JPH09126433A - Combustion control device for incinerator - Google Patents

Combustion control device for incinerator

Info

Publication number
JPH09126433A
JPH09126433A JP7306634A JP30663495A JPH09126433A JP H09126433 A JPH09126433 A JP H09126433A JP 7306634 A JP7306634 A JP 7306634A JP 30663495 A JP30663495 A JP 30663495A JP H09126433 A JPH09126433 A JP H09126433A
Authority
JP
Japan
Prior art keywords
temperature
combustion
amount
output
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7306634A
Other languages
Japanese (ja)
Other versions
JP2975556B2 (en
Inventor
Manabu Nakajima
学 中島
Tomoyuki Maeda
知幸 前田
Makiyuki Nakayama
万希志 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7306634A priority Critical patent/JP2975556B2/en
Publication of JPH09126433A publication Critical patent/JPH09126433A/en
Application granted granted Critical
Publication of JP2975556B2 publication Critical patent/JP2975556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate a combustion state in a furnace without a delay and to improve stability of a combustion state by a method wherein a feedback amount is computed based on an output of a generating energy amount measuring apparatus of a boiler and an output of a combustion temperature measuring apparatus, by comparing the computing result with an objective temperature, the result is outputted to an operation amount computer. SOLUTION: A produced steam amount measuring apparatus 10 is mounted as a generating energy amount measuring apparatus on a waste heat recovery boiler 11, and an output f5 from a steam produced amount measuring apparatus 10 is inputted to a combustion control system 15. Further, an output f1 of a temperature sensor (temperature measuring apparatus) 1 and an output f5 of a steam generating measuring apparatus 10 are converted into a signal one by one and inputted to a combustion control system 15. A relation therebetween is estimated in a form containing a delay of the temperature measuring apparatus and computed by a feedback computer 5. A differential content between a feedback amount f6 calculated by the feedback computer 5 and a target temperature f4 set by a setter 6 is obtained by a comparator 2, and an operation amount computer 3 computes a proper operation amount f3 according to the differential content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、産業廃
棄物等を焼却または熱分解する焼却炉の燃焼制御装置に
関し、特に応答性に優れたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for an incinerator that incinerates or thermally decomposes municipal solid waste, industrial waste, etc., and more particularly to a device having excellent responsiveness.

【0002】[0002]

【従来の技術】近年ますます増大する都市ごみ、産業廃
棄物等に対して効率的に焼却又は熱分解処理するため
に、各種の焼却炉が開発されている。なかでもさまざま
なごみ質にも対処できるように焼却炉内の燃焼温度を制
御する優れた燃焼制御装置が望まれるようになった。
2. Description of the Related Art Various incinerators have been developed in order to efficiently incinerate or pyrolyze municipal waste, industrial waste, etc., which are increasing in number in recent years. Above all, there has been a demand for an excellent combustion control device that controls the combustion temperature in the incinerator so as to deal with various types of waste.

【0003】図7はこのような燃焼制御装置が適用され
る焼却炉の機器構成図である。図7において、炉本体9
に対して所定量のごみ13を投入すべくごみ供給ロータ
12が設けられ、炉本体9内で発生する排ガス21は煙
道22を経て抜き出される。この排ガス21は高温であ
るため、排ガス21の熱エネルギーを回収するために煙
道22の所定箇所に廃熱ボイラ11が接続されている。
効率的に産業廃棄物等を焼却又は熱分解処理するために
は、炉本体9内の燃焼温度を所定に保つ必要がある。そ
のため炉本体9の所定箇所に温度センサとしての温度測
定器1が取り付けられ、この温度測定器1の出力f1が
出力される燃焼制御システム14が設けられる。この燃
焼制御システム14は、供給ロータ12のロータ回転数
f2の入力を受けて供給ロータ12に指令信号を出力す
るフィードバック制御回路を形成している。
FIG. 7 is a device configuration diagram of an incinerator to which such a combustion control device is applied. In FIG. 7, the furnace body 9
A dust supply rotor 12 is provided to feed a predetermined amount of dust 13 to the exhaust gas 21, and the exhaust gas 21 generated in the furnace body 9 is extracted through the flue 22. Since the exhaust gas 21 has a high temperature, the waste heat boiler 11 is connected to a predetermined portion of the flue 22 in order to recover the thermal energy of the exhaust gas 21.
In order to incinerate or thermally decompose industrial waste efficiently, it is necessary to keep the combustion temperature in the furnace body 9 at a predetermined level. Therefore, the temperature measuring device 1 as a temperature sensor is attached to a predetermined position of the furnace body 9, and the combustion control system 14 that outputs the output f1 of the temperature measuring device 1 is provided. The combustion control system 14 forms a feedback control circuit that receives a rotor rotation speed f2 of the supply rotor 12 and outputs a command signal to the supply rotor 12.

【0004】前述した燃焼炉の作動は以下の通りであ
る。まず、定量供給型フィーダであるごみ供給ロータ1
2からごみ13が炉本体9内に投入される。投入された
ごみ13は炉本体9内で焼却または熱分解される。ごみ
13の投入量が変動すると、炉本体9内の燃焼温度も変
動する。そこで燃焼制御システム14では、所定の燃焼
温度の設定を行った後、炉本体9内の燃焼温度が目標温
度になるように、ごみ供給ロータ12からの前記ごみ1
3の投入量で決めるようになっている。そのため温度測
定器1で検出した燃焼温度が目標温度よりも低いと、ご
み供給ロータ12の回転数を上げ、温度測定器1で検出
した燃焼温度が目標温度よりも高いと、ごみ供給ロータ
12の回転数を下げるような制御を燃焼制御システム1
4が行っている。
The operation of the above-mentioned combustion furnace is as follows. First, the garbage supply rotor 1 which is a constant supply type feeder
2 to 13 are thrown into the furnace body 9. The thrown refuse 13 is incinerated or pyrolyzed in the furnace body 9. When the amount of dust 13 charged changes, the combustion temperature in the furnace body 9 also changes. Therefore, in the combustion control system 14, after the predetermined combustion temperature is set, the waste 1 from the waste supply rotor 12 is adjusted so that the combustion temperature in the furnace body 9 becomes the target temperature.
It is decided by the input amount of 3. Therefore, when the combustion temperature detected by the temperature measuring device 1 is lower than the target temperature, the rotation speed of the dust supply rotor 12 is increased, and when the combustion temperature detected by the temperature measuring device 1 is higher than the target temperature, the dust supply rotor 12 is rotated. Combustion control system 1 for controlling the rotation speed
4 is going.

【0005】このような温度制御システム14での温度
制御を詳しく説明するために、図8の燃焼制御ブロック
図を用いて説明する。所望の目標温度f4を設定して出
力させる設定器6と、比較器2と、操作量演算器3とか
ら構成される。操作量演算器3からの操作量f3がごみ
供給ロータ等の操作手段12に出力され、この操作手段
12の影響を受ける炉本体9の燃焼温度が温度センサと
しての温度測定器1で検出される。
In order to describe the temperature control in the temperature control system 14 in detail, the combustion control block diagram of FIG. 8 will be described. It comprises a setter 6 for setting and outputting a desired target temperature f4, a comparator 2, and a manipulated variable calculator 3. The operation amount f3 from the operation amount calculator 3 is output to the operation means 12 such as a dust supply rotor, and the combustion temperature of the furnace body 9 affected by the operation means 12 is detected by the temperature measuring device 1 as a temperature sensor. .

【0006】作動時には目標温度f4を設定器6に入力
する。そうすると目標温度f4が比較器2に入力され、
比較器2から温度センサ(温度測定器)1の出力f1と
の差が操作量演算器3に出力される。この操作量演算器
3は比較器2からの出力に基づき操作手段12の種類に
応じた適性な操作量f3を算出して操作手段12に出力
する。この操作量f3は、例えばごみ13の投入量であ
りこれを変化させることで炉本体9内の燃焼温度を変え
る。炉本体9内の燃焼温度が適性温度であればそのまま
燃焼温度として設定される。温度センサ(温度測定器)
1が検出した燃焼温度f3と設定器6からの目標温度f
4が同じであれば、操作量演算器3からの操作量f3は
一定に保たれる。炉本体9内の燃焼温度は投入されるご
みの発生熱量に応じて随時変動するので目標温度から離
れるようであれば、温度センサ(温度測定器)1の出力
f1と目標温度f4の差分に応じて、操作量演算器3が
操作量f3を増減させ、適性な燃焼温度が保たれるよう
に温度制御を繰り返す。
During operation, the target temperature f4 is input to the setting device 6. Then, the target temperature f4 is input to the comparator 2,
The difference from the output f1 of the temperature sensor (temperature measuring device) 1 is output from the comparator 2 to the manipulated variable calculator 3. The manipulated variable calculator 3 calculates an appropriate manipulated variable f3 according to the type of the operating means 12 based on the output from the comparator 2 and outputs it to the operating means 12. The manipulated variable f3 is, for example, the amount of the dust 13 input, and the combustion temperature in the furnace body 9 is changed by changing the amount. If the combustion temperature in the furnace body 9 is an appropriate temperature, the combustion temperature is set as it is. Temperature sensor (temperature measuring device)
1 detected combustion temperature f3 and target temperature f from setter 6
If 4 is the same, the manipulated variable f3 from the manipulated variable calculator 3 is kept constant. Since the combustion temperature in the furnace body 9 fluctuates at any time according to the amount of generated heat of the dust that is input, if it deviates from the target temperature, depending on the difference between the output f1 of the temperature sensor (temperature measuring device) 1 and the target temperature f4. Then, the manipulated variable calculator 3 increases / decreases the manipulated variable f3 and repeats temperature control so that an appropriate combustion temperature is maintained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら焼却炉9
内の温度は高温であるため、温度センサ(温度測定器)
1を直接炉内にさらすような形式で取り付けることがで
きない。すなわち温度センサ(温度測定器)は高温が原
因で生じる故障から保護するため、金属管やセラミック
管等で被覆された状態にして炉本体9の壁面に取り付け
られる。このような保護手段により温度センサ(温度測
定器)1の測定値は実際の炉本体9内の温度より相当の
遅れが生じる。この遅れのある測定値により温度制御を
行うため、制御システムの反応も当然遅れることになり
その制御性能に限界が存在するという問題点がある。
However, the incinerator 9
Since the temperature inside is high, a temperature sensor (temperature measuring device)
1 cannot be mounted in such a way that it is directly exposed to the furnace. That is, the temperature sensor (temperature measuring device) is attached to the wall surface of the furnace body 9 in a state of being covered with a metal tube, a ceramic tube or the like in order to protect it from a failure caused by a high temperature. Due to such protection means, the measured value of the temperature sensor (temperature measuring device) 1 is considerably delayed from the actual temperature in the furnace body 9. Since the temperature control is performed by the measured value with the delay, the reaction of the control system is naturally delayed and there is a problem that the control performance is limited.

【0008】この現象を図9により説明する。図9
(a)は投入カロリーの変化図であり、図9(b)は炉
本体内の温度変化図であり、図9(c)は、温度制御シ
ステムの操作量変化図である。図9(a)のように例え
ば炭素含有量の少ないごみが一時的に供給された場合に
は、投入カロリーに凹部状の変化A1が起きる。すると
図9(b)のように炉内温度の測定値f1の変化A2は
幾分遅れを持った応答になる。したがって図9(c)の
ように、操作量f3の変化A3は炉内温度の測定値f1
を利用した制御なので当然遅れが生じてしまう。
This phenomenon will be described with reference to FIG. FIG.
9A is a change diagram of input calories, FIG. 9B is a change diagram of temperature in the furnace body, and FIG. 9C is a change diagram of operation amount of the temperature control system. As shown in FIG. 9A, for example, when dust with a low carbon content is temporarily supplied, a concave change A1 occurs in the input calories. Then, as shown in FIG. 9B, the change A2 of the measured value f1 of the temperature in the furnace becomes a response with some delay. Therefore, as shown in FIG. 9C, the change A3 in the manipulated variable f3 is the measured value f1 of the furnace temperature.
Since it is a control that uses, there will be a delay.

【0009】本発明は、従来の技術の有するこのような
問題点を解決すべく鋭意検討の結果完成したものであ
り、本発明は、廃熱ボイラより発生する蒸気量と温度測
定値のの双方の値を用いることにより炉内の燃焼状態を
遅れなく推定し、安定度の高い燃焼状態の得られる焼却
炉の燃焼制御装置を提供することを目的としたものであ
る。
The present invention has been completed as a result of extensive studies to solve the above-mentioned problems of the prior art, and the present invention provides both the amount of steam generated from a waste heat boiler and a temperature measurement value. It is an object of the present invention to provide a combustion control device for an incinerator, in which the combustion state in the furnace is estimated without delay by using the value of, and a combustion state with high stability can be obtained.

【0010】[0010]

【課題を解決するための手段】前述した目的を達成する
ために、本発明のうちで請求項1記載の発明は、都市ご
み等を焼却又は熱分解して排ガスを生じさせる炉本体
と、前記排ガスの熱エネルギーを回収するボイラと、前
記炉本体に取り付けられ炉本体内の燃焼温度を検出する
温度測定器と、前記炉本体内の燃焼状態を制御するため
にごみ供給速度等の操作量を演算して出力する操作量演
算器と、前記ボイラにおける発生エネルギ量を検出する
発生エネルギー量測定器と、この発生エネルギ量検出手
段の出力と前記温度測定器の出力に基づいてフィードバ
ック量を演算するフィードバック量演算器と、前記フィ
ードバック量演算器の出力と設定された目標温度とを比
較し前記操作量演算器に出力する比較器とを備えた焼却
炉の燃焼制御装置である。温度センサ(温度検出手段)
の遅れを回避するために、焼却炉に設置されているボイ
ラより発生する蒸気量を測定値として使用する。蒸気量
は炉内燃焼温度と密接な関係があり、温度センサ(温度
検出手段)のような遅れが介在せずに計測することが可
能である。ただし注意する点として、蒸気量は炉内燃焼
温度だけでなく排ガス、熱交換器周辺の流体の流速から
も影響を受けるため、炉内の燃焼温度と蒸気量との関係
を明確に把握していなければ制御に用いることはできな
い。また、ボイラの管壁に付着しているダストの量や温
度以外の要因は経時的変化により蒸気量のみの安定化を
行っていると、炉内の燃焼温度が適性値からずれて高温
あるいは低温になりすぎて排ガスが公害(CO、NOX
等)の発生要因が存在する。そこで上記の注意点を考慮
しながら、温度計測値と蒸気発生量との関係を随時推定
し、この関係を把握した上で、これを燃焼制御に利用す
る。このようにすることによって、温度計測値と蒸気量
との関係を随時推定できその関係を把握し、これにより
応答性に優れ安定度の高い燃焼状態の得られる。請求項
2記載の発明は、前記温度測定器が、保護手段を介して
前記炉本体に取り付けられているものである。保護手段
で温度測定器が高温から保護されるものの、測定される
温度に遅れを生じるので、前記推定が有効である。請求
項3記載の発明は、前記フィードバック量演算器が、発
生エネルギ量検出手段の出力から前記温度測定器の出力
を補正して推定するものである。前述したように発生エ
ネルギ量も種々の要因で変化するため、温度計測値と蒸
気量との関係を随時推定できその関係にし温度測定器の
出力を補正することで安定した制御を実現する。
In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is a furnace main body for incinerating or thermally decomposing municipal solid waste to generate exhaust gas, and A boiler that recovers the thermal energy of exhaust gas, a temperature measuring device that is attached to the furnace body to detect the combustion temperature in the furnace body, and an operation amount such as a dust supply speed to control the combustion state in the furnace body. A manipulated variable calculator for calculating and outputting, a generated energy amount measuring device for detecting the generated energy amount in the boiler, and a feedback amount based on the output of the generated energy amount detecting means and the output of the temperature measuring device. A combustion control device for an incinerator, comprising: a feedback amount calculator; and a comparator that compares the output of the feedback amount calculator with a set target temperature and outputs the comparison result to the manipulated variable calculator. That. Temperature sensor (temperature detection means)
In order to avoid the delay of, the amount of steam generated from the boiler installed in the incinerator is used as the measurement value. The amount of steam is closely related to the combustion temperature in the furnace, and can be measured without the delay of a temperature sensor (temperature detecting means). However, note that the amount of steam is affected not only by the combustion temperature in the furnace but also by the flow velocity of the exhaust gas and the fluid around the heat exchanger, so the relationship between the combustion temperature in the furnace and the amount of steam is clearly understood. Without it, it cannot be used for control. In addition, if factors other than the amount of dust adhering to the wall of the boiler tube and the temperature are stabilized only by the amount of steam due to changes over time, the combustion temperature in the furnace will deviate from the appropriate value and will be either high or low. Excessive pollution and exhaust gas pollution (CO, NO x
Etc.) occurs. Therefore, while taking the above precautions into consideration, the relationship between the temperature measurement value and the steam generation amount is estimated at any time, and after grasping this relationship, this is used for combustion control. By doing so, the relationship between the measured temperature value and the amount of steam can be estimated at any time, and the relationship can be grasped, whereby a combustion state with excellent responsiveness and high stability can be obtained. According to a second aspect of the present invention, the temperature measuring device is attached to the furnace body via a protection means. Although the protection means protects the temperature measuring device from high temperatures, the measured temperature is delayed, so the above estimation is effective. According to a third aspect of the present invention, the feedback amount calculator corrects and estimates the output of the temperature measuring device from the output of the generated energy amount detecting means. As described above, the amount of generated energy also changes due to various factors. Therefore, the relationship between the temperature measurement value and the amount of steam can be estimated at any time, and stable output is realized by correcting the output of the temperature measuring device.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。図1は、本発明の燃焼制御装置を備
えた焼却炉の概略図であり、図2は本発明の燃焼制御ブ
ロック図である。なお図1及び図2において、図7及び
図8と同じ作動をする部分には同じ符号を付してその説
明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of an incinerator provided with the combustion control device of the present invention, and FIG. 2 is a combustion control block diagram of the present invention. 1 and 2, parts that operate in the same way as in FIGS. 7 and 8 are given the same reference numerals and explanations thereof are omitted.

【0012】まず本発明の燃焼制御装置を備えた焼却炉
を図1を用いて説明する。図7の機器構成と異なる部分
は、廃熱回収のボイラ11に発生エネルギー量測定器と
しての発生蒸気量測定器10を取り付け、蒸気発生量測
定器10からの出力f5を燃焼制御システム15に入力
する構成にした点である。つぎに図2の制御ブロックに
おいて、図8と異なる点はフィードバック量演算器5を
温度センサ1と比較器2との間に設け、このフィードバ
ック量演算器5に蒸気発生量測定器4を接続した点であ
る。
First, an incinerator equipped with the combustion control device of the present invention will be described with reference to FIG. 7 differs from the device configuration shown in FIG. 7 in that a boiler 11 for recovering waste heat is equipped with a generated steam amount measuring device 10 as a generated energy amount measuring device, and an output f5 from the steam generation amount measuring device 10 is input to the combustion control system 15. It is the point that it is configured to do. Next, in the control block of FIG. 2, the difference from FIG. 8 is that a feedback amount calculator 5 is provided between the temperature sensor 1 and the comparator 2, and the steam generation amount measuring device 4 is connected to this feedback amount calculator 5. It is a point.

【0013】以下、この本発明の燃焼制御装置を備えた
焼却炉の作動を説明する。図1において、まず設定器6
により燃焼制御システム15に所望の焼却炉内の温度即
ち目標温度f3を設定する。つぎにごみ供給ロータ12
からごみ13が入り、炉本体9に供給される。ごみ13
の焼却時に発生した排ガス21の廃熱は炉本体9の上部
にある煙道22を通じてボイラ11で回収される。(こ
こまでは従来の燃焼制御装置を備えた焼却炉と同様であ
る)。炉本体9内の燃焼制御は、炉本体9に取り付けら
れている温度センサ出力7で炉本体9内の燃焼温度を測
定し、ボイラ11に設けられている蒸気発生量測定器1
0の出力f5でボイラ11内の蒸気発生量を測定した値
の両方を燃焼制御システム15へ送ることにより行われ
る。燃焼制御システム15で算出された操作量は指令信
号f3としてごみ供給ロータ12に送られ、適切なロー
タ回転数15に操作される。ごみ供給ロータ12はロー
タ回転数f2を随時前記燃焼システム15に送って、指
令信号f3と一致するようにフィードバック制御が行わ
れている。
The operation of the incinerator equipped with the combustion control device of the present invention will be described below. In FIG. 1, first, the setting device 6
Thus, the desired temperature in the incinerator, that is, the target temperature f3 is set in the combustion control system 15. Next, refuse supply rotor 12
The trash 13 enters and is supplied to the furnace body 9. Garbage 13
Waste heat of the exhaust gas 21 generated at the time of incineration is recovered by the boiler 11 through the flue 22 above the furnace body 9. (Up to this point, it is similar to an incinerator equipped with a conventional combustion control device). The combustion control in the furnace body 9 is performed by measuring the combustion temperature in the furnace body 9 with a temperature sensor output 7 attached to the furnace body 9, and measuring the steam generation amount 1 provided in the boiler 11.
This is performed by sending both the measured steam generation amount in the boiler 11 at the output f5 of 0 to the combustion control system 15. The operation amount calculated by the combustion control system 15 is sent to the dust supply rotor 12 as a command signal f3, and is operated at an appropriate rotor rotation speed 15. The dust supply rotor 12 sends the rotor rotation speed f2 to the combustion system 15 at any time, and feedback control is performed so as to match the command signal f3.

【0014】なお、操作手段の一つとしてのごみ供給ロ
ータ12は、例えば定量供給型のフィーダであり、ロー
タの回転数に応じた容積のごみを焼却炉本体9に投入で
きる構造になっている。焼却炉の炉本体9は、焼却時に
発生する熱をボイラ11で利用するため炉本体9の上部
を先細にし、熱を集めやすくしている。炉本体9の上部
は排ガスが外部に漏れないように煙道22が接続され、
煙道22の先にボイラ11が接続される。ボイラ11に
は予め水の入った配管が設置されているので、水は排ガ
スと熱交換して蒸気になる。ボイラ11の蒸気発生量を
測定するのが蒸気発生量測定器10である。この蒸気発
生量測定器10はボイラ11から抜き出される蒸気の経
路に設けられ、例えばボイラ11で発生する蒸気量を差
圧計等の圧力変化を測定し、それに基づいて流量を計測
する差圧式流量計である。この差圧流量計からの出力f
5が燃焼制御システム15に出力される。
The dust feed rotor 12 as one of the operating means is, for example, a constant feed type feeder, and has a structure capable of throwing dust of a volume corresponding to the rotation speed of the rotor into the incinerator body 9. . In the furnace body 9 of the incinerator, the upper part of the furnace body 9 is tapered so that the heat generated in the incineration is used in the boiler 11, so that the heat can be easily collected. A flue 22 is connected to the upper part of the furnace body 9 so that the exhaust gas does not leak outside,
The boiler 11 is connected to the tip of the flue 22. Since a pipe containing water is installed in advance in the boiler 11, the water exchanges heat with the exhaust gas to become steam. The steam generation amount measuring device 10 measures the steam generation amount of the boiler 11. This steam generation amount measuring device 10 is provided in the path of the steam extracted from the boiler 11, and measures the flow rate of the steam generated in the boiler 11, for example, by measuring the pressure change of a differential pressure gauge, and measures the flow rate based on it. It is total. Output f from this differential pressure flow meter
5 is output to the combustion control system 15.

【0015】炉本体9内には、燃焼温度を制御するため
に用いられる温度測定器1が炉本体9の上部の側壁に埋
め込まれている。温度測定器1には例えば基準点と測温
点の間に温度差が生じるとその差に応じた熱起電力を利
用する熱電対を用いる。熱電対は、構造が簡単でかつ広
範囲で温度測定が可能である利点を持つ。しかし、高温
に耐える金属やセラミック等の保護管の中に熱電対が組
み込まれる構造のために、炉本体内の燃焼温度の測定に
は遅れが生じる。温度センサ(温度測定器)1の出力f
1と蒸気発生量測定器10の出力f5は、逐次信号に変
換され燃焼制御システム15に入力される。燃焼制御シ
ステム15は、温度測定値と蒸気量との関係を随時推定
する。燃焼制御システム15では温度測定器の遅れを含
んだ形でその関係を推定するのが、そのための演算を行
うのが図2のフィードバック量演算器5である。
Inside the furnace body 9, a temperature measuring instrument 1 used for controlling the combustion temperature is embedded in the upper side wall of the furnace body 9. As the temperature measuring device 1, for example, a thermocouple that uses a thermoelectromotive force corresponding to the difference in temperature between the reference point and the temperature measurement point is used. Thermocouples have the advantages of simple structure and wide range temperature measurement. However, due to the structure in which the thermocouple is incorporated in a protection tube made of metal, ceramic, or the like that can withstand high temperatures, there is a delay in measuring the combustion temperature in the furnace body. Output f of temperature sensor (temperature measuring device) 1
1 and the output f5 of the steam generation amount measuring device 10 are sequentially converted into signals and input to the combustion control system 15. The combustion control system 15 estimates the relationship between the temperature measurement value and the amount of steam at any time. The combustion control system 15 estimates the relationship in a form including the delay of the temperature measuring device, and the feedback amount calculator 5 of FIG. 2 performs the calculation for that purpose.

【0016】以下、図2のフィードバック量演算器5に
おける温度測定値と蒸気量との関係の推定方法を説明す
る。温度測定値Tmと実際の炉内温度Tとの関係は、次
式で表すことができる。 Tm(t)=F(T(t−d)) (1) ここで、Fはロウパスフィルタ、tは時刻、dは温度測
定器の無駄時間である。また、炉内温度と発生蒸気量S
との関係は次式で表せるものとする。 S=a・T(t)+b (2) ここで、a,bはボイラの状態や周辺の状況によって決
まる係数である。これらの係数は常に変化しており、そ
れを全て把握するのは困難である。しかし、これらの係
数のある時間帯での平均値を求めることで、炉内の燃焼
状態が目標温度で安定に保たれているときの蒸気発生量
を推定することができる。これにより、この蒸気発生量
を中心として、蒸気発生量が多ければ燃焼が過負荷状
態、少なければ燃焼が不活発であると推定でき、これに
基づいて制御を行うことが可能となる。係数の推定につ
いては、次のようになる。(1)、(2)式から次式が
得られる。 Tm(t)=F(p・S(t−d)+q) (3) ただし、p,qはパラメータa,bによって次のように
表せる。 p=1/a q=−b/a 無駄時間dを予め測定しておけば、(3)式を最小2乗
法等によって同定することができ、また無駄時間だけ温
度測定値を遅らせた一定期間の平均値を用いることでロ
ウパスフィルタを無視し、計算を簡略化することもでき
る。
The method of estimating the relationship between the temperature measurement value and the amount of steam in the feedback amount calculator 5 of FIG. 2 will be described below. The relationship between the measured temperature value Tm and the actual furnace temperature T can be expressed by the following equation. Tm (t) = F (T (t-d)) (1) Here, F is a low pass filter, t is time, and d is dead time of the temperature measuring device. In addition, the furnace temperature and the generated steam amount S
The relationship between and can be expressed by the following equation. S = a · T (t) + b (2) Here, a and b are coefficients determined by the state of the boiler and surrounding conditions. These coefficients are constantly changing and it is difficult to grasp them all. However, by obtaining the average value of these coefficients in a certain time zone, it is possible to estimate the steam generation amount when the combustion state in the furnace is kept stable at the target temperature. As a result, it can be estimated that if the steam generation amount is large, the combustion is overloaded, and if the steam generation amount is small, the combustion is inactive, and control can be performed based on this. The coefficient estimation is as follows. The following equation is obtained from the equations (1) and (2). Tm (t) = F (p · S (t−d) + q) (3) However, p and q can be expressed as follows by the parameters a and b. p = 1 / a q = −b / a If the dead time d is measured in advance, the equation (3) can be identified by the method of least squares, and the temperature measurement value is delayed by the dead time. By using the average value of, the low-pass filter can be ignored and the calculation can be simplified.

【0017】以上の推定方法を用いた本発明の燃焼制御
システム15のブロックが図2に示される。この燃焼制
御システムは、設定器6と、比較器2と、操作量演算器
3と、フィードバック量演算器5と、操作量演算器3か
ら構成されている。フィードバック量演算器5は、上記
の推定方法で演算を行う演算器である。操作量演算器3
は、フィードバック量演算器5で算出したフィードバッ
ク量f6と設定器6で設定される目標温度f4との差分
を比較器2でとり、この差分に応じて適正な操作量f3
を演算する演算器である。フィードバック量f6は、図
8の従来技術の場合は温度測定器1で測定された測定値
そのものであるが、本発明の場合蒸気発生量によって温
度測定器の遅れを修正された値であり、そこが異なって
いる。なお作動時には、目標温度f4とフィードバック
量f6の差を操作量演算器3に入力することで算出され
た操作量f3が操作手段としてのごみ供給ロータ12の
回転数となる。ごみの発熱量の変化等で炉本体内の燃焼
温度が目標温度f4から離れるようになれば、上記の作
動を繰り返し燃焼温度を安定させる。
A block diagram of the combustion control system 15 of the present invention using the above estimation method is shown in FIG. This combustion control system includes a setter 6, a comparator 2, a manipulated variable calculator 3, a feedback amount calculator 5, and a manipulated variable calculator 3. The feedback amount calculator 5 is a calculator that performs calculation by the above estimation method. Manipulated variable calculator 3
Is the difference between the feedback amount f6 calculated by the feedback amount calculator 5 and the target temperature f4 set by the setter 6, and the appropriate manipulated variable f3 is calculated according to this difference.
Is a computing unit for computing. The feedback amount f6 is the measured value itself measured by the temperature measuring device 1 in the case of the prior art of FIG. 8, but is the value in which the delay of the temperature measuring device is corrected by the steam generation amount in the case of the present invention. Are different. During operation, the manipulated variable f3 calculated by inputting the difference between the target temperature f4 and the feedback amount f6 into the manipulated variable calculator 3 becomes the rotation speed of the dust supply rotor 12 as the operating means. If the combustion temperature in the furnace body deviates from the target temperature f4 due to a change in the heat value of the dust, the above operation is repeated to stabilize the combustion temperature.

【0018】前述したように廃熱ボイラの蒸気発生量に
よって温度測定器の遅れを修正された値を用いた燃焼制
御は操作量の変化が素早く反応を示すことを図3で示
す。図3は、燃焼システムの変化図であり、図3(a)
は投入カロリーの変化、図3(b)は蒸気発生量測定値
の変化、図3(c)は本発明の燃焼システムの操作量の
変化を表す図である。図3(a)において、凹部状の変
化点B1で投入カロリーの変化が起きると、図3(b)
のように廃熱ボイラによる蒸気発生量の測定値f5の変
化は変化点B2の如くかなり早い応答を見せることがわ
かる。図3(c)において燃焼システムの操作量f3の
変化は蒸気発生量の測定値f5を利用した制御のため変
化点B3の如く当然素早く変化させることができる。図
9(c)にある従来の燃焼システムの変化図での操作量
の変化と比較すると応答時間の差が顕著に現れている。
FIG. 3 shows that in the combustion control using the value in which the delay of the temperature measuring device is corrected by the amount of steam generated in the waste heat boiler as described above, the change in the manipulated value shows a quick reaction. FIG. 3 is a change diagram of the combustion system, and FIG.
Is a change in input calorie, FIG. 3 (b) is a change in steam generation amount measurement value, and FIG. 3 (c) is a graph showing change in operating amount of the combustion system of the present invention. In FIG. 3A, when the input calorie changes at the concave change point B1, FIG.
As described above, it can be seen that the change in the measured value f5 of the amount of steam generated by the waste heat boiler shows a considerably quick response like the change point B2. In FIG. 3 (c), the change in the manipulated variable f3 of the combustion system can be naturally changed quickly like the change point B3 because of the control using the measured value f5 of the steam generation amount. Compared with the change in the manipulated variable in the change diagram of the conventional combustion system shown in FIG. 9C, the difference in response time is noticeable.

【0019】また実際的な燃焼制御装置として、効率的
にごみを焼却し、安定した燃焼状態を得るために、図1
の構成に加えて、ごみ供給ロータ12にごみ供給コンベ
ア18を接続し、燃焼制御システム15の操作量をロー
タ回転数だけでなく一次空気流量19、一次空気温度2
0にまでに広げても良い。図4は制御すべき操作量の対
象を広げた他の焼却炉の温度制御装置の機器ブロック図
である。なお図1と同じ作動をする部分は同じ符号を付
してその説明を省略する。ごみをごみ供給ロータ12に
まで搬送するために、ベルトコンベア等を用いたごみ供
給コンベア18をごみ供給ロータ12に接続する。ま
た、ごみ供給コンベア18は外乱(ごみの載り方の変動
等)の影響を無視できる同定モデルによる制御法を前記
燃焼制御システム15に内蔵し、ベルトコンベアのスピ
ードを制御を行うようになっている。炉本体9の底部に
は一次空気を供給するために配管が接続されている。こ
の配管には空気温度と空気流量を自由に変化させる温度
可変器20と可変弁19を備えつけている。作動時は、
図1の作動に加えて、前記ごみ供給コンベア18からご
みが供給され、焼却炉の底部から空気を吹きだし、ごみ
を浮遊させる。ごみを浮遊させることで効率良く焼却で
きる。このとき空気流量、空気温度が燃焼温度が安定す
るように燃焼制御システム15からの操作量で制御す
る。空気流量、空気温度の値は随時燃焼制御システム1
5に送られている。
Further, as a practical combustion control device, in order to efficiently incinerate dust and obtain a stable combustion state, FIG.
In addition to the above configuration, a refuse supply conveyor 12 is connected to the refuse supply rotor 12, and the operation amount of the combustion control system 15 is not limited to the rotor rotation speed but also the primary air flow rate 19 and the primary air temperature 2
It may be extended to zero. FIG. 4 is a device block diagram of another temperature control device of an incinerator in which the target of the manipulated variable to be controlled is expanded. The parts that operate in the same manner as in FIG. In order to convey the refuse to the refuse supply rotor 12, a refuse supply conveyor 18 using a belt conveyor or the like is connected to the refuse supply rotor 12. Further, the waste supply conveyor 18 has a control method based on an identification model capable of ignoring the influence of disturbance (fluctuation of the way dust is placed, etc.) in the combustion control system 15 to control the speed of the belt conveyor. . A pipe is connected to the bottom of the furnace body 9 to supply primary air. This pipe is equipped with a temperature variable device 20 and a variable valve 19 for freely changing the air temperature and the air flow rate. When operating,
In addition to the operation of FIG. 1, waste is supplied from the waste supply conveyor 18, and air is blown out from the bottom of the incinerator to float the waste. It can be incinerated efficiently by suspending the garbage. At this time, the air flow rate and the air temperature are controlled by the manipulated variables from the combustion control system 15 so that the combustion temperature becomes stable. The values of the air flow rate and the air temperature are as required.
Has been sent to 5.

【0020】この燃焼制御システム15を詳しく説明す
るのに図5を用いる。なおブロック図に向かっている矢
線はデータの流れを、ブロックを突き抜けている矢線は
そのデータによりブロック内のパラメータが変化するこ
とを示している。このブロック図では、図2での操作量
に一次空気流量と一次空気温度が新たに加わっている。
またごみ供給ベルトのスピードを同定モデルで制御する
ようになっている。この同定モデル16は、外乱(ごみ
の載り方の変動等)の影響を無視して、ベルトコンベア
のスピードを制御するためのもので以下、その制御方法
を説明する。コンベアスピードを入力、温度測定値を出
力とする一次モデルを用いる。 y〔k+1〕+ay〔k〕=bu〔k〕 (1) ここで、y〔k〕は出力、u〔k〕は入力、a,bは未
知のパラメータである。従ってこのa,bを求める。
a,bを求めるために(3)式のような不感帯付きの適
応同定法を用いる。なお、不感帯はm〔k〕である。 θe 〔k〕=θe 〔k−1〕+K〔k〕m〔k〕 (2) m〔k〕=0 :W1 ≦e〔k〕≦Wu =e〔k〕−W1 :e〔k〕<W1 (3) =e〔k〕−Wu :e〔k〕>Wu e〔k〕=y〔k〕−ye 〔k〕 (4) ye 〔k+1〕=θe T 〔k〕φ〔k〕 (5) K〔k〕=P〔k〕φ〔k〕 (6) P〔k〕=(I−K〔k〕φT 〔k〕)P〔k−1〕/λ (7) θe T 〔k〕=〔−ae 〔k〕be 〔k〕〕 (8) φT 〔k〕=〔y〔k〕u〔k〕〕 (9) ae 〔k〕,be 〔k〕はa,bの推定値、e〔k〕は
推定値の誤差、W1 <0、Wu >0はそれぞれの不感帯
の下限、上限、0<λ<1は忘却係数である。ここで、
(3)式の不感帯の計算方法を(10)式のように変換
する。 m〔k〕=0 :W1 ≦e〔k〕≦Wu =e〔k〕 :e〔k〕<W1 、e〔k〕>Wu (10) このようにすることで、外乱の影響を無視した同定モデ
ルとなる。この同定モデルを用いてロータ回転数と温度
測定器の値からコンベアスピードを制御して焼却炉の燃
焼状態を安定させる。
FIG. 5 is used to explain the combustion control system 15 in detail. The arrows pointing toward the block diagram show the flow of data, and the arrows passing through the block show that the parameters in the block change depending on the data. In this block diagram, the primary air flow rate and the primary air temperature are newly added to the manipulated variables in FIG.
In addition, the speed of the waste supply belt is controlled by the identification model. The identification model 16 is for controlling the speed of the belt conveyor by ignoring the influence of disturbance (fluctuation in how dust is placed, etc.), and its control method will be described below. A primary model is used that inputs the conveyor speed and outputs the measured temperature value. y [k + 1] + ay [k] = bu [k] (1) where y [k] is an output, u [k] is an input, and a and b are unknown parameters. Therefore, a and b are obtained.
In order to obtain a and b, an adaptive identification method with a dead zone such as equation (3) is used. The dead zone is m [k]. θ e [k] = θ e [k−1] + K [k] m [k] (2) m [k] = 0: W 1 ≦ e [k] ≦ W u = e [k] −W 1 : e [k] <W 1 (3) = e [k] -W u: e [k]> W u e [k] = y [k] -y e [k] (4) y e [k + 1] = theta e T [k] phi [k] (5) K [k] = P [k] phi [k] (6) P [k] = (I-K [k] phi T [k]) P [k −1] / λ (7) θ e T [k] = [− a e [k] be e [k]] (8) φ T [k] = [y [k] u [k]] (9) a e [k], b e [k] a, an estimate of b, e [k] estimates the error, W 1 <0, W u > 0 is the lower limit of each of the dead zone, the upper limit, 0 <lambda <1 is a forgetting factor. here,
The dead zone calculation method of equation (3) is converted to equation (10). m [k] = 0: W 1 ≦ e [k] ≦ W u = e [k]: e [k] <W 1 , e [k]> W u (10) It becomes an identification model that ignores the influence. Using this identification model, the conveyor speed is controlled from the values of the rotor speed and the temperature measuring device to stabilize the combustion state of the incinerator.

【0021】なお作動時には、同定モデル16が加わっ
たため、図1の作動に加えて、操業中外乱の影響が無視
できるようになっている。ここでは、蒸気発生量と温度
測定値の関係を推定し、双方の値を用いることで炉内の
燃焼状態を遅れなく推定し制御したが、他に蒸気発生量
と温度測定値の関係を、炉内への燃焼空気の吹き込み量
によって補正を加えることにより、より精度の高い関係
推定が行え、制御することが可能となる。
During the operation, since the identification model 16 is added, the influence of the disturbance during operation can be ignored in addition to the operation shown in FIG. Here, the relationship between the steam generation amount and the temperature measurement value was estimated, and the combustion state in the furnace was estimated and controlled without delay by using both values. By adding a correction based on the amount of combustion air blown into the furnace, it becomes possible to perform more accurate relationship estimation and control.

【0022】[0022]

【実施例】図1の本発明の燃焼装置を備えた焼却炉と図
7の従来の燃焼装置を備えた焼却炉を実施比較した。そ
の結果を図6に示す。以下、図6を用いて説明する。図
6(a)は本発明の燃焼装置を備えた焼却炉で、目標温
度を860℃に設定し炉内温度を1時間測定したもので
ある。図6(b)は従来の燃焼装置を備えた焼却炉で、
目標温度を850℃に設定し炉内温度を1時間測定した
ものである。測定結果では、どちらも1時間での温度変
動の平均はほとんど目標温度であったが、炉内温度の変
動の大きさは標準偏差が示す通り本発明型の焼却炉の方
が、非常に小さく抑えられ安定度の高い燃焼状態が得ら
れていることがわかる。
EXAMPLE An incinerator having the combustion apparatus of the present invention shown in FIG. 1 and an incinerator having the conventional combustion apparatus shown in FIG. FIG. 6 shows the result. Hereinafter, description will be made with reference to FIG. FIG. 6A shows an incinerator equipped with the combustion apparatus of the present invention, in which the target temperature is set to 860 ° C. and the temperature in the furnace is measured for 1 hour. FIG. 6 (b) shows an incinerator equipped with a conventional combustion device,
The target temperature was set to 850 ° C. and the furnace temperature was measured for 1 hour. According to the measurement results, the average temperature fluctuation in 1 hour was almost the target temperature in both cases, but the magnitude of the fluctuation in the temperature in the furnace was much smaller in the incinerator of the present invention as indicated by the standard deviation. It can be seen that a combustion state that is suppressed and has high stability is obtained.

【0023】[0023]

【発明の効果】以上の説明したように、本発明のうち請
求項1記載の発明は、遅れのある温度測定にもかかわら
ず、蒸気発生量と温度測定値とのに基づいて炉内の燃焼
温度を一定に保持することができ、燃焼の安定化、公害
の削減を可能とする。請求項2記載の発明は、請求項1
記載の効果が保護手段で遅れが出やすい温度測定器を用
いた場合に有効に作動する。請求項3記載の発明は、請
求項1記載の効果が、発生エネルギ量検出手段の出力か
ら前記温度測定器の出力を補正して推定するというフィ
ードバック量演算器を用いた場合に特に有効に作動す
る。
As described above, according to the first aspect of the present invention, the combustion in the furnace is performed based on the steam generation amount and the temperature measurement value, despite the temperature measurement with a delay. The temperature can be kept constant, which makes it possible to stabilize combustion and reduce pollution. The invention described in claim 2 is claim 1
The described effect works effectively when using a temperature measuring device which is prone to delay as a protection means. The invention according to claim 3 is particularly effective when the effect according to claim 1 is used when a feedback amount calculator for correcting and estimating the output of the temperature measuring device from the output of the generated energy amount detecting means is used. To do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃焼制御装置を備えた焼却炉の概略図
である。
FIG. 1 is a schematic diagram of an incinerator equipped with a combustion control device of the present invention.

【図2】本発明の燃焼制御ブロック図である。FIG. 2 is a combustion control block diagram of the present invention.

【図3】本発明の燃焼制御の変化図である。FIG. 3 is a change diagram of combustion control according to the present invention.

【図4】本発明の燃焼制御装置を備えた他の焼却炉の概
略図である。
FIG. 4 is a schematic view of another incinerator equipped with the combustion control device of the present invention.

【図5】図4に燃焼制御ブロック図である。FIG. 5 is a combustion control block diagram in FIG.

【図6】本発明型の焼却炉と従来型の焼却炉の実施例の
比較図である。
FIG. 6 is a comparison diagram of an embodiment of the incinerator of the present invention and the conventional incinerator.

【図7】従来の燃焼制御装置を備えた焼却炉の概略図で
ある。
FIG. 7 is a schematic diagram of an incinerator having a conventional combustion control device.

【図8】従来の燃焼制御ブロック図である。FIG. 8 is a conventional combustion control block diagram.

【図9】従来の燃焼制御の変化図である。FIG. 9 is a change diagram of conventional combustion control.

【符号の説明】[Explanation of symbols]

1 温度測定器 2 比較器 3 操作量演算器 5 フィードバック量演算器 9 炉本体 10 発生蒸気量測定器(発生エネルギー量測定器) 11 ボイラ 12 ごみ供給ロータ(操作手段) 15 燃焼制御システム f1 測定温度 f3 操作量 f4 目標温度 f5 発生蒸気量 1 Temperature Measuring Device 2 Comparator 3 Manipulation Amount Calculator 5 Feedback Amount Calculator 9 Furnace Main Body 10 Generated Steam Amount Measuring Device (Generated Energy Amount Measuring Device) 11 Boiler 12 Waste Supply Rotor (Operating Means) 15 Combustion Control System f1 Measured Temperature f3 manipulated variable f4 target temperature f5 generated steam amount

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 都市ごみ等を焼却又は熱分解して排ガス
を生じさせる炉本体と、前記排ガスの熱エネルギーを回
収するボイラと、前記炉本体に取り付けられ炉本体内の
燃焼温度を検出する温度測定器と、前記炉本体内の燃焼
状態を制御するためにごみ供給速度等の操作量を演算し
て出力する操作量演算器と、前記ボイラにおける発生エ
ネルギ量を検出する発生エネルギー量測定器と、この発
生エネルギー量測定器の出力と前記温度測定器の出力に
基づいてフィードバック量を演算するフィードバック量
演算器と、前記フィードバック量演算器の出力と設定さ
れた目標温度とを比較し前記操作量演算器に出力する比
較器と、を備えた焼却炉の燃焼制御装置。
1. A furnace body for incinerating or thermally decomposing municipal waste or the like to generate exhaust gas, a boiler for recovering thermal energy of the exhaust gas, and a temperature attached to the furnace body for detecting combustion temperature in the furnace body. A measuring instrument, a manipulated variable computing device for computing and outputting a manipulated variable such as a dust supply speed in order to control the combustion state in the furnace body, and a generated energy amount measuring instrument for detecting the amount of energy generated in the boiler. , A feedback amount calculator for calculating a feedback amount based on the output of the generated energy amount measuring device and the output of the temperature measuring device, and comparing the output of the feedback amount calculating device with a set target temperature, the manipulated variable A combustion control device for an incinerator, which comprises a comparator for outputting to a computing unit.
【請求項2】 前記温度測定器は、保護手段を介して前
記炉本体に取り付けられている請求項1記載の燃焼炉の
燃焼制御装置。
2. The combustion control device for a combustion furnace according to claim 1, wherein the temperature measuring device is attached to the furnace body via a protection means.
【請求項3】 前記フィードバック量演算器は、発生エ
ネルギー量測定器の出力から前記温度測定器の出力を補
正して推定するものである請求項1記載の燃焼炉の燃焼
制御装置。
3. The combustion control device for a combustion furnace according to claim 1, wherein the feedback amount calculator corrects and estimates the output of the temperature measuring device from the output of the generated energy amount measuring device.
JP7306634A 1995-10-30 1995-10-30 Incinerator combustion control device Expired - Lifetime JP2975556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7306634A JP2975556B2 (en) 1995-10-30 1995-10-30 Incinerator combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7306634A JP2975556B2 (en) 1995-10-30 1995-10-30 Incinerator combustion control device

Publications (2)

Publication Number Publication Date
JPH09126433A true JPH09126433A (en) 1997-05-16
JP2975556B2 JP2975556B2 (en) 1999-11-10

Family

ID=17959464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7306634A Expired - Lifetime JP2975556B2 (en) 1995-10-30 1995-10-30 Incinerator combustion control device

Country Status (1)

Country Link
JP (1) JP2975556B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016294A (en) * 2016-05-31 2016-10-12 浙江中控技术股份有限公司 Measuring method and device for domestic garbage calculation heat value
JP6010675B1 (en) * 2015-10-01 2016-10-19 株式会社プランテック Waste incinerator temperature detection device and waste incinerator temperature detection method
JP2020098081A (en) * 2018-12-19 2020-06-25 株式会社プランテック Combustion control method
CN114459032A (en) * 2022-01-28 2022-05-10 佛山仙湖实验室 Ammonia gas combustion control method, system, equipment and medium
JP2022076570A (en) * 2020-11-10 2022-05-20 学校法人東京電機大学 Combustion control device for refuse incineration treatment facility and combustion control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010675B1 (en) * 2015-10-01 2016-10-19 株式会社プランテック Waste incinerator temperature detection device and waste incinerator temperature detection method
CN106016294A (en) * 2016-05-31 2016-10-12 浙江中控技术股份有限公司 Measuring method and device for domestic garbage calculation heat value
JP2020098081A (en) * 2018-12-19 2020-06-25 株式会社プランテック Combustion control method
JP2022076570A (en) * 2020-11-10 2022-05-20 学校法人東京電機大学 Combustion control device for refuse incineration treatment facility and combustion control method
CN114459032A (en) * 2022-01-28 2022-05-10 佛山仙湖实验室 Ammonia gas combustion control method, system, equipment and medium

Also Published As

Publication number Publication date
JP2975556B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US5020451A (en) Fluidized-bed combustion furnace
JPH09126433A (en) Combustion control device for incinerator
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP2011214773A (en) Device and method of controlling temperature of sludge incinerator
JPH04208307A (en) Method for controlling supplying of fuel for solid item combustion device
JP4201781B2 (en) Incinerator control method and apparatus, and program
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP3668405B2 (en) Waste incinerator control method and apparatus
JP2008249214A (en) Control method, device and program for incinerator
JP4486628B2 (en) Incinerator control method and apparatus, and program
JP4230925B2 (en) Calorific value estimation device, calorific value estimation method, and combustion control device
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JP3763963B2 (en) Stoker temperature control device for waste incinerator and combustion control device for waste incinerator equipped with the same
JPH11257634A (en) Operation-supporting device for combustion controller in waste incinerating furnace
JP3758507B2 (en) Flow rate calculation method and flow rate calculation device
JP3850206B2 (en) Combustion control method and combustion control apparatus
JP2002122317A (en) Combustion control system of refuse incinerator
JP2906722B2 (en) Boiler drum level control method and control device
JPH09273732A (en) Control method of combustion in incinerating furnace
JP2009192215A (en) Controller for incinerator
JPH10274411A (en) Temperature control method of dust collector of refuse incinerator
JP3372159B2 (en) Temperature control method and device for incinerator
JP2002267134A (en) Combustion control system of refuse incinerator having no boiler facility
JP3665483B2 (en) Combustion control device for incinerator
JPH1114027A (en) Method of controlling combustion of incinerator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term