JP2004245519A - Combustion controller for incinerator - Google Patents

Combustion controller for incinerator Download PDF

Info

Publication number
JP2004245519A
JP2004245519A JP2003036851A JP2003036851A JP2004245519A JP 2004245519 A JP2004245519 A JP 2004245519A JP 2003036851 A JP2003036851 A JP 2003036851A JP 2003036851 A JP2003036851 A JP 2003036851A JP 2004245519 A JP2004245519 A JP 2004245519A
Authority
JP
Japan
Prior art keywords
amount
combustion
dust
refuse
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036851A
Other languages
Japanese (ja)
Other versions
JP4036768B2 (en
Inventor
Yoshiaki Takahata
義明 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003036851A priority Critical patent/JP4036768B2/en
Publication of JP2004245519A publication Critical patent/JP2004245519A/en
Application granted granted Critical
Publication of JP4036768B2 publication Critical patent/JP4036768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion controller for an incinerator capable of avoiding worsening of a combustion condition due to excessive supply and insufficient supply of refuse into the incinerator to realize stable combustion. <P>SOLUTION: Reference operation speed of a refuse supply means 4 is obtained based on target burning amount of refuse burned and handled in the incinerator and refuse supply efficiency showing refuse supply amount of the refuse supply means 4 for supplying refuse into the incinerator. A control means for controlling operation of the refuse supply means 4 based on the reference operation speed obtains actual operation speed of the refuse supply means 4 by compensating the reference operation speed based on a combustion index showing a combustion condition of refuse in the incinerator to limit the actual operation speed so that refuse supply amount into the incinerator is within a proper scope for burning handling capacity of the incinerator based on actual result value of refuse burning amount or both of actual result value of refuse burning amount and inferred value of heat generation amount of refuse. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ゴミを焼却処理する焼却炉の燃焼制御装置に関し、炉内保有ゴミ量を適正範囲に維持するため、特に、炉内で焼却処理するゴミの目標焼却量及び炉内にゴミを供給する給塵手段のゴミ供給量(例えば往復動作を繰り返してゴミ供給する給塵装置の1往復すなわち1サイクル当りのゴミ供給量)を表わす給塵効率に基づいて前記給塵手段の基準動作速度を求め、その基準動作速度に基づいて前記給塵手段の動作を制御する制御手段が設けられた焼却炉の燃焼制御装置に関する。
【0002】
【従来の技術】
上記焼却炉の燃焼制御装置に関連する第1の従来技術では、廃熱ボイラの蒸気発生量、炉内の燃焼状況を監視するITV画像の輝度情報、後燃焼火格子下圧力と炉内圧との圧力差、後燃焼火格子温度、主煙道温度に基づいて、火格子速度、火格子ストローク長、後燃焼空気ダンパを制御して、蒸気発生量の安定と未燃ゴミの低減を実現するようにしていた(特許文献1参照)。
【0003】
また、第2の従来技術では、炉内にゴミを供給する給塵手段の動作速度とゴミ供給量の履歴から給塵効率(給塵装置1往復当りの実績ゴミ供給量)を推定し、その給塵効率に基づいて判断したゴミ質の変化に応じて適切な給塵速度に制御しながら、目標ゴミ焼却量を実現するようにしていた(特許文献2参照)。
【0004】
また、第3の従来技術では、ホッパ内をレーザ式距離計で計測して投入ゴミの容積を演算し、この投入ゴミの容積と別途計測した投入ゴミの重量からゴミの比重を求めてゴミの発熱量(炉内供給熱量)を推定し、この炉内供給熱量を一定に保つようにゴミ供給速度を制御していた(非特許文献1参照)。
【0005】
【特許文献1】
特開平10−332121号公報(第2−9頁、図1−図12)
【特許文献2】
特開平7−269834号公報(第2−4頁、図1−図4)
【非特許文献1】
辻本進一,他2名,「焼却炉におけるごみ供給熱量制御」,学会誌「EICA」,2002年10月31日,第7巻,第2号(2002),p.75−78
【0006】
【発明が解決しようとする課題】
しかしながら、上記第1の従来技術では、炉内へのゴミ供給速度を制御していないため、炉内の保有ゴミ量が過剰になったとき、火格子の速度とストローク長を制御してゴミ層の層厚バランスを変えることはできるものの、ゴミ供給速度が同じなら炉内の保有ゴミ量が減らないため、未燃ゴミが発生する不都合があった。すなわち、蒸気発生量が目標より低下すると、ゴミ送り速度が常に速くなるため、通気性の低いゴミに対しては、炉内保有ゴミ量が急増して、ますます通気性が低下し、燃焼が悪化するという問題点を抱えていた。
【0007】
第2の従来技術では、目標ゴミ焼却量と給塵効率から給塵手段の基準動作速度を求めて、給塵手段の実動作速度をその基準動作速度に制御していたため、発熱量の低いゴミに対して目標ゴミ焼却量を高く設定した場合に、炉の焼却処理能力を超えるゴミを供給してしまう可能性があった。
また、第3の従来技術においても、供給熱量一定制御のため、第2の従来技術と同様に、ゴミの発熱量が低い場合に、結果的に目標ゴミ焼却量が高く設定され、炉の焼却処理能力を超えるゴミを供給してしまう可能性があった。
【0008】
本発明は、上記実情に鑑みてなされたものであり、その目的は、炉内へのゴミの供給過剰や供給不足による燃焼状態の悪化を回避し、安定した燃焼を実現することが可能となる焼却炉の燃焼制御装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を実現するための焼却炉の燃焼制御装置の請求項1に係る発明は、炉内で焼却処理するゴミの目標焼却量及び炉内にゴミを供給する給塵手段のゴミ供給量を表わす給塵効率に基づいて前記給塵手段の基準動作速度を求め、その基準動作速度に基づいて前記給塵手段の動作を制御する制御手段が設けられたものであって、その特徴構成は、前記制御手段が、炉内でのゴミの燃焼状態を表わす燃焼指標に基づいて前記基準動作速度を補正して前記給塵手段の実動作速度を求め、ゴミ焼却量の実績値、もしくは、ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて、炉内へのゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように前記実動作速度を制限する点にある。
【0010】
すなわち、燃焼指標に基づいて、炉内保有ゴミの不足が予想される時は、炉内のゴミが不足しないように基準動作速度を増加側に補正して給塵手段の実動作速度を速くし、一方、炉内保有ゴミの過剰が予想される時は、炉内のゴミが過剰にならないように基準動作速度を減少側に補正して給塵手段の実動作速度を遅くする。
さらに、ゴミ焼却量の実績値もしくはゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて、例えば、定格燃焼ペースに対して、過去1〜2時間におけるゴミ焼却量の実績値が大きい時は、上記給塵手段の実動作速度を低速になるように制限して、炉内へのゴミ供給量が炉の焼却処理能力の適正範囲上限を外れないようにし、一方、ゴミ焼却量の実績値が小さい時は、上記給塵手段の実動作速度を高速になるように制限して、炉内へのゴミ供給量が炉の焼却処理能力の適正範囲下限を外れないようにする。
【0011】
従って、目標ゴミ焼却量と給塵効率に基づいて求めた給塵手段の基準動作速度に対して、炉内のゴミの燃焼状態に応じた補正を行って実動作速度を求め、さらに、ゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように、ゴミ焼却量の実績値等に基づいて上記給塵手段の実動作速度を制限するので、炉内へのゴミの供給過剰や供給不足による燃焼状態の悪化を回避し、安定した燃焼を実現することが可能となる焼却炉の燃焼制御装置が提供される。
【0012】
請求項2に係る発明の特徴構成は、請求項1に係る発明において、前記制御手段が、前記燃焼指標として、複数の燃焼パターンを設定し、前記複数の燃焼パターンの1つが継続して現れる場合に累積して増加もしくは減少する累積補正率を求め、前記ゴミ焼却量の実績値もしくは前記ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて設定した上限値及び下限値によって前記累積補正率を制限しつつ、当該累積補正率を用いて前記基準動作速度を補正して前記実動作速度を求める点にある。
【0013】
すなわち、上記複数の燃焼パターンは燃焼による発生熱量、炉内保有ゴミ量等の異なる燃焼状態を表わすものであり、例えば、蒸気発生量が目標を上回り、かつ、燃切点が乾燥帯側の上流に位置する燃焼パターンが継続して現れる場合は、ゴミ発熱量が上昇して燃焼速度が速いと判断して累積補正率を累積して増加させ、一方、蒸気発生量が低下し、かつ、燃切点が後燃焼側の下流に位置する燃焼パターンが継続して現れる場合は、ゴミ発熱量が下降して燃焼速度が遅いと判断して累積補正率を累積して減少させるように、この累積補正率に炉内の安定した燃焼状態あるいは燃焼状態の緩やかな変化を反映させて、適切な実動作速度を求めることができ、しかも、ゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように、定格燃焼ペースに対するゴミ焼却量の実績値等に基づいて上記累積補正率に上限値と下限値の制限を設けるので、上記燃焼パターンの1つが継続した場合でも、給塵手段の実動作速度が適正速度から大きく外れることもない。
従って、複数の燃焼パターンと累積補正率の2つのパラメータを用いて、給塵手段の基準動作速度から実動作速度を簡便且つ適切に求めることが可能であり、焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0014】
請求項3に係る発明の特徴構成は、請求項2に係る発明において、前記制御手段が、前記基準動作速度を補正する際に、前記累積補正率に加えて、前記燃焼パターンの1つが現れたときに一時的に値が設定される一時補正率を用いる点にある。
【0015】
上記構成によれば、前記制御手段が、前記複数の燃焼パターンの1つが現われたときに一時補正率に一時的に値を設定し、その一時補正率と前記累積補正率の両方を用いて前記基準動作速度を補正して前記給塵手段の実動作速度を求める。
すなわち、上記一時補正率は、前記累積補正率と異なり、複数の燃焼パターンの1つが1回現われただけで値が設定されるので、例えば蒸気量が上昇し過剰燃焼への急激な変化を示す燃焼パターンが現われ、給塵速度を急減させる必要がある場合に、値が累積して増加もしくは減少する前記累積補正率では対応できないが、上記一時補正率に一時的に大きな値を設定することで、上記急激な燃焼状態の変化に対応して給塵手段の実動作速度を確実に制限することができる。
従って、前記累積補正率に加えて一時補正率を用いることで、炉内の燃焼状態の急激な変化に対しても給塵手段の実動作速度を適切に設定することが可能となり、焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0016】
請求項4に係る発明の特徴構成は、請求項2又は3に係る発明において、前記制御手段が、前記複数の燃焼パターンとして、炉内での発生熱量の評価指標と炉内のゴミ滞留量の評価指標とを組み合わせた二次元マトリックス情報を用いる点にある。
【0017】
炉内での発生熱量だけでは炉内のゴミの燃焼状態が適正か否かを判断することは難しく、例えば発生熱量が小さいときにこの発熱量小の原因が炉内のゴミの燃焼不良にあるのか、あるいは、炉内のゴミ滞留量が少ないことによるかが判断できないが、炉内での発生熱量と炉内のゴミ滞留量を組み合わせることで、例えば、炉内のゴミ滞留量が少なくないにもかかわらず、発生熱量が小さいときは、通気性低下等による炉内のゴミの燃焼不良と判断できる。
従って、前記複数の燃焼パターンとして炉内での発生熱量と炉内のゴミ滞留量の情報を組み合わせることで、炉内のゴミが適正な燃焼状態にあるか否かを適切に判断して、炉内の燃焼状態に応じて給塵手段の実動作速度を適切に設定することが可能となり、焼却炉の燃焼制御装置の好適な実施形態が提供される。
【0018】
【発明の実施の形態】
以下、本発明に係る焼却炉の燃焼制御装置の実施の形態を図面に基づいて説明する。
図1に示すように、ゴミピット20に集積されたゴミを掴み上げて搬送するバケット1と、このバケット1で掴み上げたゴミが投入されるホッパー2と、このホッパー2内のゴミを焼却炉3内に押し込み供給するために往復作動する給塵手段としてのプッシャ機構4と、プッシャ機構4によって炉内に供給されたゴミを搬送しながら焼却処理するストーカ式の焼却処理帯5と、この焼却処理帯5からの焼却灰を回収する灰ピット6とを備えると共に、炉内で発生した熱を回収する廃熱ボイラ7から蒸気が供給される蒸気タービン8と、この蒸気タービン8で駆動される発電機9を備え、また、焼却炉3からの排ガスをバグフィルター等を有する排ガス処理部10で処理した後、煙突11から排出するようにして、ゴミ焼却設備が構成されている。
【0019】
図面には示さないが、前記廃熱ボイラ7からの蒸気は、焼却炉3からの排ガスを送る煙道に配置された蒸気加熱器で加熱されて乾燥蒸気化した状態で蒸気溜めに貯留され、この蒸気溜めからの蒸気を前記蒸気タービン8に供給して前記発電機9の駆動を行った後に、復水して最終的には廃熱ボイラ7に戻すよう蒸気サイクルが構成されている。また、上記廃熱ボイラ7から蒸気タービン8に供給される蒸気路に、発生蒸気量を検出する蒸気量センサ14が設けられている。
【0020】
前記焼却処理帯5には、炉内でのゴミの搬送方向に沿って上手側(プッシャ機構4の側)から、供給されたゴミを乾燥させて着火点近くまで加熱する乾燥処理帯5aと、乾燥ゴミを燃焼させる燃焼処理帯5bと、燃焼したゴミを灰化させる後燃焼処理帯5cが順次配置されている。焼却処理帯5は、搬送方向の下手側ほど低いレベルとなるように、各処理帯5a、5b、5cは階段状に形成されている。夫々の処理帯5a、5b、5cは固定状態の固定火格子と、固定火格子に対して摺動自在な可動火格子とを備え、油圧シリンダ(図示せず)の作動により可動火格子を固定火格子に対して往復摺動させて焼却処理帯上のゴミを乾燥処理帯5a、燃焼処理帯5b、後燃焼処理帯5c夫々の方向に順次移送しながらゴミの撹拌を行う。そして、後燃焼処理帯5cで灰化したゴミは灰押し機構12の部位に落下し、灰出しコンベア13によって前記灰ピット6に搬送集積される。
【0021】
上記焼却処理帯5の下方にはゴミの燃焼を促進するための一次燃焼空気が供給される。具体的には、前記夫々の処理帯5a、5b、5cの下方に配置した複数の風箱23に複数の流路22が接続され、この各流路22には、図示しないブロアによって送風され必要に応じて加熱された空気が供給される。そして、この各流路22に供給された空気は風箱23から各処理帯5a、5b、5cを上方に通過することによりゴミの燃焼が促進される。
【0022】
また、前記焼却炉3内でのゴミの燃焼に伴い生成した燃焼ガスを二次燃焼させるために、前記焼却処理帯5の上方の炉内部に二次燃焼空気を供給する二次燃焼空気供給手段27が設けられている。そして、前記焼却炉3からの排ガスの煙道に、上記二次燃焼された後の排ガス中の酸素濃度を検出する酸素濃度センサ26が設置され、さらに、前記焼却炉3の炉出口位置における排ガス温度即ち炉出口温度を計測する熱電対式等のガス温度センサ25が設けられている。
【0023】
前記焼却炉3のプッシャ機構4の位置とは反対の後燃焼帯側炉壁には、前記焼却処理帯5におけるゴミの燃切点の位置を検出するためのテレビカメラ15が設置されている。具体的には、図2に示すように、テレビカメラ15は、炉内においてゴミのガス燃焼末端を示す燃切点mkが位置する燃焼処理帯5bを撮像範囲とする。そして、後述の制御装置30(図3参照)内に設けた画像処理部によって、テレビカメラ15の画像データを炎と炎以外に二値化して燃焼火炎を抽出し、その燃焼火炎の下流側の末端を燃切点mkと判断する。
【0024】
図3に示すように、マイクロプロセッサや半導体メモリ等で構成された制御装置30が設けられ、この制御装置30に、前記蒸気量センサ14、前記テレビカメラ15、ガス温度センサ25、酸素濃度センサ26、及び、前記バケット1で掴み上げられて炉内に投入されるゴミの重量を検出する重量センサ24(図1参照)の各検出情報が入力されている。一方、制御装置30からは、前記バケット1及びプッシャ機構4等に対する駆動信号が出力されている。
【0025】
上記制御装置30内に、炉内にゴミを供給する前記プッシャ機構4の1サイクル当りのゴミ供給量を表わす給塵効率を算出する給塵効率算出手段Dが構成されている。給塵効率は、前記プッシャ機構4の動作速度とゴミ投入量の実績値から推定される。具体的には、ホッパー2から燃焼処理帯5にかけて滞留し、今後乾燥及び燃焼プロセスに入ると予想されるある一定のゴミ量を想定し、そのゴミ量を投入するのに必要な所定時間におけるプッシャ機構4によるゴミの投入重量(トン/時間)を、同じ所定時間におけるプッシャ機構4の動作速度(サイクル/時間)の移動平均値で除算して、給塵効率(トン/サイクル)を求めている。
【0026】
また、上記制御装置30内に、下式のように、炉内で焼却処理するゴミの目標焼却量(以下、目標焼却ペースという)及び前記給塵効率算出手段Dが算出した給塵効率に基づいて前記プッシャ機構4の基準動作速度Vk(サイクル/時間)を求め、その基準動作速度Vkに基づいて前記プッシャ機構4の動作を制御する制御手段Cが設けられている。尚、式中の係数Kは、例えば1.1〜1.3の範囲の値に設定する。
【0027】
【数1】
Vk=K・目標焼却ペース(トン/時間)/給塵効率(トン/サイクル)
【0028】
さらに、前記制御手段Cは、炉内でのゴミの燃焼状態を示す燃焼指標に基づいて前記基準動作速度Vkを補正して前記プッシャ機構4の実動作速度Vjを求め、さらに、ゴミ焼却量の実績値に基づいて、炉内へのゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように上記実動作速度Vjを制限する。以下、説明する。
【0029】
上記プッシャ機構4の実動作速度Vjを制限する制御構成について説明すれば、前記制御手段Cが、前記燃焼指標として、複数の燃焼パターンを設定し、その複数の燃焼パターンの1つが継続して現れる場合に累積して増加もしくは減少する累積補正率H1と、前記複数の燃焼パターンの1つが現れたときに一時的に値が設定される一時補正率H2を求め、前記ゴミ焼却量の実績値に基づいて設定した上限値及び下限値によって前記累積補正率H1を制限しつつ、当該累積補正率H1及び前記一時補正率H2を用いて前記基準動作速度Vkを補正して前記実動作速度Vjを求めている。
【0030】
上記制御手段Cは、前記複数の燃焼パターンとして、蒸気量と燃切点mk等、炉内での発生熱量の評価指標と炉内のゴミ滞留量の評価指標とを組み合わせた二次元マトリック情報を用いる。具体的には、図4に示すように、炉内での発生熱量は前記蒸気量センサ14によって検出される発生蒸気量(適正値からの蒸気量偏差)を用い、炉内のゴミ滞留量は前記テレビカメラ15によって検出される燃切点mkの位置情報(燃焼処理帯5bの長さを100%としたときの先端からの位置であり、また適正位置に対して上流側か下流側かで表わす)を用い、No.1〜6の6つの燃焼パターンを設定している。従って、蒸気量偏差が負側から正側になるほど総発生熱量の多い高燃焼レベルとなり、燃切点mkの位置が下流側に位置するほど炉内ゴミ量が多い高負荷レベルとなる。
【0031】
そして、上記6つの燃焼パターンに対して、制御周期における前記累積補正率H1の増加又は減少のゲイン(%)と一時補正率H2のゲイン(%)の値を設定した一例を図5に示す。図5では、高燃焼レベルであるNo.1,2の燃焼パターンに対して、燃焼でゴミ量が急激に消費されてゴミ不足になることを防止するために、累積補正率H1のゲインとしてプラスの値を設定し、またゴミ送り量を急減させることで蒸気量を抑制するために、一時補正率H2のゲインとしてマイナスの大きな値を設定している。
【0032】
図6に上記燃焼パターン4から5への変化に対して累積補正率H1(%)と一時補正率H2(%)を求める場合の一例を示す。この例では、燃焼パターン4から5に変化した時点(時間0の時点)で一時補正率H2が20%に設定されるとともに、同一燃焼パターン5が継続する時は5分の制御周期で0%に戻り、一方、同一燃焼パターン5が継続する時は累積補正率H1は5分の制御周期で5%減少するので、この一時補正率H2と累積補正率H1を合計した補正率は図の太い実線で示すように、始め20%まで一時的に増加したのち5分経過時に−5%(95%)に減少する。そして、5分後にも同一燃焼パターン5が継続している時は、上記と同様に、一時補正率H2が20%に設定されるとともに累積補正率H1が減少し、合計の補正率はのこぎり波形で変化する。すなわち、一時補正率H2は各制御周期における平均補正ゲインとする。したがって、−5%のステップ変化としてもよい。
【0033】
さらに、図6には、時間0の時点から6分後に燃焼パターン5から燃焼パターン4に変化した場合を破線で示している。この燃焼パターン4に対して、一時補正率H2は0%に設定されるため、燃焼パターン4が継続する時は、一時補正率H2は0%で固定され、一方、累積補正率H1は、燃焼パターン4に対するゲインが0%のため、現時点での累積補正率H1の値−6%がそのまま保持されるので、この一時補正率H2と累積補正率H1を合計した補正率は図の太い破線で示すようになる。
【0034】
次に、上記のように求めた累積補正率H1を実績焼却ペース(トン/時間)に基づいて上限及び下限値を設定して制限する。通常、ある範囲に設定されたゴミ発熱量に対して、定格焼却量を達成するように焼却炉は設計される。したがって、発熱量の上下限値で焼却処理能力100%、その他の時は、100から120%程度の処理能力を持つ。そのため、焼却ペースが定格焼却ペースから大きく乖離しないことが、安定燃焼維持にとって重要である。具体的には、図7に示すように、目標焼却ペース(トン/時間)に対する実績焼却ペース(トン/時間)の定格比(%)が適正範囲(95%〜105%)では、累積補正率上限を20%、累積補正率下限をマイナス20%と大きめの値にしているが、上記比が105%を超えて大きくなると、累積補正率下限は変化させず累積補正率上限をマイナス側にシフトさせ、逆に、上記比が95%よりも小さくなると、累積補正率上限は変化させず累積補正率下限をプラス側にシフトさせている。
【0035】
最後に、上記のように求めた累積補正率H1(%)と一時補正率H2(%)を用いて、下式により、前記基準動作速度Vk(サイクル/時間)を補正して実動作速度Vj(サイクル/時間)を求める。
【0036】
【数2】
Vj=Vk・〔(100+H1)/100〕・〔(100+H2)/100〕
【0037】
図8に給塵速度制御の制御フローを示す。
先ず、給塵速度(プッシャ機構4の動作速度)とゴミ投入量の実績値から給塵効率を演算し、この給塵効率と目標焼却ペースから基準給塵速度Vkを演算する(ステップ#1〜#2)。
次に、蒸気発生量と燃切点により燃焼パターンを判断し、この燃焼パターンに対して前記累積補正率H1を演算し、さらに、この演算した累積補正率H1に対して前記上限及び下限のリミット処理を実行する(ステップ#3〜#5)。
一方、上記燃焼パターンに対して前記一時補正率H2を演算し、この一時補正率H2と上記累積補正率H1を用いて前記基準給塵速度Vkを補正して実給塵速度Vjを演算し、操作量として制御出力する(ステップ#6〜#8)。
【0038】
図9に蒸気発生量の制御結果の一例を示すが、1週間の連続運転実績で、下式で表わされる蒸気発生量の1日変動(%)の標準偏差として、安定燃焼指標とされる5%を大幅に下回る3%以下(1.5〜2.8%)の良好な結果を得た。
【0039】
【数3】
蒸気発生量の変動(%)=(|実績値−目標値|/目標値)・100
【0040】
〔別実施の形態〕
上記実施形態では、前記制御手段Cが、炉内へのゴミ供給量が炉の焼却処理能力の適正範囲内に収まるように給塵手段4の実動作速度Vjをゴミ焼却量の実績値(実績焼却ペース)に基づいて制限するように構成したが、図8のステップ#5に記載しているように、ゴミ焼却量の実績値とゴミの発熱量の両方に基づいて上記給塵手段4の実動作速度Vjを制限するように構成してもよい。
【0041】
また、上記実施形態では、炉内でゴミの燃焼状態を示す燃焼指標として、炉内での発生熱量と炉内のゴミ滞留量を組み合わせた二次元マトリック情報を用いて複数の燃焼パターンを設定したが、燃焼指標はこれに限るものではない。例えば、上記炉内での発生熱量と炉内のゴミ滞留量のいずれか一方を用いてもよく、あるいは、これ以外に、焼却炉出口における排ガス温度を検出するガス温度センサ25の検出情報や、二次燃焼後の排ガス中の酸素濃度を検出する酸素濃度センサ26の検出情報等を上記燃焼指標として用いてもよい。
【図面の簡単な説明】
【図1】ゴミ焼却装置の全体構成を示す模式図
【図2】焼却炉内の燃焼ゴミの燃切点を検出する状態を示す平面図
【図3】制御系のブロック回路図
【図4】燃焼パターンの一例を示す図
【図5】累積補正率と一時補正率の設定値を示す図
【図6】累積補正率と一時補正率の設定値の変化例を示すグラフ
【図7】累積補正率に対する上限及び下限値の設定例を示すグラフ
【図8】制御のフローチャート図
【図9】蒸気発生量の制御結果の一例を示す図
【符号の説明】
3 焼却炉
4 給塵手段
C 制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combustion control device for an incinerator that incinerates garbage, and in particular, to maintain a target amount of garbage to be incinerated in the furnace and supply the garbage to the furnace in order to maintain the amount of garbage in the furnace within an appropriate range. The reference operation speed of the dust supply means is determined based on the dust supply efficiency indicating the dust supply amount of the dust supply means (for example, one reciprocation of the dust supply apparatus by repeating the reciprocating operation, ie, the amount of dust supply per cycle). The present invention relates to a combustion control device for an incinerator provided with control means for controlling the operation of the dust supply means based on the calculated reference operation speed.
[0002]
[Prior art]
In the first related art related to the combustion control device of the incinerator, the amount of steam generated from the waste heat boiler, the brightness information of the ITV image for monitoring the combustion state in the furnace, the pressure under the post-combustion grate and the pressure in the furnace are obtained. The grate speed, grate stroke length, and post-combustion air damper are controlled based on the pressure difference, post-combustion grate temperature, and main flue temperature to achieve stable steam generation and reduction of unburned refuse. (See Patent Document 1).
[0003]
Further, in the second prior art, the dust supply efficiency (actual dust supply amount per one reciprocation of the dust supply device) is estimated from the operation speed of the dust supply means for supplying dust into the furnace and the history of the dust supply amount. The target dust incineration amount is realized while controlling the dust feeding speed in accordance with the change in the dust quality determined based on the dust feeding efficiency (see Patent Document 2).
[0004]
In the third prior art, the volume of the dust is calculated by measuring the inside of the hopper with a laser distance meter, and the specific gravity of the dust is calculated from the volume of the dust and the weight of the dust separately measured. The calorific value (heat supply amount in the furnace) is estimated, and the dust supply speed is controlled so as to keep the heat supply amount in the furnace constant (see Non-Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-332121 (pages 2-9, FIGS. 1-12)
[Patent Document 2]
JP-A-7-269834 (pages 2-4, FIGS. 1-4)
[Non-patent document 1]
Shinichi Tsujimoto and 2 others, "Control of waste heat supply in incinerators", Journal of EICA, October 31, 2002, Vol. 7, No. 2 (2002), p. 75-78
[0006]
[Problems to be solved by the invention]
However, in the first prior art, since the dust supply speed into the furnace is not controlled, when the amount of dust held in the furnace becomes excessive, the speed and stroke length of the grate are controlled to control the dust layer. Although the layer thickness balance can be changed, if the refuse supply speed is the same, the amount of refuse held in the furnace does not decrease, so that there is a problem that unburned refuse is generated. In other words, if the amount of steam generated falls below the target, the garbage feed rate will always increase, and the amount of garbage in the furnace will rapidly increase for garbage with low air permeability, and the air permeability will decrease further, and combustion will decrease. Had the problem of getting worse.
[0007]
In the second prior art, the reference operation speed of the dust supply means is obtained from the target amount of incineration and the dust supply efficiency, and the actual operation speed of the dust supply means is controlled to the reference operation speed. However, if the target waste incineration amount is set high, there is a possibility that waste exceeding the incineration capacity of the furnace may be supplied.
Also, in the third prior art, as in the second prior art, the target incineration amount is set high when the heat generation amount of the dust is low as in the second prior art because of the constant control of the amount of heat supplied. There is a possibility that garbage exceeding the processing capacity may be supplied.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to avoid a deterioration of a combustion state due to an excessive or insufficient supply of dust to the furnace and to realize stable combustion. An object of the present invention is to provide a combustion control device for an incinerator.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 of the combustion control apparatus for an incinerator for achieving the above object expresses a target incineration amount of refuse to be incinerated in the furnace and a refuse supply amount of dust supply means for supplying refuse to the furnace. Control means for obtaining a reference operation speed of the dust supply means based on the dust supply efficiency and controlling the operation of the dust supply means based on the reference operation speed is provided. The control means corrects the reference operation speed based on a combustion index indicating a state of burning dust in the furnace to obtain an actual operating speed of the dust supply means, and obtains an actual value of the dust incineration amount or a dust incineration amount. The actual operation speed is limited so that the amount of dust supplied to the furnace falls within an appropriate range with respect to the incineration capacity of the furnace, based on both the actual value of the heat generation and the estimated value of the calorific value of the dust. .
[0010]
That is, when the shortage of the refuse in the furnace is expected based on the combustion index, the actual operation speed of the dust supply means is increased by correcting the reference operation speed to the increasing side so that the refuse in the furnace is not insufficient. On the other hand, when it is expected that the dust in the furnace is excessive, the reference operation speed is corrected to a lower side so that the dust in the furnace is not excessive, so that the actual operation speed of the dust supply means is reduced.
Further, based on the actual value of the incineration amount or both the actual value of the incineration amount and the estimated value of the calorific value of the waste, for example, the actual value of the incineration amount in the past 1 to 2 hours with respect to the rated combustion pace Is large, the actual operation speed of the dust supply means is limited to a low speed so that the amount of refuse supplied into the furnace does not exceed the upper limit of the appropriate range of the incineration capacity of the furnace. When the actual value of the amount is small, the actual operation speed of the dust supply means is limited to a high speed so that the amount of dust supplied to the furnace does not deviate from the lower limit of the appropriate range of the incineration capacity of the furnace. .
[0011]
Therefore, the actual operation speed is obtained by correcting the reference operation speed of the dust supply means obtained based on the target incineration amount and the dust supply efficiency in accordance with the combustion state of the dust in the furnace. The actual operation speed of the dust supply means is limited based on the actual value of the incineration amount of refuse so that the amount falls within an appropriate range with respect to the incineration capacity of the furnace. Provided is a combustion control apparatus for an incinerator, which is capable of avoiding deterioration of a combustion state due to insufficient supply and realizing stable combustion.
[0012]
A feature configuration of the invention according to claim 2 is the invention according to claim 1, wherein the control means sets a plurality of combustion patterns as the combustion index, and one of the plurality of combustion patterns continuously appears. A cumulative correction rate that increases or decreases accumulatively is calculated, and an upper limit value and a lower limit value set based on the actual value of the incineration amount or the actual value of the incineration amount and the estimated value of the heat generation amount of the dust are used. The point is that the actual operation speed is obtained by correcting the reference operation speed using the accumulated correction ratio while limiting the accumulated correction ratio.
[0013]
That is, the plurality of combustion patterns represent different combustion states such as the amount of heat generated by combustion and the amount of garbage retained in the furnace. For example, the amount of generated steam exceeds the target, and the burn-off point is upstream of the drying zone. When the combustion pattern located at the position (1) continues to appear, it is determined that the heat generation amount of dust increases and the combustion speed is high, and the cumulative correction rate is accumulated and increased, while the amount of generated steam decreases and the combustion rate decreases. When the combustion pattern in which the cut point is located downstream on the post-combustion side continues to appear, it is determined that the heat generation amount of the dust decreases and the combustion speed is low, and the accumulation correction rate is accumulated and decreased so that the accumulation correction rate is decreased. An appropriate actual operating speed can be obtained by reflecting the stable combustion state in the furnace or a gradual change in the combustion state in the correction rate, and the amount of dust supplied is within the appropriate range for the incineration capacity of the furnace. To fit in the rated combustion The upper limit and the lower limit are set for the cumulative correction rate based on the actual value of the amount of refuse incinerated with respect to the amount of waste, so that even if one of the combustion patterns continues, the actual operation speed of the dust supply means is set to the appropriate speed. It does not deviate significantly from
Therefore, it is possible to easily and appropriately determine the actual operation speed from the reference operation speed of the dust supply means by using the two parameters of the plurality of combustion patterns and the cumulative correction rate, which is suitable for the combustion control device of the incinerator. Embodiments are provided.
[0014]
According to a characteristic configuration of the invention according to claim 3, in the invention according to claim 2, when the control unit corrects the reference operation speed, one of the combustion patterns appears in addition to the cumulative correction rate. The point is that a temporary correction factor, whose value is sometimes temporarily set, is used.
[0015]
According to the above configuration, the control unit temporarily sets a value to a temporary correction rate when one of the plurality of combustion patterns appears, and uses both the temporary correction rate and the cumulative correction rate to set the temporary correction rate. The actual operation speed of the dust supply means is obtained by correcting the reference operation speed.
That is, since the temporary correction rate is different from the cumulative correction rate and is set only when one of a plurality of combustion patterns appears once, for example, the steam amount increases and indicates a sudden change to excessive combustion. When a combustion pattern appears and it is necessary to rapidly reduce the dust supply speed, it is not possible to cope with the cumulative correction rate in which the value is cumulatively increased or decreased, but by temporarily setting a large value to the temporary correction rate, In addition, it is possible to reliably limit the actual operating speed of the dust supply means in response to the rapid change in the combustion state.
Therefore, by using the temporary correction rate in addition to the cumulative correction rate, it is possible to appropriately set the actual operation speed of the dust supply means even for a sudden change in the combustion state in the furnace, and to reduce the A preferred embodiment of the combustion control device is provided.
[0016]
The characteristic configuration of the invention according to claim 4 is that, in the invention according to claim 2 or 3, the control means determines, as the plurality of combustion patterns, an evaluation index of a calorific value generated in the furnace and a garbage accumulation amount in the furnace. The point is that two-dimensional matrix information combined with an evaluation index is used.
[0017]
It is difficult to judge whether or not the combustion state of the refuse in the furnace is proper only by the amount of heat generated in the furnace.For example, when the amount of generated heat is small, the cause of the small amount of heat is poor combustion of the refuse in the furnace. It is not possible to judge whether or not the amount of garbage in the furnace is small, but by combining the amount of heat generated in the furnace with the amount of garbage in the furnace, for example, the amount of garbage in the furnace Nevertheless, when the amount of generated heat is small, it can be determined that dust in the furnace is poorly burned due to a decrease in air permeability or the like.
Therefore, by combining information on the amount of heat generated in the furnace and the amount of garbage retained in the furnace as the plurality of combustion patterns, it is appropriately determined whether or not the garbage in the furnace is in an appropriate combustion state, and It is possible to appropriately set the actual operating speed of the dust supply means according to the combustion state in the inside, and a preferred embodiment of the combustion control device for the incinerator is provided.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a combustion control device for an incinerator according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, a bucket 1 for picking up and transporting dust accumulated in a dust pit 20, a hopper 2 into which the dust picked up by the bucket 1 is put, and an incinerator 3 for removing dust in the hopper 2. A pusher mechanism 4 serving as dust supply means which reciprocates to push and supply the wastewater into the furnace; a stoker-type incineration zone 5 for incineration while transporting refuse supplied into the furnace by the pusher mechanism 4; An ash pit 6 for collecting incinerated ash from the zone 5, a steam turbine 8 supplied with steam from a waste heat boiler 7 for collecting heat generated in the furnace, and power generation driven by the steam turbine 8. A refuse incineration facility is provided so that the refuse incineration equipment is provided, and after the exhaust gas from the incinerator 3 is treated by an exhaust gas treatment unit 10 having a bag filter or the like, the exhaust gas is discharged from a chimney 11. .
[0019]
Although not shown in the drawings, the steam from the waste heat boiler 7 is stored in a steam reservoir in a state where the steam is heated by a steam heater arranged in a flue for sending exhaust gas from the incinerator 3 to be dried and vaporized, After the steam from the steam reservoir is supplied to the steam turbine 8 to drive the generator 9, the steam is condensed and finally returned to the waste heat boiler 7. In addition, a steam amount sensor 14 for detecting the amount of generated steam is provided in a steam path supplied from the waste heat boiler 7 to the steam turbine 8.
[0020]
The incineration treatment zone 5 includes a drying treatment zone 5a for drying the supplied dust and heating it to near the ignition point from the upper side (the side of the pusher mechanism 4) along the direction of transporting the dust in the furnace. A combustion treatment zone 5b for burning refuse and a post-combustion treatment zone 5c for ashing the burned trash are sequentially arranged. Each of the incineration zones 5a, 5b, and 5c is formed in a step-like manner so that the level of the incineration zone 5 becomes lower toward the lower side in the transport direction. Each of the treatment zones 5a, 5b, 5c has a fixed grate in a fixed state and a movable grate slidable with respect to the fixed grate, and the movable grate is fixed by operating a hydraulic cylinder (not shown). The dust is stirred while the dust on the incineration zone is sequentially transferred to the drying zone 5a, the combustion zone 5b, and the post-combustion zone 5c by sliding back and forth with respect to the grate. Then, the ash that has been incinerated in the post-combustion treatment zone 5c falls to the ash pushing mechanism 12 and is conveyed and accumulated in the ash pit 6 by the ash conveyor 13.
[0021]
Below the incineration zone 5, primary combustion air for promoting the combustion of dust is supplied. Specifically, a plurality of flow paths 22 are connected to a plurality of wind boxes 23 disposed below the processing zones 5a, 5b, and 5c, and each of the flow paths 22 is blown by a blower (not shown). The heated air is supplied according to. Then, the air supplied to each flow path 22 passes upward from the wind box 23 through each of the processing zones 5a, 5b, and 5c, so that the combustion of dust is promoted.
[0022]
Secondary combustion air supply means for supplying secondary combustion air to the inside of the furnace above the incineration treatment zone 5 in order to perform secondary combustion of the combustion gas generated by the burning of the refuse in the incinerator 3 27 are provided. An oxygen concentration sensor 26 for detecting the oxygen concentration in the exhaust gas after the secondary combustion is installed in the flue of the exhaust gas from the incinerator 3. A gas temperature sensor 25 of a thermocouple type or the like for measuring the temperature, that is, the furnace outlet temperature is provided.
[0023]
A television camera 15 for detecting the position of the burn-off point of the garbage in the incineration treatment zone 5 is provided on the rear combustion zone-side furnace wall opposite to the position of the pusher mechanism 4 of the incinerator 3. Specifically, as shown in FIG. 2, the television camera 15 sets the combustion processing zone 5b in which the burn-off point mk indicating the gas burning end of the trash in the furnace is set as the imaging range. Then, the image data of the television camera 15 is binarized other than the flame and the flame by the image processing unit provided in the control device 30 (see FIG. 3) described later to extract the combustion flame, and the combustion flame is downstream. The end is determined to be the burning point mk.
[0024]
As shown in FIG. 3, a control device 30 including a microprocessor, a semiconductor memory, and the like is provided, and the control device 30 includes the steam amount sensor 14, the television camera 15, the gas temperature sensor 25, and the oxygen concentration sensor 26. , And each piece of detection information of a weight sensor 24 (see FIG. 1) that detects the weight of dust that is picked up by the bucket 1 and put into the furnace. On the other hand, a drive signal for the bucket 1, the pusher mechanism 4, and the like is output from the control device 30.
[0025]
Dust supply efficiency calculating means D for calculating dust supply efficiency indicating the amount of dust supplied per cycle of the pusher mechanism 4 for supplying dust into the furnace is provided in the control device 30. The dust supply efficiency is estimated from the operation speed of the pusher mechanism 4 and the actual value of the dust input amount. Specifically, assuming a certain amount of garbage that stays from the hopper 2 to the combustion treatment zone 5 and is expected to enter the drying and combustion process in the future, the pusher for a predetermined time required to input the garbage amount is assumed. The dust input efficiency (tons / cycle) is obtained by dividing the input weight (tons / hour) of dust by the mechanism 4 by the moving average value of the operating speed (cycles / hour) of the pusher mechanism 4 at the same predetermined time. .
[0026]
Further, in the control device 30, based on the target incineration amount of garbage to be incinerated in the furnace (hereinafter referred to as a target incineration pace) and the dust supply efficiency calculated by the dust supply efficiency calculation means D, as in the following equation: Control means C for determining a reference operation speed Vk (cycle / time) of the pusher mechanism 4 and controlling the operation of the pusher mechanism 4 based on the reference operation speed Vk. The coefficient K in the equation is set to a value in the range of, for example, 1.1 to 1.3.
[0027]
(Equation 1)
Vk = K ・ Target incineration pace (ton / hour) / Dust supply efficiency (ton / cycle)
[0028]
Further, the control means C calculates the actual operating speed Vj of the pusher mechanism 4 by correcting the reference operating speed Vk based on a combustion index indicating a state of burning dust in the furnace. Based on the actual value, the actual operation speed Vj is limited so that the amount of dust supplied into the furnace falls within an appropriate range for the incineration capacity of the furnace. This will be described below.
[0029]
A control configuration for limiting the actual operating speed Vj of the pusher mechanism 4 will be described. The control means C sets a plurality of combustion patterns as the combustion index, and one of the plurality of combustion patterns appears continuously. In this case, a cumulative correction rate H1 that increases or decreases cumulatively and a temporary correction rate H2 that is set to a value temporarily when one of the plurality of combustion patterns appears, are obtained. The actual operating speed Vj is obtained by correcting the reference operating speed Vk using the cumulative correcting ratio H1 and the temporary correcting ratio H2 while limiting the cumulative correcting ratio H1 by an upper limit value and a lower limit value set based on the standard operating speed Vj. ing.
[0030]
The control means C, as the plurality of combustion patterns, two-dimensional matrix information combining the evaluation index of the amount of heat generated in the furnace and the evaluation index of the amount of garbage retained in the furnace, such as the amount of steam and the breaking point mk, etc. Used. Specifically, as shown in FIG. 4, the amount of heat generated in the furnace uses the amount of generated steam (steam amount deviation from an appropriate value) detected by the steam amount sensor 14, and the amount of accumulated dust in the furnace is The position information of the burn-off point mk detected by the TV camera 15 (the position from the tip when the length of the combustion treatment zone 5b is 100%, and whether the position is upstream or downstream with respect to the appropriate position. No.). Six combustion patterns 1 to 6 are set. Therefore, the higher the steam amount deviation becomes from the negative side to the positive side, the higher the combustion level becomes, the larger the total amount of generated heat becomes.
[0031]
FIG. 5 shows an example in which the gain (%) of increasing or decreasing the cumulative correction rate H1 and the gain (%) of the temporary correction rate H2 in the control cycle are set for the above six combustion patterns. In FIG. For the combustion patterns of 1 and 2, in order to prevent the amount of dust from being consumed abruptly by the combustion and becoming short of dust, a positive value is set as the gain of the cumulative correction rate H1, and the dust feed amount is set. In order to suppress the amount of steam by rapidly decreasing the value, a large negative value is set as the gain of the temporary correction rate H2.
[0032]
FIG. 6 shows an example in which the cumulative correction rate H1 (%) and the temporary correction rate H2 (%) are obtained for the change from the combustion pattern 4 to the combustion pattern 5. In this example, the temporary correction rate H2 is set to 20% when the combustion pattern changes from 4 to 5 (time 0), and when the same combustion pattern 5 continues, 0% is applied in a 5-minute control cycle. On the other hand, when the same combustion pattern 5 continues, the cumulative correction rate H1 decreases by 5% in the control cycle of 5 minutes. Therefore, the correction rate obtained by adding the temporary correction rate H2 and the cumulative correction rate H1 is thick in FIG. As shown by the solid line, it temporarily increases to 20% at first, and then decreases to -5% (95%) after 5 minutes. When the same combustion pattern 5 continues after 5 minutes, the temporary correction rate H2 is set to 20% and the cumulative correction rate H1 decreases, and the total correction rate becomes a sawtooth waveform, as described above. To change. That is, the temporary correction rate H2 is an average correction gain in each control cycle. Therefore, a step change of -5% may be used.
[0033]
Further, in FIG. 6, the case where the combustion pattern 5 changes to the combustion pattern 4 six minutes after the time 0 is indicated by a broken line. Since the temporary correction rate H2 is set to 0% for this combustion pattern 4, when the combustion pattern 4 continues, the temporary correction rate H2 is fixed at 0%, while the cumulative correction rate H1 is Since the gain for pattern 4 is 0%, the current value of the cumulative correction rate H1 of −6% is held as it is, and the correction rate obtained by adding the temporary correction rate H2 and the cumulative correction rate H1 is indicated by a thick broken line in the drawing. As shown.
[0034]
Next, the cumulative correction rate H1 determined as described above is limited by setting upper and lower limits based on the actual incineration pace (tons / hour). Usually, an incinerator is designed to achieve a rated incineration amount with respect to a garbage heating value set in a certain range. Therefore, it has an incineration treatment capacity of 100% at the upper and lower limits of the calorific value, and has a treatment capacity of about 100 to 120% at other times. Therefore, it is important that the incineration pace does not largely deviate from the rated incineration pace for maintaining stable combustion. Specifically, as shown in FIG. 7, when the rated ratio (%) of the actual incineration pace (tons / hour) to the target incineration pace (tons / hour) is within an appropriate range (95% to 105%), the cumulative correction rate The upper limit is set to a relatively large value of 20%, and the lower limit of the cumulative correction rate is set to a relatively large value of minus 20%. Conversely, when the ratio becomes smaller than 95%, the upper limit of the cumulative correction rate is not changed and the lower limit of the cumulative correction rate is shifted to the plus side.
[0035]
Finally, using the cumulative correction rate H1 (%) and the temporary correction rate H2 (%) obtained as described above, the reference operation speed Vk (cycle / time) is corrected by the following equation to obtain the actual operation speed Vj. (Cycle / time).
[0036]
(Equation 2)
Vj = Vk ・ [(100 + H1) / 100] ・ [(100 + H2) / 100]
[0037]
FIG. 8 shows a control flow of the dust supply speed control.
First, the dust supply efficiency is calculated from the dust supply speed (operating speed of the pusher mechanism 4) and the actual value of the dust input amount, and the reference dust supply speed Vk is calculated from the dust supply efficiency and the target incineration pace (steps # 1 to # 1). # 2).
Next, the combustion pattern is determined based on the amount of generated steam and the burn-off point, the cumulative correction rate H1 is calculated for the combustion pattern, and the upper and lower limits are calculated for the calculated cumulative correction rate H1. The processing is executed (steps # 3 to # 5).
On the other hand, the temporary correction rate H2 is calculated for the combustion pattern, and the actual dust supply rate Vj is calculated by correcting the reference dust supply rate Vk using the temporary correction rate H2 and the cumulative correction rate H1. Control output is performed as an operation amount (steps # 6 to # 8).
[0038]
FIG. 9 shows an example of the control result of the amount of steam generation. The result of continuous operation for one week is a standard deviation of the daily variation (%) of the amount of steam generation expressed by the following formula, which is used as a stable combustion index. %, Which is much less than 3% (1.5 to 2.8%).
[0039]
[Equation 3]
Fluctuation of steam generation (%) = (| actual value−target value | / target value) · 100
[0040]
[Another embodiment]
In the above embodiment, the control means C sets the actual operating speed Vj of the dust supply means 4 to the actual value of the dust incineration amount (actual amount) so that the amount of dust supplied into the furnace is within the appropriate range of the incineration capacity of the furnace. However, as described in step # 5 of FIG. 8, the dust supply means 4 is restricted based on both the actual value of the incineration amount and the calorific value of the dust. The actual operation speed Vj may be limited.
[0041]
Further, in the above embodiment, a plurality of combustion patterns are set using two-dimensional matrix information that combines the amount of heat generated in the furnace and the amount of retained dust in the furnace as a combustion index indicating the state of combustion of the dust in the furnace. However, the combustion index is not limited to this. For example, any one of the amount of heat generated in the furnace and the amount of garbage retained in the furnace may be used, or, in addition to this, detection information of a gas temperature sensor 25 that detects an exhaust gas temperature at an incinerator outlet, The detection information of the oxygen concentration sensor 26 that detects the oxygen concentration in the exhaust gas after the secondary combustion may be used as the combustion index.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the entire configuration of a refuse incinerator. FIG. 2 is a plan view showing a state where a burn-off point of combustion refuse in an incinerator is detected. FIG. 3 is a block circuit diagram of a control system. FIG. 5 is a diagram showing an example of a combustion pattern. FIG. 5 is a diagram showing set values of a cumulative correction rate and a temporary correction rate. FIG. 6 is a graph showing a change example of set values of a cumulative correction rate and a temporary correction rate. FIG. 8 is a graph showing an example of setting upper and lower limits for the rate. FIG. 8 is a flowchart of control. FIG. 9 is a diagram showing an example of a control result of a steam generation amount.
3 incinerator 4 dust supply means C control means

Claims (4)

炉内で焼却処理するゴミの目標焼却量及び炉内にゴミを供給する給塵手段のゴミ供給量を表わす給塵効率に基づいて前記給塵手段の基準動作速度を求め、その基準動作速度に基づいて前記給塵手段の動作を制御する制御手段が設けられた焼却炉の燃焼制御装置であって、
前記制御手段が、炉内でのゴミの燃焼状態を表わす燃焼指標に基づいて前記基準動作速度を補正して前記給塵手段の実動作速度を求め、ゴミ焼却量の実績値、もしくは、ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて、炉内へのゴミ供給量が炉の焼却処理能力に対して適正範囲内に収まるように前記実動作速度を制限する焼却炉の燃焼制御装置。
The reference operation speed of the dust supply means is obtained based on a target incineration amount of refuse to be incinerated in the furnace and a dust supply efficiency indicating a dust supply amount of the dust supply means for supplying trash into the furnace. An incinerator combustion control device provided with control means for controlling the operation of the dust supply means based on the
The control means corrects the reference operation speed based on a combustion index indicating a state of burning dust in the furnace to obtain an actual operating speed of the dust supply means, and obtains an actual value of the amount of dust incineration or dust incineration. An incinerator for limiting the actual operation speed based on both the actual value of the amount and the estimated value of the amount of heat generated by the refuse so that the amount of refuse supplied to the furnace falls within an appropriate range with respect to the incineration capacity of the furnace. Combustion control device.
前記制御手段が、前記燃焼指標として、複数の燃焼パターンを設定し、前記複数の燃焼パターンの1つが継続して現れる場合に累積して増加もしくは減少する累積補正率を求め、前記ゴミ焼却量の実績値もしくは前記ゴミ焼却量の実績値とゴミの発熱量の推定値の両方に基づいて設定した上限値及び下限値によって前記累積補正率を制限しつつ、当該累積補正率を用いて前記基準動作速度を補正して前記実動作速度を求める請求項1記載の焼却炉の燃焼制御装置。The control means sets a plurality of combustion patterns as the combustion index, obtains a cumulative correction rate that increases or decreases cumulatively when one of the plurality of combustion patterns continuously appears, and calculates the garbage incineration amount. While limiting the cumulative correction rate by an upper limit and a lower limit set based on an actual value or both an actual value of the incineration amount and an estimated value of the heat generation amount of the dust, the reference operation is performed using the cumulative correction rate. 2. The combustion control device for an incinerator according to claim 1, wherein the actual operation speed is obtained by correcting the speed. 前記制御手段が、前記基準動作速度を補正する際に、前記累積補正率に加えて、前記燃焼パターンの1つが現れたときに一時的に値が設定される一時補正率を用いる請求項2記載の焼却炉の燃焼制御装置。3. The control means, when correcting the reference operation speed, uses a temporary correction rate that is temporarily set when one of the combustion patterns appears, in addition to the cumulative correction rate. 4. Incinerator combustion control device. 前記制御手段が、前記複数の燃焼パターンとして、炉内での発生熱量の評価指標と炉内のゴミ滞留量の評価指標とを組み合わせた二次元マトリックス情報を用いる請求項2又は3記載の焼却炉の燃焼制御装置。4. The incinerator according to claim 2, wherein the control unit uses two-dimensional matrix information obtained by combining an evaluation index of the amount of heat generated in the furnace and an evaluation index of the amount of garbage retained in the furnace as the plurality of combustion patterns. 5. Combustion control device.
JP2003036851A 2003-02-14 2003-02-14 Combustion control device for incinerator Expired - Lifetime JP4036768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036851A JP4036768B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036851A JP4036768B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Publications (2)

Publication Number Publication Date
JP2004245519A true JP2004245519A (en) 2004-09-02
JP4036768B2 JP4036768B2 (en) 2008-01-23

Family

ID=33021829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036851A Expired - Lifetime JP4036768B2 (en) 2003-02-14 2003-02-14 Combustion control device for incinerator

Country Status (1)

Country Link
JP (1) JP4036768B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249214A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Control method, device and program for incinerator
JP2012057809A (en) * 2010-09-06 2012-03-22 Jfe Engineering Corp Operation control method of incinerator
JP2016528462A (en) * 2013-06-28 2016-09-15 エヌイーシー・パワー・カンパニー・リミテッド Diagnosis and control of incineration facilities and solid fuel boilers through thermal settlement and design program and driver's operation form analysis and equipment life cycle management system and method
JP2017180971A (en) * 2016-03-31 2017-10-05 日立造船株式会社 Automatic combustion control method for incineration facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249214A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Control method, device and program for incinerator
JP2012057809A (en) * 2010-09-06 2012-03-22 Jfe Engineering Corp Operation control method of incinerator
JP2016528462A (en) * 2013-06-28 2016-09-15 エヌイーシー・パワー・カンパニー・リミテッド Diagnosis and control of incineration facilities and solid fuel boilers through thermal settlement and design program and driver's operation form analysis and equipment life cycle management system and method
JP2017180971A (en) * 2016-03-31 2017-10-05 日立造船株式会社 Automatic combustion control method for incineration facility

Also Published As

Publication number Publication date
JP4036768B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP6723864B2 (en) Combustion control device equipped with a garbage moving speed detection function
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP2019178848A (en) Waste incinerator and waste incineration method
JP2004245519A (en) Combustion controller for incinerator
JP2018105590A (en) Garbage incineration appliance
JP6686633B2 (en) Waste treatment furnace device and method
WO2021111742A1 (en) Combustion facility control device, combustion facility control method and program
WO2020137598A1 (en) Garbage supply speed estimation device and garbage supply speed estimation method
CN114568031A (en) Waste combustion device and waste combustion method
JP3669778B2 (en) Combustion control device for garbage incinerator
JPH08178247A (en) Method of detecting nature of refuse in incinerator
CN113227654B (en) Garbage incinerator and control method thereof
JP2960852B2 (en) Combustion control device of garbage incinerator
JP3888870B2 (en) Garbage incinerator
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP2005164121A (en) Combustion control method for incinerator
JP2006125759A (en) Operation control device for incinerator
JPH08100916A (en) Combustion controller
JP3176211B2 (en) Combustion control method of garbage incinerator
JP2004232960A (en) Refuse incinerator
JPH10185157A (en) Method and device for judging refuse quality, and combustion control device of refuse incinerator
JP3916572B2 (en) Combustion control device for incinerator
JP3665476B2 (en) Combustion control device for incinerator
JP2023091983A (en) Combustion control device for refuse incinerator and combustion control method for refuse incinerator
JPH08128615A (en) Combustion controller for incinerating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Ref document number: 4036768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term