JPS58195707A - Combustion control method for refuse incinerator - Google Patents

Combustion control method for refuse incinerator

Info

Publication number
JPS58195707A
JPS58195707A JP7963682A JP7963682A JPS58195707A JP S58195707 A JPS58195707 A JP S58195707A JP 7963682 A JP7963682 A JP 7963682A JP 7963682 A JP7963682 A JP 7963682A JP S58195707 A JPS58195707 A JP S58195707A
Authority
JP
Japan
Prior art keywords
flow rate
garbage
combustion
air
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7963682A
Other languages
Japanese (ja)
Other versions
JPH0323806B2 (en
Inventor
Yasumitsu Kurosaki
泰充 黒崎
Kazunori Fukazawa
和則 深沢
Yukinobu Kono
行伸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7963682A priority Critical patent/JPS58195707A/en
Publication of JPS58195707A publication Critical patent/JPS58195707A/en
Publication of JPH0323806B2 publication Critical patent/JPH0323806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55008Measuring produced steam flow rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To perform a stable combustion of refuse, by a method wherein a heat quantity produced in a refuse incinerator is detected, and a distribution of a feed flow rate in a drying range, a combustion range, and a post-combustion range is changed and a refuse feed flow rate is adjusted so that the generated heat quantity is kept constant. CONSTITUTION:In case a flow rate 10 of steam produced in a boiler 8 located in a flue of an incinerator is increased from a set flow rate 55, a signal from a regulator 23 consisting of a PID computing element is inputted to computing elements 25-27 togetherwith a signal from an air flow rate set circuit 60 through a distributing circuit 56. Openings of dampers 43 and 44 are reduced by means of the outputs of the computing elements 25 and 26, a flow rate of the air to a drying range A1 and a combustion range A2 is decreased, and simultaneously, according to the output of the computer 27, an opening of a damper 45 is increased to increase a flow rate of the air to a post-combustion range A3. Through a refuse feed flow rate controller 20 and a fluidized bed speed controller 21 which are actuated by means of computing elements 31 and 32 through a regulator 29, a pusher 4 and fluidized beds 5-6 are adjusted into the reduction in a flow rate and deceleration of a speed.

Description

【発明の詳細な説明】 本発明は、固体廃棄物であるごみを焼却するストーカす
なわち移動床を備える焼却炉において、焼却処理をする
に際し、その燃焼状態を制御する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the combustion state during incineration in an incinerator equipped with a stoker or moving bed for incinerating solid waste.

近年、ごみ焼却炉にボイラを設置し、こみ焼却の際に発
生する熱を回収し、発生した蒸気により発電を行なうご
み発電などに代表されるように、ごみを単に焼却処理す
る廃棄物としてではなく、ごみに燃料としての付加価値
を生じせしめるまでに、こみ焼却施設の省資源・省エネ
ルギ化が進んできている。前記ごみの燃料としての付加
価値の向上には、ごみ発電での発電量の均一化に見られ
るように、発生する蒸気量の安定化、すなわち焼却炉の
熱出力の安定化による蒸気利用効率の向上が必要不可欠
である。かかる焼却炉の自動燃焼制御に要求される諸性
能は、従来のそれに比べて、一段と高度なものとなって
きている。すなわち、省力化、ごみの完全焼却、排ガス
中の有害ガスNOx等の低減化を達成しつつ、常時、安
定した熱出力が得られる焼却炉の自動燃焼制御方法が要
望されている。
In recent years, garbage has become more and more popular than simply incinerated waste, as exemplified by waste power generation, in which a boiler is installed in a garbage incinerator, the heat generated during garbage incineration is recovered, and the generated steam is used to generate electricity. Waste incineration facilities are becoming more resource- and energy-saving, and waste incineration facilities are now becoming more resource- and energy-saving, to the point where waste can be used as fuel to generate added value. In order to increase the added value of waste as a fuel, it is necessary to stabilize the amount of steam generated, that is, to stabilize the thermal output of the incinerator, thereby increasing the efficiency of steam utilization, as seen in the equalization of the amount of power generated by waste power generation. Improvement is essential. The various performances required for automatic combustion control of such incinerators have become much more advanced than those of conventional incinerators. That is, there is a need for an automatic combustion control method for an incinerator that can achieve stable heat output at all times while saving labor, completely incinerating waste, and reducing harmful gases such as NOx in exhaust gas.

本発明は、このような社会的情勢を鑑み、安定な熱出力
の供給によるごみの燃料としての付加側線向上に代表さ
れるごみの安定燃焼を実現するごみ焼却炉の燃焼制御方
法を提供することにある。
In view of such social conditions, the present invention provides a combustion control method for a garbage incinerator that realizes stable combustion of garbage, typified by the improvement of additional siding lines that use garbage as fuel by supplying stable thermal output. It is in.

第1図は、本発明の一実施例の全体の系統図である。こ
み焼却炉1には、ごみ供給クレーン2がらホッパ3を介
してごみが投入される。ホッパ3内のごみは、ごみ供給
ブツシャ4によってごみ焼却炉1内に落ドする。こみ焼
却炉lは、ごみ供給ブツシャ4側から排出口37f11
!I[連続して順次的に、乾燥域A1、燃焼域A2、お
よび後燃焼域A3に対応して移動床5,6.7が配置さ
れる。ごみ供給ブツシャ4から移動床5上に落Fしたご
みは、移動床5からの下から供給される空気によって乾
燥され、移動床6に移動されて燃焼し、さらに移動床7
を経て残灰として排出口37から排出される。燃焼によ
って発生した高温ガスは、ボイラ8によって熱交換され
、その後、外部に排出さ□。
FIG. 1 is an overall system diagram of an embodiment of the present invention. Garbage is fed into the garbage incinerator 1 via a hopper 3 from a garbage supply crane 2. The garbage in the hopper 3 is dropped into the garbage incinerator 1 by a garbage supply busher 4. Garbage incinerator 1 has a discharge port 37f11 from the garbage supply bushing 4 side.
! I [Successively and sequentially, moving beds 5, 6.7 are arranged corresponding to the drying zone A1, the combustion zone A2 and the after-combustion zone A3. The garbage F that has fallen from the garbage supply busher 4 onto the moving bed 5 is dried by the air supplied from below from the moving bed 5, is moved to the moving bed 6, where it is burned, and is further transferred to the moving bed 7.
After that, it is discharged from the discharge port 37 as residual ash. The high-temperature gas generated by combustion undergoes heat exchange by the boiler 8, and is then discharged to the outside.

れる。ボイラ8からの蒸気は、管路38を経てり1シ・ 一ビンに供給され、発電が行なわれる。管路385・、
・ に介在されている検出器9は蒸気流量を検出する。
It will be done. Steam from the boiler 8 is supplied to one cylinder via a conduit 38 to generate electricity. Conduit 385・,
- A detector 9 interposed in detects the steam flow rate.

−、・、、′ 管路39からの空気は、管路40,41.42を介して
移動床5,6.7の丁方に供給される。
-, .

管路40,41.42には、施蓋制御のためのダンパ4
3,44.45がそれぞれ介在される。管路40の下流
側には空気流量を検出する検出器46が設けられている
。調節計15は、ライン12を介する信号に応答して、
ダンパ43の開度を検出器46によって検出される流M
がライン12を介して与えられる信号の表わす流量に一
致するように制御する。ダンパ44に関連して流量検出
器48および調節計16が設けられている。ダンパ45
に関連して流量検出器50および調節計17が設けられ
る。調節計16.17にはライン13゜14を介して信
号がそれぞれ与えられる。こうしてこのライン13.1
4からの信’15Kkl応した空気流量となるようにダ
ンパ44,45の開度が操作される。
The pipes 40, 41, 42 are equipped with a damper 4 for controlling the lid.
3, 44, and 45 respectively. A detector 46 is provided on the downstream side of the conduit 40 to detect the air flow rate. Controller 15 responds to a signal via line 12 to
The opening degree of the damper 43 is detected by the flow M
is controlled to match the flow rate represented by the signal provided via line 12. A flow rate detector 48 and a regulator 16 are provided in association with the damper 44 . damper 45
A flow rate detector 50 and a controller 17 are provided in connection with the flow rate detector 50 and the controller 17. The regulators 16, 17 are each supplied with a signal via lines 13 and 14. Thus this line 13.1
The opening degrees of the dampers 44 and 45 are controlled so that the air flow rate corresponds to the information from the dampers 44 and 45.

移動床5,6..7は、ライン19からの信号にぐ 応答する移動j!□・)坤度制御装置21によって移動
床の速度、した示:5つて燃焼されるごみの移動速度が
制御される。ライ″□′ン18からの信号に応答するご
み供給流量制御装置20は、ごみ供給ブツシャ4の往復
速度を制御してごみ供給流量を制御する。
Moving floor 5, 6. .. 7 moves j! in response to the signal from line 19! □・) The speed of the moving bed and the moving speed of the garbage to be burned are controlled by the constancy control device 21. A waste supply flow rate control device 20 responsive to signals from the line "□'" controls the reciprocating speed of the waste supply busher 4 to control the waste supply flow rate.

制御装置11は、ライン10を介する蒸気流量検出器9
からの信1?:応答し、ライン12,13゜14に空気
流量を表わす信号を導出するとともに、ライン19を介
して移動床5,6.7の移動速度を表わす信号を導出し
、ライン18を介してごみ供給流量を表わす信号を導出
する。
The control device 11 includes a steam flow rate detector 9 via a line 10.
Faith from 1? : in response, a signal representative of the air flow rate is derived in lines 12, 13, 14, and a signal representative of the moving speed of the moving bed 5, 6.7 is derived via line 19, and a signal representative of the movement speed of the moving bed 5, 6.7 is derived via line 18. Derive a signal representing the flow rate.

先ず、本発明の原理について説明する。First, the principle of the present invention will be explained.

こみ焼却炉lKおける単位時間当りの発生熱には、一般
に次式により示される。
The heat generated per unit time in a waste incinerator IK is generally expressed by the following formula.

Q−Kl  ・ Hu−GR−(凰) ただし、Qは単位時間当りの発生熱量、Huはごみ単位
重重当りの発熱量、 GRは単位時間当りのごみの焼MJ皺すなわちごみの焼
却速度、 Kl は燃焼効率などより決まる係数である。
Q-Kl ・ Hu-GR- (凰) Where, Q is the amount of heat generated per unit time, Hu is the amount of heat generated per unit weight of garbage, GR is the incineration rate of garbage per unit time, Kl is a coefficient determined by combustion efficiency, etc.

第1式において、発生熱量Qを一定に保つためには、発
熱量Huまたは焼却速度GMを操作すねばよいことにな
る。ここで、燃料としてのごみは、その化学的、物理的
性状が不均一であり、ごみ焼却炉l内へ供給されるごみ
の発熱1itHuは常時変動する。したがって発熱量H
uの制御は実際には不可能であり、焼却速度GRtt−
操作することになる。ごみ焼却炉1内へのごみの定量供
給操作が困難であり、ごみ焼却炉lへのごみ供給流量変
動は、除去しがたい。仮に定量供給が実現したとしても
、こみ焼却炉1内へ供給されたごみの乾燥から着火まで
の乾燥時間はごみ質の差により、またそのときの燃焼状
態により変動し、結果としてごみ焼却速度が変動するこ
とになる。
In the first equation, in order to keep the amount of heat generated Q constant, it is necessary to manipulate the amount of heat Hu or the incineration rate GM. Here, the chemical and physical properties of waste as a fuel are non-uniform, and the heat value 1itHu of the waste supplied into the waste incinerator l constantly fluctuates. Therefore, the calorific value H
It is practically impossible to control u, and the incineration rate GRtt-
It will be operated. It is difficult to perform a constant supply operation of garbage into the garbage incinerator 1, and fluctuations in the amount of garbage supplied to the garbage incinerator 1 are difficult to eliminate. Even if fixed-quantity supply were realized, the drying time from drying to ignition of the waste supplied to the waste incinerator 1 would vary depending on the difference in waste quality and the combustion state at that time, resulting in a decrease in the waste incineration rate. It will change.

以上の燃料としてのごみの性状を考慮すると、第1式は
第2式のようになる。
Considering the above properties of waste as fuel, the first equation becomes the second equation.

Q−に1・Q(uO+ΔHu)(GRO+ΔGR+ΔG
RC)−(2+ここで、HuOはごみ単位重重当りの発
熱量の平均値、 ΔHuはごみ単位重量当りの発熱量の変動分、GROは
ごみ焼却炉1内へ供給されたごみが燃焼する際のごみ焼
却速度の平均値、 ΔGRは操作不可能なごみ焼却速度の変動分、ΔGRC
は本発明によるところのごみ焼却速度の操作羨数である
Q- to 1・Q(uO+ΔHu)(GRO+ΔGR+ΔG
RC) - (2 + where, HuO is the average value of the calorific value per unit weight of garbage, ΔHu is the variation in the calorific value per unit weight of garbage, and GRO is the value when the garbage supplied to the garbage incinerator 1 is burned. The average value of the garbage incineration rate, ΔGR is the fluctuation in the garbage incineration rate that cannot be controlled, ΔGRC
is the operation coefficient of waste incineration rate according to the present invention.

第2式において、外乱、こみ低位発熱量の変動ΔHu 
sおよびごみ焼却速度の変動AGRKt4して発生熱I
Qを一定に保つためには、本発明によるところのごみ焼
却速度の操作変数ΔGRCを制御すればよいことがわか
る。
In the second equation, the disturbance, the fluctuation in the lower heating value of dirt ΔHu
s and the fluctuation of waste incineration rate AGRKt4 and the generated heat I
It can be seen that in order to keep Q constant, it is sufficient to control the manipulated variable ΔGRC of the garbage incineration rate according to the present invention.

第2図は、乾燥域A1と燃焼域A2とのごみ増断面をモ
デル化した図である。乾燥域AIと燃焼域A2の移動床
5.6の下部から供給空気Aが供給される。ごみ層表面
上から供給空気Bがそれぞれ供給される。乾燥域A1の
ごみは移動床5の下部からの供給空気Aおよび火災から
の輻射熱により乾燥されて着化し、燃焼域A2に供給さ
れる。
FIG. 2 is a modeled view of the dust increase area in the drying area A1 and the combustion area A2. Feed air A is supplied from the lower part of the moving bed 5.6 in the drying zone AI and the combustion zone A2. Supply air B is supplied from above the surface of the dust layer. The garbage in the drying area A1 is dried and solidified by the supplied air A from the lower part of the moving bed 5 and the radiant heat from the fire, and is then supplied to the combustion area A2.

燃焼域A2のごみは、供給量9LAおよび供給空気Bに
より燃焼している。
The garbage in the combustion area A2 is burned by the supply amount 9LA and the supply air B.

今、この燃焼状態において供給空気Aを減少し、供給空
気Bを増加させると1.供給空気Aは減少し、a層内部
K !5 iする燃焼速度、”jF減少し・′:′″′
表層部での燃焼反応が主となる。す、なわちごみの焼却
速度ΔGRCは減少させられる。さらに乾燥域A1への
供給量9LAを減少させることにより、着火時間を遅ら
せる効果があり、ごみの焼却速度ΔGRCの減少に寄与
する。
Now, in this combustion state, if supply air A is decreased and supply air B is increased, 1. The supply air A decreases, and the inside of the a-layer K! 5 The burning speed of i, ``jF decreases・':''''
The combustion reaction takes place mainly in the surface layer. That is, the garbage incineration rate ΔGRC is reduced. Further, by reducing the supply amount 9LA to the drying area A1, there is an effect of delaying the ignition time, contributing to a reduction in the garbage incineration rate ΔGRC.

逆に、供給空気Aを増加させ、供給空気、Bを減少させ
ると、供給量9LAの増加により、ごみ層内部における
燃焼速度は増加する。すなわちごみの焼却速度ΔGRC
は増加させられる。また乾燥域Alへの供給空気Aを増
加させることにより、着火時間を早める効果があり、ご
み焼却速度ΔGRCの増加に寄与する。
Conversely, when the supply air A is increased and the supply air B is decreased, the combustion rate inside the garbage layer increases due to the increase in the supply amount 9LA. In other words, the garbage incineration rate ΔGRC
is increased. Furthermore, increasing the amount of air A supplied to the drying area Al has the effect of speeding up the ignition time, contributing to an increase in the garbage incineration rate ΔGRC.

供給空気Aと、供給空気Bの総鰍すなわちごみ焼却炉l
内への総供給量気流量は、たとえば次式の実験式により
決定する。
Supply air A and supply air B, that is, garbage incinerator l
The total amount of air supplied into the interior is determined, for example, by the following empirical formula.

GF−人(K)Hu O+−K 3) G RO−f3
]ここでGFは焼却炉内への総供給空気流量、λは空気
過剰率、 K2.に3は平、均的なごみ組成より決まる係数である
。燃焼状−1特に空気過剰率λすなわち燃焼0.濃度と
有害ガスNOxの発生量は、密接な関係にあり、燃焼0
□濃度の適正保持による有害ガスNOxの発生量の低減
化が必要である。よって燃焼抑制が必要である燃焼状態
が盛んなとき、すなわち、供給空気Aを滅らし、供給空
気Bを増加する操作時は、燃焼0□濃度は適正値より低
いので、総供給空気量GAは増加させる。逆に、燃焼促
進が必要な燃焼状態が衰えたとき、すなわち供給空気A
を増加し、供給空気Bを減らす操作時は、炉焼02濃度
は適正値より高いので、総供給空気−GFは減少させる
のが望ましい。
GF-Human (K) Hu O+-K 3) G RO-f3
] Here, GF is the total supply air flow rate into the incinerator, λ is the excess air ratio, and K2. 3 is a coefficient determined from the average, average garbage composition. Combustion condition-1, especially excess air ratio λ, i.e. combustion 0. There is a close relationship between the concentration and the amount of harmful gas NOx generated.
□It is necessary to reduce the amount of harmful gas NOx generated by maintaining the appropriate concentration. Therefore, when combustion is active and combustion suppression is necessary, that is, when supply air A is destroyed and supply air B is increased, the combustion 0□ concentration is lower than the appropriate value, so the total supply air amount GA is increase. Conversely, when the combustion state that requires combustion acceleration declines, that is, when the supply air A
When increasing the supply air B and decreasing the supply air B, it is desirable to decrease the total supply air - GF since the furnace 02 concentration is higher than the appropriate value.

前記供給空気A、Bの配分量変更の操作量が平衡点から
焼却速度ΔGRCを増加させる[にあるときは、ごみ供
給ブツシャ4の速度を緩やかに増加させ、焼却炉内への
ごみ供給量を増加させる。また逆に、前記操作量が平衡
点から焼却速度ΔGRCは減少させる側にあるときは、
ごみ供給ブツシャ4の速度をゆるfかに減少させ、ごみ
焼却炉1へのごみ供給流量を減少させることにより、第
2式におけるごみ焼却速度の平均1lIGROを変更し
、ごみの完全焼却とごみ焼却速度ΔGRCの制御範囲を
確保することが可能となる。またごみ焼却速度ΔGRC
の増減操作により、燃焼域A2が移動床5,6゜7上を
移動することを防止し、移動床5,6.7のうち適正位
置の移動床6にで燃焼を完了させる目的で、燃焼抑制時
は、移動床速度を減速し、燃焼促進時には、移動床速度
を増速する。すなわちごみ焼却速度ΔGRCの連続制御
により、ごみ質変動に起因する発生熱量の変動を連続か
つ的確に抑制することが可能となり、ごみの完全焼却お
よび発生有害ガスの低減化を実現しつつ、蒸gLiiの
安定制御が確立できる。
When the manipulated variable for changing the distribution amount of the supply air A, B increases the incineration rate ΔGRC from the equilibrium point, the speed of the garbage supply button 4 is gradually increased to increase the amount of garbage supplied into the incinerator. increase. Conversely, when the manipulated variable is on the side that reduces the incineration rate ΔGRC from the equilibrium point,
By gradually reducing the speed of the waste feeder 4 and reducing the waste supply flow rate to the waste incinerator 1, the average waste incineration speed 1lIGRO in the second equation is changed, and complete waste incineration and waste incineration are achieved. It becomes possible to secure the control range of the speed ΔGRC. Also, garbage incineration rate ΔGRC
In order to prevent the combustion area A2 from moving on the moving beds 5, 6.7 by increasing and decreasing When suppressing combustion, the moving bed speed is reduced, and when promoting combustion, the moving bed speed is increased. In other words, by continuously controlling the waste incineration rate ΔGRC, it is possible to continuously and accurately suppress fluctuations in the amount of heat generated due to changes in waste quality, and while achieving complete incineration of waste and reduction of generated harmful gases, it is possible to stable control can be established.

第3図は、制御装置11の具体的な構成を示すプ田ツク
図である。蒸気流量検出器9からライン10を介する信
号は、調節計23に入力される。
FIG. 3 is a block diagram showing a specific configuration of the control device 11. As shown in FIG. A signal from the steam flow rate detector 9 via the line 10 is input to the controller 23.

この調節計23には、予め定めた蒸気装置を表わす信号
が設定回路55からライン22を介して与えられる。調
節計23は、たとえば比例、積分および微分演算を行な
ういわゆるPID演算器によって実現される。調節計2
3は、ライン10.22からの信号の表わす値の偏差を
演算しライン24から導出する。ライン24からの信号
は、演算器25.26.27の一方の入力に与えられる
。演算器25,26.27の他方の人力には分配回路5
6からライン57.58.59に介して伯りがそれぞれ
与えられる。分配回路56Vcは、空気、流量設定回路
60からの信号が与えられる。空ン流量設定回路60か
らの信号は、管路39がら供給される空気流蓋を表わす
信号を導出する。分配−路56は、管路40,41.4
2に予め定めた1分比で空気が供給されるための信号を
導出する。
This controller 23 is supplied with a signal representing a predetermined steam system via line 22 from a setting circuit 55. The controller 23 is realized, for example, by a so-called PID calculator that performs proportional, integral, and differential calculations. Controller 2
3 calculates the deviation of the value represented by the signal from line 10.22 and derives it from line 24. The signal from line 24 is applied to one input of a calculator 25, 26, 27. A distribution circuit 5 is connected to the other human power of the computing units 25, 26, and 27.
6 through lines 57, 58, and 59, respectively. The distribution circuit 56Vc is supplied with a signal from the air flow rate setting circuit 60. The signal from air flow setting circuit 60 derives a signal representative of the air flow cap being supplied from line 39. Distribution line 56 is connected to lines 40, 41.4.
A signal for supplying air at a predetermined ratio of 2 to 1 minute is derived.

調節計23からライン24Vc導出される信号は、管路
38における蒸気流量を一定にするためのイ、j号であ
る。ライン24.57,58.59における信号のレベ
ルは、空気流lに比例した蛤である。
The signals derived from the controller 23 to the line 24Vc are signals a and j for making the steam flow rate in the pipe line 38 constant. The level of the signal in lines 24.57, 58.59 is proportional to the airflow l.

演算器25は、ライン5−7を介する乾燥域AIに供給
されるべき空気流量の基準値からライン24を介する信
号に比例した値を減算し、ライン12を介して調節計1
5に信号を導出する。演算器2′i 6は、燃焼域A2に供給されるべきライン58を介する
空気流量の基準値から1″’督、イン24を介する信号
に比例した値を減算し、ライン13に導出して調節計1
6に与える。演算器27は、後燃焼域A3に供給される
べきライン59を介する空無、流量の基準値にライン2
4を介する信号に比例した瞳を加算し、ライン14に導
出して調節計17に与える。供給されるべき空気流量の
総和は、前述の第6式に従って定められる。こうして管
路40゜41.42から供給される空気の配分比は、演
算器23と配分回路56とによって決定される。その空
気流量の総和は、回路60によって定められる。
The computing unit 25 subtracts a value proportional to the signal via the line 24 from the reference value of the air flow rate to be supplied to the drying area AI via the line 5-7, and subtracts the value proportional to the signal via the line 12 to the controller 1 via the line 12.
5 to derive the signal. The calculator 2'i6 subtracts a value proportional to the signal via the input 24 by 1'' from the reference value of the air flow rate via the line 58 to be supplied to the combustion zone A2, and derives it to the line 13. Controller 1
Give to 6. The computing unit 27 sets the line 2 to the reference value of the empty flow rate via the line 59 to be supplied to the after-combustion area A3.
A pupil proportional to the signal via 4 is added, and the resultant signal is derived on line 14 and applied to controller 17 . The total amount of air flow to be supplied is determined according to equation 6 above. In this way, the distribution ratio of air supplied from the pipes 40.degree. 41.42 is determined by the calculator 23 and the distribution circuit 56. The total air flow rate is determined by circuit 60.

調節計29は、たとえば比例、積分および微分動作を行
なういわゆるPID演算器によって実現される。この調
節計29は、ライン24を介する信号と、設定器61が
らライン28を介する信号とを受信し、ライン30に演
算結果を表わす信号を導出する。演算□器23の補正の
ための出方が零11111゜ となるようにす8″1:とが望まれ、したがって設定1
1i61#IzG:j鮎・”F* *−c’あ、。よゎ
オ。7゜ノ1′、4 導出される。ライ″)3oがらの信号は、演算器31.
32にそれぞれ与えられる。演算器31.32からの出
力は、ライン18.19を介して前述のようにごみ供給
流量制御装置2oおよび移動床速度制御装置21にそれ
ぞれ与えられる。
The controller 29 is realized, for example, by a so-called PID calculator that performs proportional, integral, and differential operations. This controller 29 receives the signal via line 24 and the signal from the setting device 61 via line 28, and derives a signal representing the calculation result on line 30. It is desired that the output for correction of the calculator 23 be 011111°, and therefore the setting 1.
1i61#IzG:j Ayu・"F* *-c'Ah. Yowo.
32 respectively. Outputs from the calculators 31, 32 are provided via lines 18, 19 to the waste supply flow rate controller 2o and the moving bed speed controller 21, respectively, as described above.

管路38を介して供給される蒸気流蓋が設定回路55に
おいて設定された蒸気、流量よりも大さくなった場合を
想定する。この場合には、演算器25.26からの@り
によってダンパ43,44の開度は小ざくなり、乾燥域
A1および燃焼域A2に供給される空気の流量は、減少
される。また演算器27からの出力によってダンパ45
の開屋“は大きくなり、後燃焼域A3に管路42から供
帖8れる空気流量は増加される。このようr(してごみ
焼却炉l内における燃焼状態が抑制され、管路38から
供給される蒸気流量は、設定回路55によって設定され
たthlk′に制御される。調節計29からライン30
を介する信号に応答する演算器31G、f。
Assume that the steam flow rate supplied through the pipe line 38 becomes larger than the steam flow rate set in the setting circuit 55. In this case, the opening degrees of the dampers 43 and 44 are reduced by the input from the computing units 25 and 26, and the flow rate of air supplied to the drying area A1 and the combustion area A2 is reduced. In addition, the output from the calculator 27 causes the damper 45 to
The opening of the waste incinerator becomes larger, and the flow rate of air flowing from the pipe 42 into the post-combustion zone A3 increases. The supplied steam flow rate is controlled to thlk' set by the setting circuit 55. From the controller 29 to the line 30
Arithmetic units 31G, f that respond to signals via.

ライン24を介する信号が設定器61で定められた値に
なるように、ブツシャ4によってごみ供給流量を減少さ
せる。こうしてごみ供給流量が小さいtjiに保たれる
。また演算器32は、ライン19を介して移動床速度制
御装wi21に信号を与え、これによって移動床5,6
.7の速度は設定回路61において設定された値VC対
応した鮪となるようにゆるやかに減少される。
The pusher 4 reduces the waste supply flow rate so that the signal via the line 24 becomes the value determined by the setting device 61. In this way, the waste supply flow rate is kept at a small tji. The computing unit 32 also provides a signal to the moving bed speed control device wi21 via the line 19, thereby causing the moving beds 5, 6 to
.. The speed of No. 7 is gradually decreased so that the tuna corresponds to the value VC set in the setting circuit 61.

管路38を介して供給される蒸気流量が設定回路55に
おいて設定された蛤よりも小さくなった場合には、演算
器25.26は加算動作を行ない演算器27は減算動作
を行なう。このようにしてダンパ43,44の開度は大
きくなり、ダンパ45の開度は小さくされ、乾燥域AI
および燃焼域A2に供給されるダク)40.41からの
空気の流量は増方向に変化され、ダクト42がら後燃焼
域A3に供給される空気流量は減少される。また演算器
31は、ブツシャ4の往復動作周期を小さくしてごみ供
給流量を増大し、移動床速度制御装置21による移動床
5,6.7の移動速度を向上する。このようにして蒸気
流量が増大される。
When the steam flow rate supplied via the pipe line 38 becomes smaller than the value set in the setting circuit 55, the computing units 25 and 26 perform an addition operation, and the computing unit 27 performs a subtraction operation. In this way, the opening degrees of the dampers 43 and 44 are increased, the opening degree of the damper 45 is decreased, and the dry area AI
The flow rate of air from the duct 40, 41 supplied to the combustion zone A2 is increased, and the flow rate of air supplied to the after-combustion zone A3 from the duct 42 is decreased. Further, the computing unit 31 reduces the reciprocating cycle of the pusher 4 to increase the waste supply flow rate, and improves the moving speed of the moving beds 5, 6.7 by the moving bed speed control device 21. In this way the steam flow rate is increased.

上述の実施側では、管路38に蒸気流量を検出する検出
器9が設けられ、こrt Vcよってこみ焼却炉の発生
熱量が検出され、この発生熱量が一定となるように制御
されたけれども、本発明の他の実施例としてごみ焼却炉
l内の温度を熱電対VCよって検出し、この炉内温度が
一定となるようVClすなわちごみ焼却炉1における発
生熱量が一定となるように、制御するようにしてもよい
In the implementation described above, a detector 9 for detecting the steam flow rate was installed in the pipe line 38, and the amount of heat generated by the waste incinerator was detected by the rt Vc, and the amount of heat generated was controlled to be constant. As another embodiment of the present invention, the temperature inside the garbage incinerator 1 is detected by a thermocouple VC, and the temperature inside the furnace is controlled to be constant VCl, that is, the amount of heat generated in the garbage incinerator 1 is constant. You can do it like this.

以上のように本発明によれは、ごみが安定して燃焼され
、これによってごみの燃料としての付加価値が向上され
、省資源と省エネルギ化が促進され、さらにごみを完全
に焼却して有害ガスの発生を低減することができるよう
rrなる。
As described above, according to the present invention, garbage is stably combusted, thereby increasing the added value of garbage as a fuel, promoting resource and energy conservation, and furthermore, by completely incinerating the garbage and causing harmful rr so that gas generation can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体の系統図、第2図は乾
燥域A1および燃焼域A2VCおけるこみ層の断面をモ
デル化した図、第3図は制御装置11の具体的な構成を
示すブロック図である。 1・・・ごみ焼却炉、3・・・ホッパ、4・・・ブツシ
ャ、5.6.7・・・移動床、8・・・ボイラ、9・・
・蒸9L流皺検815器、11・・・制御装置、a6,
40,41.4、′□゛、: 2・・・管路1,4.3,44.45・・・ダンパ代理
人   弁理士  西教圭一部
FIG. 1 is an overall system diagram of an embodiment of the present invention, FIG. 2 is a modeled cross-section of the dust layer in the drying zone A1 and the combustion zone A2VC, and FIG. 3 is a specific configuration of the control device 11. FIG. 1... Garbage incinerator, 3... Hopper, 4... Butsusha, 5.6.7... Moving bed, 8... Boiler, 9...
・Steam 9L flow wrinkle tester 815 device, 11...control device, a6,
40, 41.4, '□゛,: 2... Pipe 1, 4.3, 44.45... Damper agent Patent attorney Kei Nishi part

Claims (1)

【特許請求の範囲】[Claims] ごみ供給手段によってごみをごみ焼却炉に供給し、ごみ
焼却炉は乾燥域と燃焼域と後燃焼域とにそれぞれ設けら
れた移動床を有し、こみ焼却炉の発生熱量を検出し、そ
の発生熱量が一定となるように乾燥域と燃焼域と後燃焼
域とにおける供給空気流量の配分を変え、その配分をも
とにしてごみ供給手段によるごみ供給流量と、移動床の
速度とを調整することを特徴とするごみ焼却炉の燃焼制
御方法。
A garbage supply means supplies garbage to a garbage incinerator, and the garbage incinerator has movable beds each provided in a drying area, a combustion area, and an after-combustion area, and detects the amount of heat generated by the garbage incinerator. The distribution of the supply air flow rate in the drying zone, combustion zone, and after-combustion zone is changed so that the amount of heat is constant, and the garbage supply flow rate by the garbage supply means and the speed of the moving bed are adjusted based on the distribution. A combustion control method for a garbage incinerator, characterized in that:
JP7963682A 1982-05-11 1982-05-11 Combustion control method for refuse incinerator Granted JPS58195707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7963682A JPS58195707A (en) 1982-05-11 1982-05-11 Combustion control method for refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7963682A JPS58195707A (en) 1982-05-11 1982-05-11 Combustion control method for refuse incinerator

Publications (2)

Publication Number Publication Date
JPS58195707A true JPS58195707A (en) 1983-11-15
JPH0323806B2 JPH0323806B2 (en) 1991-03-29

Family

ID=13695572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7963682A Granted JPS58195707A (en) 1982-05-11 1982-05-11 Combustion control method for refuse incinerator

Country Status (1)

Country Link
JP (1) JPS58195707A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537945A1 (en) * 1985-10-25 1987-04-30 Babcock Anlagen Ag Method for combustion of waste
JPH0195211A (en) * 1987-10-03 1989-04-13 Kawasaki Heavy Ind Ltd Starting/stopping device of town refuse incinerator
JPH09273733A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
JP2001082719A (en) * 1999-09-16 2001-03-30 Ebara Corp Combustion control for refuse incinerating plant
JP2002267134A (en) * 2001-03-13 2002-09-18 Sumitomo Heavy Ind Ltd Combustion control system of refuse incinerator having no boiler facility
KR100416114B1 (en) * 1994-12-22 2004-04-21 마틴 게엠베하 퓌르 움벨트-운트 에네르기에테크닉 Method and apparatus for the incineration of waste materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585813A (en) * 1978-12-22 1980-06-28 Kubota Ltd Incinerator
JPS5637412A (en) * 1979-09-04 1981-04-11 Kubota Ltd Incinerator
JPS5642013A (en) * 1979-09-14 1981-04-20 Kubota Ltd Incinerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585813A (en) * 1978-12-22 1980-06-28 Kubota Ltd Incinerator
JPS5637412A (en) * 1979-09-04 1981-04-11 Kubota Ltd Incinerator
JPS5642013A (en) * 1979-09-14 1981-04-20 Kubota Ltd Incinerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537945A1 (en) * 1985-10-25 1987-04-30 Babcock Anlagen Ag Method for combustion of waste
JPH0195211A (en) * 1987-10-03 1989-04-13 Kawasaki Heavy Ind Ltd Starting/stopping device of town refuse incinerator
KR100416114B1 (en) * 1994-12-22 2004-04-21 마틴 게엠베하 퓌르 움벨트-운트 에네르기에테크닉 Method and apparatus for the incineration of waste materials
JPH09273733A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
JP2001082719A (en) * 1999-09-16 2001-03-30 Ebara Corp Combustion control for refuse incinerating plant
JP2002267134A (en) * 2001-03-13 2002-09-18 Sumitomo Heavy Ind Ltd Combustion control system of refuse incinerator having no boiler facility

Also Published As

Publication number Publication date
JPH0323806B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
FI70633C (en) FOERFARANDE FOER REGLERING AV UPPVAERMNINGEN AV EN AONGPANNA
RU2070688C1 (en) Method of combustion control in furnace for burning waste in fluidized bed
JPS58195707A (en) Combustion control method for refuse incinerator
JPS59180212A (en) Combustion controller in refuse incinerator
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JPS6116889B2 (en)
JPH0470528B2 (en)
JPS6136611A (en) Combustion control of refuse incinerator
JPS5986814A (en) Control method for automatic combustion of refuse incinerator
JPH01114610A (en) Method for operating refuse incineration facility
JP3235646B2 (en) Combustion control method for sludge incinerator and apparatus therefor
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JPH04208306A (en) Method for controlling combustion in solid item combustion device
JP3305175B2 (en) Sand bed combustion rate adjustment method for fluidized bed furnace
JPH09273732A (en) Control method of combustion in incinerating furnace
JPH0122539B2 (en)
JPH1061917A (en) Fluidized bed type incinerator and combustion control method for the same
JPH0260928B2 (en)
JP3235645B2 (en) Combustion control method for sludge incinerator and apparatus therefor
JP2002267134A (en) Combustion control system of refuse incinerator having no boiler facility
JPH064172Y2 (en) Reactor pressure control device for fluidized bed combustor
JPS59219617A (en) Combustion control method for refuse incinerating furnace
JPS57101215A (en) Low nox combustion in fluidized bed type incinerator
JP3628184B2 (en) Control method for fluidized bed waste incinerator
JPS6364688B2 (en)