JPS6357690B2 - - Google Patents

Info

Publication number
JPS6357690B2
JPS6357690B2 JP55175000A JP17500080A JPS6357690B2 JP S6357690 B2 JPS6357690 B2 JP S6357690B2 JP 55175000 A JP55175000 A JP 55175000A JP 17500080 A JP17500080 A JP 17500080A JP S6357690 B2 JPS6357690 B2 JP S6357690B2
Authority
JP
Japan
Prior art keywords
combustion
waste
amount
boiler
grate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175000A
Other languages
Japanese (ja)
Other versions
JPS5798719A (en
Inventor
Yasuo Koyanagi
Shunsuke Horie
Hajime Ase
Hakaru Tomijima
Masaaki Kawakami
Miki Yamagishi
Masaaki Aoki
Eiichi Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP55175000A priority Critical patent/JPS5798719A/en
Publication of JPS5798719A publication Critical patent/JPS5798719A/en
Publication of JPS6357690B2 publication Critical patent/JPS6357690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Description

【発明の詳細な説明】 この発明は付属設備としての廃熱ボイラを備え
たごみ焼却炉において、ボイラの発生蒸気量を常
に安定化させるように制御する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a waste incinerator equipped with a waste heat boiler as an accessory equipment so as to constantly stabilize the amount of steam generated by the boiler.

従来、燃焼火格子上のごみの層厚を測定して、
乾燥火格子と燃焼火格子のごみ送り速度を、燃焼
火格子上のごみ層厚が適正な範囲になるように制
御する技術は特公昭42−45425号公報、特公昭53
−11154号公報等によつて知られている。
Traditionally, the thickness of the dust layer on the combustion grate was measured and
The technology for controlling the dust feeding speed of the drying grate and the combustion grate so that the thickness of the dust layer on the combustion grate is within an appropriate range is disclosed in Japanese Patent Publication No. 42-45425 and Japanese Patent Publication No. 53
It is known from Publication No.-11154.

しかしながら、このものはごみ層厚を厚すぎな
い、薄すぎないという意味で適正な範囲に保つだ
けであるから、燃焼状態をある程度の変動で維持
することはできても、発生熱量を安定にするとい
う目的に対しては問題がある。即ち、種々雑多な
都市ごみは水分が多く含まれていたり、少なかつ
たり、或いは含水量が同じでも紙類が多かつたり
少なかつたりするので、このごみを燃やした時の
低位発熱量Hu(kcal/Kg)は大きく変動する。従
つてHuの異なるごみが炉内に送入されれば、た
とえ燃焼火格子上のごみ層厚を一定に制御してい
ても発生熱量を安定させることはできず、特に廃
熱ボイラが設置されている場合にはこのボイラの
発生蒸気量が常に変動するという問題が起る。
However, this method only maintains the thickness of the garbage layer within an appropriate range, meaning that it is not too thick or too thin, so although it is possible to maintain the combustion state with some fluctuation, it does not stabilize the amount of heat generated. There is a problem with that purpose. In other words, miscellaneous municipal waste may contain more or less water, or may contain more or less paper even if the water content is the same, so the lower calorific value Hu ( kcal/Kg) varies widely. Therefore, if waste with different Hu values is fed into the furnace, even if the thickness of the waste layer on the combustion grate is controlled to be constant, the amount of heat generated cannot be stabilized, especially if a waste heat boiler is installed. In this case, a problem arises in that the amount of steam generated by the boiler constantly fluctuates.

この発明は上記従来の欠点を解消するためにな
されたもので、その目的は廃熱ボイラの蒸気発生
量の制御を基本的にはごみの低位発熱量Huをも
とに行ない、その上で更に高精度の制御をするた
めに炉内の燃焼状態をごみの燃焼パターンで制御
するようにしたごみ焼却炉の制御方法を提供する
ことにある。
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and its purpose is to control the amount of steam generated by the waste heat boiler basically based on the lower heating value Hu of waste, and to further It is an object of the present invention to provide a control method for a waste incinerator in which the combustion state in the furnace is controlled by the combustion pattern of waste in order to perform highly accurate control.

以下、この発明の一実施例を図面に従い説明す
る。第1図は付属設備としての廃熱ボイラを組込
んだごみ焼却炉の概略的な構成を示す説明図、第
2図はこのごみ焼却炉の制御系統を示した説明図
であつて、上記ごみ焼却炉はごみ貯留ピツト内の
貯留ごみがクレーン2の操作によつて投入される
ホツパー1と、このホツパーに投入されたごみを
適当な速度で移動させながら乾燥させる第1段及
び第2段の乾燥火格子3,3と、この第2段乾燥
火格子3から供給される乾燥ごみを移動させなが
ら燃焼させる燃焼火格子4と、燃焼未燃物を後燃
焼させる回転キルン5と、燃焼室6で燃焼した排
ガスを利用して加熱される廃熱ボイラ7と、ごみ
のホツパー1へのごみ投入量Gを計測する重量計
8と、燃焼火格子4への燃焼空気流量Fを計測す
る流量計9a,9bと、燃焼空気LFの温度TAを
検出する温度検出器10と、炉温制御用空気LC
の空気量BCを計測する流量計11と、燃焼火格
子4の上部及び下部の圧力P1,P2を計測する
圧力計12,13と、ボイラ給水温度TBを計測
する温度検出器14と、ボイラ蒸気量GSを計測
する流量計15と、ボイラ7を通過した出口ガス
温度TGを検出する温度検出器16と、燃焼空気
量BDを計測する検出器23と、ごみ投入量G、
燃焼空気量BD、炉温制御用空気量BC、ボイラ給
水温度TB、ボイラ蒸気量GS、ボイラ出口ガス温
度TG、燃焼空気温度TAから熱の収支計算を行
なつてごみの低位発熱量Hu(kcal/Kg)を求める
Hu演算装置17と、この低位発熱量Huと上記ボ
イラ7の目標蒸気発生量から炉内に供給すべきご
み量を求めてこれに対応する乾燥火格子3の基本
的なごみ送り速度Vを決定し、その信号18を乾
燥火格子駆動装置19に与える演算装置20と、
燃焼火格子4上のごみの燃焼パターンを燃焼領域
面積Aの間接的な測定値から推定して、この燃焼
パターン推定値が最適なごみ燃焼パターンを保つ
適正範囲の上限を超えた場合は乾燥火格子3の速
度を上記の基本的なごみ送り速度Vより一定比上
げ、また上記適正範囲の下限を下回つた場合は一
定比下げる補正信号21を乾燥火格子駆動装置1
9に与える燃焼パターン推定用の演算装置22と
を具備する。
An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is an explanatory diagram showing the general configuration of a waste incinerator incorporating a waste heat boiler as an accessory equipment, and Fig. 2 is an explanatory diagram showing the control system of this waste incinerator. The incinerator has a hopper 1 into which the waste stored in the waste storage pit is thrown in by operating a crane 2, and a first stage and a second stage where the waste thrown into the hopper is dried while being moved at an appropriate speed. Dry grate 3, 3, combustion grate 4 which burns dry waste supplied from this second stage dry grate 3 while moving it, rotary kiln 5 which burns unburned material after combustion, and combustion chamber 6. a waste heat boiler 7 that is heated using the exhaust gas combusted in the hopper 1, a weight scale 8 that measures the amount of garbage input into the hopper 1, and a flow meter that measures the combustion air flow rate F to the combustion grate 4. 9a, 9b, a temperature detector 10 that detects the temperature TA of combustion air LF, and a furnace temperature control air LC.
a flow meter 11 that measures the air amount BC, a pressure gauge 12, 13 that measures the pressures P1 and P2 at the upper and lower parts of the combustion grate 4, a temperature detector 14 that measures the boiler feed water temperature TB, and a temperature sensor 14 that measures the boiler feed water temperature TB. A flow meter 15 that measures the amount GS, a temperature detector 16 that detects the temperature TG of the outlet gas that has passed through the boiler 7, a detector 23 that measures the amount of combustion air BD, and the amount of garbage input G,
Calculate the heat balance from the combustion air amount BD, the air amount for furnace temperature control BC, the boiler feed water temperature TB, the boiler steam amount GS, the boiler outlet gas temperature TG, and the combustion air temperature TA, and calculate the lower heating value Hu (kcal) of the waste. /Kg)
The Hu calculation device 17 determines the amount of garbage to be supplied into the furnace from this lower calorific value Hu and the target steam generation amount of the boiler 7, and determines the basic garbage feeding speed V of the drying grate 3 corresponding to this amount. , a computing device 20 that provides the signal 18 to the drying grate drive 19;
The combustion pattern of the garbage on the combustion grate 4 is estimated from the indirect measurement value of the combustion area area A, and if the estimated value of the combustion pattern exceeds the upper limit of the appropriate range that maintains the optimal garbage combustion pattern, the dry grate is Drying grate drive device 1 sends a correction signal 21 to increase the speed of No. 3 by a certain ratio from the above-mentioned basic garbage feeding speed V, and to lower it by a certain ratio when the speed falls below the lower limit of the above-mentioned appropriate range.
9, and a calculation device 22 for estimating the combustion pattern.

而して、この発明のごみ焼却炉の制御方法は (1) 炉体とその付属設備としての廃熱ボイラ7を
一体とした焼却炉系の熱収支計算をHu演算装
置17で行なつてごみの低位発熱量Huを求め
る。このHuの計算は重量計8で計測したごみ
投入量G(Ton/h)の信号と、検出器23で
計測した燃焼空気量BD(Nm3/h)の信号と、
流量計11で計測した炉温制御用空気量BC(N
m3/h)の信号と、温度検出器14で計測した
ボイラ給水温度TB(℃)の信号と、流量計1
5で計測したボイラ蒸気量GS(Ton/h)の信
号と、温度検出器16で計測したボイラ出口ガ
ス温度TG(℃)及び温度検出器10で計測し
た燃焼空気温度TA(℃)の信号を演算装置1
7に送つて、熱収支の演算を行うことにより、
未知数のHuが求まる。
Therefore, the method for controlling a waste incinerator according to the present invention includes (1) calculating the heat balance of the incinerator system that integrates the incinerator body and the waste heat boiler 7 as an auxiliary equipment, and Find the lower heating value Hu. This calculation of Hu is based on the signal of the garbage input amount G (Ton/h) measured by the weighing scale 8, the signal of the combustion air amount BD (Nm 3 /h) measured by the detector 23,
Air amount BC (N) for furnace temperature control measured by flowmeter 11
m 3 /h), the boiler feed water temperature TB (°C) measured by the temperature detector 14, and the flowmeter 1.
The signal of the boiler steam amount GS (Ton/h) measured in step 5, the boiler outlet gas temperature TG (°C) measured by the temperature detector 16, and the combustion air temperature TA (°C) measured by the temperature sensor 10 are combined. Arithmetic device 1
7 and calculate the heat balance,
Find the unknown Hu.

(2) 上記ごみ低位発熱量Huと廃熱ボイラ7の目
標とする蒸気発生量から炉内に供給すべきごみ
量を演算装置20で計算して、この供給ごみ量
に対応する乾燥火格子3の基本的なごみ送り速
度Vを決定し、その信号18を乾燥火格子駆動
装置19に与える。
(2) Calculate the amount of waste to be supplied into the furnace from the lower heating value Hu of the waste and the target steam generation amount of the waste heat boiler 7 using the arithmetic unit 20, and dry grate 3 corresponding to this amount of waste to be supplied. determine the basic waste feed rate V and provide the signal 18 to the drying grate drive 19.

(3) 一方、燃焼火格子4上のごみの燃焼パターン
を燃焼領域の面積Aを間接的に測定することに
より推定する。
(3) On the other hand, the combustion pattern of the garbage on the combustion grate 4 is estimated by indirectly measuring the area A of the combustion area.

焼却炉は容量の大きな熱プロセスであり、また
乾燥、燃焼という2つの過程を経て最終的に灰に
なるまでの時間オーダーを要するプロセスであ
る。更に、ごみが均一でないため、焼却炉内部で
は燃焼状態が可成り変動している。
An incinerator is a thermal process with a large capacity, and it is a process that requires an order of magnitude of time to go through the two processes of drying and combustion, and finally turn into ash. Furthermore, since the waste is not uniform, the combustion conditions inside the incinerator vary considerably.

そこで、実験と解析を行なつた結果、蒸気発生
量の安定化に対しては燃焼火格子4上のごみの燃
焼状態に最適なパターンがあつて、燃焼状態がそ
の最適パターンから大きくずれているときには発
生蒸気量が変動しやすいということを発見した。
第3図aのように、燃焼火格子4の後部で燃焼が
十分に行なわれており、前部には未燃焼のごみが
十分ある状態が最適である。なぜならばこの状態
が維持されていると、燃焼段前部に貯えられてい
る未燃焼ごみの中には十分な量の乾燥済ごみがあ
り、燃焼状態が悪くなつて蒸気発生量が落ちてき
た時には燃焼火格子4の速度を速くすることによ
り直ちに乾燥済ごみを燃焼領域に送り込んで燃焼
をさかんにすることができる。これに対し同図b
の状態では燃焼段が全面的に燃えているため、燃
焼状態が悪くなつてきた時に、燃焼火格子4を速
くしても殆んど効果はなく、また乾燥火格子3を
速くしても乾燥段上のごみが必らずしも乾燥済と
は限らないから、これも効果があるとは限らな
い。更に同図cの状態では燃焼火格子4上に未燃
焼ごみが略全域にわたつて滞留し燃焼状態が相当
悪くなつているので、燃焼がさかんになるまで辛
抱するしかない。
Therefore, as a result of experiments and analysis, we found that there is an optimal pattern for the combustion state of garbage on the combustion grate 4 for stabilizing the amount of steam generated, but that the combustion state deviates significantly from that optimal pattern. It was discovered that the amount of steam generated sometimes fluctuated easily.
As shown in FIG. 3a, the optimal state is when combustion is sufficiently occurring at the rear of the combustion grate 4 and there is sufficient unburned waste at the front. This is because if this condition is maintained, there will be a sufficient amount of dried waste among the unburned waste stored at the front of the combustion stage, and the combustion condition will deteriorate and the amount of steam generated will drop. Sometimes, by increasing the speed of the combustion grate 4, the dried waste can be immediately introduced into the combustion zone and the combustion can be accelerated. On the other hand, figure b
In this state, the combustion stage is completely burnt, so when the combustion condition becomes poor, there is almost no effect even if you speed up the combustion grate 4, and even if you speed up the drying grate 3, it will not dry out. Since the garbage on the step is not necessarily dried, this is not necessarily effective either. Furthermore, in the state shown in FIG. 4C, unburned waste remains on the combustion grate 4 over almost the entire area, and the combustion condition has deteriorated considerably, so there is no choice but to be patient until the combustion becomes active.

従つて、廃熱ボイラ7の発生蒸気量の変動を小
さくし安定化させるためには第3図aのような最
適な燃焼パターンを保つ必要がある。
Therefore, in order to reduce and stabilize fluctuations in the amount of steam generated by the waste heat boiler 7, it is necessary to maintain an optimal combustion pattern as shown in FIG. 3a.

そこで、この燃焼パターンの推定法であるが、
次のように考える。燃焼火格子4の下から送られ
てくる燃焼用空気はごみの燃焼パターンが第3図
aのような状態であると、大部分がごみの薄い部
分を通り抜ける。これは燃焼している火炎の位置
とよく対応しており、ごみ表面からの火炎の出方
でわかる。なぜならば燃焼していない部分のごみ
のうち表層面は炉内の高温ガスにより乾燥が進
み、いつでも燃える状態に近くなつていて、ここ
に空気(酸素)が送られてくれば火炎が伝播した
ちまち燃焼状態に移行するにもかかわらず、ここ
に火炎が発生していないのはごみの厚い部分には
空気が殆んど通らず、薄い部分だけを通過してい
ることを示している。
Therefore, the method for estimating this combustion pattern is as follows.
Think of it as follows. When the combustion air of the garbage is in the state shown in FIG. 3a, most of the combustion air sent from below the combustion grate 4 passes through the thin part of the garbage. This corresponds well to the position of the burning flames, and can be seen by the way the flames emerge from the surface of the garbage. This is because the surface of the unburned part of the garbage is dried by the high-temperature gas inside the furnace, and is almost ready to burn at any time.If air (oxygen) is sent here, the flame will spread quickly. The fact that no flame is generated despite the transition to a combustion state indicates that almost no air passes through the thicker parts of the garbage, and only through the thinner parts.

従つて、燃焼段上の火炎のよく出ている領域の
面積即ち、燃焼空気の通過する面積を求めれば、
第3図a,b,cの燃焼パターンの区別(推定)
ができることになる。
Therefore, if we calculate the area of the area on the combustion stage where the flame is well exposed, that is, the area through which the combustion air passes, we get:
Distinction (estimate) between combustion patterns in Figure 3 a, b, and c
will be possible.

而して、燃焼が盛んに行なわれている部分はご
みの量が大きく減少して、灰にかなり近くなつて
いるから、その部分の厚さhp(m)はごみの焼却
ベースできまる値に略近い。ごみの焼却ベースを
WKg/h、そのうちの灰分比をa、燃焼火格子4
による燃焼段上のごみの進む速度をV′m/hとす
ると、燃焼段上で完全に灰になつている部分があ
るとすれば、その灰部分の高さhA(m)は次式で
求まる。
Therefore, in the area where combustion is actively occurring, the amount of garbage has decreased greatly and it has become very close to ash, so the thickness h p (m) of that area is a value determined based on the garbage incineration base. Almost close to. Garbage incineration base is WKg/h, ash ratio is a, combustion grate 4
If the speed at which the waste moves on the combustion stage is V'm/h, then if there is a part on the combustion stage that is completely turned into ash, the height h A (m) of that ash part is calculated by the following formula: It can be found by

hA=aW/γA×V′×l γA:灰の密度(Kg/m3) l:炉幅(m) hpはまだごみが完全に灰になつていない所の高
さであるので、上記のhAより少し大きい程度の値
と考えてよい。
h A = aW/γA×V′×l γA: Density of ash (Kg/m 3 ) l: Furnace width (m) Since h p is the height where the garbage has not completely turned into ash, It can be considered that the value is slightly larger than h A above.

然るに、このhpはそこでの通気度が略一定であ
るとすると、カルマン(Carman)の式から hp=KP1−P2/ν2-nρn-1un ………(1) P1:火格子下部圧力 P2:火格子上部圧力 ν:燃焼空気粘度 ρ:燃焼空気密度 u:燃焼空気流速 で求まる。上記のν、ρ、uは燃焼空気の温度に
より変わるので、 ν=ν(TA) ………(2) ρ=ρp×273/273+TA ………(3) u=F/A×273+TA/273 ………(4) なる式で計算される。ここにTA:燃焼空気温
度、ρp:標準状態における空気密度、F:標準状
態における燃焼空気流量、A:燃焼領域の面積で
あり、上記(1)、(3)、(4)式からAを求めると、 となり、定数をまとめてK′と書くと、 となる。
However, assuming that the air permeability there is approximately constant, h p = KP1 −P2/ν 2-n ρ n-1 u n (1) P1: Grate lower pressure P2: Grate upper pressure ν: Combustion air viscosity ρ: Combustion air density u: Determined by combustion air flow rate. The above ν, ρ, and u change depending on the temperature of the combustion air, so ν=ν(TA) ………(2) ρ=ρ p ×273/273+TA ………(3) u=F/A×273+TA/ 273 ......(4) Calculated using the formula. Here, TA is the combustion air temperature, ρ p is the air density in standard conditions, F is the combustion air flow rate in standard conditions, A is the area of the combustion region, and from equations (1), (3), and (4) above, A is When you ask for So, if we write the constants together as K′, we get becomes.

このnは通気性等から定まるものであるが、
我々はこれを次のようにして決定した。燃焼空気
量をステツプ的に変えた時に、燃焼はすぐには追
随しないから、その前後で燃焼領域面積Aはそん
なに変らないはずである。そこで上記面積Aが燃
焼空気流量Fのステツプ変化の影響をできる限り
受けないという条件から実験的にnを決定した。
このnの値は炉によつて異なるが略1に近い値で
ある。
This n is determined by air permeability etc.
We determined this as follows. When the amount of combustion air is changed stepwise, combustion does not follow immediately, so the combustion area area A should not change much before and after. Therefore, n was experimentally determined on the condition that the area A should be as unaffected by step changes in the combustion air flow rate F as possible.
The value of n varies depending on the furnace, but is approximately close to 1.

(4) 上記(5)式の計算を使つた演算により燃焼火格
子4上の燃焼領域の面積Aを間接的に測定した
ら、この燃焼領域面積Aを燃焼パターン推定値
として演算装置22から乾燥火格子駆動装置1
9に与え、その燃焼パターン推定値が最適なご
み燃焼パターン(第3図aのパターン)を保つ
適正範囲の上限を超えた場合には乾燥火格子速
度を上記ごみ低位発熱量Huと目標蒸気発生量
とから求めた基本的なごみ送り速度Vより一定
比上げ、また下限を下回つた場合は一定比下げ
る補正を行なうことにより、燃焼段のごみ燃焼
パターンを常に第3図aの如き最適な状態に維
持し、且つボイラ7の発生蒸気量を常に安定さ
せるように制御する。
(4) After the area A of the combustion area on the combustion grate 4 is indirectly measured by calculation using the above equation (5), the dry fire is Grating drive device 1
9, and if the estimated value of the combustion pattern exceeds the upper limit of the appropriate range that maintains the optimal waste combustion pattern (pattern in Figure 3 a), the drying grate speed is adjusted to the lower waste heating value Hu and the target steam generation amount. The garbage combustion pattern in the combustion stage is always kept in the optimal state as shown in Figure 3a by increasing the basic garbage feed rate V by a certain ratio, and decreasing it by a certain ratio if it falls below the lower limit. The amount of steam generated by the boiler 7 is controlled so as to be maintained and the amount of steam generated by the boiler 7 is always stabilized.

このように、ごみや焼却炉を制御すると、発生
蒸気量の変動原因であつた炉内部の変動を抑える
ことができ、目標の蒸気量を長期にわたり安定し
て確保することができる。
By controlling the waste and the incinerator in this way, it is possible to suppress the fluctuations inside the furnace which are the cause of fluctuations in the amount of steam generated, and it is possible to stably maintain the target amount of steam over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は廃熱ボイラを組込んだごみ焼却炉の概
略的な構成を示す説明図、第2図はこのごみ焼却
炉の制御系統を示した説明図、第3図a〜cは燃
焼火格子上のごみの燃焼パターンを示す説明図で
ある。 1…ごみ投入ホツパー、2…クレーン、3…乾
燥火格子、4…燃焼火格子、5…回転キルン、6
…燃焼室、7…廃熱ボイラ、8…重量計、9a,
9b…燃焼空気の流量計、10…燃焼空気の温度
検出器、11…炉温制御用空気の流量計、12,
13…燃焼火格子の上下部圧力を計測する圧力
計、14…ボイラ給水温度検出器、15…ボイラ
蒸気量を計測する流量計、16…ボイラ出口ガス
温度を検出する温度検出器、Hu…ごみの低位発
熱量、G…ごみ投入量、F…燃焼空気流量、BC
…炉温制御用空気量、BD…燃焼空気量、TB…
ボイラ給水温度、TG…ボイラ出口ガス温度、
TA…燃焼空気温度、P1,P2…圧力、17…
Hu演算装置、18…信号、19…乾燥火格子駆
動装置、20…演算装置、22…燃焼パターン推
定用演算装置、23…燃焼空気量の検出器。
Fig. 1 is an explanatory diagram showing the general configuration of a waste incinerator incorporating a waste heat boiler, Fig. 2 is an explanatory diagram showing the control system of this waste incinerator, and Figs. 3 a to c are illustrations of the combustion It is an explanatory view showing a burning pattern of the garbage on the grid. 1... Garbage input hopper, 2... Crane, 3... Drying grate, 4... Combustion grate, 5... Rotating kiln, 6
... Combustion chamber, 7... Waste heat boiler, 8... Weight scale, 9a,
9b... Combustion air flow meter, 10... Combustion air temperature detector, 11... Furnace temperature control air flow meter, 12,
13...Pressure gauge that measures the upper and lower pressures of the combustion grate, 14...Boiler feed water temperature detector, 15...Flow meter that measures the amount of boiler steam, 16...Temperature detector that detects the boiler outlet gas temperature, Hu...Garbage lower calorific value, G...garbage input amount, F...combustion air flow rate, BC
…Amount of air for furnace temperature control, BD…Amount of combustion air, TB…
Boiler feed water temperature, TG...boiler outlet gas temperature,
TA... Combustion air temperature, P1, P2... Pressure, 17...
Hu calculation device, 18... Signal, 19... Dry grate drive device, 20... Computation device, 22... Computation device for combustion pattern estimation, 23... Combustion air amount detector.

Claims (1)

【特許請求の範囲】[Claims] 1 炉体とその付属設備としての廃熱ボイラを一
体とした焼却炉系の熱収支計算により、ごみの低
位発熱量を求め、且つこの低位発熱量と上記ボイ
ラの目標蒸気発生量とから炉内に供給すべきごみ
量を求めて、これに対応する乾燥火格子の基本的
なごみ送り速度を決定し、その信号を乾燥火格子
駆動装置に与えると共に、燃焼火格子上のごみ燃
焼パターンを燃焼領域面積の間接的な測定値から
推定して、この燃焼パターン推定値が最適なごみ
燃焼パターンを保つ適正範囲の上限を超えた場合
は乾燥火格子速度を上記の基本的なごみ送り速度
より一定比上げ、また上記適正範囲の下限を下回
つた場合は一定比下げる補正信号を乾燥火格子駆
動装置に与えることにより、燃焼段のごみ燃焼パ
ターンを最適な状態に維持し、ボイラの発生蒸気
量を安定させるように制御することを特徴とする
ごみ焼却炉の制御方法。
1. Calculate the heat balance of the incinerator system, which includes the furnace body and the waste heat boiler as an attached equipment, to determine the lower calorific value of the waste, and then calculate the amount of heat inside the incinerator from this lower calorific value and the target steam generation amount of the boiler. Determine the amount of waste to be fed into the combustion area, determine the corresponding basic waste feed rate of the drying grate, give that signal to the drying grate drive device, and adjust the waste combustion pattern on the combustion grate to the combustion area. If this combustion pattern estimate exceeds the upper limit of the appropriate range to maintain an optimal refuse combustion pattern, as estimated from indirect measurements of area, the drying grate speed should be increased by a fixed percentage above the basic refuse feed rate. In addition, if the temperature falls below the lower limit of the above appropriate range, a correction signal is given to the drying grate drive device to lower it by a certain ratio, thereby maintaining the waste combustion pattern in the combustion stage in an optimal state and stabilizing the amount of steam generated by the boiler. A method for controlling a waste incinerator, characterized in that the waste incinerator is controlled as follows.
JP55175000A 1980-12-11 1980-12-11 Method of controlling operation of refuse incinerator Granted JPS5798719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55175000A JPS5798719A (en) 1980-12-11 1980-12-11 Method of controlling operation of refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55175000A JPS5798719A (en) 1980-12-11 1980-12-11 Method of controlling operation of refuse incinerator

Publications (2)

Publication Number Publication Date
JPS5798719A JPS5798719A (en) 1982-06-19
JPS6357690B2 true JPS6357690B2 (en) 1988-11-11

Family

ID=15988456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55175000A Granted JPS5798719A (en) 1980-12-11 1980-12-11 Method of controlling operation of refuse incinerator

Country Status (1)

Country Link
JP (1) JPS5798719A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024453A (en) * 2000-09-25 2002-03-30 신영균 Method for controlling an incinerator make use of boiler's thermal capacity
JP7347339B2 (en) * 2020-06-05 2023-09-20 Jfeエンジニアリング株式会社 Grate type waste incinerator and waste incineration method using grate type waste incinerator

Also Published As

Publication number Publication date
JPS5798719A (en) 1982-06-19

Similar Documents

Publication Publication Date Title
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP3135892B2 (en) Method of controlling the thermal power of an incinerator
JPH079288B2 (en) Fuel supply control method for solid combustion device
JPS6357690B2 (en)
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JPS6116889B2 (en)
JPH04208306A (en) Method for controlling combustion in solid item combustion device
EP0943864B1 (en) Combustion control method for refuse incinerator
JP2664909B2 (en) Operating method of refuse incineration equipment
JP7443051B2 (en) Combustion control method for garbage incinerator
JPS58195707A (en) Combustion control method for refuse incinerator
JPH09170736A (en) Method for supplying specified amount of refuse for refuse incinerator
JPH09324907A (en) Predetermined amount supply method of garbage in garbage incinerator
JP3235646B2 (en) Combustion control method for sludge incinerator and apparatus therefor
JPS63113215A (en) Method of controlling combustion of incinerator
JPH0260928B2 (en)
JPH0481688B2 (en)
JPS6056964B2 (en) How to control a garbage incinerator
SU1016646A1 (en) Method of automatic control of loose material drying process
JP3665483B2 (en) Combustion control device for incinerator
SU840586A2 (en) Method of controlling burning process in ship boiler fire box
JPS6018888B2 (en) Method for controlling the amount of boiler steam generated in a garbage incinerator
SU866369A1 (en) Method of automatic control of drying process in rotating drier
JPH11230506A (en) Method for controlling waste heat boiler and its device
JP2720103B2 (en) Dryer burner combustion control method