JP3669781B2 - Combustion control method for garbage incinerator - Google Patents

Combustion control method for garbage incinerator Download PDF

Info

Publication number
JP3669781B2
JP3669781B2 JP21255796A JP21255796A JP3669781B2 JP 3669781 B2 JP3669781 B2 JP 3669781B2 JP 21255796 A JP21255796 A JP 21255796A JP 21255796 A JP21255796 A JP 21255796A JP 3669781 B2 JP3669781 B2 JP 3669781B2
Authority
JP
Japan
Prior art keywords
combustion
image
zone
dust
garbage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21255796A
Other languages
Japanese (ja)
Other versions
JPH1054532A (en
Inventor
和男 長濱
敏之 浜中
圭博 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21255796A priority Critical patent/JP3669781B2/en
Publication of JPH1054532A publication Critical patent/JPH1054532A/en
Application granted granted Critical
Publication of JP3669781B2 publication Critical patent/JP3669781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ゴミ焼却炉の燃焼制御方法に関し、詳しくは、下流側が低くなるように段差を設けて配置された可動式火床を備えるゴミ焼却炉における燃焼制御方法に関する。
【0002】
【従来の技術】
従来の燃焼制御方法を適用したゴミ焼却炉の一例を示すと、図3に示すように、ゴミホッパ4から投入されるゴミをプッシャから成る押込供給手段3により送り込まれる火炉に可動式火床5を備えており、前記可動式火床5を、前記プッシャ3により送り込まれたゴミを乾燥する乾燥帯Aと、前記乾燥帯Aで乾燥されたゴミを燃焼させる燃焼帯Bと、前記燃焼帯Bで燃焼したゴミの燃焼残渣を灰化させる後燃焼帯Cとに領域分割してある。前記可動式火床5は、前記プッシャ3により押込供給されるゴミを乾燥しながら搬送する乾燥帯火床5Aと、前記乾燥帯火床5Aで乾燥したゴミを燃焼させながら搬送する二段に構成された燃焼帯火床5Bと、前記燃焼帯火床5Bで燃焼したゴミを灰化させながら搬送して灰処理部へ排出する後燃焼帯火床5Cとを、下流側が低くなるように段差を設けて連設してある。上記ゴミの燃焼を制御するための制御手段11を備えており、前記各可動式火床5は前記制御手段11の搬送制御部11bからPID制御されるようにしてある。また、前記各火床5への下方には風箱6を備えており、前記風箱6には押込送風機構6aからの供給空気を供給する空気供給路6bを接続してある。前記空気供給路6bには夫々ダンパ機構6cを備えており、前記制御手段11の送風制御部11aからPID制御される。
【0003】
前記プッシャ3により前記可動式火床5上に送り込まれたゴミは、前記乾燥帯火床5A上で、その下方に備える乾燥帯風箱6Aからの供給空気を乾燥用空気として乾燥しながら下流側に搬送されて、後続の前記燃焼帯火床5Bに落下する。供給されたゴミは、主として前記燃焼帯火床5B上で、その下方に備える燃焼帯風箱6Bからの供給空気を燃焼用空気として一次燃焼し、発生した燃焼ガスは上方に形成された二次燃焼空間7で二次空気と接触して二次燃焼する。高温になった燃焼排ガスは、前記二次燃焼空間7の後流の空間に備える廃熱ボイラ8回収された熱で蒸気を発生し、廃ガス処理装置9を経て煙突10から大気中に放出される。前記廃熱ボイラ8で発生した蒸気は発電装置に供給されて電力を発生する。燃焼しながら搬送されるゴミは、前記燃焼帯火床5B上で火炎燃焼を完了し、燃焼残渣が後続の前記後燃焼帯火床5Cに落下する。前記後燃焼帯火床5C上では、前記燃焼帯火床5B上からの燃焼残渣が下方に備える後燃焼帯風箱6Cからの供給空気を燃焼用空気として固体燃焼を継続しながら搬送されて灰化し、前記後燃焼帯火床5Cの下流端から灰処理設備へと落下排出される。
【0004】
上記のゴミ焼却炉においては、炉内の温度及び燃焼排ガスの成分からゴミの燃焼状態を推定し、撮像手段1からの入力可視画像に基づき検出される燃切り位置Pに基づいて燃焼用空気量或いは可動式火床5の搬送速度を設定する自動制御が行われていた。つまり、後段の前記燃焼帯火床5Bの火炎画像を撮像して入力する前記撮像手段1を前記可動式火床5の下流側の炉壁部に設け、その火炎画像を画像解析して、前記後段の燃焼帯火床5B上の火炎の下流側端部を前記燃切り位置Pとして検出する画像処理手段2を設け、その検出結果を前記制御手段11に入力して、前記検出した燃切り位置Pが前記後段の燃焼帯火床5Bの最上流端から搬送方向長さに対して80%前後の位置になるように、前記後段の燃焼帯火床5Bの搬送速度或いは前記後段の燃焼帯火床5Bに設けた燃焼帯風箱6Bへの燃焼用空気量をPID制御するようにしてあった。
【0005】
【発明が解決しようとする課題】
上記、従来のゴミ焼却炉の燃焼制御においては、ゴミの燃焼の結果としての炉内の温度及び燃焼排ガスの成分並びに燃焼帯火床5B上の燃切り位置Pに基づき制御を行っている。従って、制御のためのプロセス情報は、時間遅れを有しており、後追いの制御を行っていることになる。殊に、前記燃切り位置は、前記燃焼帯火床5B上におけるゴミの燃焼の結果を示すものであり、燃焼中のゴミのゴミ質(ゴミの燃え易さ、保有水分等)に関わる情報ではなく、従って、その後の燃切り位置の変動の予測を可能とする情報ではない。その結果、現実の燃焼の状況に対応するのは困難であった。さらに、撮像手段1から入力する火炎画像の画像処理のみでは、検出される燃切り位置の精度が充分でなく、また、ゴミ質に応じた燃焼制御条件に関する判断は困難であった。即ち、上述の燃焼制御においては、未燃ゴミ量が把握できていないために、前記検出された燃切り位置Pを上流寄りに制御せざるを得ず、なおかつ、未燃ゴミが灰と共に排出されることを未然に防止するべき策を講ずることができないという問題を有していた。
そこで、本発明は、上記の問題点を解決し、ゴミの焼却処理量の適正化を図りながら、未燃ゴミが灰と共に排出されることを防止可能なゴミ焼却炉の燃焼制御方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
〔第1特徴構成〕
上記の目的のための本発明のゴミ焼却炉の燃焼制御方法の第1特徴構成は、請求項1に記載の如く、燃焼領域の可視波長光の可視画像を入力する第1撮像手段と、燃焼領域の赤外波長光の赤外線画像を入力する第2撮像手段とを、前記可動式火床のゴミ搬送方向下流側に併設して、前記入力した可視画像を画像処理して火炎面積を求めるとともに、前記入力した赤外線画像を画像処理して前記可動式火床上のゴミ断面積を求め、前記火炎面積を前記ゴミ断面積で除した値を燃焼度指標として、予め定めてある基準指標範囲と比較し、前記燃焼度指標が前記基準指標範囲から下方に逸脱する場合には燃焼不十分と判断して、前記燃焼不十分を検出した可動式火床の搬送を減速制御し、前記燃焼度指標が前記基準指標範囲から上方に逸脱する場合には燃焼過剰と判断して、前記燃焼過剰を検出した可動式火床の搬送を加速制御する点にある。
〔第1特徴構成の作用効果〕
上記第1特徴構成によれば、極力多量のゴミを燃焼領域内で燃焼させながら、可動式火床上のゴミを完全に燃焼させることが可能になる。詳しくは、可視画像の画像処理結果として求めた火炎面積(ゴミの燃焼している量の指標とする。)を、赤外線画像の画像処理結果として求めた可動式火床上のゴミの断面積(可動式火床上の未燃焼ゴミ量の指標とする。)で除した値は、標準ゴミに合わせて標準値を定めれば標準的な燃焼性を有するゴミの燃焼状態と比較した燃焼性を与える。例えば、可燃性成分の多い、水分含有量の低いゴミでは高い値を示し、可燃性の低い或は水分含有量の高いゴミでは低い値を示すことを知見した。このことから、例えば、ゴミの断面積に対する火炎面積の比が大きく、且つ、ゴミ断面積が小さければ残る燃焼量は僅かであることが推定される。逆もまた成り立つ。つまり、燃焼過程にあるゴミがその後の灰化に向けて潜在的に有する自燃能力を前記値が間接的に示すという知見に基づき、ゴミの完全燃焼と対比した燃焼状態(完全燃焼度)を示す燃焼度指標として用いるのである。その指標の大小によって可動式火床の搬送速度を制御するので、火床上のゴミの燃焼状態に即応した制御が可能になる。例えば、燃焼不十分と判断した場合には、ゴミの搬送速度を減速して可動式火床上のゴミに十分な滞留時間を与えて、そのゴミに十分な燃焼をさせるようにするのである。また、例えば、燃焼過剰と判断した場合には、ゴミの搬送速度を加速して、その可動式火床上のゴミの焼却量を増加して、ゴミの燃焼完了位置(燃切り位置)を下流側に移動させるのである。因みに、前記火炎面積を前記ゴミの断面積で除した値がゴミの完全燃焼度に強い相関性を有することは発明者等の新知見である。
その結果、ゴミの焼却処理量の適正化を図りながら、燃焼領域の下流側への未燃のゴミの排出を抑制して、未燃ゴミが灰と共に排出されることを防止できるようになった。
〔第2特徴構成及び作用効果〕
尚、本発明のゴミ焼却炉の燃焼制御方法の第2特徴構成は、請求項2に記載の如く、前記第1特徴構成において燃焼不十分と判断した場合に、前記燃焼不十分を検出した可動式火床上のゴミに供給する燃焼用空気の供給量を増加させる処置を施す点にあり、これによって、燃焼の遅延している可動式火床上のゴミの燃焼が促進される。
その結果、たとえ後燃領域下流側の可動式火床に未燃ゴミが送り出されても、その未燃ゴミが灰と共に排出されることを防止できるようになる。
〔第3特徴構成及び作用効果〕
また、本発明のゴミ焼却炉の燃焼制御方法の第3特徴構成は、請求項3に記載の如く、前記第1特徴構成又は第2特徴構成において燃焼不十分と判断した場合に、燃焼領域の上流側の可動式火床上のゴミに供給する乾燥用空気の供給量を増加させる処置を施す点にあり、これによって、上流側においてゴミの燃焼性が改善され、前記燃焼領域におけるゴミの燃焼が促進される。
その結果、燃焼領域において容易にゴミの燃焼を完了させることができ、下流側に未燃のゴミを送り出すことを未然に防止できるようになる。
〔第4特徴構成及び作用効果〕
そして、本発明のゴミ焼却炉の燃焼制御方法の第4特徴構成は、請求項4に記載の如く、前記第1特徴構成〜第3特徴構成の何れかにおいて燃焼過剰と判断した場合に、前記燃焼過剰を検出した可動式火床上のゴミに供給する燃焼用空気の供給量を減少させる処置を施す点にあり、燃焼過剰を検出した可動式火床上のゴミの燃焼を抑制し、その可動式火床の下流側にまで燃焼領域を拡大することを可能とする。従って、下流側に未燃のゴミを送り出すことを防止しながら、可動式火床上のゴミ焼却量を増加することが可能になる。
その結果、可動式火床上のゴミ焼却量の適正化を図りつつ、燃焼領域の下流側への未燃のゴミの排出を抑制しながら、未燃ゴミが灰と共に排出されることを防止できるようになった。
【0007】
〔第5特徴構成〕
上記の目的のための本発明のゴミ焼却炉の燃焼制御方法の第5特徴構成は、請求項5に記載の如く、投入されたゴミを乾燥させる乾燥帯と、前記乾燥帯で乾燥させたゴミを燃焼させる燃焼帯と、前記燃焼帯で燃焼したゴミの燃焼残渣を灰化させる後燃焼帯とに領域分割され、夫々に下流側が低くなるように段差を設けて配置された可動式火床を備えるゴミ焼却炉における前記燃焼帯の可視波長光の画像を入力する第1撮像手段と、前記燃焼帯の赤外波長光の赤外線画像を入力する第2撮像手段とを、前記可動式火床のゴミ搬送方向下流側に併設して、前記第1撮像手段によって入力した前記燃焼帯の可視画像を画像処理して火炎面積を求めるとともに、前記第2撮像手段によって入力した前記燃焼帯の赤外線画像を画像処理してゴミ断面積を求め、前記画像上火炎面積を前記画像上ゴミ面積で除した値を燃焼度指標として、予め定めてある基準指標範囲と比較し、前記燃焼度指数が前記基準指標範囲から下方に逸脱する場合には燃焼不十分と判断して、前記燃焼帯の燃焼帯火床への供給空気量を増加し、前記燃焼度指数が前記基準指標範囲から上方に逸脱する場合には燃焼過剰と判断して、前記燃焼帯火床への供給空気量を減少するとともに、前記第2撮像手段によって入力した前記後燃焼帯の赤外線画像を画像処理して未燃ゴミを検出した場合に、前記燃焼過剰と判断された場合に優先して、前記燃焼帯火床への供給空気量を増加すると同時に、前記後燃焼帯の燃焼帯火床の搬送速度を減少させる点にある。
〔第5特徴構成の作用効果〕
上記第5特徴構成によれば、前記第1特徴構成と同様に、極力多量のゴミを燃焼領域内で燃焼させながら、燃焼帯火床上のゴミを完全に燃焼させることを可能にするとともに、後燃焼帯火床からの未燃ゴミの排出防止を可能とする。具体的には、ゴミが火炎燃焼する燃焼帯の火炎の可視画像を画像処理して求めた火炎面積を、前記燃焼帯の赤外線画像を画像処理して求めた燃焼帯火床上のゴミの断面積で除した値を燃焼度指標として用い、その指標の大小によって燃焼帯火床の搬送速度を制御することにより前記燃焼帯上の燃切り位置の前後の是正が可能になり、さらに、前記燃焼帯火床に供給する空気量を増減することにより完全燃焼度を制御することにより燃焼領域の変化を抑制することが可能になり、前記燃焼帯火床上のゴミの燃焼状態に即応した制御が可能になる。このため、例えば、燃焼不十分と判断した場合には、前記燃焼帯火床の搬送速度を減速して前記燃焼帯火床上のゴミに十分な滞留時間を与え、さらに、前記燃焼帯火床への供給空気量を増加して燃焼を促進して、そのゴミの燃焼を完結させるようにする。また、例えば、燃焼過剰と判断した場合には、ゴミの搬送速度を加速してゴミの供給量を増加しながら、燃焼帯火床への供給空気量を減少して燃焼を抑制することにより、ゴミの燃焼完了位置(燃切り位置)を下流側に移動させて、焼却処理量の増大を図る。ここで、ゴミの燃焼残渣が固体燃焼する後燃焼帯火床上に火炎燃焼可能な未燃ゴミが検出された場合には、他の制御に優先して前記後燃焼帯上の未燃ゴミの燃焼促進の処置を施すと同時に排出抑制の処置を施すので、前記検出された未燃ゴミの燃焼を完結させることが可能となる。
その結果、可動式火床上のゴミ焼却量の適正化を図りつつ、燃焼領域の下流側への未燃のゴミの排出を抑制しながら、未燃ゴミが灰と共に排出されることを防止できるようになった。
【0008】
【発明の実施の形態】
上記本発明のゴミ焼却炉の燃焼制御方法の実施の形態の一例について、以下に、図面を参照しながら説明する。
本発明の燃焼制御方法の一例として、図1に示すように、上記従来の技術を適用した図3に示したゴミ焼却炉と同様に構成してあるゴミ焼却炉に適用する場合について説明する。尚、図中、同一の要素、同一の機能を発揮する要素或いは同様の機能を有する要素に関しては、図3と同様の符号を付して、一部の説明を省略する。
【0009】
ゴミ焼却炉の可動式火床5は、夫々に搬送速度をPID制御する搬送制御部11bを備える制御手段11を設けて制御するようにしてある。また、前記各可動式火床5の下方に備える風箱6夫々への供給空気量を制御する送風制御部11aを前記制御手段11に備えさせてある。前記制御手段11には、前記可動式火床5夫々を個別に制御可能なように、乾燥帯制御装置11A、燃焼帯制御装置11B、後燃焼帯制御装置11Cを相互に関連付けて設けてあり、前記燃焼帯制御装置11Bは、二段構成の燃焼帯火床5Bを個別に制御可能に構成してある。前記送風制御部11aと、前記搬送制御部11bは、前記各制御装置11A,11B,11C夫々に備えさせてある。
【0010】
前記可動式火床5の下流側の壁部に、燃焼帯火床5B及び後燃焼帯火床5Cの火炎の可視画像を検出する第1撮像手段1Aと、前記燃焼帯火床5B上及び前記後燃焼帯火床5C上のゴミの赤外線画像を検出する第2撮像手段1Bとから成る撮像手段1を設けてある。前記撮像手段1から入力される画像を解析する画像処理手段2を設けてあり、前記画像処理手段2には、前記第1撮像手段1Aから入力される可視画像を画像処理する第1画像解析手段2Aと、前記第2撮像手段1Bから入力される赤外線画像を画像処理する第2画像解析手段2Bとを備えている。さらに、前記画像処理手段2の処理結果に基づき前記各火床5B,5C上のゴミの燃焼状態を解析する燃焼状態解析手段12を設けて、前記制御手段11に対する制御情報を発行するようにしてある。
【0011】
前記第1撮像手段1Aでは、前記燃焼帯火床5B上及び前記後燃焼帯火床5C上の火炎を含む可視画像を撮像して前記第1画像解析手段2Aに入力する。前記第1画像解析手段2Aでは、前記入力された可視画像を色成分比(具体的には、赤(R成分)、緑(G成分)、青(B成分)の3要素に信号を分割して得たG成分の輝度)に基づいて2値化して解析し、図2(イ)に一例を示すような火炎画像を抽出し、抽出した火炎画像に基づく情報を前記燃焼状態解析手段12に入力する。
【0012】
前記第2撮像手段1Bでは、前記第1撮像手段1Aと同一視野の赤外線画像を撮像して前記第2画像解析手段2Bに入力する。撮像する赤外線波長はゴミの内部温度を代表する3.9μmである。これは、火炎除去後の熱画像であり、このために火炎除去フィルタとしては前記波長を選択してある。尚、二酸化炭素の赤外線吸収の影響を受けないように、前記第2撮像手段1Bには、吸収波長帯域を4.4μmのフィルタ(一酸化炭素の赤外線吸収帯域も包含している。)をレンズに装着してある。この赤外線波長領域は、火床5の温度領域から火炎の温度領域にわたる赤外線像を明確に撮像でき、且つ、異なる温度領域の間で識別できる領域である。前記第2画像解析手段2Bでは、前記入力された赤外線画像を温度(具体的には、サーモグラフィの熱画像データ)に基づいて解析し、図2(ロ)に例示するような火炎の下のゴミの断面形状の画像を二値化して抽出し、抽出したゴミ断面画像に基づく情報を前記燃焼状態解析手段12に入力する。上記ゴミ断面画像の抽出について詳しく説明すると、火床5の温度及び炉壁の温度に比して火床5上のゴミ塊の温度が高いので、二値化するための温度レベル(例えば600℃)を定める。熱画像全体の画素(例えば320×240画素)の中で縦方向及び横方向に10画素以上連続して二値化レベル以上の高温度部分をゴミ塊の領域として認識する。このため、第2撮像手段1Bの視点を燃焼帯火床5Bの火床面の延長上に近い位置において、ゴミ塊の表面像をゴミ断面に近いものとしてある。
【0013】
前記燃焼状態解析手段12では、前記第1画像解析手段2Aから入力された火炎画像の面積を求め、前記第2画像解析手段2Bから入力されたゴミ断面の画像の面積を求め、前記火炎画像の面積を前記ゴミ断面の面積で除した値を完全燃焼状態に対する燃焼状態の指標として燃焼度指標値を取得し、予め許容範囲として実測値に基づき設定してある基準指標範囲と比較する。比較結果に基づいて、前記取得した燃焼度指標が前記基準指標範囲内の場合には正常燃焼信号を、前記燃焼度指標が前記基準指標範囲から下方に逸脱する場合、即ち、検出した火炎面積に比して火炎下のゴミの量が多い場合には燃焼不良信号を、前記燃焼度指標が前記基準指標範囲から上方に逸脱する場合、即ち、検出したゴミの断面積に比して火炎量が多い場合には過剰燃焼信号を、夫々前記制御手段11に対して発行する。さらに、前記ゴミ断面の画像が前記後燃焼帯火床5C上に検出された場合には燃焼遅れ信号を前記制御手段11に対して発行する。
【0014】
前記制御手段11では、前記燃焼状態解析手段12から前記正常燃焼信号を受けている間は、前記乾燥帯制御装置11A、前記燃焼帯制御装置11B、前記後燃焼帯制御装置11C夫々に備える搬送制御部11bによって従来と同様に、炉内の温度及び燃焼排ガスの成分をプロセス信号として前記乾燥帯火床5A、前記燃焼帯火床5B、前記後燃焼帯火床5Cの搬送速度をPID制御しており、必要に応じて、前記各制御装置11A,11B,11C夫々に備える送風制御部11aによって前記乾燥帯風箱6A、前記燃焼帯風箱6B、前記後燃焼帯風箱6C夫々への空気供給路6bに備えるダンパ機構6cを操作するようにしてある。
【0015】
以上の構成により、ゴミ焼却炉の制御は以下のようにして行われる。つまり、前記燃焼状態解析手段12から前記燃焼不良信号を受けた場合には、先ず、前記燃焼帯制御装置11Bの送風制御部11aによるPID演算に正の補正量信号を与えて、前記燃焼帯火床5Bに供給する燃焼用空気を増量し、前記燃焼帯火床5B上のゴミの燃焼を促進する。そして、前記燃焼不良信号を持続して受ける場合には、前記乾燥帯制御装置11Aの送風制御部11aによるPID演算に正の補正量信号を与えて、前記乾燥帯火床5Aに供給する乾燥用空気を増量し、前記乾燥帯火床5A上のゴミ、即ち前記燃焼帯火床5Bに供給されるべきゴミの乾燥を促進して、前記燃焼帯火床5B上のゴミの燃焼性を改善する。この制御は即効性はなく、時間遅れを有するものであるが、前記燃焼帯火床5B上に前記乾燥を促進されたゴミが供給されれば、燃焼不良を解消することも可能であり、先行制御として有効である。さらに、前記送風制御部11aによる制御操作によっても前記燃焼不良信号が解消しない場合には、前記乾燥帯制御装置11A及び前記燃焼帯制御装置11Bの搬送制御部11bによるPID演算に負の補正量信号を与えて、前記乾燥帯火床5A及び前記燃焼帯火床5Bの搬送速度を減速し、前記燃焼帯火床5Bにおけるゴミの燃切り位置を上流側に後退させて、燃焼不良に伴う燃切り位置の下流側への前進の余地を大きく空けるようにする。
【0016】
また、前記燃焼状態解析手段12から前記過剰燃焼信号を受けた場合には、先ず、前記燃焼帯制御装置11Bの送風制御部11aによるPID演算に負の補正量信号を与えて、前記燃焼帯火床5Bに供給する燃焼用空気を減量し、前記燃焼帯火床5B上のゴミの燃焼を抑制する。
【0017】
さらに、前記燃焼状態解析手段12から前記燃焼遅れ信号を受けた場合には、上述の各制御に優先して、前記燃焼帯制御装置11Bの送風制御部11aによるPID演算に正の補正量信号を与えて、前記燃焼帯火床5Bに供給する燃焼用空気を増量し、前記燃焼帯火床5B上のゴミの燃焼を促進して、未燃ゴミの前記後燃焼火床5Cへの送り出しを防止すると同時に、前記後燃焼帯制御装置11Cの搬送制御部11bによるPID演算に負の補正量信号を与えて、前記後燃焼帯火床5Cの搬送速度を減速させ、前記燃焼帯火床5Bから前記後燃焼帯火床5Cへの未燃ゴミの送り込みを抑制しながら、前記後燃焼帯火床5Cから未燃ゴミが排出されることを防止する。
【0018】
次に、本発明の他の実施の形態について説明する。
〈1〉上記本発明の実施の形態においては、燃焼不良信号を受けた場合に燃焼促進のために燃焼帯風箱6Bからの燃焼用空気の供給量を増加し、次いで、乾燥帯風箱6Aからの乾燥用空気の供給量を増加する例を示したが、前記乾燥用空気の予熱温度を上昇させるようにしてもよい。これは、上記燃焼用空気の供給量の増加よりも効果の出現は遅れるが、ゴミ質の変化にともなう燃焼不良の場合には先行制御として効果的である。
〈2〉上記本発明の実施の形態においては、過剰燃焼信号を受けた場合に燃焼抑制のために燃焼帯風箱6Bからの燃焼用空気の供給量を減少する例を示したが、乾燥用空気の供給量を減少させ、或いは前記乾燥用空気の予熱温度を低下させて燃焼帯火床5Bに送り込まれるゴミの乾燥を抑制するようにしてもよく、結果として前記燃焼帯火床5B上での後の燃焼を抑制するようにしてもよい。これは、上記燃焼用空気の供給量の減少よりも効果の出現は遅れるが、ゴミ質の変化にともなう過剰燃焼の場合には先行制御として効果的である。
〈3〉上記本発明の実施の形態においては、燃焼不良信号を受けた場合に燃焼促進のために燃焼帯風箱6Bからの燃焼用空気の供給量を増加し、次いで、乾燥帯風箱6Aからの乾燥用空気の供給量を増加する例を示したが、前記燃焼用空気の供給量を増加と前記乾燥用空気の供給量とを同時に行うようにしてもよい。
〈4〉上記〈2〉における乾燥用空気の供給量の減少、前記乾燥用空気の予熱温度の低下を併用するようにしてもよく、また、これらを燃焼用空気の供給量の増加と併用してもよく、即効性の順に順次行うようにしてあってもよい。
〈5〉上記本発明の実施の形態においては、前記第2撮像手段1Bで撮像する赤外線波長を3.9μmとした例を示したが、これはゴミ層の内部温度を代表する波長のバンドパスフィルタを火炎除去フィルタとして用いているものであって、二酸化炭素及び一酸化炭素の吸収帯域の影響を受けにくく、且つ、火炎を透過する波長領域であれば使用可能である。尚、この場合、当然に前記フィルタの吸収波長帯域は変更する必要がある。このほか、特定の波長領域、例えば、3.6〜4.6μmの赤外線画像を撮像するようにしてあってもよい。
〈6〉上記実施の形態においては、ゴミ断面像の抽出に、二値化レベル値以上の温度を示す画素が縦方向及び横方向に10画素以上連続した領域をゴミ塊の領域と判定する例を示したが、画素の連続する数は撮像手段の特性に合わせて決定されるもので、上記に限定するものではない。
【0019】
尚、特許請求の範囲の項に図面との対照を便利にするために符号を記すが、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明を適用したゴミ焼却炉の一例の説明図
【図2】画像処理結果の一例を示す説明図
【図3】従来の制御方法を説明するゴミ焼却炉の一例の説明図
【符号の説明】
1A 第1撮像手段
1B 第2撮像手段
5 可動式火床
5B 燃焼帯火床
A 乾燥帯
B 燃焼帯
C 後燃焼帯
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion control method for a garbage incinerator, and more particularly, to a combustion control method in a garbage incinerator including a movable fire bed disposed with a step so that the downstream side is lowered.
[0002]
[Prior art]
An example of a waste incinerator to which a conventional combustion control method is applied is shown in FIG. 3. As shown in FIG. The movable firebed 5 includes a drying zone A for drying garbage sent by the pusher 3, a combustion zone B for burning garbage dried in the drying zone A, and the combustion zone B. The region is divided into a post-combustion zone C for ashing the combustion residue of the burned garbage. The movable fire bed 5 has a two-stage structure in which a dry zone fire bed 5A that transports the dust pushed in and supplied by the pusher 3 while drying, and a waste zone fire bed 5A that transports the dust dried in the dry zone fire bed 5A while burning it. A step is formed so that the downstream combustion zone firebed 5B and the post-combustion zone firebed 5C that transports the waste combusted in the combustion zone firebed 5B while ashing and discharges it to the ash treatment section are lowered on the downstream side. It is provided and connected. Control means 11 for controlling the combustion of the dust is provided, and each movable fire bed 5 is PID-controlled by the transport control unit 11 b of the control means 11. A wind box 6 is provided below each fire bed 5, and an air supply path 6 b for supplying supply air from the push-in air blowing mechanism 6 a is connected to the wind box 6. Each of the air supply paths 6b is provided with a damper mechanism 6c, and PID control is performed from the air blowing control unit 11a of the control means 11.
[0003]
The trash sent to the movable firebed 5 by the pusher 3 is on the downstream side of the drying zone firebed 5A while drying the supply air from the drying zone wind box 6A provided below it as drying air. To the subsequent combustion zone fire bed 5B. The supplied garbage primarily burns on the combustion zone firebed 5B, using the supply air from the combustion zone wind box 6B provided therebelow as combustion air, and the generated combustion gas is secondary formed above. Secondary combustion occurs in contact with the secondary air in the combustion space 7. The combustion exhaust gas that has reached a high temperature generates steam from the heat recovered by the waste heat boiler 8 provided in the downstream space of the secondary combustion space 7 and is discharged from the chimney 10 through the waste gas treatment device 9 into the atmosphere. The The steam generated in the waste heat boiler 8 is supplied to a power generator to generate electric power. The garbage conveyed while burning completes flame combustion on the combustion zone fire bed 5B, and the combustion residue falls onto the subsequent post combustion zone fire bed 5C. On the post-combustion zone firebed 5C, the combustion residue from the combustion zone firebed 5B is conveyed while continuing solid combustion using the supply air from the post-combustion zone wind box 6C provided below, as combustion air, and ash And is discharged from the downstream end of the post-combustion zone firebed 5C to the ash treatment facility.
[0004]
In the above-mentioned refuse incinerator, the combustion state of dust is estimated from the temperature in the furnace and the components of combustion exhaust gas, and the amount of combustion air based on the burn-off position P detected based on the input visible image from the imaging means 1 Or the automatic control which sets the conveyance speed of the movable fire bed 5 was performed. That is, the imaging means 1 that captures and inputs a flame image of the combustion zone fire bed 5B in the subsequent stage is provided on the furnace wall portion on the downstream side of the movable fire bed 5, and the flame image is subjected to image analysis, An image processing means 2 for detecting the downstream end of the flame on the subsequent combustion zone fire bed 5B as the burn-off position P is provided, and the detection result is input to the control means 11 to detect the detected burn-off position. The conveyance speed of the subsequent combustion zone fire bed 5B or the subsequent combustion zone fire is set so that P is approximately 80% of the transport direction length from the most upstream end of the subsequent combustion zone fire bed 5B. The amount of combustion air to the combustion zone wind box 6B provided on the floor 5B was PID controlled.
[0005]
[Problems to be solved by the invention]
In the combustion control of the conventional garbage incinerator described above, the control is performed based on the temperature in the furnace and the components of the combustion exhaust gas as a result of the combustion of the garbage, and the burn-off position P on the combustion zone fire bed 5B. Therefore, the process information for control has a time delay, and the follow-up control is performed. In particular, the burn-off position indicates the result of the combustion of garbage on the combustion zone fire bed 5B, and information relating to the quality of the garbage during combustion (ease of burning garbage, retained moisture, etc.) Therefore, it is not information that makes it possible to predict the variation of the subsequent fuel cut-off position. As a result, it was difficult to cope with the actual combustion situation. Furthermore, only the image processing of the flame image input from the imaging means 1 is not sufficient in the accuracy of the detected burnout position, and it is difficult to determine the combustion control condition according to the dust quality. That is, in the above-described combustion control, since the amount of unburned garbage is not grasped, the detected burn-off position P must be controlled upstream, and unburned garbage is discharged together with ash. The problem was that it was impossible to take measures to prevent this from happening.
Therefore, the present invention provides a combustion control method for a waste incinerator that solves the above-described problems and can prevent unburned waste from being discharged together with ash while optimizing the amount of waste incineration. For the purpose.
[0006]
[Means for Solving the Problems]
[First feature configuration]
The first characteristic configuration of the combustion control method of the refuse incinerator of the present invention for the above-described object is the first imaging means for inputting a visible image of visible wavelength light in the combustion region, and the combustion as claimed in claim 1 A second imaging means for inputting an infrared image of the infrared wavelength light of the region is provided at the downstream side of the movable fire bed in the dust transport direction, and the input visible image is subjected to image processing to obtain a flame area. Then, the input infrared image is image-processed to determine a dust cross-sectional area on the movable firebed, and a value obtained by dividing the flame area by the dust cross-sectional area is used as a burnup index and compared with a predetermined reference index range. When the burnup index deviates downward from the reference index range, it is determined that the combustion is insufficient, and the conveyance of the movable firebed that detects the insufficient combustion is controlled to reduce the burnup index. When deviating upward from the reference index range , It is determined that excess combustion lies in that acceleration control of the transport of the movable grate which detects said combustion excess.
[Function and effect of the first characteristic configuration]
According to the first characteristic configuration, it is possible to completely burn the dust on the movable firebed while burning as much dust as possible in the combustion region. Specifically, the flame area (as an index of the amount of dust burning) obtained as a result of image processing of a visible image is used as the cross-sectional area of the garbage on the movable firebed (movable as a result of image processing of an infrared image). The value divided by the amount of unburned garbage on the fire bed will give a combustibility compared with the combustion state of garbage having a standard combustibility if a standard value is determined according to the standard waste. For example, it has been found that trash with many flammable components and low water content shows a high value, and trash with low flammability or high water content shows a low value. From this, for example, if the ratio of the flame area to the cross-sectional area of the dust is large and the cross-sectional area of the dust is small, it is estimated that the remaining combustion amount is small. The reverse is also true. In other words, based on the knowledge that the above value indirectly indicates the self-combustion ability of the garbage in the combustion process, which is potentially possessed for the subsequent ashing, it indicates the combustion state (complete burnup) compared with the complete combustion of the garbage. It is used as a burnup index. Since the transport speed of the movable fire bed is controlled by the size of the index, it is possible to perform control in response to the combustion state of the dust on the fire bed. For example, when it is determined that the combustion is insufficient, the dust conveyance speed is reduced to give a sufficient residence time to the dust on the movable firebed so that the dust is sufficiently burned. Also, for example, if it is determined that combustion is excessive, the speed at which the garbage is conveyed is increased, the amount of garbage incinerated on the movable firebed is increased, and the garbage combustion completion position (burn-off position) is set downstream. It is moved to. Incidentally, it is a new finding of the inventors that the value obtained by dividing the flame area by the cross-sectional area of the dust has a strong correlation with the complete burnup of the dust.
As a result, it has become possible to prevent unburned garbage from being discharged with ash by suppressing the discharge of unburned garbage to the downstream side of the combustion area while optimizing the amount of waste incinerated. .
[Second feature configuration and effect]
The second characteristic configuration of the combustion control method for a refuse incinerator according to the present invention is the movable feature that detects the insufficient combustion when it is determined in the first characteristic configuration that the combustion is insufficient. In this point, a measure is taken to increase the supply amount of combustion air supplied to the garbage on the fire bed, and the combustion of the garbage on the movable fire bed, which is delayed in combustion, is promoted.
As a result, even if unburned garbage is sent to the movable firebed on the downstream side of the afterburning region, it is possible to prevent the unburned garbage from being discharged together with ash.
[Third characteristic configuration and effect]
Further, the third characteristic configuration of the combustion control method for a refuse incinerator according to the present invention is that, as described in claim 3, when it is determined that combustion is insufficient in the first characteristic configuration or the second characteristic configuration, The point is to increase the amount of drying air supplied to the garbage on the upstream movable firebed, thereby improving the flammability of the garbage on the upstream side, and the burning of the garbage in the combustion region. Promoted.
As a result, it is possible to easily complete the combustion of dust in the combustion region, and to prevent unburned dust from being sent downstream.
[Fourth feature configuration and effects]
And the 4th characteristic structure of the combustion control method of the refuse incinerator of this invention, when it is judged that combustion is excessive in any one of the said 1st characteristic structure-3rd characteristic structure, as described in Claim 4, The measure is to reduce the amount of combustion air supplied to the garbage on the movable firebed that has detected overcombustion. It is possible to expand the combustion area to the downstream side of the fire bed. Therefore, it is possible to increase the amount of garbage incinerated on the movable firebed while preventing unburned garbage from being sent downstream.
As a result, it is possible to prevent the unburned garbage from being discharged together with the ash while suppressing the discharge of unburned garbage to the downstream side of the combustion region while optimizing the amount of garbage incinerated on the movable firebed. Became.
[0007]
[Fifth feature configuration]
The fifth characteristic configuration of the combustion control method of the refuse incinerator of the present invention for the above-described object is that, as set forth in claim 5, the drying zone for drying the introduced waste, and the waste dried in the drying zone A movable fire bed that is divided into a combustion zone for burning the waste and a post-combustion zone for ashing the combustion residue of the dust burned in the combustion zone, and arranged with steps so that the downstream side is lowered. A first imaging means for inputting an image of visible wavelength light in the combustion zone in a garbage incinerator, and a second imaging means for inputting an infrared image of infrared wavelength light in the combustion zone are provided on the movable firebed. The visible image of the combustion zone input by the first imaging unit is image-processed along with the downstream side in the dust conveyance direction to obtain a flame area, and the infrared image of the combustion zone input by the second imaging unit is obtained. Image processing to create a dust cross section Therefore, a value obtained by dividing the flame area on the image by the dust area on the image is used as a burnup index and compared with a predetermined reference index range, and the burnup index deviates downward from the reference index range. Is determined to be insufficient combustion, increases the amount of air supplied to the combustion zone firebed of the combustion zone, and if the burnup index deviates upward from the reference index range, it is determined that combustion is excessive, When the amount of air supplied to the combustion zone firebed is reduced and the infrared image of the post-combustion zone input by the second imaging means is processed to detect unburned garbage, it is determined that the combustion is excessive. In this case, the amount of air supplied to the combustion zone fire bed is increased, and at the same time, the conveyance speed of the combustion zone fire bed in the rear combustion zone is reduced.
[Function and effect of the fifth characteristic configuration]
According to the fifth characteristic configuration, as in the first characteristic configuration, it is possible to completely burn the dust on the combustion zone fire bed while burning as much dust as possible in the combustion region, and Enables prevention of unburned garbage from the combustion zone firebed. Specifically, a flame area obtained by image processing a visible image of a flame in a combustion zone where garbage burns in a flame, a cross-sectional area of the dust on the combustion zone fire bed obtained by image processing an infrared image of the combustion zone By using the value divided by the burnup index, and by controlling the conveyance speed of the combustion zone firebed according to the magnitude of the index, it becomes possible to correct before and after the burn-off position on the combustion zone, and further, the combustion zone By controlling the complete burnup by increasing / decreasing the amount of air supplied to the firebed, it becomes possible to suppress changes in the combustion region, and to enable control in response to the combustion state of the dust on the combustion zone firebed Become. For this reason, for example, when it is determined that the combustion is insufficient, the conveyance speed of the combustion zone fire bed is reduced to give sufficient residence time to the dust on the combustion zone fire bed, and further to the combustion zone fire bed. The amount of supplied air is increased to promote combustion and complete combustion of the garbage. In addition, for example, when it is determined that combustion is excessive, by suppressing the combustion by reducing the amount of air supplied to the combustion zone fire bed while accelerating the dust conveyance speed and increasing the amount of dust supplied, The incineration amount is increased by moving the garbage combustion completion position (burn-off position) to the downstream side. Here, in the case where unburned garbage that can be flame-combusted is detected on the post-combustion zone firebed where the combustion residue of solid waste is solid-combusted, the combustion of unburned waste on the post-combustion zone takes precedence over other controls. Since the suppression treatment is performed simultaneously with the promotion treatment, it is possible to complete the combustion of the detected unburned garbage.
As a result, it is possible to prevent the unburned garbage from being discharged together with the ash while suppressing the discharge of unburned garbage to the downstream side of the combustion region while optimizing the amount of garbage incinerated on the movable firebed. Became.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the combustion control method for a refuse incinerator of the present invention will be described below with reference to the drawings.
As an example of the combustion control method of the present invention, as shown in FIG. 1, a case will be described in which the present invention is applied to a dust incinerator configured similarly to the dust incinerator shown in FIG. In the figure, the same elements, elements that exhibit the same function, or elements that have the same function are denoted by the same reference numerals as those in FIG.
[0009]
The movable firebed 5 of the garbage incinerator is provided with a control means 11 including a transport control unit 11b for controlling the transport speed by PID, and is controlled. Further, the control means 11 is provided with a blower control unit 11a for controlling the amount of air supplied to each wind box 6 provided below each movable fire bed 5. The control means 11 is provided with a drying zone control device 11A, a combustion zone control device 11B, and a post-combustion zone control device 11C in association with each other so that each of the movable firebeds 5 can be individually controlled. The combustion zone control device 11B is configured to be capable of individually controlling the two-stage combustion zone firebed 5B. The air blow control unit 11a and the transport control unit 11b are provided in each of the control devices 11A, 11B, and 11C.
[0010]
First imaging means 1A for detecting visible images of the flames of the combustion zone fire bed 5B and the rear combustion zone fire bed 5C on the downstream wall portion of the movable fire bed 5, and on the combustion zone fire bed 5B and the above An imaging means 1 comprising a second imaging means 1B for detecting an infrared image of dust on the rear combustion zone firebed 5C is provided. An image processing means 2 for analyzing an image input from the imaging means 1 is provided, and the image processing means 2 includes a first image analysis means for performing image processing on a visible image input from the first imaging means 1A. 2A, and a second image analysis unit 2B that performs image processing on the infrared image input from the second imaging unit 1B. Further, a combustion state analyzing means 12 for analyzing the combustion state of dust on the fire beds 5B and 5C based on the processing result of the image processing means 2 is provided, and control information for the control means 11 is issued. is there.
[0011]
In the first imaging means 1A, visible images including flames on the combustion zone fire bed 5B and the rear combustion zone fire bed 5C are taken and input to the first image analysis means 2A. The first image analysis means 2A divides the input visible image into three color component ratios (specifically, red (R component), green (G component), and blue (B component)). 2), a flame image as shown in FIG. 2A is extracted, and information based on the extracted flame image is sent to the combustion state analysis means 12. input.
[0012]
The second image pickup means 1B picks up an infrared image having the same field of view as the first image pickup means 1A and inputs it to the second image analysis means 2B. The infrared wavelength to be imaged is 3.9 μm representing the internal temperature of dust. This is a thermal image after flame removal, and for this purpose, the wavelength is selected as the flame removal filter. In order to avoid the influence of infrared absorption of carbon dioxide, the second imaging means 1B is provided with a filter having an absorption wavelength band of 4.4 μm (including an infrared absorption band of carbon monoxide). It is attached to. This infrared wavelength region is a region where an infrared image ranging from the temperature region of the fire bed 5 to the flame temperature region can be clearly captured and can be distinguished between different temperature regions. In the second image analysis means 2B, the input infrared image is analyzed based on temperature (specifically, thermal image data of thermography), and dust under a flame as illustrated in FIG. The image of the cross sectional shape is binarized and extracted, and information based on the extracted dust cross sectional image is input to the combustion state analyzing means 12. The extraction of the dust cross-sectional image will be described in detail. Since the temperature of the dust mass on the fire bed 5 is higher than the temperature of the fire bed 5 and the temperature of the furnace wall, the temperature level for binarization (for example, 600 ° C.). ). Among the pixels of the entire thermal image (for example, 320 × 240 pixels), a high temperature portion of 10 pixels or more continuously in the vertical direction and the horizontal direction is recognized as a dust lump area. For this reason, the surface image of the dust lump is close to the dust cross section at a position near the viewpoint of the second imaging means 1B on the extension of the fire bed surface of the combustion zone fire bed 5B.
[0013]
The combustion state analyzing means 12 obtains the area of the flame image input from the first image analyzing means 2A, obtains the area of the dust cross-sectional image input from the second image analyzing means 2B, and determines the area of the flame image. A burnup index value is obtained as a combustion state index for the complete combustion state by dividing the area by the area of the dust cross section, and compared with a reference index range set in advance as an allowable range based on actual measurement values. Based on the comparison result, when the acquired burnup index is within the reference index range, a normal combustion signal is generated, and when the burnup index deviates downward from the reference index range, that is, to the detected flame area. If the amount of debris under the flame is larger than that of the combustion failure signal, the flame amount is larger than the detected debris cross-sectional area when the burnup index deviates upward from the reference index range. If there are many, an excessive combustion signal is issued to the control means 11, respectively. Further, when an image of the dust cross section is detected on the rear combustion zone firebed 5C, a combustion delay signal is issued to the control means 11.
[0014]
In the control means 11, while the normal combustion signal is received from the combustion state analysis means 12, the transport control provided in each of the drying zone control device 11A, the combustion zone control device 11B, and the rear combustion zone control device 11C. In the same manner as in the prior art, the part 11b performs PID control of the conveying speed of the dry zone fire bed 5A, the combustion zone fire bed 5B, and the post combustion zone fire bed 5C using the furnace temperature and the components of the combustion exhaust gas as process signals. If necessary, air supply to each of the dry zone wind box 6A, the combustion zone wind box 6B, and the post combustion zone wind box 6C is performed by the air blow control unit 11a included in each of the control devices 11A, 11B, and 11C. The damper mechanism 6c provided in the path 6b is operated.
[0015]
With the above configuration, the waste incinerator is controlled as follows. That is, when the combustion failure signal is received from the combustion state analysis means 12, first, a positive correction amount signal is given to the PID calculation by the blower control unit 11a of the combustion zone controller 11B, and the combustion zone ignition is performed. The amount of combustion air supplied to the floor 5B is increased to promote the combustion of dust on the combustion zone fire bed 5B. And when receiving the said combustion failure signal continuously, a positive correction amount signal is given to the PID calculation by the ventilation control part 11a of the said drying zone control apparatus 11A, and it is for drying supplied to the said drying zone firebed 5A The air is increased to promote the drying of the garbage on the dry zone firebed 5A, that is, the waste to be supplied to the combustion zone firebed 5B, thereby improving the flammability of the dust on the combustion zone firebed 5B. . This control is not immediately effective and has a time delay. However, if the garbage promoted to dry is supplied onto the combustion zone firebed 5B, it is possible to eliminate the combustion failure. It is effective as a control. Furthermore, if the combustion failure signal is not eliminated even by the control operation by the blower control unit 11a, a negative correction amount signal is applied to the PID calculation by the transport control unit 11b of the drying zone control device 11A and the combustion zone control device 11B. To reduce the transport speed of the dry zone fire bed 5A and the combustion zone fire bed 5B, retreat the waste burn-off position of the combustion zone fire bed 5B to the upstream side, and burn off due to poor combustion Make room for further advancement downstream of the position.
[0016]
Further, when the excessive combustion signal is received from the combustion state analyzing means 12, first, a negative correction amount signal is given to the PID calculation by the blower control unit 11a of the combustion band control device 11B, and the combustion band ignition is performed. The amount of combustion air supplied to the floor 5B is reduced to suppress the combustion of dust on the combustion zone fire bed 5B.
[0017]
Further, when the combustion delay signal is received from the combustion state analyzing means 12, a positive correction amount signal is given to the PID calculation by the blower control unit 11a of the combustion zone control device 11B in preference to the above-described controls. To increase the amount of combustion air supplied to the combustion zone firebed 5B and promote the combustion of garbage on the combustion zone firebed 5B to prevent unburned waste from being sent to the post-combustion firebed 5C At the same time, a negative correction amount signal is given to the PID calculation by the transfer control unit 11b of the post-combustion zone control device 11C to reduce the transfer speed of the post-combustion zone fire bed 5C, and from the combustion zone fire bed 5B to the above-mentioned The unburned garbage is prevented from being discharged from the post-combustion zone firebed 5C while suppressing the sending of unburned dust to the post-combustion zone firebed 5C.
[0018]
Next, another embodiment of the present invention will be described.
<1> In the above-described embodiment of the present invention, when a combustion failure signal is received, the supply amount of combustion air from the combustion zone wind box 6B is increased to promote combustion, and then the dry zone wind box 6A. Although the example of increasing the supply amount of the drying air from has been shown, the preheating temperature of the drying air may be increased. This is delayed as compared with the increase in the supply amount of the combustion air, but is effective as an advance control in the case of poor combustion due to changes in the quality of dust.
<2> In the above embodiment of the present invention, an example in which the supply amount of combustion air from the combustion zone wind box 6B is reduced to suppress combustion when receiving an excessive combustion signal is shown. The amount of air supplied may be reduced, or the preheating temperature of the drying air may be lowered to suppress the drying of garbage sent to the combustion zone fire bed 5B. As a result, on the combustion zone fire bed 5B You may make it suppress later combustion. This delays the appearance of the effect as compared with the decrease in the supply amount of the combustion air, but is effective as a preceding control in the case of excessive combustion accompanying a change in the quality of dust.
<3> In the above-described embodiment of the present invention, when a combustion failure signal is received, the supply amount of combustion air from the combustion zone wind box 6B is increased to promote combustion, and then the dry zone wind box 6A. Although an example of increasing the supply amount of drying air from the above is shown, the increase in the supply amount of combustion air and the supply amount of drying air may be performed simultaneously.
<4> A decrease in the supply amount of drying air in <2> above and a decrease in the preheating temperature of the drying air may be used in combination, and these may be used in combination with an increase in the supply amount of combustion air. Alternatively, it may be performed sequentially in the order of immediate effect.
<5> In the above-described embodiment of the present invention, an example in which the infrared wavelength imaged by the second imaging unit 1B is 3.9 μm has been shown. This is a bandpass having a wavelength representative of the internal temperature of the dust layer. The filter is used as a flame removal filter, and can be used as long as it is less affected by the absorption band of carbon dioxide and carbon monoxide and transmits the flame. In this case, naturally, the absorption wavelength band of the filter needs to be changed. In addition, an infrared image in a specific wavelength region, for example, 3.6 to 4.6 μm may be captured.
<6> In the above-described embodiment, an example in which, in the extraction of the dust cross-sectional image, an area in which pixels having a temperature equal to or higher than the binarization level value are continuous for 10 pixels or more in the vertical direction and the horizontal direction is determined as the dust lump area. However, the number of continuous pixels is determined in accordance with the characteristics of the imaging means, and is not limited to the above.
[0019]
In addition, although the code | symbol is written in order to make contrast with drawing convenient for the term of a claim, this invention is not limited to the structure of an accompanying drawing by this entry.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an example of a waste incinerator to which the present invention is applied. FIG. 2 is an explanatory diagram of an example of an image processing result. FIG. Explanation of symbols]
1A 1st image pickup means 1B 2nd image pickup means 5 Movable fire bed 5B Combustion zone fire bed A Dry zone B Combustion zone C Post combustion zone

Claims (5)

下流側が低くなるように段差を設けて配置された可動式火床(5)を備えるゴミ焼却炉において、
燃焼領域の可視波長光の可視画像を入力する第1撮像手段(1A)と、燃焼領域の赤外波長光の赤外線画像を入力する第2撮像手段(1B)とを、前記可動式火床(5)のゴミ搬送方向下流側に併設して、前記入力した可視画像を画像処理して火炎面積を求めるとともに、前記入力した赤外線画像を画像処理して前記可動式火床(5)上のゴミ断面積を求め、前記火炎面積を前記ゴミ断面積で除した値を燃焼度指標として、予め定めてある基準指標範囲と比較し、前記燃焼度指標が前記基準指標範囲から下方に逸脱する場合には燃焼不十分と判断して、前記燃焼不十分を検出した可動式火床(5)の搬送を減速制御し、前記燃焼度指標が前記基準指標範囲から上方に逸脱する場合には燃焼過剰と判断して、前記燃焼過剰を検出した可動式火床(5)の搬送を加速制御するゴミ焼却炉の燃焼制御方法。
In a garbage incinerator comprising a movable firebed (5) arranged with a step so that the downstream side is low,
A first imaging means (1A) for inputting a visible image of visible wavelength light in the combustion area and a second imaging means (1B) for inputting an infrared image of infrared wavelength light in the combustion area are provided with the movable fire bed ( 5) Attached to the downstream side in the dust transport direction, the input visible image is image-processed to obtain a flame area, and the input infrared image is image-processed to generate dust on the movable firebed (5). When a cross-sectional area is obtained, a value obtained by dividing the flame area by the dust cross-sectional area is compared with a predetermined reference index range as a burnup index, and the burnup index deviates downward from the reference index range Determines that the combustion is insufficient, decelerates the conveyance of the movable fire bed (5) that detects the insufficient combustion, and if the burnup index deviates upward from the reference index range, A movable firebed that detects and detects excessive combustion Combustion control method for waste incinerators that acceleration control of the transport of 5).
前記燃焼不十分と判断した場合に、前記燃焼不十分を検出した可動式火床(5)上のゴミに供給する燃焼用空気の供給量を増加させる処置を施す請求項1記載のゴミ焼却炉の燃焼制御方法。The refuse incinerator according to claim 1, wherein when it is determined that the combustion is insufficient, a measure is performed to increase a supply amount of combustion air supplied to the garbage on the movable firebed (5) where the insufficient combustion is detected. Combustion control method. 前記燃焼不十分と判断した場合に、前記燃焼領域の上流側の可動式火床(5)上のゴミに供給する乾燥用空気の供給量を増加させる処置を施す請求項1又は2に記載のゴミ焼却炉の燃焼制御方法。3. The method according to claim 1, wherein when it is determined that the combustion is insufficient, a measure is performed to increase a supply amount of drying air supplied to garbage on the movable firebed (5) on the upstream side of the combustion region. Combustion control method for garbage incinerators. 前記燃焼過剰と判断した場合に、前記燃焼過剰を検出した可動式火床(5)上のゴミに供給する燃焼用空気の供給量を減少させる処置を施す請求項1〜3の何れかに記載のゴミ焼却炉の燃焼制御方法。4. The method according to any one of claims 1 to 3, wherein when it is determined that the combustion is excessive, a treatment is performed to reduce a supply amount of combustion air supplied to garbage on the movable fire bed (5) that detects the combustion excess. Control method for garbage incinerators. 投入されたゴミを乾燥させる乾燥帯(A)と、前記乾燥帯(A)で乾燥させたゴミを燃焼させる燃焼帯(B)と、前記燃焼帯(B)で燃焼したゴミの燃焼残渣を灰化させる後燃焼帯(C)とに領域分割され、夫々に下流側が低くなるように段差を設けて配置された可動式火床(5)を備えるゴミ焼却炉において、
前記燃焼帯(B)の可視波長光の画像を入力する第1撮像手段(1A)と、前記燃焼帯(B)の赤外波長光の赤外線画像を入力する第2撮像手段(1B)とを、前記可動式火床(5)のゴミ搬送方向下流側に併設して、前記第1撮像手段(1A)によって入力した前記燃焼帯(B)の可視画像を画像処理して火炎面積を求めるとともに、前記第2撮像手段(1B)によって入力した前記燃焼帯(B)の赤外線画像を画像処理してゴミ断面積を求め、前記画像上火炎面積を前記画像上ゴミ面積で除した値を燃焼度指標として、予め定めてある基準指標範囲と比較し、前記燃焼度指数が前記基準指標範囲から下方に逸脱する場合には燃焼不十分と判断して、前記燃焼帯(B)の燃焼帯火床(5B)への供給空気量を増加し、前記燃焼度指数が前記基準指標範囲から上方に逸脱する場合には燃焼過剰と判断して、前記燃焼帯火床(5B)への供給空気量を減少するとともに、前記第2撮像手段(1B)によって入力した前記後燃焼帯(C)の赤外線画像を画像処理して未燃ゴミを検出した場合に、前記燃焼過剰と判断された場合に優先して、前記燃焼帯火床(5B)への供給空気量を増加すると同時に、前記後燃焼帯(C)の燃焼帯火床(5B)の搬送速度を減少させるゴミ焼却炉の燃焼制御方法。
The drying zone (A) for drying the input waste, the combustion zone (B) for burning the dust dried in the drying zone (A), and the combustion residue of the waste burned in the combustion zone (B) are ashed In a refuse incinerator comprising a movable fire bed (5) that is divided into a post-combustion zone (C) to be converted and is provided with a step so that each downstream side is lowered,
First imaging means (1A) for inputting an image of visible wavelength light in the combustion band (B), and second imaging means (1B) for inputting an infrared image of infrared wavelength light in the combustion band (B). In addition to determining the flame area by image processing the visible image of the combustion zone (B) input by the first imaging means (1A), in addition to the downstream side of the movable fire bed (5) in the direction of dust conveyance. The infrared image of the combustion zone (B) input by the second imaging means (1B) is image-processed to obtain a dust cross-sectional area, and a value obtained by dividing the flame area on the image by the dust area on the image As an index, it is compared with a predetermined reference index range, and when the burnup index deviates downward from the reference index range, it is determined that combustion is insufficient, and the combustion zone bed of the combustion zone (B) (5B) is increased, the burnup index is When deviating upward from the semi-index range, it is determined that combustion is excessive, the amount of air supplied to the combustion zone fire bed (5B) is reduced, and the post-combustion input by the second imaging means (1B) When the infrared image of the belt (C) is image-processed and unburned dust is detected, the amount of air supplied to the combustion zone fire bed (5B) is increased in preference to the case where it is determined that the combustion is excessive. At the same time, a combustion control method for a refuse incinerator that reduces the conveying speed of the combustion zone firebed (5B) of the rear combustion zone (C).
JP21255796A 1996-08-12 1996-08-12 Combustion control method for garbage incinerator Expired - Fee Related JP3669781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21255796A JP3669781B2 (en) 1996-08-12 1996-08-12 Combustion control method for garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21255796A JP3669781B2 (en) 1996-08-12 1996-08-12 Combustion control method for garbage incinerator

Publications (2)

Publication Number Publication Date
JPH1054532A JPH1054532A (en) 1998-02-24
JP3669781B2 true JP3669781B2 (en) 2005-07-13

Family

ID=16624668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21255796A Expired - Fee Related JP3669781B2 (en) 1996-08-12 1996-08-12 Combustion control method for garbage incinerator

Country Status (1)

Country Link
JP (1) JP3669781B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051792B2 (en) * 2019-12-18 2022-04-11 三菱重工業株式会社 Combustion equipment condition identification device, condition identification method and program
JP7456312B2 (en) * 2020-07-03 2024-03-27 Jfeエンジニアリング株式会社 Information processing device, information processing method, program, drug supply device, exhaust gas treatment device, and exhaust gas treatment method
CN114018982B (en) * 2021-10-14 2023-11-07 国网江西省电力有限公司电力科学研究院 Visual monitoring method for dust deposit of air preheater

Also Published As

Publication number Publication date
JPH1054532A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
JP3669781B2 (en) Combustion control method for garbage incinerator
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP3669778B2 (en) Combustion control device for garbage incinerator
JP3467751B2 (en) Detection method of combustion position and burn-off point position in refuse incinerator
JPH0849830A (en) Waste quality-estimating system of waste incinerator
JP3669779B2 (en) Combustion control device for garbage incinerator
JP2673355B2 (en) Burnout point detection method for incinerators by image processing
JP3315036B2 (en) Combustion control device of garbage incinerator
DK1348906T3 (en) Process for influencing the properties of combustion residues from an incinerator
JP2769618B2 (en) Burnout point detection method for incinerators by image processing
JP7175242B2 (en) Combustion position detection method in stoker-type refuse incinerator, combustion control method in stoker-type refuse incinerator, and combustion control device for stoker-type refuse incinerator
JP3534562B2 (en) Combustion control method and combustion control device
JPH08261432A (en) Incinerating device
JP3907365B2 (en) Method and apparatus for detecting large incombustibles in garbage incinerator
JPH08128615A (en) Combustion controller for incinerating furnace
JPH0481085B2 (en)
JPH0894055A (en) Combustion controller
JP2889833B2 (en) Measurement method of combustion flame of garbage incinerator
JP2955436B2 (en) Method of detecting moisture content of garbage in garbage incinerator
JP3356936B2 (en) Residual waste amount detection method, combustion control method, and waste incinerator
JP3173967B2 (en) Waste incinerator waste quality estimation method
JP2968953B2 (en) Furnace burnout line detection method and apparatus
JP2788387B2 (en) Incinerator combustion state detector
JPH08312935A (en) Combustion-monitoring apparatus for waste incinerator
JP3041206B2 (en) Combustion control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees