JPH08100916A - Combustion controller - Google Patents

Combustion controller

Info

Publication number
JPH08100916A
JPH08100916A JP23633894A JP23633894A JPH08100916A JP H08100916 A JPH08100916 A JP H08100916A JP 23633894 A JP23633894 A JP 23633894A JP 23633894 A JP23633894 A JP 23633894A JP H08100916 A JPH08100916 A JP H08100916A
Authority
JP
Japan
Prior art keywords
combustion
air
supply amount
zone
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23633894A
Other languages
Japanese (ja)
Inventor
Masataka Shichiri
雅隆 七里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23633894A priority Critical patent/JPH08100916A/en
Publication of JPH08100916A publication Critical patent/JPH08100916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PURPOSE: To obtain a combustion controller which can always stably burn by obtaining the area of flame region from image data of imaging means, deciding the supply amount of burning air from the obtained flame area, and controlling the supply amount of the burning air based on the decided amount. CONSTITUTION: A stoker type refuse incinerating furnace comprises a burning zone M and an air supply mechanism 6 for supplying burning air to the zone M, imaging means 20 for inputting the burning state of the refuse in the zone M, and first calculating means C1 for extracting the flame region from the data by the means 20 to obtain the area. Second calculating means C2 calculates to lead the burning speed of the refuse based on predetermined correlation coefficient from the flame area obtained by the means C1, and decides the supply amount from the mechanism 6. Control means utilizing a computer regulates the supply amount of the burning air from the mechanism 6 based on the supply amount of the air decided by the means C2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼却炉等の燃焼制御装
置に関し、特に、燃焼帯と、前記燃焼帯に燃焼用空気を
供給する空気供給機構を備えたストーカ式のゴミ焼却炉
における燃焼用空気の供給量を調節する燃焼制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for an incinerator or the like, and more particularly to combustion in a stoker-type refuse incinerator having a combustion zone and an air supply mechanism for supplying combustion air to the combustion zone. The present invention relates to a combustion control device that adjusts the supply amount of commercial air.

【0002】[0002]

【従来の技術】従来の燃焼制御装置では、予め、ある標
準燃焼物、ゴミ焼却炉の場合では標準ゴミを燃焼させる
時に必要な理論空気量に対して、所定の過剰率を掛け合
わせた値を空気供給機構から供給すべき基準空気供給量
として設定し、燃焼帯での燃焼状態をモニタする熱電対
を炉内に設けて、その熱電対による検出温度が目標温度
範囲に入るように前記基準空気供給量を増減する例えば
PID等の制御方法を用いた制御手段を設けていた。つ
まり、前記制御手段は、検出温度が異常に高ければ前記
基準空気供給量よりも供給量を低減して燃焼温度を下げ
るように調節し、検出温度が低ければ前記基準空気供給
量よりも供給量を増加して燃焼温度を上げるように調節
することで、炉内温度が目標温度に維持されるように調
節していた。
2. Description of the Related Art In a conventional combustion control device, a value obtained by multiplying a theoretical excess air amount required to burn a certain standard combustion product or standard waste in the case of a refuse incinerator by a predetermined excess ratio is set in advance. Set as a reference air supply amount to be supplied from the air supply mechanism, a thermocouple for monitoring the combustion state in the combustion zone is provided in the furnace, and the reference air is set so that the temperature detected by the thermocouple falls within the target temperature range. A control means using a control method such as PID for increasing / decreasing the supply amount is provided. That is, if the detected temperature is abnormally high, the control means adjusts the supply amount to be lower than the reference air supply amount to lower the combustion temperature, and if the detected temperature is low, the supply amount is higher than the reference air supply amount. Was adjusted to increase the combustion temperature to raise the combustion temperature so that the furnace temperature was maintained at the target temperature.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来例
では、熱電対により検出された炉内温度は、炉内の輻射
の影響を受け、また、燃焼帯のみならずその前後の乾燥
帯や後燃焼帯の影響をも含めた値となり、必ずしも燃焼
帯での燃焼状態を正確に検出するものではないので、空
気供給量の調節のための指標として最適なものではな
く、過剰供給や供給不足になる場合があるという問題点
があった。
However, in the above-mentioned conventional example, the temperature inside the furnace detected by the thermocouple is affected by the radiation inside the furnace, and not only in the combustion zone but also in the dry zones before and after the combustion zone. It is a value that also includes the effect of the after combustion zone, and it does not necessarily detect the combustion state in the combustion zone accurately, so it is not the optimum index for adjusting the air supply amount, and excessive supply or insufficient supply There was a problem that it may become.

【0004】さらに、燃焼帯上で焼却処理される実際の
ゴミは、上述の標準ゴミとその成分が大きく異なる場合
もあり、そのような場合には前記基準空気供給量自体が
無意味な値となり、空気の極端な過剰供給や不足供給に
つながり、前者の場合にはNOxの発生、後者の場合に
は一酸化炭素の発生といった不都合が生じるおそれがあ
るという問題点があった。
In addition, the actual dust to be incinerated on the combustion zone may have a large difference in composition from the above-mentioned standard dust. In such a case, the reference air supply amount itself becomes a meaningless value. However, there is a problem in that it may lead to an extreme excess or shortage of air supply, which may cause inconveniences such as NOx generation in the former case and carbon monoxide generation in the latter case.

【0005】本発明の目的は上述した従来欠点を解消
し、ゴミ焼却炉で焼却処理されるゴミ成分の変動に係わ
らず、燃焼帯への燃焼用空気の供給量を適切に調節し
て、常に安定燃焼させうる燃焼制御装置を提供する点に
ある。
The object of the present invention is to eliminate the above-mentioned conventional drawbacks, and to appropriately adjust the supply amount of combustion air to the combustion zone to constantly maintain the amount of combustion air regardless of the fluctuation of the waste components incinerated in the waste incinerator. The point is to provide a combustion control device capable of stable combustion.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明による燃焼制御装置の特徴構成は、燃焼帯に
おけるゴミの燃焼状態を入力する撮像手段と、前記撮像
手段による画像データから火炎領域を抽出してその面積
を求める第一演算手段と、前記第一演算手段により求ま
った火炎面積から所定の相関係数に基づいてゴミの燃焼
速度を演算導出し、前記空気供給機構からの燃焼用空気
の供給量を決定する第二演算手段と、前記第二演算手段
により決定された燃焼用空気の供給量に基づいて、前記
空気供給機構からの燃焼用空気の供給量を調節する制御
手段とからなる点にある。
In order to achieve this object, the combustion control device according to the present invention is characterized by an image pickup means for inputting a combustion state of dust in a combustion zone, and a flame region based on image data obtained by the image pickup means. And a combustion speed of the dust from the air supply mechanism for calculating the combustion speed of the dust based on a predetermined correlation coefficient from the flame area obtained by the first calculation means. Second calculation means for determining the supply amount of air, and control means for adjusting the supply amount of combustion air from the air supply mechanism based on the supply amount of combustion air determined by the second calculation means It consists of

【0007】[0007]

【作用】後述するように、燃焼実験によれば、燃焼帯上
での燃焼火炎の面積Sと燃焼速度Vとは、一定の相関関
係があることが判明した。即ち、
As will be described later, according to combustion experiments, it has been found that the area S of the combustion flame on the combustion zone and the combustion velocity V have a certain correlation. That is,

【0008】[0008]

【数1】 (火炎面積S) = k・(燃焼速度V) − A ここに、kは比例定数、Aは定数である。## EQU00001 ## (Flame area S) = k.multidot. (Combustion velocity V) -A where k is a proportional constant and A is a constant.

【0009】一方、空気供給機構からの燃焼用空気の供
給量Pと燃焼に必要な空気量(理論空気量)P’との比
である空気過剰率Zは次式で表すように、供給量Pと燃
焼速度Vとの比で求まる。
On the other hand, the excess air ratio Z, which is the ratio of the supply amount P of combustion air from the air supply mechanism to the air amount (theoretical air amount) P'necessary for combustion, is expressed by the following equation. It can be obtained by the ratio of P to the combustion speed V.

【0010】[0010]

【数2】(空気過剰率Z) = (空気供給量P)/
(理論空気量P’) = (空気供給量P)/B・(燃焼速度V) ここに、Bは定数である。
[Equation 2] (Excess air ratio Z) = (Air supply amount P) /
(Theoretical air amount P ′) = (Air supply amount P) / B · (Combustion velocity V) Here, B is a constant.

【0011】(数2)に(数1)を代入すると、Substituting (Equation 1) into (Equation 2),

【0012】[0012]

【数3】(空気過剰率Z) = C・(空気供給量P)
/((火炎面積S)+A)) ここに、Cは定数である。
[Equation 3] (Air excess ratio Z) = C · (Air supply amount P)
/ ((Flame area S) + A)) where C is a constant.

【0013】つまり、空気過剰率Zが設定されると、
(数3)より、空気供給量Pが火炎面積Sの値を基に決
定されることになる。
That is, when the excess air ratio Z is set,
From (Equation 3), the air supply amount P is determined based on the value of the flame area S.

【0014】従って、前記撮像手段による画像データか
ら、前記第一演算手段により求められた火炎面積を基と
して、第二演算手段が、所定の相関係数に基づいてゴミ
の燃焼速度を演算導出して空気供給機構からの燃焼用空
気の供給量を決定し、制御手段が、第二演算手段により
決定された燃焼用空気の供給量に基づいて、空気供給機
構からの燃焼用空気の供給量を調節することにより、常
に空気過剰率が大幅に変動することのない状態で燃焼を
促進するのである。
Therefore, based on the flame area obtained by the first computing means, the second computing means computes and derives the burning rate of dust from the image data obtained by the image pickup means based on a predetermined correlation coefficient. Determines the supply amount of combustion air from the air supply mechanism, and the control means determines the supply amount of combustion air from the air supply mechanism based on the supply amount of combustion air determined by the second calculation means. By adjusting, combustion is promoted in a state where the excess air ratio does not fluctuate significantly at all times.

【0015】以下に実験例を説明する。図4に示すよう
に、実験装置は、電子天秤31に実験炉30を積載し
て、標準燃焼物たる豆炭32を燃焼させて、その燃焼状
態を赤外線カメラ33で撮影するように構成してある。
前記実験炉30で発生した排ガス成分を検出する排ガス
分析計34を設けて排ガス成分を記録計35で記録する
一方、コンプレッサ36での押込み空気を前記実験炉3
0の下方から供給する。前記押込み空気は、バルブ38
で流量調節自在に構成してあり、流量計39でモニタさ
れている。
Experimental examples will be described below. As shown in FIG. 4, the experimental apparatus is configured such that the experimental furnace 30 is loaded on the electronic balance 31, the soybean charcoal 32, which is a standard combustion product, is burned, and the burning state is photographed by the infrared camera 33. .
An exhaust gas analyzer 34 for detecting exhaust gas components generated in the experimental furnace 30 is provided and the exhaust gas components are recorded by the recorder 35, while the air pushed in by the compressor 36 is measured by the experimental furnace 3
Supply from below 0. The forced air is supplied to the valve 38.
The flow rate is freely adjustable and is monitored by the flow meter 39.

【0016】前記電子天秤31を用いて前記豆炭32の
燃焼過程における単位時間当たりの重量変化を検出する
ことにより燃焼速度が求まる。一方、前記赤外線カメラ
33で撮影された画像を、コンピュータ利用の画像処理
手段により火炎温度が例えば約600℃以上、700℃
以上、800℃以上と異なる閾値でそれぞれ二値化して
抽出された火炎領域の面積を求めると、図5に示すよう
に、そのいずれの場合にも燃焼速度と火炎面積との間に
正の相関があることが判明した。前記バルブ38を調節
して流量を可変とした場合であっても、画像処理手段に
より火炎温度が一定の閾値、例えば700℃以上で二値
化して抽出された火炎領域の面積を求めると、図6に示
すように、燃焼速度と火炎面積とは(数1)に示す線型
の関係にある。燃焼速度と燃焼に必要な空気量(理論空
気量)とは線型関係にあるので、(数3)のように空気
過剰率が定まるのである。
The burning rate can be obtained by detecting the weight change per unit time in the burning process of the bean charcoal 32 using the electronic balance 31. On the other hand, the image captured by the infrared camera 33 has a flame temperature of, for example, about 600 ° C. or more and 700 ° C. by an image processing means using a computer.
As described above, when the area of the flame region extracted by binarizing with a threshold value different from 800 ° C. or higher is obtained, as shown in FIG. 5, in any case, a positive correlation between the burning speed and the flame area is obtained. Turned out to be. Even if the flow rate is made variable by adjusting the valve 38, the area of the flame region extracted by binarizing the flame temperature by a constant threshold value, for example, 700 ° C. or higher by the image processing means is calculated. As shown in 6, the burning velocity and the flame area have a linear relationship shown in (Equation 1). Since the combustion speed and the amount of air required for combustion (theoretical air amount) have a linear relationship, the excess air ratio is determined as in (Equation 3).

【0017】[0017]

【発明の効果】従って本発明によれば、ゴミ焼却炉で焼
却処理されるゴミ成分の変動に係わらず、燃焼帯への燃
焼用空気の供給量を適切に調節して、常に安定燃焼させ
うる燃焼制御装置を提供することができるようになっ
た。
As described above, according to the present invention, the amount of combustion air supplied to the combustion zone can be appropriately adjusted to ensure stable combustion regardless of fluctuations in the waste components incinerated in the waste incinerator. A combustion control device can now be provided.

【0018】[0018]

【実施例】以下に、本発明の燃焼制御装置の実施例を説
明する。ゴミ焼却炉は、図1に示すように、被焼却物で
ある都市ゴミを受け入れるホッパ3と、前記ホッパ3内
のゴミを下端部から炉内に投入するプッシャ4と、前記
プッシャ4により投入されたゴミを攪拌搬送しながら焼
却処理するストーカ式の焼却処理帯5を設け、その底部
から一次燃焼用の空気を供給する空気供給手段6を設け
て構成してある。
EXAMPLES Examples of the combustion control device of the present invention will be described below. As shown in FIG. 1, the refuse incinerator is a hopper 3 that receives municipal refuse that is an object to be incinerated, a pusher 4 that puts the dust in the hopper 3 into the furnace from the lower end, and a pusher 4 that is put in by the pusher 4. A stoker-type incineration zone 5 for incinerating waste while stirring and transporting it is provided, and an air supply means 6 for supplying air for primary combustion from the bottom thereof is provided.

【0019】前記焼却処理帯5は、固定の火格子(図示
せず)に対して斜め上方に往復移動する可動の火格子
(図示せず)を搬送方向に沿って交互に配する油圧駆動
式のストーカ機構により、ゴミを乾燥させつつ搬送する
乾燥帯L、燃焼させつつ搬送する燃焼帯M(前部燃焼帯
M1、後部燃焼帯M2でなる)、灰化処理しつつ搬送す
る後燃焼帯Nとを階段状に配置して構成してあり、前記
可動の火格子の往復サイクルを可変とすることでゴミの
搬送速度を調節自在に構成してある。
The incineration zone 5 is of a hydraulic drive type in which movable grate (not shown) that reciprocates obliquely upward with respect to a fixed grate (not shown) is arranged alternately along the transport direction. With the stoker mechanism, the drying zone L for transporting the dust while drying, the combustion zone M for transporting while burning the dust (composed of the front combustion zone M1 and the rear combustion zone M2), and the post combustion zone N for transporting the ashing treatment. And are arranged in a stepwise manner, and the reciprocating cycle of the movable grate is variable so that the speed of transporting dust can be adjusted.

【0020】前記空気供給手段6は、ブロアファン6a
による押込み空気を、前記乾燥帯L、燃焼帯M、後燃焼
帯Nそれぞれの下方に各別に設けた風箱6cに送風路6
bを介して供給するように構成してあり、送風路6bの
各風箱6cへの出口側にダンパ機構6dを設けて、送風
量を調節自在に構成してある。
The air supply means 6 is a blower fan 6a.
The air blown by the forced air by the air blower 6 to the air boxes 6c separately provided below the drying zone L, the combustion zone M, and the post combustion zone N, respectively.
It is configured to be supplied via b, and a damper mechanism 6d is provided on the outlet side of the air passage 6b to each air box 6c so that the air flow rate can be adjusted.

【0021】前記焼却処理帯5の上部を、ゴミを直接に
焼却処理する一次燃焼領域1に構成し、さらにその上方
空間に形成した煙道を、燃焼ガスを完全燃焼させる二次
燃焼領域2に構成してあり、前記煙道入口側に二次燃焼
用空気供給機構13としてのノズル13aを設けて、ブ
ロアファン13bからの誘引空気を前記煙道に供給す
る。
The upper part of the incineration zone 5 is constructed as a primary combustion zone 1 for directly incinerating dust, and a flue formed in the space above it is made a secondary combustion zone 2 for completely burning combustion gas. A nozzle 13a as a secondary combustion air supply mechanism 13 is provided on the flue inlet side of the flue so as to supply the induced air from the blower fan 13b to the flue.

【0022】前記二次燃焼領域2の下流側の空間に燃焼
排ガスの熱エネルギーを回収する廃熱ボイラ12を設け
て燃焼により生じた熱量を蒸気として発電装置11に供
する一方、さらに下流につながる排ガス路7から煙突1
0に至る流路途中にバグフィルタ8、洗煙装置9等でな
る排ガス処理装置を設けてある。
A waste heat boiler 12 for recovering the thermal energy of combustion exhaust gas is provided in the space on the downstream side of the secondary combustion region 2 to supply the heat generated by combustion to the power generator 11 as steam, while the exhaust gas connected further downstream. Road 7 to chimney 1
An exhaust gas treatment device including a bag filter 8 and a smoke washing device 9 is provided in the middle of the flow path reaching 0.

【0023】前記焼却処理帯5の下流側の側壁中央上部
に、前記燃焼帯Mにおける燃焼状態を撮影入力する撮像
手段20としてのカラーCCDカメラを設け、その撮像
手段20による入力画像データから前記燃焼帯Mにおけ
るゴミの燃焼状態を判断するマイクロコンピュータ利用
の画像処理手段21を設けて燃焼状態検出装置を構成し
てある。
A color CCD camera as an image pickup means 20 for photographing and inputting the combustion state in the combustion zone M is provided at the upper center of the side wall on the downstream side of the incineration zone 5, and the combustion is carried out from the image data inputted by the image pickup means 20. An image processing means 21 utilizing a microcomputer for judging the burning state of dust in the belt M is provided to constitute a burning state detecting device.

【0024】前記画像処理手段21は、図2(イ)、
(ロ)に示すように、前記撮像手段20から入力された
画像データを赤(R)緑(G)青(B)の色成分に分解
し、緑(G)成分の画像データから火炎領域を抽出する
第一演算手段C1と、前記第一演算手段C1により求ま
った火炎面積から所定の相関係数に基づいてゴミの燃焼
速度を演算導出し、前記空気供給機構6からの燃焼用空
気の供給量を決定する第二演算手段C2から構成してあ
る。
The image processing means 21 is shown in FIG.
As shown in (b), the image data input from the image pickup means 20 is decomposed into red (R) green (G) blue (B) color components, and a flame region is extracted from the green (G) component image data. The combustion speed of the dust is calculated and derived from the first calculation means C1 to be extracted and the flame area obtained by the first calculation means C1, and the combustion air is supplied from the air supply mechanism 6. It is composed of a second calculation means C2 for determining the quantity.

【0025】コンピュータ利用の制御手段22は、前記
第二演算手段C2により決定された燃焼用空気の供給量
に基づいて、前記空気供給機構6からの燃焼用空気の供
給量を調節する。
The computer-used control means 22 adjusts the supply amount of the combustion air from the air supply mechanism 6 based on the supply amount of the combustion air determined by the second calculating means C2.

【0026】以下、図3に示すフローチャートに基づい
て詳述する。撮像手段20から入力された画像データを
赤(R)緑(G)青(B)の色成分に分解すると、図2
(イ)、(ロ)に示すように、各画素毎に赤(R)緑
(G)青(B)の強度データが得られる<#1>。一般
に、輝炎輻射を伴う炎は、目で見える量の可視光を放射
しており、その温度が上昇すると最初に赤、次に黄、
緑、青、最後に紫という具合に光のエネルギー、スペク
トルに新しい色の部分が付け加わる。燃焼部、つまり、
焼却炉における燃焼帯Mに対して、撮像手段20により
得られた画像データには、火炎部分以外に側壁やゴミ自
身のデータも含まれ、それらの部位の温度や反射光によ
る色成分が混在するため、火炎のみを正確に抽出するた
めには、比較的低温部位を示す赤(R)成分を参照しな
い方が好ましい。一方、青(B)成分は、火炎温度に応
じて大きく変動するので、この成分のみにより炎の領域
を特定するのも好ましくない。そこで、前記第一演算手
段C1は、緑(G)成分の強度データが所定の閾値G Th
より大なる画素を炎領域に対応する画素、即ち、面積
(SF )として抽出する<#2>,<#3>。ここに、
閾値は特に限定するものではなく、炉の規模や運転条件
により適宜設定すればよい。
Hereinafter, based on the flowchart shown in FIG.
It will be described in detail. The image data input from the image pickup means 20
When decomposed into red (R) green (G) blue (B) color components, FIG.
As shown in (a) and (b), red (R) green for each pixel
(G) Intensity data of blue (B) is obtained <# 1>. General
In addition, a flame with bright flame radiation emits a visible amount of visible light.
When the temperature rises, first red, then yellow,
Green, blue, and finally purple, the energy of light, the spectrum
A new color part is added to the tor. Combustion part,
For the combustion zone M in the incinerator, the imaging means 20
In addition to the flame part, the obtained image data includes side walls and dust.
Personal data is also included, and it depends on the temperature and reflected light of those parts.
The color components are mixed, so it is possible to accurately extract only the flame.
For reference, do not refer to the red (R) component, which indicates a relatively low temperature part.
Is preferred. On the other hand, the blue (B) component responds to the flame temperature.
As it fluctuates greatly, the area of
It is not preferable to specify Therefore, the first operator
In step C1, the intensity data of the green (G) component has a predetermined threshold value G. Th
The larger pixel is the pixel corresponding to the flame area, that is, the area
(SF<# 2>, <# 3>. here,
The threshold value is not particularly limited, and the furnace scale and operating conditions
It may be set as appropriate.

【0027】前記第二演算手段C2は、上述の(数1)
に従って、前記第一演算手段C1で求められた火炎面積
Sから燃焼速度Vを演算導出し、(数3)に基づいて、
空気供給機構からの燃焼用空気の供給量Pと燃焼に必要
な空気量(理論空気量)P’との比である空気過剰率Z
が約0.8から1.2の間に収まるように、空気供給量
Pを演算導出して設定する<#5>。
The second computing means C2 is the same as the above-mentioned (Equation 1).
According to the above, the combustion velocity V is calculated and derived from the flame area S obtained by the first calculation means C1, and based on (Equation 3),
Excess air ratio Z, which is the ratio of the supply amount P of combustion air from the air supply mechanism to the air amount (theoretical air amount) P ′ required for combustion
The air supply amount P is calculated and derived so as to fall within the range of about 0.8 to 1.2 <# 5>.

【0028】前記制御手段22は、前記第二演算手段C
2により決定された供給量の燃焼用空気を供給すべく、
電磁式、或いは油圧式のアクチュエータを用いて前記空
気供給機構6のダンパ機構6dを調節する<#6>。つ
まり、燃焼火炎の高温領域の面積が大きくなるほどに燃
焼が活発化して燃焼温度が上昇すると、空気供給量を減
らして燃焼温度を低下させて、腐食性ガスによる損傷を
回避し、高温領域の面積が小さくなり燃焼温度が低下す
ると、空気供給量を増やして燃焼温度を上昇させて燃焼
効率を向上させるのである。
The control means 22 includes the second computing means C.
In order to supply the combustion air of the supply amount determined by 2,
The damper mechanism 6d of the air supply mechanism 6 is adjusted using an electromagnetic or hydraulic actuator <# 6>. In other words, when the combustion becomes more active and the combustion temperature rises as the area of the high-temperature region of the combustion flame becomes larger, the air supply amount is reduced to lower the combustion temperature and avoid the damage due to corrosive gas. When the value becomes smaller and the combustion temperature decreases, the air supply amount is increased to increase the combustion temperature and improve the combustion efficiency.

【0029】即ち、前記撮像手段20と前記画像処理手
段21と前記制御手段22とで燃焼制御装置が構成され
る。
That is, the image pickup means 20, the image processing means 21, and the control means 22 constitute a combustion control device.

【0030】以下に別実施例を説明する。先の実施例で
は、前記第一演算手段C1を、緑(G)成分の強度デー
タが所定の閾値GThより大なる画素を火炎領域に対応す
る画素、即ち、面積(SF )として抽出するように構成
したものを説明したが、これに限定するものではなく、
単にモノトーン画像としての輝度データを所定の閾値で
二値化して、火炎領域を抽出するように構成してもよ
く、赤外線カメラを用いて撮像手段20を構成し、その
強度データを所定の閾値で二値化して、火炎領域を抽出
するように構成してもよい。
Another embodiment will be described below. In the above-described embodiment, the first computing means C1 extracts a pixel in which the intensity data of the green (G) component is larger than the predetermined threshold value G Th as a pixel corresponding to the flame region, that is, the area (S F ). However, the present invention is not limited to this.
Alternatively, the luminance data as a monotone image may be binarized at a predetermined threshold value to extract the flame region. Alternatively, the infrared camera may be used to configure the image pickup means 20, and the intensity data may be obtained at the predetermined threshold value. It may be binarized to extract the flame region.

【0031】赤外線カメラの場合は、燃焼ガス中に含ま
れるCO2 の輻射をとらえることができる4.5μm前
後のバンドパスフィルターを用いて火炎温度分布を測定
する。従って、画像としては、閾値温度を設定すれば容
易にその温度以上の火炎面積Sを演算できる。従って制
御手段22は、図3におけるステップ<#2>を閾値温
度の設定に置き換えるだけである。
In the case of an infrared camera, the flame temperature distribution is measured using a bandpass filter of about 4.5 μm capable of catching the CO 2 radiation contained in the combustion gas. Therefore, as the image, if the threshold temperature is set, the flame area S above the temperature can be easily calculated. Therefore, the control means 22 only replaces the step <# 2> in FIG. 3 with the setting of the threshold temperature.

【0032】先の実施例では、乾燥帯L、燃焼帯M、後
燃焼帯Nを階段状に配置して焼却処理帯を構成したもの
に適用するものを説明したが、焼却処理帯の構成はこれ
に限定するものではなく、一定の傾斜角で直線状に焼却
処理帯を構成する傾斜炉にも適用できる。
In the above embodiment, the case where the incineration zone is formed by arranging the dry zone L, the combustion zone M, and the post-combustion zone N in a stepwise manner has been described. The present invention is not limited to this, and can also be applied to a tilt furnace in which the incineration zone is linearly configured with a constant tilt angle.

【0033】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】ゴミ焼却炉の概略構成図[Fig. 1] Schematic diagram of garbage incinerator

【図2】入力画像データの特性図FIG. 2 is a characteristic diagram of input image data.

【図3】フローチャートFIG. 3 Flow chart

【図4】実験装置の構成図[Fig. 4] Configuration diagram of the experimental apparatus

【図5】実験データの説明図FIG. 5 Explanatory diagram of experimental data

【図6】実験データの説明図FIG. 6 is an explanatory diagram of experimental data.

【符号の説明】[Explanation of symbols]

6 空気供給機構 20 撮像手段 22 制御手段 C1 第一演算手段 C2 第二演算手段 M 燃焼帯 6 air supply mechanism 20 imaging means 22 control means C1 first calculation means C2 second calculation means M combustion zone

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃焼帯(M)と、前記燃焼帯(M)に燃
焼用空気を供給する空気供給機構(6)を備えたストー
カ式のゴミ焼却炉において、 前記燃焼帯(M)におけるゴミの燃焼状態を入力する撮
像手段(20)と、 前記撮像手段(20)による画像データから火炎領域を
抽出してその面積を求める第一演算手段(C1)と、 前記第一演算手段(C1)により求まった火炎面積から
所定の相関係数に基づいてゴミの燃焼速度を演算導出
し、前記空気供給機構(6)からの燃焼用空気の供給量
を決定する第二演算手段(C2)と、 前記第二演算手段(C2)により決定された燃焼用空気
の供給量に基づいて、前記空気供給機構(6)からの燃
焼用空気の供給量を調節する制御手段(22)とからな
る燃焼制御装置。
1. A stoker-type refuse incinerator comprising a combustion zone (M) and an air supply mechanism (6) for supplying combustion air to the combustion zone (M), wherein the dust in the combustion zone (M) is An image pickup means (20) for inputting the combustion state of No. 1, a first calculation means (C1) for extracting a flame region from the image data obtained by the image pickup means (20) and obtaining the area thereof, the first calculation means (C1) Second calculation means (C2) for calculating and deriving the burning speed of dust from the flame area obtained by the above-mentioned calculation based on a predetermined correlation coefficient, and determining the supply amount of combustion air from the air supply mechanism (6); Combustion control comprising control means (22) for adjusting the supply amount of combustion air from the air supply mechanism (6) based on the supply amount of combustion air determined by the second calculation means (C2). apparatus.
JP23633894A 1994-09-30 1994-09-30 Combustion controller Pending JPH08100916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23633894A JPH08100916A (en) 1994-09-30 1994-09-30 Combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23633894A JPH08100916A (en) 1994-09-30 1994-09-30 Combustion controller

Publications (1)

Publication Number Publication Date
JPH08100916A true JPH08100916A (en) 1996-04-16

Family

ID=16999333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23633894A Pending JPH08100916A (en) 1994-09-30 1994-09-30 Combustion controller

Country Status (1)

Country Link
JP (1) JPH08100916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147732A (en) * 2000-09-01 2002-05-22 Nkk Corp Refuse incinerator
JP2002243128A (en) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd Combustion control method and device thereof
JP2008531963A (en) * 2005-02-26 2008-08-14 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for increasing package throughput in a rotary kiln facility.
JP2008199173A (en) * 2007-02-09 2008-08-28 Ikegami Tsushinki Co Ltd Pilot flame monitoring method and its apparatus
CN110131895A (en) * 2019-05-27 2019-08-16 珠海格力电器股份有限公司 Burner, wall-hung boiler and sectional combustion control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147732A (en) * 2000-09-01 2002-05-22 Nkk Corp Refuse incinerator
JP2002243128A (en) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd Combustion control method and device thereof
JP2008531963A (en) * 2005-02-26 2008-08-14 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for increasing package throughput in a rotary kiln facility.
JP2008199173A (en) * 2007-02-09 2008-08-28 Ikegami Tsushinki Co Ltd Pilot flame monitoring method and its apparatus
JP4732377B2 (en) * 2007-02-09 2011-07-27 池上通信機株式会社 Pilot flame monitoring method and apparatus
CN110131895A (en) * 2019-05-27 2019-08-16 珠海格力电器股份有限公司 Burner, wall-hung boiler and sectional combustion control method

Similar Documents

Publication Publication Date Title
JP6723864B2 (en) Combustion control device equipped with a garbage moving speed detection function
US5957064A (en) Method and apparatus for operating a multiple hearth furnace
JPH08100916A (en) Combustion controller
JPH0894055A (en) Combustion controller
JP2003161420A (en) Combustion control method and combustion control device of stoker incinerator
JP7397627B2 (en) Incineration plant and its combustion control method
JPH08178247A (en) Method of detecting nature of refuse in incinerator
CN115143479A (en) Control device for combustion furnace equipment
JP3041206B2 (en) Combustion control device
JPH08121757A (en) Combustion control device
JP3173967B2 (en) Waste incinerator waste quality estimation method
JP3825148B2 (en) Combustion control method and apparatus in refuse incinerator
JP4036768B2 (en) Combustion control device for incinerator
JPH10253031A (en) Combustion controller for incinerator
JPH08233241A (en) Trash character-detecting method for trash incineration furnace
KR102574488B1 (en) Appararus and method of controlling operation of incinerator for combustion stabilizaion
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP3534562B2 (en) Combustion control method and combustion control device
JPH1047633A (en) Combustion controller of refuse incinerator
JP3121204B2 (en) Combustion state detector
JP2800871B2 (en) Incinerator combustion control device
JP3669779B2 (en) Combustion control device for garbage incinerator
JP7104653B2 (en) How to operate the combustion equipment
JP7351599B2 (en) Method for estimating the burnout point of a garbage incinerator and method for adjusting the burnout point of a garbage incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace