JP3665483B2 - Combustion control device for incinerator - Google Patents

Combustion control device for incinerator Download PDF

Info

Publication number
JP3665483B2
JP3665483B2 JP20179698A JP20179698A JP3665483B2 JP 3665483 B2 JP3665483 B2 JP 3665483B2 JP 20179698 A JP20179698 A JP 20179698A JP 20179698 A JP20179698 A JP 20179698A JP 3665483 B2 JP3665483 B2 JP 3665483B2
Authority
JP
Japan
Prior art keywords
furnace
incinerator
amount
secondary air
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20179698A
Other languages
Japanese (ja)
Other versions
JP2000035209A (en
Inventor
知幸 前田
万希志 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP20179698A priority Critical patent/JP3665483B2/en
Publication of JP2000035209A publication Critical patent/JP2000035209A/en
Application granted granted Critical
Publication of JP3665483B2 publication Critical patent/JP3665483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,焼却炉の燃焼制御装置に係り,例えば都市ごみ,産業廃棄物等を焼却,溶融または熱分解する流動床式焼却炉において,炉内で生じた未燃ガスを燃焼させるべく吹き込まれる2次空気量の制御を行なう焼却炉の燃焼制御装置に関するものである。
【0002】
【従来の技術】
生活様式の変化に伴って近年ますます増大する都市ごみや産業廃棄物等を焼却又は熱分解して効率的に処理すべく様々な焼却炉が開発されている。例えば流動床式焼却炉は,炉内に充填された砂等の下方から吹き込まれる1次空気により上記砂を流動化させ,その中にごみ等を投入して均一に加熱・熱分解させるものである。ここに,図3は上記流動床式焼却炉の概略構成を示したものである。
図3に示されるように,上記流動床式焼却炉では,ごみ供給装置1から焼却炉2内に投入されたごみ等が,焼却炉2の下部に充填された砂層30に落下する。該砂層30へはその下方から1次空気が吹き込まれて砂層30が流動化され,その流動化された砂層30の中で上記ごみ等が燃料と共に燃焼される。また,その時生じたCO等の未燃ガスには砂層30上方で2次空気が吹き込まれて,未燃ガスが完全燃焼され,排ガスとなって焼却炉2から排出される。
ところで,上記のような焼却炉において,安定した燃焼状態が確保されている状態とは,上記未燃ガスの発生が抑制されている状態であるということができる。例えば炉内の酸素濃度は,上記未燃ガスの量と相関を有しており,この炉内酸素濃度が一定となるように制御を行うことにより,上記未燃ガスの発生量を軽減することが可能である。
より具体的には,炉内酸素濃度検出装置31により炉内酸素濃度を検出し,検出された炉内酸素濃度に応じて,ごみ供給装置2によるごみ等の投入量や2次空気量操作装置3による2次空気量を変化させることにより,燃焼状態の制御が可能である。
ただし,上記炉内酸素濃度は燃焼量と相関があるとはいえ,その相関には時間的な遅れが生じる。この相関の遅れは,即ち制御の応答の遅れとなる。このため,上記2次空気量のベース量を上記炉内酸素濃度を基本制御量として制御する場合には,フィードフォワード制御を行うことが望ましい。
しかしながら,上記フィードフォワード制御を行っても,例えば投入路にて詰まった多量のごみが一度に上記焼却炉2内に落下する等して,燃焼状態に予測できない非定常な変動が生じた場合には,制御精度が低下してしまい,上記2次空気量の供給量に過不足が生じてしまう恐れがある。
【0003】
これについて,本発明者等は,比較的応答の速い炉内の明るさを用いて上記非定常な燃焼状態の変動を判別し,非定常な燃焼状態の変動が判別されると上記2次空気量をインパルス状に変化させ,2次空気量を迅速に調整する焼却炉の燃焼制御装置を,特許出願(特願平10−136992号)において提案した。その概略構成を図4に,炉内明るさに基づく2次空気量の制御に関するタイムチャートを図5にそれぞれ示す。
図4に示すように,上記焼却炉の燃焼制御装置は,焼却炉2内の明るさを測定する明るさ測定装置4と,該明るさ測定装置4により測定された炉内明るさに基づいて上記2次空気量を操作する制御演算装置5とを具備する。
上記明るさ測定装置4により測定される炉内明るさは,未燃ガス発生量と対応し,燃焼状態の変動にも比較的速く応答するものであり,例えば投入路にて詰まった多量のごみが一度に上記焼却炉2内に落下すると,図5(b)に示すように,その大きさが急激に変動する。
上記制御演算装置5は,上記明るさ測定装置4により測定された炉内明るさが,例えば所定のしきい値以上になったことを判別すると,上記2次空気量を図5(a)に示すように,インパルス状に変化させる。ここで,2次空気量をインパルス状に変化させるとは,炉内温度を低下させない程度の短時間に矩形的に2次空気量を変化させることをいう。
【0004】
【発明が解決しようとする課題】
ところで,上記のようにインパルス状に変化させる際の2次空気量の大きさも,適切に設定しなければ,2次空気量過多又は不足の状態を招き,逆に未燃ガス発生を引き起こしかねない。
しかしながら,炉内明るさと未燃ガス発生量とは厳密に線形の関係にないため,炉内明るさに基づいて上記インパルス状に変化させる際の2次空気量を定めることは困難である。
本発明は,このような従来の技術における課題を解決するために,焼却炉の燃焼制御装置を改良し,未燃ガス発生量とほぼ線形の関係を有する炉内酸素濃度を基に上記インパルス状に変化させる際の2次空気量を定めることにより,燃焼状態に非定常な変動が起きた場合にも,適切な量の2次空気量を供給し,未燃ガスの発生を抑制することができる焼却炉の燃焼制御装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するために,請求項1に係る発明は,焼却炉内の炉内明るさを測定する炉内明るさ測定手段と,上記炉内明るさ測定手段により測定された炉内明るさに基づいて上記焼却炉内の燃焼状態の非定常な変化を判別し,炉内の未燃ガスを燃焼させるべく吹き込まれる2次空気量をインパルス状に変化させる燃焼状態判別制御手段とを具備してなる焼却炉の燃焼制御装置において,上記焼却炉の炉内酸素濃度を測定する炉内酸素濃度測定手段を具備し,上記燃焼状態判別制御手段が,上記炉内酸素濃度測定手段により測定された上記焼却炉の炉内酸素濃度に基づいて上記インパルス状に変化させる2次空気量を定めてなることを特徴とする焼却炉の燃焼制御装置として構成されている。
上記請求項1に記載の焼却炉の燃焼制御装置によれば,未燃ガスの発生量とほぼ線形の関係を有する炉内酸素濃度に基づいてインパルス状に変化させる際の2次空気量が定められるため,燃焼状態に非定常な変動が生じても,適切な量の2次空気量をインパルス状に供給することができ,炉内温度の低下,更には未燃ガスの発生を抑制し,安定した燃焼を実現することができる。
また,請求項2に係る発明は,上記請求項1に記載の焼却炉の燃焼制御装置において,上記焼却炉の炉内温度を測定する炉内温度測定手段を更に具備し,上記燃焼状態判別制御手段が,上記炉内温度測定手段により測定された上記焼却炉の炉内温度に基づいて上記インパルス状に変化させる2次空気量に関するゲインを補正してなることをその要旨とする。
上記請求項2に記載の焼却炉の燃焼制御装置によれば,上記炉内酸素濃度に基づいて定めた2次空気量が多少不適切であっても,炉内温度を基に上記2次空気量に関するゲインが補正されるので,燃焼状態を更に安定させることができる。
【0006】
【発明の実施の形態】
以下,添付図面を参照して,本発明の実施の形態につき説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明の具体的な一例であって,本発明の技術的範囲を限定する性格のものではない。
まず,図1に本発明の一実施の形態に係る焼却炉の燃焼制御装置の概略構成を示す。
図1に示す如く,本発明の一実施の形態に係る焼却炉の燃焼制御装置は,炉内で生じた未燃ガスを燃焼させるべく吹き込まれる2次空気量を制御する焼却炉2の燃焼制御装置であって,焼却炉2内の炉内明るさを測定する明るさ測定装置4(炉内明るさ測定手段に相当)と,明るさ測定装置4により測定された炉内明るさに基づいて上記焼却炉2内の燃焼状態の非定常な変化を判別し,上記2次空気量をインパルス状に変化させる制御演算装置5(燃焼状態判別制御手段に相当)とを具備する点で従来のものとほぼ同様である。
本実施の形態に係る焼却炉の燃焼制御装置が,従来のものと異なるのは,上記焼却炉2の炉内酸素濃度を測定する炉内酸素濃度測定装置6(炉内酸素濃度測定手段に相当)と,上記焼却炉2の炉内温度を測定する炉内温度測定装置(炉内温度測定手段に相当)と,上記炉内酸素濃度測定装置6により測定された炉内酸素濃度と上記炉内温度測定装置7により測定された炉内温度とに基づいて上記インパルス状に変化させる2次空気量を定める補正値演算装置8と,上記補正値演算装置8により定められたインパルス状の2次空気量を上記制御演算装置5の出力に加算する加算装置9とを具備する点である。
尚,上記焼却炉の燃焼制御装置における,定常的な燃焼状態の制御は,例えば上記炉内酸素濃度測定装置6により測定される炉内酸素濃度に基づいて行われる。
【0007】
上記焼却炉の燃焼制御装置において,ごみが一度にまとめて炉内に落下する,いわゆるどか落ち等は,炉内明るさにより監視される。炉内明るさIiは,上記明るさ測定装置6により一定のサンプリング間隔で逐次測定される。上記明るさ測定装置6により測定された炉内明るさIiは制御演算装置5へ出力される。
上記制御演算装置5では,上記炉内明るさIiと予め設定されたしきい値Isとの比較が逐次行われる。
例えば図2(a)及び(b)に示すように,制御演算装置5によってどか落ちが検出された時間T1には,どか落ち状態の期間(T1からT1+Ta1),2次空気量の設定値Aiがベース2次空気量Asから次式(1)及び(2)に従って,所定量ΔAだけインパルス状に変更される。
Ai=As+ΔA(T1<i<T1+Ta1) (1)
Ai=As (T1+Ta1<i) (2)
このように設定値Aiを変更することにより,燃焼状態悪化に伴う未燃ガスの発生が抑制され,さらにインパルス状に変化させることにより,ステップ状に変化させた場合に起こる2次空気による炉内温度の低下が抑制される。また,炉内明るさを用いて制御を行うことにより,ほとんど遅れ時間なく燃焼状態の変化が検出されるため,即応性の高い制御が可能となる。
上記制御演算装置5により上記(1)及び(2)式に基づいて演算された2次空気量Aiは上記加算装置9を介して2次空気量操作装置3へ出力される。
また,上記炉内酸素濃度測定装置6によって,焼却炉2の炉内酸素濃度が逐次測定され,上記補正値演算装置8に出力される。上記補正値演算装置8では,次式(3)に従って酸素濃度値Oiからその微分値DOiが逐次計算される。
DOi=Oi−Oi-1 (3)
そして,酸素濃度の現在値と微分値からNステップ先の炉内酸素濃度値が次式に従って演算される。
est =Oi+αn ×DOi (4)
ここで,Oest は現在の炉内酸素濃度を用いて,現状のまま2次空気量を維持したときの酸素濃度変化の予測値であり,この予測値と目標とする酸素濃度目標値Otaget とを用いて計算される(Otaget −Oest )の定数倍が未燃ガスを発生させたいために必要となる空気量といえる。
これに従い,上記補正値演算装置8では,次式(5)に従って,適正な空気量の増加量ΔAが演算され,これに基づいて上記制御演算装置5に設定された増加量ΔAを補正するための補正量が演算される。
ΔA=K×(Otaget −Oest ) (5)
そして,上記補正値演算装置8から出力された補正値が上記加算装置9により上記制御演算装置5の出力に加算され,上記2次空気量操作装置3に出力される。
これにより,図2(a)及び(c)に示すように,炉内酸素濃度の予測値と目標値とから上記2次空気量の増加量ΔAが定められることになり,上記焼却炉の燃焼制御装置によれば,安定した燃焼を実現することができる。
【0008】
ただし,上式(5)におけるゲインKが不適切な場合,空気量の増加量ΔAが必要以上な量となり,炉内温度を低下させ,燃焼を不安定にし未燃ガスを発生させる恐れがある。
そこで,上記焼却炉の燃焼制御装置では,上記炉内温度測定装置7により逐次測定された炉内温度を用いて上記ゲインKが調整される。上記空気量の増加量ΔAに基づく炉内温度への影響が上記炉内温度測定装置7及び上記補正値演算装置8によりΔtempであると定められると,下記の(A)〜(C)の調整を上記ゲインKに加えられる。
(A) Δtemp > 0 の場合 Kの変更を行わず
(B) Δtemp = 0 の場合 Kの変更を行わず
(C) Δtemp < 0 の場合 Kを(1−β)Kに変更する
ただし,βは0<β<1の定数である。
これにより,炉内温度低下が生じた際には空気増加分が多いと判断され,上記ゲインKが減少する方向に調整が行われる。また,これを繰り返すことにより,適切なゲインKを特定装置に対して定めることができる。
このように,本実施の形態に係る焼却炉の燃焼制御装置によれば,未燃ガスの発生量とほぼ線形の関係を有する炉内酸素濃度に基づいてインパルス状に変化させる際の2次空気量が定められるため,燃焼状態に非定常な変動が生じても,適切な量の2次空気量をインパルス状に供給することができ,炉内温度の低下,更には未燃ガスの発生を抑制し,安定した燃焼を実現することができる。しかも,上記炉内酸素濃度に基づいて定めた2次空気量が多少不適切であっても,炉内温度を基に上記2次空気量に関するゲインが補正されるので,燃焼状態を更に安定させることができる。
【0009】
【実施例】
上記実施の形態では,流動床式焼却炉を例にとって説明を行なったが,2次空気を吹き込むことによって,未燃ガスを完全燃焼させる他の焼却炉にも,本発明に係る焼却炉の燃焼制御装置は適用可能である。
【0010】
【発明の効果】
上記のように,上記請求項1に記載の焼却炉の燃焼制御装置によれば,未燃ガスの発生量とほぼ線形の関係を有する炉内酸素濃度に基づいてインパルス状に変化させる際の2次空気量が定められるため,燃焼状態に非定常な変動が生じても,適切な量の2次空気量をインパルス状に供給することができ,炉内温度の低下,更には未燃ガスの発生を抑制し,安定した燃焼を実現することができる。
また,上記請求項2に記載の焼却炉の燃焼制御装置によれば,上記炉内酸素濃度に基づいて定めた2次空気量が多少不適切であっても,炉内温度を基に上記2次空気量に関するゲインが補正されるので,燃焼状態を更に安定させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態に係る焼却炉の燃焼制御装置の概略構成を示す図。
【図2】 上記焼却炉の燃焼制御装置の2次空気量の制御を説明するためのタイムチャート。
【図3】 従来の焼却炉の燃焼制御装置の一例を示す図。
【図4】 従来の焼却炉の燃焼制御装置の他の例を示す図。
【図5】 従来の焼却炉の燃焼制御装置の他の例における2次空気量の制御を説明するためのタイムチャート。
【符号の説明】
1…ごみ供給装置
2…焼却炉
4…明るさ検出装置(炉内明るさ検出手段)
5…制御演算装置(燃焼状態判別制御手段)
6…炉内酸素濃度測定装置(炉内酸素濃度測定手段)
7…炉内温度測定装置(炉内温度測定手段)
8…補正値演算装置
9…加算装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion control device for an incinerator, for example, in a fluidized bed incinerator that incinerates, melts or pyrolyzes municipal waste, industrial waste, etc., and is injected to burn unburned gas generated in the furnace. The present invention relates to a combustion control device for an incinerator that controls the amount of secondary air.
[0002]
[Prior art]
Various incinerators have been developed in order to efficiently incinerate or thermally decompose municipal waste, industrial waste, etc., which have been increasing in recent years as lifestyles change. For example, in a fluidized bed incinerator, the sand is fluidized by primary air blown from below, such as sand filled in the furnace, and dust is introduced into it to uniformly heat and thermally decompose it. is there. FIG. 3 shows the schematic configuration of the fluidized bed incinerator.
As shown in FIG. 3, in the fluidized bed incinerator, the dust or the like charged into the incinerator 2 from the dust supply device 1 falls into the sand layer 30 filled in the lower part of the incinerator 2. Primary air is blown into the sand layer 30 from below to fluidize the sand layer 30, and the dust and the like are burned together with fuel in the fluidized sand layer 30. In addition, secondary air is blown into the unburned gas such as CO generated at that time above the sand layer 30, and the unburned gas is completely burned to be discharged from the incinerator 2 as exhaust gas.
By the way, in the incinerator as described above, the state in which a stable combustion state is ensured can be said to be a state in which the generation of the unburned gas is suppressed. For example, the oxygen concentration in the furnace has a correlation with the amount of the unburned gas. By controlling the oxygen concentration in the furnace to be constant, the generation amount of the unburned gas can be reduced. Is possible.
More specifically, the in-furnace oxygen concentration detection device 31 detects the in-furnace oxygen concentration, and according to the detected in-furnace oxygen concentration, the input amount of the dust etc. by the waste supply device 2 and the secondary air amount operation device. The combustion state can be controlled by changing the amount of secondary air by 3.
However, although the oxygen concentration in the furnace is correlated with the amount of combustion, there is a time delay in the correlation. This correlation delay is a control response delay. Therefore, when the base amount of the secondary air amount is controlled using the in-furnace oxygen concentration as a basic control amount, it is desirable to perform feedforward control.
However, even if the feedforward control is performed, for example, when unsteady fluctuations in the combustion state occur due to, for example, a large amount of garbage clogged in the charging path falling into the incinerator 2 at once. In this case, the control accuracy is lowered, and the supply amount of the secondary air amount may be excessive or insufficient.
[0003]
In this regard, the present inventors discriminate fluctuations in the unsteady combustion state using brightness in the furnace, which has a relatively fast response, and when the fluctuations in the unsteady combustion state are judged, A combustion control device for an incinerator that rapidly adjusts the amount of secondary air by changing the amount in an impulse form was proposed in a patent application (Japanese Patent Application No. 10-136992). FIG. 4 shows the schematic configuration, and FIG. 5 shows a time chart relating to the control of the secondary air amount based on the furnace brightness.
As shown in FIG. 4, the combustion control device for the incinerator is based on the brightness measuring device 4 for measuring the brightness in the incinerator 2 and the in-furnace brightness measured by the brightness measuring device 4. And a control arithmetic device 5 for operating the secondary air amount.
The brightness in the furnace measured by the brightness measuring device 4 corresponds to the amount of unburned gas generated, and responds relatively quickly to fluctuations in the combustion state. If it falls into the incinerator 2 at a time, as shown in FIG.
When the control arithmetic device 5 determines that the furnace brightness measured by the brightness measuring device 4 is, for example, a predetermined threshold value or more, the secondary air amount is shown in FIG. As shown, it is changed in an impulse shape. Here, changing the amount of secondary air in an impulse form means changing the amount of secondary air in a rectangular manner in a short time so as not to lower the temperature in the furnace.
[0004]
[Problems to be solved by the invention]
By the way, if the magnitude of the secondary air amount when changing in an impulse shape as described above is not set appropriately, the secondary air amount may be excessive or insufficient, and unburned gas may be generated. .
However, since the brightness in the furnace and the amount of unburned gas are not in a strictly linear relationship, it is difficult to determine the amount of secondary air when changing in the impulse shape based on the brightness in the furnace.
In order to solve such problems in the prior art, the present invention improves the combustion control device of an incinerator and uses the above-mentioned impulse shape based on the oxygen concentration in the furnace which has a substantially linear relationship with the amount of unburned gas generated. By determining the amount of secondary air when changing to, even if unsteady fluctuations occur in the combustion state, an appropriate amount of secondary air can be supplied to suppress the generation of unburned gas. An object of the present invention is to provide a combustion control device for an incinerator that can be used.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is directed to an in-furnace brightness measuring means for measuring an in-furnace brightness in an incinerator, and an in-furnace brightness measured by the in-furnace brightness measuring means. And a combustion state determination control means for determining an unsteady change in the combustion state in the incinerator and changing the amount of secondary air injected to burn the unburned gas in the furnace in an impulse manner. The incinerator combustion control apparatus comprises in-furnace oxygen concentration measuring means for measuring the in-furnace oxygen concentration of the incinerator, and the combustion state discrimination control means is measured by the in-furnace oxygen concentration measuring means. The incinerator combustion control apparatus is characterized in that the amount of secondary air to be changed in the impulse shape is determined based on the in-furnace oxygen concentration of the incinerator.
According to the combustion control apparatus for an incinerator according to claim 1, the amount of secondary air to be changed in an impulse shape is determined based on the in-furnace oxygen concentration having a substantially linear relationship with the amount of unburned gas generated. Therefore, even if unsteady fluctuations occur in the combustion state, it is possible to supply an appropriate amount of secondary air in an impulse form, which suppresses the decrease in furnace temperature and the generation of unburned gas. Stable combustion can be realized.
The invention according to claim 2 is the combustion control device for an incinerator according to claim 1, further comprising in-furnace temperature measuring means for measuring the in-furnace temperature of the incinerator, and the combustion state discrimination control. The gist of the invention is that the means corrects the gain related to the amount of secondary air to be changed in the impulse shape based on the in-furnace temperature of the incinerator measured by the in-furnace temperature measuring means.
According to the combustion control apparatus for an incinerator according to claim 2, even if the amount of secondary air determined based on the oxygen concentration in the furnace is somewhat inappropriate, the secondary air is based on the temperature in the furnace. Since the gain related to the quantity is corrected, the combustion state can be further stabilized.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is a specific example of the present invention, and is not of a nature that limits the technical scope of the present invention.
First, FIG. 1 shows a schematic configuration of an incinerator combustion control apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the combustion control apparatus for an incinerator according to an embodiment of the present invention controls the combustion of an incinerator 2 that controls the amount of secondary air that is blown to burn unburned gas generated in the furnace. A brightness measuring device 4 (corresponding to the in-furnace brightness measuring means) for measuring the brightness in the incinerator 2 and the in-furnace brightness measured by the brightness measuring device 4. Conventional in that it comprises a control arithmetic unit 5 (corresponding to combustion state discrimination control means) that discriminates unsteady changes in the combustion state in the incinerator 2 and changes the secondary air amount in an impulse form. Is almost the same.
The combustion control device of the incinerator according to the present embodiment is different from the conventional one in that the in-furnace oxygen concentration measuring device 6 for measuring the in-furnace oxygen concentration of the incinerator 2 (corresponding to the in-furnace oxygen concentration measuring means) ), An in-furnace temperature measuring device for measuring the in-furnace temperature of the incinerator 2 (corresponding to the in-furnace temperature measuring means), the in-furnace oxygen concentration measured by the in-furnace oxygen concentration measuring device 6 and the in-furnace A correction value calculation device 8 that determines the amount of secondary air to be changed in an impulse shape based on the temperature in the furnace measured by the temperature measurement device 7, and an impulse-like secondary air value determined by the correction value calculation device 8 And an adding device 9 for adding an amount to the output of the control arithmetic device 5.
The steady combustion state control in the combustion control device of the incinerator is performed based on the in-furnace oxygen concentration measured by the in-furnace oxygen concentration measuring device 6, for example.
[0007]
In the combustion control device of the incinerator described above, so-called stagnation or the like, in which dusts fall into the furnace all at once, is monitored by the brightness in the furnace. The in-furnace brightness Ii is sequentially measured by the brightness measuring device 6 at a constant sampling interval. The in-furnace brightness Ii measured by the brightness measuring device 6 is output to the control arithmetic device 5.
In the control arithmetic unit 5, the furnace brightness Ii and the preset threshold value Is are sequentially compared.
For example, as shown in FIGS. 2 (a) and 2 (b), at the time T1 when the control arithmetic unit 5 detects a drop, the period of the drop (T1 to T1 + Ta1), the set value Ai of the secondary air amount Is changed from the base secondary air amount As to an impulse by a predetermined amount ΔA according to the following equations (1) and (2).
Ai = As + ΔA (T1 <i <T1 + Ta1) (1)
Ai = As (T1 + Ta1 <i) (2)
By changing the set value Ai in this way, the generation of unburned gas accompanying the deterioration of the combustion state is suppressed, and further by changing it to an impulse shape, the inside of the furnace due to the secondary air that occurs when changing to a step shape A decrease in temperature is suppressed. Also, by controlling using the brightness in the furnace, a change in the combustion state is detected with almost no delay time, so that highly responsive control becomes possible.
The secondary air amount Ai calculated by the control arithmetic device 5 based on the equations (1) and (2) is output to the secondary air amount operating device 3 via the adding device 9.
Further, the in-furnace oxygen concentration measuring device 6 sequentially measures the in-furnace oxygen concentration of the incinerator 2 and outputs it to the correction value computing device 8. In the correction value calculation device 8, the differential value DOi is sequentially calculated from the oxygen concentration value Oi according to the following equation (3).
DOi = Oi-Oi-1 (3)
Then, the in-furnace oxygen concentration value of N steps ahead is calculated according to the following equation from the current value and the differential value of the oxygen concentration.
O est = Oi + α n × DOi (4)
Here, O est is a predicted value of the change in oxygen concentration when the secondary air amount is maintained as it is using the current furnace oxygen concentration, and this predicted value and the target oxygen concentration target value O taget. It can be said that a constant multiple of (O taget −O est ) calculated using the above is the amount of air required to generate unburned gas.
Accordingly, the correction value calculation device 8 calculates an appropriate increase amount ΔA of air according to the following equation (5), and corrects the increase amount ΔA set in the control calculation device 5 based on this. The correction amount is calculated.
ΔA = K × (O taget −O est ) (5)
Then, the correction value output from the correction value calculation device 8 is added to the output of the control calculation device 5 by the adding device 9 and output to the secondary air amount operating device 3.
As a result, as shown in FIGS. 2A and 2C, the increase amount ΔA of the secondary air amount is determined from the predicted value and target value of the in-furnace oxygen concentration. According to the control device, stable combustion can be realized.
[0008]
However, if the gain K in the above equation (5) is inappropriate, the air amount increase ΔA may become more than necessary, reducing the furnace temperature, making combustion unstable and generating unburned gas. .
Therefore, in the combustion control device for the incinerator, the gain K is adjusted using the in-furnace temperature sequentially measured by the in-furnace temperature measuring device 7. When the influence on the furnace temperature based on the increase amount ΔA of the air amount is determined to be Δtemp by the furnace temperature measuring device 7 and the correction value calculating device 8, the following adjustments (A) to (C) Is added to the gain K.
(A) When Δtemp> 0, K is not changed (B) When Δtemp = 0, K is not changed (C) When Δtemp <0, K is changed to (1−β) K where β Is a constant of 0 <β <1.
As a result, when the temperature in the furnace is lowered, it is determined that the amount of increase in air is large, and the gain K is adjusted in a decreasing direction. Further, by repeating this, an appropriate gain K can be determined for the specific device.
As described above, according to the combustion control apparatus for an incinerator according to the present embodiment, the secondary air when changing in an impulse form based on the in-furnace oxygen concentration having a substantially linear relationship with the amount of unburned gas generated. Because the amount is determined, even if unsteady fluctuations occur in the combustion state, an appropriate amount of secondary air can be supplied in an impulse manner, reducing the furnace temperature and generating unburned gas. Suppressing and stable combustion can be realized. Moreover, even if the amount of secondary air determined based on the oxygen concentration in the furnace is somewhat inappropriate, the gain related to the amount of secondary air is corrected based on the temperature in the furnace, so that the combustion state is further stabilized. be able to.
[0009]
【Example】
In the above embodiment, the fluidized bed incinerator has been described as an example. However, the combustion of the incinerator according to the present invention can be applied to other incinerators that completely burn unburned gas by blowing secondary air. The control device is applicable.
[0010]
【The invention's effect】
As described above, according to the combustion control device for an incinerator according to the first aspect of the present invention, the 2 in the case of changing in an impulse form based on the in-furnace oxygen concentration having a substantially linear relationship with the amount of unburned gas generated. Because the amount of secondary air is determined, even if unsteady fluctuations occur in the combustion state, an appropriate amount of secondary air can be supplied in an impulse manner, the furnace temperature can be lowered, and unburned gas Generation can be suppressed and stable combustion can be realized.
Further, according to the combustion control device for an incinerator according to the second aspect, even if the amount of secondary air determined based on the oxygen concentration in the furnace is somewhat inappropriate, the 2 Since the gain related to the amount of secondary air is corrected, the combustion state can be further stabilized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an incinerator combustion control apparatus according to an embodiment of the present invention.
FIG. 2 is a time chart for explaining control of the secondary air amount of the combustion control device for the incinerator.
FIG. 3 is a diagram showing an example of a conventional combustion control device for an incinerator.
FIG. 4 is a view showing another example of a conventional combustion control device for an incinerator.
FIG. 5 is a time chart for explaining control of the amount of secondary air in another example of a conventional combustion control device for an incinerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Waste supply apparatus 2 ... Incinerator 4 ... Brightness detection apparatus (in-furnace brightness detection means)
5. Control arithmetic unit (combustion state determination control means)
6 ... In-furnace oxygen concentration measuring device (in-furnace oxygen concentration measuring means)
7 ... Furnace temperature measuring device (furnace temperature measuring means)
8 ... Correction value calculation device 9 ... Addition device

Claims (2)

焼却炉内の炉内明るさを測定する炉内明るさ測定手段と,
上記炉内明るさ測定手段により測定された炉内明るさに基づいて上記焼却炉内の燃焼状態の非定常な変化を判別し,炉内の未燃ガスを燃焼させるべく吹き込まれる2次空気量をインパルス状に変化させる燃焼状態判別制御手段とを具備してなる焼却炉の燃焼制御装置において,
上記焼却炉の炉内酸素濃度を測定する炉内酸素濃度測定手段を具備し,
上記燃焼状態判別制御手段が,上記炉内酸素濃度測定手段により測定された上記焼却炉の炉内酸素濃度に基づいて上記インパルス状に変化させる2次空気量を定めてなることを特徴とする焼却炉の燃焼制御装置。
In-furnace brightness measuring means for measuring the in-furnace brightness in the incinerator;
The amount of secondary air that is blown in order to discriminate unsteady changes in the combustion state in the incinerator based on the brightness in the furnace measured by the brightness measuring means in the furnace and to burn unburned gas in the furnace In a combustion control apparatus for an incinerator comprising combustion state discrimination control means for changing the pressure in an impulse shape,
In-furnace oxygen concentration measuring means for measuring the in-furnace oxygen concentration of the incinerator,
The incineration characterized in that the combustion state discrimination control means determines the amount of secondary air to be changed in the impulse shape based on the in-furnace oxygen concentration of the incinerator measured by the in-furnace oxygen concentration measuring means. Furnace combustion control device.
上記焼却炉の炉内温度を測定する炉内温度測定手段を更に具備し,
上記燃焼状態判別制御手段が,上記炉内温度測定手段により測定された上記焼却炉の炉内温度に基づいて上記インパルス状に変化させる2次空気量に関するゲインを補正してなる請求項1に記載の焼却炉の燃焼制御装置。
A furnace temperature measuring means for measuring the furnace temperature of the incinerator;
The said combustion state discrimination | determination control means correct | amends the gain regarding the secondary air amount changed to the said impulse form based on the in-furnace temperature of the said incinerator measured by the said in-furnace temperature measurement means. Incinerator combustion control device.
JP20179698A 1998-07-16 1998-07-16 Combustion control device for incinerator Expired - Fee Related JP3665483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20179698A JP3665483B2 (en) 1998-07-16 1998-07-16 Combustion control device for incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20179698A JP3665483B2 (en) 1998-07-16 1998-07-16 Combustion control device for incinerator

Publications (2)

Publication Number Publication Date
JP2000035209A JP2000035209A (en) 2000-02-02
JP3665483B2 true JP3665483B2 (en) 2005-06-29

Family

ID=16447086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20179698A Expired - Fee Related JP3665483B2 (en) 1998-07-16 1998-07-16 Combustion control device for incinerator

Country Status (1)

Country Link
JP (1) JP3665483B2 (en)

Also Published As

Publication number Publication date
JP2000035209A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP4292126B2 (en) Combustion information monitoring and control system for stoker-type waste incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
JP3665483B2 (en) Combustion control device for incinerator
JP2955431B2 (en) Incinerator combustion control device
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2001033017A (en) Method for controlling combustion of refuse incinerator
JP3665476B2 (en) Combustion control device for incinerator
JP3607058B2 (en) Incinerator and operation control method for incinerator
JP3946603B2 (en) Waste incinerator and incineration method using the same
JP4230925B2 (en) Calorific value estimation device, calorific value estimation method, and combustion control device
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2003287213A (en) Burning control device for garbage incinerator
JPH10339420A (en) Combustion control method of combustion furnace and system therefor
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP3763963B2 (en) Stoker temperature control device for waste incinerator and combustion control device for waste incinerator equipped with the same
JPH09126433A (en) Combustion control device for incinerator
JPH11351538A (en) Method and apparatus for controlling combustion of melting furnace
JPH025222Y2 (en)
JP4129224B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment
JP2003302025A (en) Refuse gasification melting system
JPH1114027A (en) Method of controlling combustion of incinerator
JP2004353944A (en) Combustion control method in refuse disposal facility and refuse disposal facility
JP2007085682A (en) Boiler for thermal power generation, and combustion air supply control method
JPH11108327A (en) Garbage incinerator and combustion control method
JP2002122317A (en) Combustion control system of refuse incinerator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees