5cに対する空気供給総量の目標値を増加側に補正する。具体的には、給塵効率が上昇して設定値Ktを超えると、前記空気供給総量の目標値を例えば10%程度増加させている(即ち、補正率(%)を10%とする)。
【0031】
また、図4のグラフの仮想線に示すように、前記制御手段Cは、前記給塵効率(トン/サイクル)が上昇したときに、前記温度調整制御において前記一次燃焼空気加熱手段Bによる一次燃焼空気の加熱温度の目標値を高温側に補正する。具体的には、図6に示すように、給塵効率が上昇して設定値Ktを超えると、前記一次燃焼空気の加熱温度(目標値)が高くなるようにしている。
尚、図5及び図6には、給塵効率の変化に対して、空気供給量及び加熱温度の目標値に対する補正量を急激に変化させる例(a)と、滑らかに変化させる例(b)を示しているが、これ以外の特性に設定してもよい。
【0032】
〔別実施の形態〕
上記実施形態では、前記制御手段Cが、前記給塵効率(トン/サイクル)が上昇したときに、前記空気量調整制御において前記一次燃焼空気供給手段Aによる一次燃焼空気の供給量を増加側に補正するのに、前記燃焼処理帯5の全ての処理帯5a,5b,5cに対する空気供給総量を増加側に補正するように構成したが、これに限るものではなく、前記乾燥処理帯5aに対する空気供給量、前記燃焼処理帯5bに対する空気供給量、及び、全ての処理帯5a,5b,5cに対する空気供給総量のうち、少なくとも1つを増加側に補正する構成でよい。
【0033】
また、上記実施形態では、前記温度調整制御において、炉内のゴミの燃焼状態を示す燃焼指標として、炉出口温度(炉からの排ガス温度)を検出する炉出口温度検出手段25の検出情報を用いたが、これ以外に、例えば、前記廃熱ボイラ7から発生する蒸気発生量の検出情報や、前記燃焼処理帯5b上での燃切点を検出するテレビカメラの画像情報や、炉内でのゴミの発熱量の検出情報等を上記燃焼指標として用いてもよい。
【図面の簡単な説明】
【図1】ゴミ焼却装置の全体構成を示す模式図
【図2】制御系のブロック回路図
【図3】燃焼空気供給量の調整制御特性を示すグラフ
【図4】燃焼空気加熱温度の調整制御特性を示すグラフ
【図5】燃焼空気供給量の補正制御特性を示すグラフ
【図6】燃焼空気加熱温度の補正制御特性を示すグラフ
【符号の説明】
3 焼却炉
4 給塵手段
5 焼却処理帯
5a 乾燥処理帯
5b 燃焼処理帯
5c 後燃焼処理帯
25 炉出口温度検出手段
A 一次燃焼空気供給手段
B 一次燃焼空気加熱手段
C 制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention is based on the combustion index indicating the combustion state of the dust supplied into the furnace by the dust supply means, and the amount of primary combustion air supplied below the incineration treatment zone for incinerating the waste and the amount of primary combustion air The present invention relates to a combustion control device for an incinerator that adjusts a heating temperature.
[0002]
[Prior art]
In the incinerator combustion control apparatus, as a first conventional technique, when the oxygen concentration in the exhaust gas is a normal value (during normal combustion below the upper limit concentration), the primary combustion air is heated based on the amount of heat generated by the dust. In addition to controlling the temperature, feedback control is performed to PID control the supply amount of primary combustion air based on the amount of steam generated in the boiler, and when the oxygen concentration in the exhaust gas rises above the upper limit concentration, There is one that corrects the heating temperature of the primary combustion air to a high temperature side based on the amount of increase, and limits the supply amount of the primary combustion air with an upper limit value (see Patent Document 1).
[0003]
As a second conventional technique, the dust supply efficiency (dust supply amount of the dust supply means) is estimated from the operating speed of the dust supply means for supplying dust into the furnace and the history of the amount of dust supply, and the target waste incineration amount is determined. In order to achieve this, there is one that controls the operation speed of the dust supply means based on the dust supply efficiency (see Patent Document 2). As a third conventional technique, the dust supply efficiency, the amount of heat generated by the dust, There is one that controls the operating speed of the dust supplying means based on the target heat generation amount (see Patent Document 3).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-61932 (page 2-5, FIGS. 1 to 6)
[Patent Document 2]
JP 7-269834 A (page 2-4, FIGS. 1 to 4)
[Patent Document 3]
JP 2002-349827 A (page 1-5, FIG. 1 to FIG. 2)
[0005]
[Problems to be solved by the invention]
However, in the first prior art, when the oxygen concentration is a normal value, if the heat generation amount is not a low value, and the dust that is compressed and condensed in the dust pits is supplied, the response is delayed. there were. That is, when the oxygen concentration is a normal value, no change in the amount of heat generated by the dust appears, so the heating temperature of the primary combustion air based on the amount of heat generated by the dust is not controlled, and the dust with low air permeability is supplied. This is because the control for increasing the temperature of the primary combustion air is performed only after the surface area of the dust that is in contact with the combustion air decreases, the combustion amount in the furnace decreases and the oxygen concentration increases.
The dust supply efficiency increases when the dust with low air permeability is supplied. However, the second and third prior arts have a problem with the dust with low air permeability when the dust supply efficiency increases. There is no particular description of control of the primary combustion air.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to promptly respond to a decrease in the combustion amount when condensed dust having low air permeability is supplied. An object of the present invention is to provide a combustion control device for an incinerator.
[0007]
[Means for Solving the Problems]
In the invention according to claim 1 of the combustion control device of the incinerator for realizing the above object, the primary combustion air is supplied below the incineration treatment zone where the dust supplied into the furnace by the dust supplying means is incinerated. Combustion air supply means and control means for adjusting a supply amount of primary combustion air by the primary combustion air supply means based on a combustion index indicating a combustion state of dust in the furnace are provided. The means is to correct the supply amount of primary combustion air by the primary combustion air supply means to the increase side when the dust supply efficiency representing the dust supply amount of the dust supply means is increased.
[0008]
According to the above configuration, when the control unit performs control to adjust the supply amount of the primary combustion air by the primary combustion air supply unit based on the combustion index indicating the combustion state of the dust in the furnace, When the dust supply efficiency representing the dust supply amount of the dust means increases, the supply amount of the primary combustion air by the primary combustion air supply means is corrected to the increase side in the adjustment control of the air supply amount.
That is, when the dust supply efficiency is increased, the specific gravity of the dust is increased and the air permeability is predicted to be lowered, so the flow rate is increased by increasing the supply amount of primary combustion air supplied below the incineration zone, By increasing the air permeability to dust, the surface area of dust touched by oxygen can be increased, combustion can be promoted, and combustion reduction can be prevented.
Accordingly, there is provided a combustion control device for an incinerator capable of responding quickly and avoiding a decrease in combustion amount when condensed dust having low air permeability is supplied.
[0009]
A characteristic configuration of the invention according to claim 2 is the invention according to claim 1, wherein in the incineration treatment zone, a drying treatment zone, a combustion treatment zone, and a post-combustion treatment zone are sequentially arranged from the upper side along the dust conveyance direction. And the control means corrects at least one of the air supply amount for the drying treatment zone, the air supply amount for the combustion treatment zone, and the total air supply amount for all the treatment zones to the increasing side. .
[0010]
That is, when the dust supply efficiency is increased, the amount of air supplied to the drying treatment zone is increased, thereby increasing the drying speed of dust in the drying treatment zone and preventing the occurrence of combustion reduction due to a decrease in air permeability. .
Also, when the dust supply efficiency is increased, increasing the amount of air supplied to the combustion treatment zone increases the amount of dust combustion in the combustion treatment zone, promotes combustion due to an increase in radiant heat, and reduces the combustion caused by a decrease in air permeability. Can be prevented.
In addition, when the dust supply efficiency is increased, the amount of air supplied to all the treatment zones is increased, so that the drying speed of the waste is increased in the drying treatment zone, the amount of dust combustion is increased in the combustion treatment zone, and the radiant heat is increased. Combustion is promoted, and it is possible to prevent the occurrence of a decrease in combustion due to a decrease in air permeability.
Therefore, a preferred embodiment of the combustion control device for an incinerator that can avoid a decrease in the combustion amount when condensed dust with low air permeability is supplied is provided.
[0011]
In the invention which concerns on Claim 3, the primary combustion air heating means which heats the primary combustion air supplied to the lower part of the incineration processing zone which incinerates the garbage supplied in the furnace by the dust supply means, and the waste in the furnace And a control means for adjusting the heating temperature of the primary combustion air by the primary combustion air heating means based on a combustion index indicating a combustion state, and the characteristic configuration is that the control means has a dust supply amount of the dust supply means. When the dust supply efficiency representing is increased, the heating temperature of the primary combustion air by the primary combustion air heating means is corrected to the high temperature side.
[0012]
That is, when the dust supply efficiency is increased, the specific gravity of dust is increased, and a decrease in air permeability is predicted. Therefore, the heating temperature of the primary combustion air supplied below the incineration treatment zone is increased. As a result, according to Boyle Charles' law, air expands, the flow velocity increases, and the air permeability to dust is increased, thereby increasing the surface area of dust contacted with oxygen to promote combustion and preventing the occurrence of combustion deterioration. it can.
Accordingly, there is provided a combustion control device for an incinerator capable of responding quickly and avoiding a decrease in combustion amount when condensed dust having low air permeability is supplied.
[0013]
According to a fourth aspect of the present invention, in the invention according to the third aspect, the control unit detects a furnace outlet temperature as the combustion index as the adjustment control of the primary combustion air heating temperature based on the combustion index. Adjustment based on detection information of the furnace outlet temperature detecting means, when the furnace outlet temperature is low, the heating temperature of the primary combustion air is increased, and when the furnace outlet temperature is high, the heating temperature of the primary combustion air is decreased The point is to execute the control.
[0014]
As shown in the configuration of claim 3, when the dust supply efficiency is increased, the heating temperature of the primary combustion air in the adjustment control is corrected to a high temperature side. When the dust supply efficiency rises, the target value of the primary combustion air heating temperature based on the furnace outlet temperature is corrected to the high temperature side, so that the combustion promotion control corresponding to the increase in the dust supply efficiency and the furnace outlet temperature are used. The heating temperature control of the primary combustion air can be made compatible.
Therefore, a preferred embodiment of the combustion control device for an incinerator that can avoid a decrease in the combustion amount when condensed dust with low air permeability is supplied is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an incinerator combustion control apparatus according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a bucket 1 that picks up and conveys the dust accumulated in the garbage pit 20, a hopper 2 into which the garbage picked up by the bucket 1 is placed, and an incinerator 3 for removing the dust in the hopper 2. A pusher mechanism 4 as dust supplying means that reciprocates to push in and supply, a stoker-type incineration treatment zone 5 that incinerates while conveying dust supplied into the furnace by the pusher mechanism 4, and this incineration treatment An ash pit 6 for recovering incinerated ash from the belt 5, a steam turbine 8 to which steam is supplied from a waste heat boiler 7 for recovering heat generated in the furnace, and power generation driven by the steam turbine 8 The waste incineration equipment is configured so that the exhaust gas from the incinerator 3 is processed by the exhaust gas processing unit 10 having a bag filter or the like and then discharged from the chimney 11. .
[0016]
Although not shown in the drawings, the steam from the waste heat boiler 7 is heated in a steam heater disposed in a flue for sending exhaust gas from the incinerator 3 and is stored in a steam reservoir in a dry vaporized state. A steam cycle is configured such that steam from the steam reservoir is supplied to the steam turbine 8 to drive the generator 9, and then condensate and finally return to the waste heat boiler 7.
[0017]
The incineration zone 5 includes a drying zone 5a that dries the supplied dust from the upper side (the pusher mechanism 4 side) along the direction of dust transport in the furnace and heats it to near the ignition point. A combustion treatment zone 5b for burning garbage and a post-combustion treatment zone 5c for ashing the burned waste are sequentially arranged. Each of the treatment zones 5a, 5b, and 5c is formed in a staircase shape so that the incineration treatment zone 5 has a lower level toward the lower side in the transport direction.
[0018]
Each processing zone 5a, 5b, 5c has a fixed grate in a fixed state and a movable grate slidable with respect to the fixed grate, and the movable grate is fixed by operation of a hydraulic cylinder (not shown). The dust on the incineration zone is slid back and forth with respect to the grate, and the dust is agitated while being sequentially transferred in the directions of the drying zone 5a, the combustion zone 5b, and the post-burn zone 5c. The dust ashed in the post-combustion treatment zone 5 c falls on the site of the ash pushing mechanism 12 and is conveyed and accumulated in the ash pit 6 by the ash removal conveyor 13.
[0019]
Next, primary combustion air supply means A for supplying primary combustion air below the incineration treatment zone 5 and primary combustion air heating means B for heating primary combustion air supplied below the incineration treatment zone 5 are provided. Is provided. This will be specifically described below.
[0020]
A main flow path 16 that allows air sent from the blower 15 to flow to the air preheater 14, and a bypass flow path that branches from the upstream side of the main flow path 16 and sends air to join the downstream portion of the air preheater 14. 17, a main damper 18 that controls the amount of air flowing through the main flow path 16, and a sub-damper 19 that controls the amount of air flowing through the bypass flow path 17, and a main flow downstream of the air preheater 14. A main temperature sensor Tm including a thermistor and a thermocouple for measuring the temperature of the air flowing through the passage 16 is provided. Note that a steam supply system is configured to heat the air by sending the steam stored in the steam reservoir to the air preheater 14.
[0021]
Depending on the opening of the main damper 18 and the opening of the sub-damper 19, the mixing ratio between the air sent through the main flow path 16 and heated by the air preheater 14 and the normal temperature air sent through the bypass flow path 17. The temperature of the mixed air can be adjusted by this mixing ratio. Therefore, the primary combustion air heating means B is constituted by the main flow path 16, the bypass flow path 17, the main damper 18, the auxiliary damper 19, and the like.
[0022]
The first flow path 21 is connected to the downstream side of the confluence of the main flow path 16 and the bypass flow path 17, and the first flow path 21 is disposed below the processing zones 5a, 5b, and 5c on the downstream side. A plurality of distribution paths 22 for guiding air to a plurality of wind boxes 23 are branched, and a flow rate sensor F1 that measures the flow rate of air to each distribution path 22 and a branch damper D1 that controls the flow rate of air are provided. ing. The air supplied to each distribution path 22 promotes the combustion of dust by passing upward from the wind box 23 through the treatment zones 5a, 5b, and 5c. Therefore, the first combustion air supply means A is constituted by the first flow path 21, the plurality of distribution paths 22, the plurality of wind boxes 23, the plurality of branch dampers D1, and the like.
[0023]
Although not specifically shown in the drawing, the main damper 18, the sub damper 19, and the plurality of branch dampers D1 can be set to any opening degree by the driving force of the hydraulic cylinder or the electric motor, respectively, and the air volume can be adjusted. It is configured. The flow rate sensor F1 is configured to output the flow rate of air within a unit time as an electrical signal by using an impeller type, a vortex type, or a Pitot type.
[0024]
Note that secondary combustion air supply means for supplying secondary combustion air to the interior of the furnace above the incineration treatment zone 5 in order to cause secondary combustion of the combustion gas generated with combustion of garbage in the incinerator 3. 27 is provided. An oxygen concentration sensor 26 for detecting the oxygen concentration in the exhaust gas after the secondary combustion is installed in the flue of the exhaust gas from the incinerator 3.
[0025]
A gas temperature sensor 25 such as a thermocouple for measuring the exhaust gas temperature at the furnace outlet position of the incinerator 3, that is, the furnace outlet temperature, is provided. And, if the combustion state of dust in the furnace is good, the exhaust gas temperature is an appropriate value, but if the combustion state of dust in the furnace deteriorates and the combustion amount decreases, the exhaust gas temperature decreases. The gas temperature sensor 25 constitutes a furnace outlet temperature detecting means for detecting the furnace outlet temperature as a combustion index indicating the combustion state of dust in the furnace.
[0026]
As shown in FIG. 2, a control device 30 composed of a microprocessor, a semiconductor memory, and the like is provided. The control device 30 includes the main temperature sensor Tm, a plurality of flow rate sensors F1, a gas temperature sensor 25, and an oxygen concentration sensor. 26 and each detection information of the weight sensor 24 (see FIG. 1) for detecting the weight of the dust that is picked up by the bucket 1 and put into the furnace. On the other hand, the control device 30 outputs drive signals for the bucket 1, the pusher mechanism 4, the main damper 18, the sub damper 19, the plurality of branch dampers D1, and the like.
[0027]
In the control device 30, dust supply efficiency calculating means D for calculating the dust supply efficiency representing the dust supply amount of the pusher mechanism 4 is configured. The dust supply efficiency is estimated from the operating speed of the pusher mechanism 4 and the actual value of the amount of dust input. Specifically, assuming a certain amount of dust that stays from the hopper 2 to the combustion treatment zone 5 and is expected to enter the drying and combustion process in the future, the pusher at a predetermined time required to input the amount of dust is assumed. The dust input efficiency (ton / cycle) is obtained by dividing the input weight (ton / hour) of dust by the mechanism 4 by the moving average value of the operating speed (cycle / hour) of the pusher mechanism 4 at the same predetermined time. . Details are described in Patent Document 2 and Patent Document 3 described above.
[0028]
Further, in the control device 30, an air amount adjustment control for adjusting a supply amount of primary combustion air by the primary combustion air supply means A based on a combustion index indicating a combustion state of dust in the furnace, and dust in the furnace The control means C which performs the temperature adjustment control which adjusts the heating temperature of the primary combustion air by the said primary combustion air heating means B based on the combustion parameter | index which shows this combustion state is comprised.
[0029]
Specifically, as shown in the solid line of the graph of FIG. 3, the air amount adjustment control is performed by the control unit C as a reference based on the amount of dust heat (kJ / kg) estimated by the material balance / heat balance. Calculate the amount of combustion air and make corrections based on the amount of steam (the amount of steam generated from the waste heat boiler 7), the furnace outlet temperature, the burnout point (the burnout point of garbage on the combustion treatment zone 5b), etc. Set the target value of the supply amount of combustion air.
Specifically, the temperature adjustment control is performed as shown in the solid line graph of FIG. 4, in which the control means C performs the gas temperature sensor as the adjustment control of the primary combustion air heating temperature based on the combustion index. 25, when the furnace outlet temperature is low, the heating temperature (target value) of the primary combustion air is increased, and when the furnace outlet temperature is high, the heating temperature (target value) of the primary combustion air. The adjustment control for lowering the value is executed.
[0030]
Then, as indicated by the phantom line in the graph of FIG. 3, when the dust supply efficiency (ton / cycle) is increased, the control means C performs a primary operation by the primary combustion air supply means A in the air amount adjustment control. The target value of the supply amount of combustion air is corrected to the increase side. That is, as shown in FIG. 5, the target value of the total air supply amount for all the treatment zones 5a, 5b, 5c of the combustion treatment zone 5 is corrected to the increase side. Specifically, when the dust supply efficiency increases and exceeds the set value Kt, the target value of the total air supply amount is increased by, for example, about 10% (that is, the correction rate (%) is set to 10%).
[0031]
As indicated by the phantom line in the graph of FIG. 4, the control means C performs primary combustion by the primary combustion air heating means B in the temperature adjustment control when the dust supply efficiency (ton / cycle) increases. The target value of the air heating temperature is corrected to the high temperature side. Specifically, as shown in FIG. 6, when the dust supply efficiency increases and exceeds a set value Kt, the heating temperature (target value) of the primary combustion air is increased.
5 and 6 show an example (a) in which the correction amount with respect to the target value of the air supply amount and the heating temperature is rapidly changed with respect to a change in the dust supply efficiency, and an example (b) in which the correction amount is smoothly changed. However, other characteristics may be set.
[0032]
[Another embodiment]
In the above embodiment, when the control means C increases the dust supply efficiency (ton / cycle), the supply amount of the primary combustion air by the primary combustion air supply means A in the air amount adjustment control is increased. For correction, the total air supply amount for all the treatment zones 5a, 5b, 5c of the combustion treatment zone 5 is corrected to the increase side, but this is not a limitation, and the air for the drying treatment zone 5a is not limited to this. The configuration may be such that at least one of the supply amount, the air supply amount for the combustion treatment zone 5b, and the total air supply amount for all the treatment zones 5a, 5b, 5c is corrected to the increasing side.
[0033]
Moreover, in the said embodiment, in the said temperature adjustment control, the detection information of the furnace exit temperature detection means 25 which detects a furnace exit temperature (exhaust gas temperature from a furnace) is used as a combustion parameter | index which shows the combustion state of the garbage in a furnace. However, in addition to this, for example, detection information of the amount of steam generated from the waste heat boiler 7, image information of a TV camera that detects a burnout point on the combustion treatment zone 5b, Detection information for the amount of heat generated from dust may be used as the combustion index.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of a garbage incinerator. FIG. 2 is a block circuit diagram of a control system. FIG. 3 is a graph showing adjustment control characteristics of a combustion air supply amount. Graph showing characteristics [Fig. 5] Graph showing correction control characteristics of combustion air supply amount [Figure 6] Graph showing correction control characteristics of combustion air heating temperature [Explanation of symbols]
3 Incinerator 4 Dust supply means 5 Incineration treatment zone 5a Drying treatment zone 5b Combustion treatment zone 5c Post-combustion treatment zone 25 Furnace outlet temperature detection means A Primary combustion air supply means B Primary combustion air heating means C Control means

Claims (4)

給塵手段によって炉内に供給されたゴミを焼却処理する焼却処理帯の下方に一次燃焼空気を供給する一次燃焼空気供給手段と、炉内のゴミの燃焼状態を示す燃焼指標に基づいて前記一次燃焼空気供給手段による一次燃焼空気の供給量を調整する制御手段とが設けられ、
前記制御手段が、前記給塵手段のゴミ供給量を表わす給塵効率が上昇したときに、前記一次燃焼空気供給手段による一次燃焼空気の供給量を増加側に補正する焼却炉の燃焼制御装置。
Primary combustion air supply means for supplying primary combustion air below an incineration treatment zone for incinerating waste supplied into the furnace by dust supply means, and the primary based on a combustion index indicating a combustion state of garbage in the furnace Control means for adjusting the amount of primary combustion air supplied by the combustion air supply means,
A combustion control apparatus for an incinerator, wherein the control means corrects the supply amount of primary combustion air by the primary combustion air supply means to the increasing side when the dust supply efficiency representing the dust supply amount of the dust supply means increases.
前記焼却処理帯に、ゴミの搬送方向に沿って上手側から乾燥処理帯、燃焼処理帯、後燃焼処理帯が順次配置され、
前記制御手段が、前記乾燥処理帯に対する空気供給量、前記燃焼処理帯に対する空気供給量、及び、全ての処理帯に対する空気供給総量のうち、少なくとも1つを増加側に補正する請求項1記載の焼却炉の燃焼制御装置。
In the incineration treatment zone, a drying treatment zone, a combustion treatment zone, and a post-combustion treatment zone are sequentially arranged from the upper side along the dust conveyance direction,
The said control means correct | amends at least 1 to the increase side among the air supply amount with respect to the said drying process zone, the air supply amount with respect to the said combustion process zone, and the total air supply amount with respect to all the process zones. Combustion control device for incinerators.
給塵手段によって炉内に供給されたゴミを焼却処理する焼却処理帯の下方に供給される一次燃焼空気を加熱する一次燃焼空気加熱手段と、炉内のゴミの燃焼状態を示す燃焼指標に基づいて前記一次燃焼空気加熱手段による一次燃焼空気の加熱温度を調整する制御手段とが設けられ、
前記制御手段が、前記給塵手段のゴミ供給量を表わす給塵効率が上昇したときに、前記一次燃焼空気加熱手段による一次燃焼空気の加熱温度を高温側に補正する焼却炉の燃焼制御装置。
Based on the primary combustion air heating means for heating the primary combustion air supplied below the incineration treatment zone for incinerating the waste supplied into the furnace by the dust supply means, and the combustion index indicating the combustion state of the waste in the furnace Control means for adjusting the heating temperature of the primary combustion air by the primary combustion air heating means,
A combustion control apparatus for an incinerator, wherein the control means corrects the heating temperature of the primary combustion air by the primary combustion air heating means to a high temperature side when dust supply efficiency representing the amount of dust supplied by the dust supply means increases.
前記制御手段が、前記燃焼指標に基づく前記一次燃焼空気加熱温度の調整制御として、炉出口温度を前記燃焼指標として検出する炉出口温度検出手段の検出情報に基づいて、前記炉出口温度が低いときは前記一次燃焼空気の加熱温度を高くし、前記炉出口温度が高いときは前記一次燃焼空気の加熱温度を低くする調整制御を実行する請求項3記載の焼却炉の燃焼制御装置。When the control means controls the primary combustion air heating temperature based on the combustion index, the furnace outlet temperature is low based on detection information of the furnace outlet temperature detection means that detects the furnace outlet temperature as the combustion index. The combustion control device for an incinerator according to claim 3, wherein adjustment control is executed to increase the heating temperature of the primary combustion air and to lower the heating temperature of the primary combustion air when the furnace outlet temperature is high.
JP2003036508A 2003-02-14 2003-02-14 Combustion control device for incinerator Expired - Fee Related JP3916572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036508A JP3916572B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036508A JP3916572B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Publications (2)

Publication Number Publication Date
JP2004245517A JP2004245517A (en) 2004-09-02
JP3916572B2 true JP3916572B2 (en) 2007-05-16

Family

ID=33021573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036508A Expired - Fee Related JP3916572B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Country Status (1)

Country Link
JP (1) JP3916572B2 (en)

Also Published As

Publication number Publication date
JP2004245517A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US4838183A (en) Apparatus and method for incinerating heterogeneous materials
JP6671326B2 (en) Combustion control method and waste incinerator
US5957064A (en) Method and apparatus for operating a multiple hearth furnace
JP3916572B2 (en) Combustion control device for incinerator
JP2955431B2 (en) Incinerator combustion control device
JP3888870B2 (en) Garbage incinerator
JP4036768B2 (en) Combustion control device for incinerator
JP3669778B2 (en) Combustion control device for garbage incinerator
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP6797082B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
JPH07332642A (en) Garbage incinerator
JP3315036B2 (en) Combustion control device of garbage incinerator
JP2800870B2 (en) Garbage incinerator
JPH08261431A (en) Method and device for estimating thickness of waste on incinerating zone in incinerator
JP2761187B2 (en) Garbage incinerator
JPH05141640A (en) Combustion control device for incinerator
JP2624912B2 (en) Incinerator combustion control device
JPH07190327A (en) Combustion controller for refuse incinerator
JP2023091983A (en) Combustion control device for refuse incinerator and combustion control method for refuse incinerator
JP2004232960A (en) Refuse incinerator
JP6797083B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
JP2004278898A (en) Operation method of burner in incinerator and operation control device
JPH1047634A (en) Combustion controller of refuse incinerator
JPH06331120A (en) Incinerator
JP2023050052A (en) Combustion control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees