JP2012087977A - Incineration equipment and operation method of the same - Google Patents

Incineration equipment and operation method of the same Download PDF

Info

Publication number
JP2012087977A
JP2012087977A JP2010234258A JP2010234258A JP2012087977A JP 2012087977 A JP2012087977 A JP 2012087977A JP 2010234258 A JP2010234258 A JP 2010234258A JP 2010234258 A JP2010234258 A JP 2010234258A JP 2012087977 A JP2012087977 A JP 2012087977A
Authority
JP
Japan
Prior art keywords
air
duct
cooling
combustion air
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010234258A
Other languages
Japanese (ja)
Other versions
JP5574911B2 (en
Inventor
Yutaka Fukusato
福里  豊
Satoshi Nishio
聡 西尾
Masahiro Tozaki
正裕 戸▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2010234258A priority Critical patent/JP5574911B2/en
Publication of JP2012087977A publication Critical patent/JP2012087977A/en
Application granted granted Critical
Publication of JP5574911B2 publication Critical patent/JP5574911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To provide incineration equipment which employs an air-cooled wall in a cooling system for a combustion chamber of an incinerator, and which effectively uses hot air having passed in the air-cooled wall and combusts refuse in accordance with refuse quality, and to provide an operation method of the equipment.SOLUTION: The incineration equipment 1 includes: the incinerator 2; the air-cooled wall 3 laid on a furnace wall of the incinerator; and a distributing and supplying means distributing and supplying hot air after cooling the air-cooled wall to primary combustion air and secondary combustion air. The operation method of the incineration equipment comprises detecting a quantity of heat generation of an incinerated substance and distributing and supplying hot air after cooling the air-cooled wall to the primary combustion air and the secondary combustion air in accordance with the detected quantity of heat generation of the incinerated substance.

Description

本発明は、焼却設備及びその運転方法に係り、詳しくは、空冷壁方式の焼却炉を備える焼却設備及びその運転方法に関する。   The present invention relates to an incineration facility and an operation method thereof, and more particularly, to an incineration facility including an air-cooled wall type incinerator and an operation method thereof.

従来、焼却炉の炉体を冷却する方法として、水冷壁方式と空冷壁方式とが知られている。   Conventionally, a water-cooled wall method and an air-cooled wall method are known as methods for cooling the furnace body of an incinerator.

近年では、廃熱回収率を向上させるため、水冷方式を採用することが多いが、特に処理量が100(トン/日)程度より小さい中小規模炉においては、燃焼物の発熱量が下がった際または焼却処理負荷率が下がった際に、排ガス温度が低下してダイオキシン対策のための排ガス条件(二次燃焼室にて850℃以上、2秒滞留)を維持できなくなるため、助燃材(灯油やガス等)を多く使用して、排ガス温度を上げる必要があった。この課題は、焼却炉の一次燃焼室を水冷壁ではなく耐火物構造として空冷壁を設ける構造とし、吸収熱量を水冷壁方式に比べて低くすることにより、解決できる。   In recent years, in order to improve the waste heat recovery rate, a water cooling method is often adopted. However, particularly in a small and medium-sized furnace whose processing amount is smaller than about 100 (tons / day), when the calorific value of the combustion product decreases. Or, when the incineration treatment load factor decreases, the exhaust gas temperature decreases and the exhaust gas conditions for dioxin countermeasures (more than 850 ° C in the secondary combustion chamber for 2 seconds) cannot be maintained. It was necessary to increase the exhaust gas temperature by using a large amount of gas. This problem can be solved by adopting a structure in which the primary combustion chamber of the incinerator is provided with an air cooling wall as a refractory structure instead of a water cooling wall, and the amount of heat absorbed is lower than that of the water cooling wall system.

空冷壁での冷却を確実に行うため、焼却物の発熱量にかかわらず、空冷壁へは一定量の空気が挿入される。   In order to reliably cool the air cooling wall, a certain amount of air is inserted into the air cooling wall regardless of the amount of heat generated by the incineration product.

従来、空冷壁を冷却した後の温風は、そのエネルギーを回収することなく大気へ放出されるか若しくは白煙防止用空気の一部として用いられてきた(例えば、特許文献1等)。しかし、空冷壁を冷却した後の温風を白煙防止用空気として用いるかそのまま大気開放したのでは、空冷壁にて回収した熱は、廃熱ボイラで熱回収されず、有効利用されない。   Conventionally, warm air after cooling an air-cooled wall has been released into the atmosphere without recovering its energy, or has been used as part of white smoke prevention air (for example, Patent Document 1). However, if the hot air after cooling the air-cooled wall is used as white smoke prevention air or opened to the atmosphere as it is, the heat recovered by the air-cooled wall is not recovered by the waste heat boiler and is not effectively used.

そのため、空冷壁を冷却した後の温風を燃焼空気として炉内に挿入する事例も見られる(例えば、特許文献2〜5)。   Therefore, the example which inserts the warm air after cooling an air cooling wall into a furnace as combustion air is also seen (for example, patent documents 2-5).

近年の焼却炉は、ごみ質に応じて、発熱量が低い場合は一次燃焼空気の温度を高くし、発熱量が高い場合は一次燃焼空気温度を低くする運転がなされる。ここで、ごみ質とは、ごみの持つ物理的性質及び化学的性質の総称である。ごみの持つ物理的性質には、ごみの種類及び組成、かさ比重、さらに水分、可燃分、灰分のいわゆる3成分などがあり、化学的性質には、元素組成、発熱量などがある。ごみ質の傾向として、例えば、紙、プラスチックが多く、厨芥や不燃物の少ないごみは発熱量が高く、ゴミ中の水分の割合が高いほど発熱量が低い。ごみ質の分析において最も重要なものはごみの発熱量である。   Recent incinerators are operated to increase the temperature of the primary combustion air when the calorific value is low and to lower the primary combustion air temperature when the calorific value is high, depending on the waste quality. Here, the waste quality is a general term for physical properties and chemical properties of waste. The physical properties of waste include the type and composition of waste, bulk specific gravity, so-called three components such as moisture, combustible and ash, and chemical properties include elemental composition and calorific value. As a trend of waste quality, for example, waste with much paper and plastic, less waste and incombustibles, has a higher calorific value, and the higher the percentage of moisture in the garbage, the lower the calorific value. The most important thing in the analysis of waste quality is the amount of heat generated by the waste.

ごみ質は、種々の方法によって知得することができる。例えば、特許文献6では、新たにホッパにごみが投入される直前・直後のごみの表面形状を、ホッパ上方に設置される走査型のレーザー式レベル計で検出される距離分布により算出し、この表面距離に基づき投入されたごみの容積を算出するとともに、この算出されたごみの容積とホッパ内に投入されるごみの重量とに基づき、新たに投入されるごみ比重・熱量を算出し、これらのデータを投入毎に分類して記憶し、これらのデータに基づき供給熱量を算出する。   The waste quality can be obtained by various methods. For example, in Patent Document 6, the surface shape of dust immediately before and immediately after dust is newly added to the hopper is calculated from the distance distribution detected by a scanning laser level meter installed above the hopper. Based on the surface distance, the volume of waste that has been thrown in is calculated, and based on the calculated volume of waste and the weight of the waste that has been thrown into the hopper, the specific gravity and heat quantity of newly thrown waste are calculated. Are classified and stored for each input, and the amount of heat supplied is calculated based on these data.

また、例えば、特許文献7では、焼却炉のホッパ内に投入されるごみの重量と、ホッパ内に貯留されている投入直前のごみの総容積と、投入直後の総容積と、ホッパ内部で生じるごみ圧縮によるホッパ内部のごみ移動量と、ホッパへ投入される投入ごみ重量とによりごみ質を推定する。ごみの総容量は、走査型レーザーレベル計を用いることにより算出する。   In addition, for example, in Patent Document 7, the weight of garbage thrown into the hopper of the incinerator, the total volume of waste just before thrown in the hopper, the total volume just after thrown, and the inside of the hopper are generated. The waste quality is estimated from the amount of waste moved inside the hopper due to the waste compression and the weight of waste put into the hopper. The total volume of garbage is calculated by using a scanning laser level meter.

他の方法として、例えば、特許文献8では、火格子の平均温度と通風量から、火格子通過熱量を演算し、火格子通過熱量によって燃焼物の発熱量の増減を把握する。   As another method, for example, in Patent Document 8, the amount of heat passing through the grate is calculated from the average temperature of the grate and the amount of ventilation, and the increase or decrease in the amount of heat generated by the combustion product is grasped based on the amount of heat passing through the grate.

その他、ごみの発熱量を知る方法として、例えば、ボンブ熱量計により発熱量を測定する方法、元素分析(化学成分分析)から各成分の理論発熱量計算により算出する方法、ごみ3成分からの発熱量推算式から算出する方法、等が知られている(非特許文献1等)。   Other methods of knowing the amount of heat generated by the garbage include, for example, a method of measuring the amount of heat generated by a bomb calorimeter, a method of calculating the theoretical calorific value of each component from elemental analysis (chemical component analysis), and the heat generated from the three components of the waste. A method of calculating from a quantity estimation formula is known (Non-Patent Document 1, etc.).

しかしながら、空冷壁を冷却した後の温風を燃焼空気として炉内に挿入する従来の事例では、空冷壁出口の空気を単純に一次燃焼空気又は二次燃焼空気として炉内に挿入している。そのため、例えば、高質ごみの燃焼時にはストーカを空冷してストーカの損傷を防止するために一次燃焼空気の温度を低くしたい場合があるが、空冷壁出口の温風を単純に一次燃焼空気として炉内に挿入したのでは、一次燃焼空気の温度が高くなり、温度を下げることが困難となる。また、空冷壁出口の温風を単純に二次燃焼空気として炉内に挿入しているだけでは、発熱量が低い場合に、二次燃焼空気の必要量も減少するため、空冷壁の冷却空気量よりも二次燃焼空気量の方が少なくなり、空冷壁を冷却した後の温風を二次燃焼空気として全量利用できないことがある。   However, in the conventional case where the hot air after cooling the air cooling wall is inserted into the furnace as combustion air, the air at the outlet of the air cooling wall is simply inserted into the furnace as primary combustion air or secondary combustion air. For this reason, for example, when burning high-quality waste, it may be desirable to lower the temperature of the primary combustion air in order to cool the stalker to prevent damage to the stalker, but the warm air at the outlet of the air cooling wall is simply used as the primary combustion air. If inserted, the temperature of the primary combustion air becomes high, and it becomes difficult to lower the temperature. In addition, simply inserting the hot air at the outlet of the air cooling wall into the furnace as secondary combustion air reduces the required amount of secondary combustion air when the calorific value is low. The amount of secondary combustion air is less than the amount, and the hot air after cooling the air cooling wall may not be used as the secondary combustion air.

特開2000−297918号公報JP 2000-297918 A 特開昭57−10015号公報JP-A-57-10015 特開昭58−22818号公報JP 58-22818 実公昭60−9559号公報Japanese Utility Model Publication No. 60-9559 実開昭63−190723号公報Japanese Utility Model Publication No. 63-190723 特許第3926173号公報Japanese Patent No. 3926173 特許第3928709号公報Japanese Patent No. 3928709 特許第4448799号公報Japanese Patent No. 4448799 タクマ環境技術研究会編、「ごみ焼却技術 絵とき基本用語[改訂増補版]」、オーム社、平成15年8月25日、p.54〜p.63Takuma Environmental Technology Study Group, “Waste Incineration Technology, Basic Terms for Painting [Revised Supplement]”, Ohmsha, August 25, 2003, p. 54-p. 63

本発明は、上記従来の問題に鑑みて、焼却炉の燃焼室冷却方式に空冷壁を採用した際に、空冷壁通過後の温風を有効利用し、ごみ質に応じた燃焼を可能にする焼却設備及びその運転方法を提供することを主たる目的とする。   In view of the above-described conventional problems, the present invention makes effective use of warm air after passing through an air cooling wall and enables combustion according to the waste quality when an air cooling wall is employed in a combustion chamber cooling system of an incinerator. The main purpose is to provide incineration facilities and operating methods.

本発明は、上記課題を解決するため、第1の手段として、焼却炉と、該焼却炉の炉壁に設けられた空冷壁と、前記空冷壁冷却後の温風を一次燃焼空気及び二次燃焼空気へ分配供給する分配供給手段と、を備えることを特徴とする焼却設備を提供する。   In order to solve the above problems, the present invention provides, as a first means, an incinerator, an air cooling wall provided on a furnace wall of the incinerator, and hot air after cooling the air cooling wall with primary combustion air and secondary air. Distributing and supplying means for distributing and supplying to combustion air. An incineration facility is provided.

また、本発明は、第2の手段として、上記第1の手段において、前記分配供給手段が、前記焼却炉において焼却される焼却物の発熱量を検出する熱量検出手段と、前記空冷壁冷却後の温風を前記熱量検出手段の検出値に応じて一次燃焼空気及び二次燃焼空気へ分配供給する制御手段と、を備えることを特徴とする焼却施設を提供する。   According to the present invention, as the second means, in the first means, the distribution supply means detects a calorific value of the incinerated product to be incinerated in the incinerator, and after the air cooling wall cooling. And a control means for distributing and supplying the warm air to the primary combustion air and the secondary combustion air according to the detected value of the heat quantity detection means.

また、本発明は、第3の手段として、上記第2の手段において、前記制御手段が、前記熱量検出手段の検出値が所定値を越えたときに、前記空冷壁冷却後の温風の二次燃焼空気への分配供給比率が一次燃焼空気への分配供給比率に対して高くなるように制御することを特徴とする焼却設備を提供する。   Further, according to the present invention, as a third means, in the second means, when the control means detects a value detected by the heat quantity detection means exceeding a predetermined value, Provided is an incineration facility characterized in that the distribution supply ratio to the secondary combustion air is controlled to be higher than the distribution supply ratio to the primary combustion air.

また、本発明は、第4の手段として、上記第2又は第3の手段において、炉外空気取入口と前記焼却炉の一次燃焼空気導入口との間に接続された第1ダクトと、該第1ダクトと前記焼却炉の前記二次燃焼空気導入口との間に接続された第2ダクトと、前記第2ダクト接続位置より下流側の前記第1ダクトに介在された一次送風機と、前記第2ダクトに介在された二次送風機と、を更に備え、前記分配供給手段は、前記空冷壁の温風排気口と前記二次送風機より上流部の前記第2ダクトとの間に接続された温風ダクトを備え、前記制御手段は、該熱量検出手段の検出値に応じて前記一次送風機及び二次送風機の少なくとも一方を制御することを特徴とする焼却設備を提供する。   Further, the present invention provides, as a fourth means, a first duct connected between the outside air inlet and the primary combustion air inlet of the incinerator in the second or third means, A second duct connected between the first duct and the secondary combustion air inlet of the incinerator, a primary fan interposed in the first duct downstream from the second duct connection position, and A secondary blower interposed in the second duct, and the distribution supply means is connected between the hot air exhaust port of the air cooling wall and the second duct upstream of the secondary blower. An incineration facility is provided, comprising a hot air duct, wherein the control means controls at least one of the primary blower and the secondary blower according to a detection value of the heat quantity detection means.

また、本発明は、第5の手段として、上記第4の手段において、前記制御手段が、前記熱量検出手段によって検出された発熱量が所定値以下であるときには、二次送風機の流量<空冷壁冷却後の温風流量<一次送風機の流量の関係(1)によって制御し、発熱量が所定値を超えた時には、空冷壁冷却後の温風流量<二次送風機の流量<一次送風機の流量の関係によって制御することを特徴とする焼却設備を提供する。   Further, according to the present invention, as a fifth means, in the fourth means, when the calorific value detected by the heat quantity detection means is not more than a predetermined value, the control means has a flow rate of the secondary blower <air cooling wall. Controlled by the relationship (1) of warm air flow after cooling <primary blower flow, and when the heat generation exceeds a predetermined value, warm air flow after cooling the air-cooled wall <secondary blower flow <primary blower flow rate An incineration facility characterized by being controlled by a relationship is provided.

また、本発明は、第6の手段として、上記第2又は第3の手段において、炉外空気取入口と前記焼却炉の一次燃焼空気導入口との間に接続された第1ダクトと、該第1ダクトと前記焼却炉の前記二次燃焼空気導入口との間に接続された第2ダクトと、前記第2ダクト接続位置より下流側の前記第1ダクトに介在された一次送風機と、前記第2ダクトに介在された二次送風機と、を更に備え、前記分配供給手段は、前記空冷壁冷却後の温風を前記第2ダクト接続位置より下流側の前記第1ダクトに供給する第1温風ダクトと、前記空冷壁冷却後の温風を前記二次送風機より上流部の前記第2ダクトに供給する第2温風ダクトと、前記第1温風ダクトに介在された第1ダンパと、前記第2温風ダクトに介在された第2ダンパと、を備え、前記制御手段は、前記熱量検出手段の検出値に応じて前記第1ダンパ及び第2ダンパの少なくとも一方を制御することを特徴とする焼却設備を提供する。   Further, the present invention provides, as a sixth means, the first duct connected between the outside air inlet and the primary combustion air inlet of the incinerator in the second or third means, A second duct connected between the first duct and the secondary combustion air inlet of the incinerator, a primary fan interposed in the first duct downstream from the second duct connection position, and A secondary blower interposed in the second duct, wherein the distribution supply means supplies the first air that is downstream of the second duct connection position to the first duct after the air cooling wall cooling. A hot air duct, a second hot air duct for supplying the hot air after cooling the air cooling wall to the second duct upstream of the secondary blower, and a first damper interposed in the first hot air duct; A second damper interposed in the second hot air duct, and the control Stage provides incinerator, characterized by controlling at least one of the first damper and the second damper in accordance with a detection value of the heat detector.

また、本発明は、第7の手段として、上記第1〜第6の手段の何れかにおいて、一次燃焼空気を予熱する一次燃焼空気予熱器を更に備えることが好ましい。   Moreover, it is preferable that this invention is further equipped with the primary combustion air preheater which preheats primary combustion air in any one of the said 1st-6th means as a 7th means.

また、本発明は、第8の手段として、上記第1〜第7の手段の何れかにおいて、廃熱回収ボイラを更に備えることが好ましい。   Moreover, it is preferable that this invention is further equipped with a waste-heat recovery boiler in any one of the said 1st-7th means as an 8th means.

また、本発明は、第9の手段として、空冷壁方式の焼却炉を備える焼却設備の運転方法であって、焼却物の発熱量を検出し、前記空冷壁冷却後の温風を、検出した焼却物の発熱量に応じて一次燃焼空気及び二次燃焼空気へ分配供給することを特徴とする前記運転方法を提供する。   Further, the present invention is a ninth method for operating an incinerator equipped with an air-cooled wall type incinerator, which detects the amount of heat generated from the incinerator and detects the warm air after cooling the air-cooled wall. The operation method is characterized by distributing and supplying the primary combustion air and the secondary combustion air according to the calorific value of the incinerated material.

さらに、本発明は、第10の手段として、上記第9の手段において、前記検出された発熱量が所定値を越えたときに、前記空冷壁冷却後の温風を、一次燃焼空気に優先して二次燃焼空気に分配供給することを特徴とする運転方法を提供する。   Further, the present invention provides, as a tenth means, in the ninth means, when the detected calorific value exceeds a predetermined value, the hot air after cooling the air-cooled wall is prioritized over the primary combustion air. And an operation method characterized by distributing and supplying to the secondary combustion air.

本発明によれば、前記空冷壁冷却後の温風を焼却物のごみ質に応じて一次燃焼空気及び二次燃焼空気へ分配供給することができるので、空冷壁通過後の温風を有効利用し、ごみ質に応じた燃焼が可能となる。   According to the present invention, the hot air after cooling the air-cooled wall can be distributed and supplied to the primary combustion air and the secondary combustion air according to the quality of the incinerator, so that the hot air after passing through the air-cooled wall is effectively used. However, it is possible to combust according to the waste quality.

また、空冷壁冷却後の温風を一次燃焼空気及び二次燃焼空気の少なくとも一方に利用することにより、温風のエネルギーを廃熱ボイラで回収することが可能となり、ボイラ蒸発量が増加し、熱回収率が向上する。   In addition, by using the warm air after cooling the air-cooled wall as at least one of the primary combustion air and the secondary combustion air, it becomes possible to recover the energy of the warm air with the waste heat boiler, increasing the amount of boiler evaporation, The heat recovery rate is improved.

また、空冷壁冷却後の温風を一次燃焼空気及び二次燃焼空気の少なくとも一方に利用することにより、一次燃焼空気又は二次燃焼空気を予熱器で予熱する場合に、予熱器において予熱のために用いられる蒸気量を削減することができる。   In addition, when the primary combustion air or the secondary combustion air is preheated by the preheater by using the warm air after cooling the air cooling wall as at least one of the primary combustion air and the secondary combustion air, The amount of steam used for the process can be reduced.

また、空冷壁冷却後の温風を(一次燃焼空気よりも)二次燃焼空気に優先的に供給することにより、高質ごみ時に一次燃焼空気温度を比較的高くすることなく、空冷壁での回収熱を炉内に挿入することができる。   In addition, by supplying hot air after cooling the air-cooled wall preferentially to the secondary combustion air (rather than the primary combustion air), the air temperature at the air-cooling wall can be reduced without making the primary combustion air temperature relatively high during high-quality waste. The recovered heat can be inserted into the furnace.

また、蒸気タービン駆動式発電機が併設されている焼却炉では、蒸気タービン入口の蒸気量が増加し、発電量が増加する。   In addition, in an incinerator equipped with a steam turbine drive generator, the amount of steam at the inlet of the steam turbine increases and the amount of power generation increases.

また、ごみ質に応じ、空冷壁出口の温風を、一次燃焼空気と二次燃焼空気とに分配する比率を制御することにより、効果的に熱回収効果を得ることができる。   Moreover, the heat recovery effect can be effectively obtained by controlling the ratio of distributing the warm air at the outlet of the air cooling wall to the primary combustion air and the secondary combustion air according to the waste quality.

さらに、空冷壁冷却後の温風を、一次燃焼空気よりも二次燃焼空気に優先して用いる、或いは、ダンパを用いて一次燃焼空気と二次燃焼空気への分配比率を制御することにより、焼却物の発熱量が上昇しても二次燃焼空気を増加するように制御することで、一次燃焼空気に供される温風を減らして一次燃焼空気温度を下げることができ、それにより火格子の損傷を回避できる。   Furthermore, the hot air after cooling the air-cooled wall is used in preference to the secondary combustion air over the primary combustion air, or by controlling the distribution ratio between the primary combustion air and the secondary combustion air using a damper, By controlling the secondary combustion air to increase even if the calorific value of the incinerated product rises, it is possible to reduce the temperature of the primary combustion air by reducing the warm air supplied to the primary combustion air. Can avoid damage.

本発明に係る焼却設備の第1実施形態を示すシステム図である。It is a system figure showing a 1st embodiment of incineration equipment concerning the present invention. 図1の焼却設備の通常時の運転状態を示すシステム図である。It is a system diagram which shows the normal driving | running state of the incineration equipment of FIG. 図1の焼却設備の高質ゴミ焼却時の運転状態を示すシステム図である。It is a system diagram which shows the driving | running state at the time of high quality refuse incineration of the incinerator of FIG. 本発明に係る焼却設備の第2実施形態を示すシステム図である。It is a system diagram which shows 2nd Embodiment of the incineration equipment which concerns on this invention.

本発明の好適な実施形態について、以下に図面を参照して説明する。なお、全図及び全実施形態を通じ、同一及び類似の構成部分には同符号を付して重複説明を省略することがある。   Preferred embodiments of the present invention will be described below with reference to the drawings. Throughout the drawings and all the embodiments, the same or similar components may be denoted by the same reference numerals, and redundant description may be omitted.

図1は、本発明に係る焼却設備の第1実施形態を示すシステム図である。図1に示されているように、焼却設備1は、焼却炉2と、焼却炉2の炉壁に設けられた空冷壁3と、を備えている。   FIG. 1 is a system diagram showing a first embodiment of an incineration facility according to the present invention. As shown in FIG. 1, the incineration facility 1 includes an incinerator 2 and an air cooling wall 3 provided on the furnace wall of the incinerator 2.

図示例の焼却炉2は、代表的なストーカ炉である。焼却炉2は、ごみピット(図示せず。)からホッパ2aを介してごみが供給される。なお、ごみピットは、焼却施設に搬入されたごみを一時的に貯留し、ごみ質を調整しつつホッパ2aから焼却炉2に供給するために設けられる設備である。   The incinerator 2 in the illustrated example is a typical stoker furnace. The incinerator 2 is supplied with waste from a waste pit (not shown) via a hopper 2a. The waste pit is a facility provided for temporarily storing the waste carried into the incineration facility and supplying the waste from the hopper 2a to the incinerator 2 while adjusting the quality of the waste.

焼却炉2は、一次燃焼空気導入口2b及び二次燃焼空気導入口2cを備えている。焼却炉2の一次燃焼空気導入口2bに第1ダクト4が接続されて、第1ダクト4は、前記ごみピットに設けられた炉外空気取入口(図示せず。)に接続されている。焼却炉2の二次燃焼空気導入口2cに第2ダクト5が接続され、第2ダクト5は第1ダクト4に接続されている。第1ダクト4には、第2ダクト5の接続位置より下流側の位置に、一次送風機6が介在されている。第2ダクト5には、二次送風機7が介在されている。   The incinerator 2 includes a primary combustion air inlet 2b and a secondary combustion air inlet 2c. A first duct 4 is connected to the primary combustion air inlet 2b of the incinerator 2, and the first duct 4 is connected to an outside air inlet (not shown) provided in the garbage pit. A second duct 5 is connected to the secondary combustion air inlet 2 c of the incinerator 2, and the second duct 5 is connected to the first duct 4. A primary blower 6 is interposed in the first duct 4 at a position downstream of the connection position of the second duct 5. A secondary blower 7 is interposed in the second duct 5.

空冷壁3は、耐火物構造とした焼却炉2の炉壁の燃焼室内部に冷却空気通路(図示せず。)を設けることにより形成され得る。空冷壁3は、冷却空気導入口3aと温風排気口3bとを備えている。空冷壁3の冷却空気導入口3aには第3ダクト8が接続され、第3ダクト8には、空冷壁3に冷却空気を送るための空冷壁用送風機9Fが接続されている。空冷壁3の温風排気口3bには温風ダクト9が接続され、温風ダクト9は二次送風機7より上流部の第2ダクト5に接続されている。   The air cooling wall 3 can be formed by providing a cooling air passage (not shown) in the combustion chamber inside the furnace wall of the incinerator 2 having a refractory structure. The air cooling wall 3 includes a cooling air introduction port 3a and a hot air exhaust port 3b. A third duct 8 is connected to the cooling air inlet 3 a of the air cooling wall 3, and an air cooling wall blower 9 </ b> F for sending cooling air to the air cooling wall 3 is connected to the third duct 8. A hot air duct 9 is connected to the hot air exhaust port 3 b of the air cooling wall 3, and the hot air duct 9 is connected to the second duct 5 upstream of the secondary blower 7.

焼却設備1は、空冷壁3を冷却した後の温風を、ごみ質に応じて、一次燃焼空気及び二次燃焼空気へ分配供給する分配供給手段を備えている。前記分配供給手段は、空冷壁3の温風排気口3bと二次送風機7より上流部の第2ダクト5との間に接続された温風ダクト9を備えている。また、前記分配供給手段は、焼却炉2において焼却される焼却物の発熱量を検出する熱量検出手段と、空冷壁3を冷却した後の温風を前記熱量検出手段の検出値に応じて一次燃焼空気及び二次燃焼空気へ分配供給する制御手段10と、を備えている。   The incineration facility 1 includes distribution supply means for distributing and supplying the warm air after cooling the air cooling wall 3 to the primary combustion air and the secondary combustion air in accordance with the waste quality. The distribution supply means includes a hot air duct 9 connected between the hot air exhaust port 3 b of the air cooling wall 3 and the second duct 5 upstream of the secondary blower 7. The distribution supply means includes a heat quantity detection means for detecting the amount of heat generated from the incinerated product to be incinerated in the incinerator 2, and hot air after cooling the air cooling wall 3 according to a detection value of the heat quantity detection means. And control means 10 for distributing and supplying the combustion air and the secondary combustion air.

前記熱量検出手段は、焼却物の燃焼時の発熱量を把握するための公知の手段、例えば、上記した特許文献6〜8に開示された手段、或いは、ボンブ熱量計により発熱量を測定する手段、元素分析(化学成分分析)から各成分の理論発熱量計算により算出する手段、ごみ3成分からの発熱量推算式から算出する手段などを用いることができる。図示例では、前記熱量検出手段として、走査型レーザーレベル計11、ごみ搬送クレーン(付図示)に付設された重量計12、回転式ごみ速度計13を用い、これらの計測値から制御手段の演算装置により熱量を演算する手段(特許文献6,7参照)を採用している。   The calorific value detection means is a known means for grasping the calorific value at the time of combustion of the incinerated material, for example, means disclosed in Patent Documents 6 to 8, or means for measuring the calorific value by a bomb calorimeter. Further, means for calculating the theoretical calorific value of each component from elemental analysis (chemical component analysis), means for calculating from a calorific value estimation formula from three waste components, and the like can be used. In the illustrated example, a scanning laser level meter 11, a weight meter 12 attached to a garbage transporting crane (shown) and a rotary waste speedometer 13 are used as the heat quantity detection means, and the control means calculates from these measured values. Means for calculating the amount of heat by the apparatus (see Patent Documents 6 and 7) is employed.

一次送風機6は、図外のごみピットから第1ダクト4を通じて誘引した空気を、一次燃焼空気導入口2bを通じて、焼却炉2のストーカ(火格子)下部に供給する。一次燃焼空気は、ストーカ上のごみを一次燃焼(分解燃焼)させる。   The primary blower 6 supplies air attracted from a garbage pit (not shown) through the first duct 4 to the lower part of the stoker (grate) of the incinerator 2 through the primary combustion air inlet 2b. The primary combustion air causes primary combustion (decomposition combustion) of dust on the stoker.

また、二次送風機7は、第2ダクト5を通じて誘引した空気を、二次燃焼空気導入口2cを通じて、焼却炉2のストーカ上部の二次燃焼(ガス燃焼)室に二次燃焼空気として吹き込む。   In addition, the secondary blower 7 blows air attracted through the second duct 5 as secondary combustion air into the secondary combustion (gas combustion) chamber above the stoker of the incinerator 2 through the secondary combustion air introduction port 2c.

第1ダクト4には、一次燃焼空気予熱器14を介在させることができる。さらに、必要に応じて、第2ダクト5に、仮想線で図示した二次燃焼空気予熱器15を介在させることもできる。また、この種のストーカ式の焼却炉2は、一般に、排ガスの廃熱を回収するための廃熱回収ボイラ(図示せず。)が付設される。   A primary combustion air preheater 14 can be interposed in the first duct 4. Furthermore, the secondary combustion air preheater 15 illustrated by the phantom line can be interposed in the second duct 5 as necessary. Further, this type of stoker-type incinerator 2 is generally provided with a waste heat recovery boiler (not shown) for recovering waste heat of exhaust gas.

上記構成を有する焼却設備の運転方法の一例について、説明する。   An example of a method for operating the incineration facility having the above configuration will be described.

図2は、通常運転時、即ち、前記熱量検出手段によって得られた焼却物の発熱量が例えば8400(kJ/kg)以下であるときの運転状態を示している。   FIG. 2 shows an operating state during normal operation, that is, when the calorific value of the incinerated product obtained by the calorific value detection means is, for example, 8400 (kJ / kg) or less.

図2において、ごみピット(付図示)内の温度、即ち、ごみピットの炉外空気取入口(図示せず。)から第1ダクト4に誘引される空気の温度は20℃である。各機器は、以下のように設定されている。   In FIG. 2, the temperature in the waste pit (not shown), that is, the temperature of the air drawn into the first duct 4 from the outside air inlet (not shown) of the waste pit is 20 ° C. Each device is set as follows.

一次送風機6: 設定流量9500mN/時(標準立方メートル/時)
二次送風機7: 設定流量5810mN/時
空冷壁用送風機9F: 設定流量7200mN/時
一次燃焼空気予熱器14: 設定温度140℃
制御手段10は、各機器6、7、9F、14を上記の各設定値となるように制御する。上記設定により、空冷壁用送風機9Fによって押し出された空気は、空冷壁3で熱交換した後、温風となって7200mN/時の流量で第2ダクト5に送られる。ここで、二次送風機7の流量5810mN/時<空冷壁用送風機9Fの流量7200mN/時<一次送風機6の流量9500mN/時であるから、空冷壁用送風機9Fによって第2ダクト5に送られた温風は、二次送風機7と第1ダクト4とに分配され、二次送風機7に5810mN/時が送られ、一次送風機6に誘引される第1ダクト4に1390mN/時が送られる。ごみピットの炉外空気取入口(付図示)から誘引される空気と空冷壁3で加熱された温風とが混合することで、一次送風機6の入口空気温度は32℃になっている。
Primary blower 6: Set flow rate 9500m 3 N / hour (standard cubic meter / hour)
Secondary blower 7: Set flow rate 5810m 3 N / hour Air cooling wall blower 9F: Set flow rate 7200m 3 N / hour Primary combustion air preheater 14: Set temperature 140 ° C
The control means 10 controls each device 6, 7, 9F, 14 so that it becomes each said setting value. With the above setting, the air pushed out by the air cooling wall blower 9 </ b> F exchanges heat with the air cooling wall 3, then becomes warm air and is sent to the second duct 5 at a flow rate of 7200 m 3 N / hour. Here, the flow rate of the secondary blower 7 is 5810 m 3 N / hour <the flow rate of the air cooling wall blower 9F is 7200 m 3 N / hour <the flow rate of the primary blower 6 is 9500 m 3 N / hour. The warm air sent to the duct 5 is distributed to the secondary blower 7 and the first duct 4, 5810 m 3 N / hour is sent to the secondary blower 7, and is attracted to the primary blower 6 to the first duct 4. 1390m 3 N / hour is sent. The inlet air temperature of the primary blower 6 is 32 ° C. by mixing the air drawn from the outside air inlet (not shown) of the garbage pit and the warm air heated by the air cooling wall 3.

次に、焼却物の発熱量が上昇した場合、前記熱量検出手段によって得られた炉内焼却物の発熱量が例えば11500(kJ/kg)を越えた場合に、図3に示すように、制御手段10によって各機器6、7、14が例えば以下のように設定に変更されて制御される。   Next, when the calorific value of the incinerated product rises, when the calorific value of the incinerator in the furnace obtained by the calorific value detection means exceeds 11500 (kJ / kg), for example, as shown in FIG. The devices 10, 7, and 14 are controlled by the means 10 by changing the settings as follows, for example.

一次送風機6: 設定流量11590mN/時
二次送風機7: 設定流量8180mN/時
一次燃焼空気予熱器14:停止
なお、空冷壁用送風機9Fの流量は、焼却炉2の炉体の冷却を確実に行うため、焼却物の発熱量にかかわらず、常に一定流量(7200mN/時)に制御されている。
Primary blower 6: Set flow rate 11590m 3 N / hour Secondary blower 7: Set flow rate 8180m 3 N / hour Primary combustion air preheater 14: Stop The flow rate of the air cooling wall blower 9F is the cooling of the furnace body of the incinerator 2 Therefore, the flow rate is always controlled at a constant flow rate (7200 m 3 N / hour) regardless of the amount of heat generated by the incinerated product.

図3に示されているように、(空冷壁用送風機9Fの流量7200mN/時)<(二次送風機7の流量8180mN/時)<(一次送風機6の流量11590mN/時)であるから、空冷壁用送風機9Fによって第2ダクト5に送られた温風は、全て二次送風機7に誘引されるとともに、不足分(8180mN−7200mN=980mN)が第1ダクト4から第2ダクト5へ誘引される。第2ダクト5内において、空冷壁3で加熱された温風とごみピットから誘引された常温空気とが混合することにより、その混合空気温度は90℃となって二次送風機7から押し出されて、二次燃焼空気導入口2cに送られる。空冷壁3で加熱された温風が第1ダクト4に流入しないため、一次燃焼空気予熱器14を停止させることで、低温(20℃)の一次燃焼空気をストーカ下部の一次燃焼室に送ることができ、火格子の損傷を防止し得る。 As shown in FIG. 3, (flow rate of air cooling wall blower 9F 7200m 3 N / hour) <(flow rate of secondary blower 7 8180m 3 N / hour) <(flow rate of primary blower 6 11590m 3 N / hour) ) is because warm air sent to the second duct 5 by cooling the wall blower. 9F, while being attracted to all secondary blower 7, shortage (8180m 3 N-7200m 3 N = 980m 3 N) is Attracted from the first duct 4 to the second duct 5. In the second duct 5, the hot air heated by the air cooling wall 3 and the normal temperature air attracted from the garbage pit are mixed, so that the mixed air temperature becomes 90 ° C. and is pushed out from the secondary blower 7. , And sent to the secondary combustion air inlet 2c. Since the warm air heated by the air cooling wall 3 does not flow into the first duct 4, the primary combustion air preheater 14 is stopped so that the low temperature (20 ° C.) primary combustion air is sent to the primary combustion chamber below the stoker. Can prevent grate damage.

上記のように、ごみ質に応じて、空冷壁冷却後の温風を、一次燃焼空気及び二次燃焼空気へ分配供給するので、空冷壁通過後の温風を有効利用し、ごみ質に応じた燃焼を可能にする。   As described above, the warm air after cooling the air-cooled wall is distributed and supplied to the primary combustion air and secondary combustion air according to the waste quality, so the hot air after passing through the air-cooled wall is used effectively and according to the waste quality. Enables burning.

また、空冷壁用送風機9Fから押し出された冷却空気は、焼却炉2の空冷壁3を通過する際の熱交換により温風となる。この温風は、空冷壁3から温風ダクト9を通じて、二次送風機7の吸引口に接続されている第2ダクト5に挿入され、二次空気として利用される。そのため、温風の熱エネルギーは、系外へ排出されることなく、廃熱ボイラ等で熱回収することにより、有効利用できる。また、二次燃焼空気予熱器15を併設する場合は、二次燃焼空気予熱器15の入口空気温度を高くすることができることから、空気予熱の蒸気量を削減できるとともに、空気予熱器の小型化が図れる。   Moreover, the cooling air pushed out from the air cooling wall blower 9 </ b> F becomes hot air by heat exchange when passing through the air cooling wall 3 of the incinerator 2. This hot air is inserted from the air cooling wall 3 through the hot air duct 9 into the second duct 5 connected to the suction port of the secondary blower 7 and used as secondary air. Therefore, the thermal energy of warm air can be effectively utilized by recovering heat with a waste heat boiler or the like without being discharged out of the system. Further, when the secondary combustion air preheater 15 is additionally provided, the inlet air temperature of the secondary combustion air preheater 15 can be increased, so that the amount of air preheating steam can be reduced and the air preheater can be downsized. Can be planned.

さらに、空冷壁3を冷却した温風のうち、二次空気として利用される分以外の余剰分は、一次送風機6へと流入させ、一次燃焼空気として利用することにより、一次燃焼空気予熱器14の空気温度が上昇し、一次燃焼空気予熱器14において一次燃焼空気を予熱するための蒸気量を削減することができる。この場合、一次燃焼空気予熱器14の熱交換量を小さくすることができることから、一次燃焼空気予熱器14を小型化できる。   Further, of the warm air that has cooled the air cooling wall 3, the surplus portion other than that used as the secondary air flows into the primary blower 6 and is used as the primary combustion air, whereby the primary combustion air preheater 14. Thus, the amount of steam for preheating the primary combustion air in the primary combustion air preheater 14 can be reduced. In this case, since the heat exchange amount of the primary combustion air preheater 14 can be reduced, the primary combustion air preheater 14 can be downsized.

そして、燃焼物の発熱量が上昇した場合は、二次燃焼空気が増加するよう自動制御し、一次燃焼空気として使用される温風の量を減らして一次燃焼空気温度を下げることにより、火格子の損傷を回避することができる。   And when the calorific value of the combustion product rises, it automatically controls so that the secondary combustion air increases, reduces the amount of hot air used as the primary combustion air, and lowers the primary combustion air temperature, Damage can be avoided.

近年の焼却設備では焼却炉の廃熱を利用した蒸気タービンにより発電する発電機が併設されることが多いが、斯かる発電機が併設された焼却設備の場合、廃熱ボイラの蒸気量が増加し、予熱器で使用される蒸気量が減少すれば、タービン入口蒸気量が増加し、発電量を増加させることができる。   In recent years, incinerators often have a generator that generates power using a steam turbine that uses waste heat from the incinerator. In the case of incinerators that have such a generator, the amount of steam in the waste heat boiler increases. However, if the amount of steam used in the preheater decreases, the amount of steam at the turbine inlet increases and the amount of power generation can be increased.

例えば、処理規模100(トン/24時間)の焼却炉を2炉配置し、ボイラ条件4MPa、400℃の発電機を併設した焼却施設(空気予熱は一次燃焼空気予熱器のみ。二次燃焼空気予熱器無し。)であれば、従来の焼却炉で捨てていた空冷壁での交換熱量約1.5(GJ/時間)を有効利用できるため、ボイラ発熱量は平均で約230(kg/時間)増加させることができる。また、空気予熱器の交換熱量が小さくなり、伝熱面積を約10%小さくすることができる。   For example, two incinerators with a treatment scale of 100 (tons / 24 hours) are installed, and an incinerator with a boiler condition of 4 MPa and a generator at 400 ° C. (air preheating is only for primary combustion air preheaters. Secondary combustion air preheating is provided. If there is no equipment.) Since the exchange heat amount of about 1.5 (GJ / hour) in the air-cooled wall thrown away in the conventional incinerator can be used effectively, the heat generation amount of the boiler is about 230 (kg / hour) on average. Can be increased. In addition, the amount of heat exchanged by the air preheater is reduced, and the heat transfer area can be reduced by about 10%.

本発明の上記焼却設備は、水冷壁を採用した場合と比べても、廃熱ボイラ蒸発量は同程度である上、水冷壁を採用した場合と比べて、焼却量の負荷率が低いか又は焼却物の発熱量が低い場合でも、助燃せずにダイオキシンガイドラインを遵守した焼却炉の運転が可能となる。   The incineration equipment of the present invention has the same amount of waste heat boiler evaporation as compared to the case where a water-cooled wall is used, and the load ratio of the incineration amount is low compared to the case where a water-cooled wall is used, or Even if the calorific value of the incinerated product is low, it is possible to operate the incinerator in compliance with the dioxin guidelines without supporting combustion.

次に、本発明に係る焼却設備の第2実施形態を、図4を参照しつつ説明する。第2実施形態の焼却設備1Aは、分配供給手段が、空冷壁3を冷却した後の温風を第2ダクト5の接続位置より下流側の第1ダクト4に供給する第1温風ダクト9aと、空冷壁3を冷却した後の温風を二次送風機7より上流部の第2ダクト5に供給する第2温風ダクト9bと、第1温風ダクト9aに介在された第1ダンパ20と、第2温風ダクト9bに介在された第2ダンパ21と、を備えている。   Next, a second embodiment of the incineration facility according to the present invention will be described with reference to FIG. In the incineration facility 1A of the second embodiment, the distribution supply means supplies the first hot air duct 9a that supplies the hot air after cooling the air cooling wall 3 to the first duct 4 on the downstream side from the connection position of the second duct 5. A second hot air duct 9b for supplying the hot air after cooling the air cooling wall 3 to the second duct 5 upstream from the secondary blower 7, and a first damper 20 interposed in the first hot air duct 9a. And a second damper 21 interposed in the second hot air duct 9b.

また、熱量検出手段の検出値に応じて第1ダンパ20及び第2ダンパ21を制御することにより、空冷壁冷却後の温風を一次燃焼空気及び二次燃焼空気へ分配する流量比率を制御する。前記熱量検出手段は、上記第1実施形態と同様、公知の手段を採用することができる。   Further, by controlling the first damper 20 and the second damper 21 in accordance with the detection value of the heat quantity detection means, the flow rate ratio for distributing the warm air after cooling the air cooling wall to the primary combustion air and the secondary combustion air is controlled. . As the heat quantity detection means, a known means can be adopted as in the first embodiment.

図示例において、第1温風ダクト9aと第2温風ダクト9bとは、共通の温風ダクト9abを途中下流位置で分岐させることによって構成されているが、共通部分を有しない別個の2本のダクトによって構成することもできる。   In the illustrated example, the first hot air duct 9a and the second hot air duct 9b are configured by branching a common hot air duct 9ab at a downstream position in the middle, but two separate ones that do not have a common part. It can also be constituted by a duct.

斯かる構成の第2実施形態の焼却設備1Aによれば、例えば、前記熱量検出手段の検出値が所定値以下の場合、第1ダンパ20及び第2ダンパ21を適宜開度に制御することにより、温風の一部を一次燃焼空気に供給して一次燃焼空気の温度を上昇させるとともに、二次燃焼空気にも温風の残部を供給して高温の二次燃焼空気を供給することができる。   According to the incineration facility 1A of the second embodiment having such a configuration, for example, when the detection value of the heat quantity detection means is equal to or less than a predetermined value, the first damper 20 and the second damper 21 are appropriately controlled to the opening degree. A part of the hot air can be supplied to the primary combustion air to raise the temperature of the primary combustion air, and the remaining part of the hot air can also be supplied to the secondary combustion air to supply the high-temperature secondary combustion air .

前記熱量検出手段の検出値が所定値を超えた場合、即ち、高質ごみを検知した場合には、第1ダンパ20の通過流量に比して第2ダンパ21の通過流量が大きくなるように第1ダンパ20及び第2ダンパ21を制御して、二次燃焼空気量を増加させて温風の大部分(若しくは全量)を二次燃焼空気として利用することにより、一次燃焼空気として使用する温風の量を少なく(若しくは全く無く)し、一次燃焼空気の温度を低くする。これにより、火格子の損傷を回避することができる。その他、上記第1実施形態と同様の効果を奏することができる。   When the detection value of the calorific value detection means exceeds a predetermined value, that is, when high quality waste is detected, the passage flow rate of the second damper 21 is larger than the passage amount of the first damper 20. By controlling the first damper 20 and the second damper 21 to increase the amount of secondary combustion air and using most (or all) of the warm air as secondary combustion air, the temperature used as the primary combustion air Reduce the amount of wind (or nothing at all) and lower the temperature of the primary combustion air. Thereby, damage to the grate can be avoided. In addition, the same effects as those of the first embodiment can be obtained.

本発明は、上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において変更可能である。例えば、上記第1実施形態の焼却設備は制御手段によって送風機の回転数を制御することにより温風の分配制御する構成を開示し、上記第2実施形態の焼却設備は制御手段によってダンパの開閉度合いを制御することにより温風を分配制御する構成を開示しているが、第1実施形態と第2実施形態を組み合わせて温風を分配制御する構成とすることも可能である。   The present invention is not limited to the above-described embodiment, and can be changed without departing from the spirit of the present invention. For example, the incineration facility of the first embodiment discloses a configuration in which warm air distribution is controlled by controlling the rotation speed of the blower by the control means, and the incineration facility of the second embodiment is configured to control the degree of opening / closing of the damper by the control means. However, it is also possible to adopt a configuration in which the hot air is distributed and controlled by combining the first embodiment and the second embodiment.

1、1A 焼却設備
2 焼却炉
3 空冷壁
4 第1ダクト
5 第2ダクト
6 一次送風機
7 二次送風機
8 第3ダクト
9、9ab 温風ダクト
9a 第1温風ダクト
9b 第2温風ダクト
9F 空冷壁用送風機
10 制御手段
14 一次燃焼空気予熱器
15 二次燃焼空気予熱器
20 第1ダンパ
21 第2ダンパ
DESCRIPTION OF SYMBOLS 1, 1A incineration equipment 2 Incinerator 3 Air cooling wall 4 1st duct 5 2nd duct 6 Primary blower 7 Secondary blower 8 3rd duct 9, 9ab Hot air duct 9a 1st hot air duct 9b 2nd hot air duct 9F Air cooling Wall blower 10 Control means 14 Primary combustion air preheater 15 Secondary combustion air preheater 20 First damper 21 Second damper

Claims (10)

焼却炉と、該焼却炉の炉壁に設けられた空冷壁と、前記空冷壁冷却後の温風を一次燃焼空気及び二次燃焼空気へ分配供給する分配供給手段と、を備えることを特徴とする焼却設備。 An incinerator; an air cooling wall provided on a furnace wall of the incinerator; and a distribution supply means for distributing and supplying the warm air after cooling the air cooling wall to the primary combustion air and the secondary combustion air. Incineration equipment to do. 前記分配供給手段は、前記焼却炉において焼却される焼却物の発熱量を検出する熱量検出手段と、前記空冷壁冷却後の温風を前記熱量検出手段の検出値に応じて一次燃焼空気及び二次燃焼空気へ分配供給する制御手段と、を備えることを特徴とする請求項1に記載の焼却施設。 The distribution supply means includes a calorific value detecting means for detecting the calorific value of the incinerated product to be incinerated in the incinerator, and the hot air after cooling the air-cooled wall according to the detected value of the calorific value detecting means and the primary combustion air and the secondary air. The incineration facility according to claim 1, comprising control means for distributing and supplying the secondary combustion air. 前記制御手段は、前記熱量検出手段の検出値が所定値を越えたときに、前記空冷壁冷却後の温風の二次燃焼空気への分配供給比率が一次燃焼空気への分配供給比率に対して高くなるように制御することを特徴とする請求項2に記載の焼却設備。 When the detected value of the heat quantity detecting means exceeds a predetermined value, the control means is configured such that the distribution supply ratio of the warm air after cooling the air cooling wall to the secondary combustion air is larger than the distribution supply ratio to the primary combustion air. The incineration equipment according to claim 2, wherein the incineration equipment is controlled so as to be higher. 炉外空気取入口と前記焼却炉の一次燃焼空気導入口との間に接続された第1ダクトと、該第1ダクトと前記焼却炉の前記二次燃焼空気導入口との間に接続された第2ダクトと、前記第2ダクト接続位置より下流側の前記第1ダクトに介在された一次送風機と、前記第2ダクトに介在された二次送風機と、を更に備え、
前記分配供給手段は、前記空冷壁の温風排気口と前記二次送風機より上流部の前記第2ダクトとの間に接続された温風ダクトを備え、
前記制御手段は、該熱量検出手段の検出値に応じて前記一次送風機及び二次送風機の少なくとも一方を制御することを特徴とする請求項2又は3に記載の焼却設備。
A first duct connected between the outside air intake and the primary combustion air inlet of the incinerator, and connected between the first duct and the secondary combustion air inlet of the incinerator A second duct, a primary fan interposed in the first duct downstream from the second duct connection position, and a secondary fan interposed in the second duct;
The distribution supply means includes a warm air duct connected between the warm air exhaust port of the air cooling wall and the second duct upstream of the secondary blower,
The incinerator according to claim 2 or 3, wherein the control means controls at least one of the primary blower and the secondary blower in accordance with a detection value of the heat quantity detection means.
前記制御手段は、
前記熱量検出手段によって検出された発熱量が所定値以下であるときに、二次送風機の流量<空冷壁冷却後の温風流量<一次送風機の流量となるように制御し、
発熱量が所定値を超えた時に、空冷壁冷却後の温風流量<二次送風機の流量<一次送風機の流量となるように制御することを特徴とする請求項4に記載の焼却設備。
The control means includes
When the calorific value detected by the calorific value detection means is not more than a predetermined value, control so that the flow rate of the secondary blower <the flow rate of warm air after cooling the air-cooled wall <the flow rate of the primary blower,
5. The incineration facility according to claim 4, wherein when the heat generation amount exceeds a predetermined value, control is performed so that the hot air flow rate after cooling the air cooling wall <the flow rate of the secondary blower <the flow rate of the primary blower.
炉外空気取入口と前記焼却炉の一次燃焼空気導入口との間に接続された第1ダクトと、該第1ダクトと前記焼却炉の前記二次燃焼空気導入口との間に接続された第2ダクトと、前記第2ダクト接続位置より下流側の前記第1ダクトに介在された一次送風機と、前記第2ダクトに介在された二次送風機と、を更に備え、
前記分配供給手段は、前記空冷壁冷却後の温風を前記第2ダクト接続位置より下流側の前記第1ダクトに供給する第1温風ダクトと、前記空冷壁冷却後の温風を前記二次送風機より上流部の前記第2ダクトに供給する第2温風ダクトと、前記第1温風ダクトに介在された第1ダンパと、前記第2温風ダクトに介在された第2ダンパと、を備え、
前記制御手段は、前記熱量検出手段の検出値に応じて前記第1ダンパ及び第2ダンパの少なくとも一方を制御することを特徴とする請求項2又は3に記載の焼却設備。
A first duct connected between the outside air intake and the primary combustion air inlet of the incinerator, and connected between the first duct and the secondary combustion air inlet of the incinerator A second duct, a primary fan interposed in the first duct downstream from the second duct connection position, and a secondary fan interposed in the second duct;
The distribution supply means includes a first hot air duct that supplies the warm air after cooling the air-cooled wall to the first duct downstream from the second duct connection position, and the hot air after cooling the air-cooled wall is the second air. A second hot air duct supplied to the second duct upstream from the next blower, a first damper interposed in the first hot air duct, a second damper interposed in the second hot air duct, With
The incinerator according to claim 2 or 3, wherein the control means controls at least one of the first damper and the second damper according to a detection value of the heat quantity detection means.
一次燃焼空気を予熱する一次燃焼空気予熱器を更に備えることを特徴とする請求項1〜6の何れかに記載の焼却設備。 The incineration facility according to any one of claims 1 to 6, further comprising a primary combustion air preheater that preheats the primary combustion air. 廃熱回収ボイラを更に備えることを特徴とする請求項1〜7の何れかに記載の焼却設備。 The incineration facility according to claim 1, further comprising a waste heat recovery boiler. 空冷壁方式の焼却炉を備える焼却設備の運転方法であって、焼却物の発熱量を検出し、前記空冷壁冷却後の温風を、検出した焼却物の発熱量に応じて一次燃焼空気及び二次燃焼空気へ分配供給することを特徴とする前記運転方法。 A method of operating an incinerator equipped with an air-cooled wall type incinerator, which detects the calorific value of the incinerated material, and the warm air after cooling the air-cooled wall is subjected to primary combustion air and air according to the detected calorific value of the incinerated material. The operation method according to claim 1, wherein the operation method comprises distributing and supplying to the secondary combustion air. 前記検出された発熱量が所定値を越えたときに、前記空冷壁冷却後の温風を、一次燃焼空気に優先して二次燃焼空気に分配供給することを特徴とする請求項9に記載の運転方法。 The warm air after cooling the air-cooled wall is distributed and supplied to the secondary combustion air in preference to the primary combustion air when the detected calorific value exceeds a predetermined value. Driving method.
JP2010234258A 2010-10-19 2010-10-19 Incineration equipment and its operating method Active JP5574911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234258A JP5574911B2 (en) 2010-10-19 2010-10-19 Incineration equipment and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234258A JP5574911B2 (en) 2010-10-19 2010-10-19 Incineration equipment and its operating method

Publications (2)

Publication Number Publication Date
JP2012087977A true JP2012087977A (en) 2012-05-10
JP5574911B2 JP5574911B2 (en) 2014-08-20

Family

ID=46259780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234258A Active JP5574911B2 (en) 2010-10-19 2010-10-19 Incineration equipment and its operating method

Country Status (1)

Country Link
JP (1) JP5574911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141958A (en) * 2014-08-20 2014-11-12 上海康恒环境股份有限公司 Tail flue gas afterheat recycling system of mechanical waste incineration grate boiler and automatic control method thereof
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101313A (en) * 1988-10-05 1990-04-13 Ishikawajima Harima Heavy Ind Co Ltd Air feed rate control method for fluidized bed incinerator with boiler
JPH04190009A (en) * 1990-11-22 1992-07-08 Kubota Corp Method of cooling air cooled wall of incinerator
JPH074628A (en) * 1993-06-15 1995-01-10 Kubota Corp Controlling method for combustion in incinerator using thermal fluid analysis
JP2004003766A (en) * 2002-06-03 2004-01-08 Takuma Co Ltd Cooling method and apparatus for combustion gas extracted from stoker type incinerator
JP2006275502A (en) * 2005-03-04 2006-10-12 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its operation method
JP2008057935A (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101313A (en) * 1988-10-05 1990-04-13 Ishikawajima Harima Heavy Ind Co Ltd Air feed rate control method for fluidized bed incinerator with boiler
JPH04190009A (en) * 1990-11-22 1992-07-08 Kubota Corp Method of cooling air cooled wall of incinerator
JPH074628A (en) * 1993-06-15 1995-01-10 Kubota Corp Controlling method for combustion in incinerator using thermal fluid analysis
JP2004003766A (en) * 2002-06-03 2004-01-08 Takuma Co Ltd Cooling method and apparatus for combustion gas extracted from stoker type incinerator
JP2006275502A (en) * 2005-03-04 2006-10-12 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its operation method
JP2008057935A (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141958A (en) * 2014-08-20 2014-11-12 上海康恒环境股份有限公司 Tail flue gas afterheat recycling system of mechanical waste incineration grate boiler and automatic control method thereof
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
WO2017085941A1 (en) * 2015-11-19 2017-05-26 株式会社タクマ Waste incineration control method, and incineration control apparatus using same
JP2017096517A (en) * 2015-11-19 2017-06-01 株式会社タクマ Waste material combustion method and combustion control device applying the same

Also Published As

Publication number Publication date
JP5574911B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP5482792B2 (en) Organic waste treatment system and method
JP6800594B2 (en) Waste treatment equipment and how to operate the waste treatment equipment
JP5430210B2 (en) Incinerator and combustion control method
JP6765842B2 (en) Waste treatment equipment
JP3783024B2 (en) Sludge treatment system and method
JP5574911B2 (en) Incineration equipment and its operating method
JP2017190929A (en) Waste treatment facility
JP2007271226A (en) Combustion control method and combustion device
JP6113425B2 (en) Method for controlling air cooling wall surface temperature of incinerator and incinerator using the control method
JP4377825B2 (en) Waste melting furnace operation method
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
JP4933134B2 (en) Vertical waste incinerator for industrial waste incineration
JP2001317715A (en) Method and device for incineration disposal of solid waste
JP2022097537A (en) Incinerator with supercharger
JP2013096685A (en) Combustion method of waste incinerator
JP2019007700A (en) Fire grate type waste combustion furnace
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP5472847B2 (en) Steam volume control device for waste melting furnace equipment
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JP2013155975A (en) Pressure fluidized furnace system and control method thereof
JP2013200087A (en) Operation method of pressurized fluidized bed furnace system
JP7093709B2 (en) Incinerator
JP7156923B2 (en) Waste treatment equipment and operation method of waste treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250