JP2006064300A - Combustion information monitoring controlling device for stoker type refuse incinerator - Google Patents

Combustion information monitoring controlling device for stoker type refuse incinerator Download PDF

Info

Publication number
JP2006064300A
JP2006064300A JP2004247976A JP2004247976A JP2006064300A JP 2006064300 A JP2006064300 A JP 2006064300A JP 2004247976 A JP2004247976 A JP 2004247976A JP 2004247976 A JP2004247976 A JP 2004247976A JP 2006064300 A JP2006064300 A JP 2006064300A
Authority
JP
Japan
Prior art keywords
combustion
control
information
waste
stoker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004247976A
Other languages
Japanese (ja)
Other versions
JP4292126B2 (en
Inventor
Kichiji Matsuda
吉司 松田
Hiroyuki Fujikawa
博之 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2004247976A priority Critical patent/JP4292126B2/en
Publication of JP2006064300A publication Critical patent/JP2006064300A/en
Application granted granted Critical
Publication of JP4292126B2 publication Critical patent/JP4292126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion information monitoring controlling device capable of performing more stable refuse combustion with high efficiency by combining a plurality of control loops independent of each other to one control system in a stoker type refuse incinerator. <P>SOLUTION: At least supply refuse heat quantity control, combustion center/complete combustion point control and secondary combustion air real-time control among a plurality of pieces of different control in the stoker type refuse incinerator are constructed as one system, and information about supply refuse heat quantity in each the control from a refuse input hopper to an incinerator outlet, a combustion center/complete combustion point position, O<SB>2</SB>concentration of incinerator outlet exhaust gas, a refuse surface temperature distribution and a refuse layer thickness are integrally displayed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はストーカ型ごみ焼却炉の燃焼制御装置に関するものであり、ごみ投入ホッパーから一次燃焼室、二次燃焼室及び排ガス出口にかけてのごみ燃焼に関係する全情報を総合的に表示すると共に、これ等の情報を燃焼状態の判断及び制御に利用できるようにしたストーカ型ごみ焼却炉の燃焼情報監視制御装置に関するものである。   The present invention relates to a combustion control device for a stoker-type waste incinerator, which comprehensively displays all information related to waste combustion from a waste input hopper to a primary combustion chamber, a secondary combustion chamber, and an exhaust gas outlet. The present invention relates to a combustion information monitoring and control device for a stoker-type waste incinerator that can use such information for judgment and control of a combustion state.

近年、ストーカ型ごみ焼却炉においては、排ガス内のNOx濃度の引下げやダイオキシン類の発生を防いで環境汚損を防止すると共に、熱回収の高効率化および排ガス処理設備の小型化等を可能とした所謂新世代型燃焼方式が多く採用されている。   In recent years, in stoker-type waste incinerators, NOx concentration in exhaust gas and generation of dioxins have been prevented to prevent environmental pollution, making it possible to improve heat recovery efficiency and downsize exhaust gas treatment facilities. Many so-called new generation combustion systems are employed.

この新世代型燃焼方式においては、特に安定した燃焼制御が要求され、具体的には(1)燃焼熱量の安定化、(2)目標とする空気比での安定燃焼、(3)ダイオキシンやCOの発生抑制及びNOxの変動抑制等が、要求されることになる。   In this new generation type combustion system, particularly stable combustion control is required. Specifically, (1) stabilization of combustion heat, (2) stable combustion at a target air ratio, (3) dioxin and CO It is required to suppress the occurrence of NOx and to suppress the fluctuation of NOx.

一方、上記(1)〜(3)の事項を実現させるため、これ迄に(a)ごみ供給熱量制御、(b)燃焼中心・燃切点の検出制御及び(c)二次燃焼空気リアルタイム制御等の技術が開発され、実用に供されて来た。   On the other hand, in order to realize the items (1) to (3) above, (a) waste supply heat amount control, (b) combustion center / cutoff point detection control, and (c) secondary combustion air real-time control. Such technology has been developed and put into practical use.

図4及び図5は、先に開発をされた前記新世代型燃焼技術を採用したストーカ型ごみ焼却炉の一例を示すものである。図4のストーカ型ごみ焼却炉においては、赤外線カメラ16からの炉内燃焼情報と、酸素濃度センサ20からの排ガス酸素濃度信号と、ごみ層レベルセンサ15からの乾燥ストーカのごみ層レベル等を燃焼コントローラ21へ入力し、当該燃焼コントローラ21に於いて(イ)赤外線カメラ16からの炉内燃焼情報を用いた炉内温度分布の測定、燃焼中心I及び燃切点Eの判定、(ロ)酸素濃度信号に基づいて酸素濃度が設定範囲内となる総燃焼空気供給量の算定、(ハ)前記測定した炉内温度分布に基づく総燃焼空気供給量の乾燥、燃焼、後燃焼ゾーンへの割り振り等を行って炉内温度分布を予め設定した温度分布に調整すると共に、(ニ)ごみ層レベルセンサ15からの信号に基づいて、乾燥ストーカのごみ層レベルおよび燃焼中心Iが設定範囲内となるように、ごみ搬送速度及び炉内へのごみ供給量を制御することにより、ごみの安定燃焼を達成するようにしている。   4 and 5 show an example of a stoker-type waste incinerator that employs the new-generation combustion technology developed previously. In the stoker-type waste incinerator of FIG. 4, the combustion information in the furnace from the infrared camera 16, the exhaust gas oxygen concentration signal from the oxygen concentration sensor 20, the dust layer level of the dry stoker from the dust layer level sensor 15, etc. Input to the controller 21, (i) measurement of the furnace temperature distribution using the furnace combustion information from the infrared camera 16, determination of the combustion center I and the fuel cut point E, (b) oxygen Calculation of total combustion air supply amount that oxygen concentration is within the set range based on concentration signal, (c) Drying, combustion, allocation to post-combustion zone of total combustion air supply amount based on measured furnace temperature distribution, etc. To adjust the temperature distribution in the furnace to a preset temperature distribution, and (d) based on the signal from the dust layer level sensor 15, the dust layer level and combustion center I of the dry stoker are determined. As it will be within the constant range by controlling the waste feed to the waste conveying speed and the furnace, so that to achieve stable combustion of refuse.

尚、図4において、1は炉本体、2はごみ供給口、3は灰排出口、4はストーカ、5はストーカ駆動装置、5aはストーカ駆動装置の制御部、6はプッシャ、6aはプッシャ制御部、7は風箱、8は空気供給装置、9はホッパ、10は空気流量調整装置、18は廃熱回収装置、19は排ガス処理装置、22は画像処理部、23は帯域・温度分布判定部、24は総空気量演算部、25は総空気供給制御部、26は分配空気演算部、27は空気調整装置制御部、28は燃焼中心制御部、29はごみ搬送制御部、30はごみ供給制御部である。   In FIG. 4, 1 is a furnace body, 2 is a waste supply port, 3 is an ash discharge port, 4 is a stalker, 5 is a stalker driving device, 5a is a control unit of the stalker driving device, 6 is a pusher, and 6a is a pusher control. , 7 is an air box, 8 is an air supply device, 9 is a hopper, 10 is an air flow rate adjustment device, 18 is a waste heat recovery device, 19 is an exhaust gas processing device, 22 is an image processing unit, and 23 is a zone / temperature distribution determination. , 24 is a total air amount calculation unit, 25 is a total air supply control unit, 26 is a distribution air calculation unit, 27 is an air conditioning device control unit, 28 is a combustion center control unit, 29 is a waste conveyance control unit, and 30 is a garbage It is a supply control unit.

また、図5のストーカ型ごみ焼却炉においては、炉本体1の後燃焼部上方空間12の燃焼ガスG′を引き抜いて二次燃焼室13の上流側へ還流させ、所謂還元性ゾーン14を形成すると共に、燃焼用空気を一次及び二次燃焼空気に分けて供給し、更に、ホッパー9のごみレベルセンサ31a及び供給ごみ量検出装置31により検出した供給ごみ量信号と、排ガス内酸素濃度信号と、赤外線カメラ16及び燃焼中心・燃切点位置検出装置17により検出した燃切点位置及び燃焼中心位置の信号を燃焼制御装置21へ入力し、燃焼中心位置及び燃切点位置に基づいて一次燃焼空気供給量やストーカ作動速度を調整すると共に、排ガス内O2 濃度等に基づいて二次燃焼空気供給量を制御することを基本にして、ごみの完全燃焼を達成するようにしている。 Further, in the stoker-type waste incinerator of FIG. 5, the so-called reducing zone 14 is formed by extracting the combustion gas G ′ in the space 12 above the rear combustion section of the furnace body 1 and returning it to the upstream side of the secondary combustion chamber 13. At the same time, combustion air is divided and supplied to primary and secondary combustion air, and further, a supply waste amount signal detected by the dust level sensor 31a of the hopper 9 and the supply waste amount detection device 31, and an exhaust gas oxygen concentration signal, The fuel cut point position and combustion center position signals detected by the infrared camera 16 and the combustion center / fuel cut point position detection device 17 are input to the combustion control device 21, and primary combustion is performed based on the combustion center position and the fuel cut point position. thereby adjusting the air supply quantity or the stoker operating speed, to control the secondary combustion air supply amount based on the exhaust gas in the O 2 concentration and the like in the base, so as to achieve complete combustion of the waste That.

尚、図5に於いて、32は二次燃焼空気供給ファン、33は二次燃焼空気制御装置、34は一次燃焼空気供給ファン、35は一次燃焼空気制御装置、36は還流ガスファン、37は還流ガス制御装置である。   In FIG. 5, 32 is a secondary combustion air supply fan, 33 is a secondary combustion air control device, 34 is a primary combustion air supply fan, 35 is a primary combustion air control device, 36 is a recirculation gas fan, and 37 is It is a reflux gas control device.

また、図4及び図5では示されていないが、炉内のごみ燃焼制御においては、ストーカ上のごみ表面温度、炉内のガス流速、排ガス内のダイオキシン前駆体類濃度、供給ごみのごみ質、ごみの保有発熱量、廃熱ボイラの蒸気発生量及び蒸気温度(圧力)、還流ガスG′内のCO濃度及びO2 濃度等が制御要素として燃焼コントローラ(又は燃焼制御装置)21へ入力され、前記基本の燃焼制御に適宜に組み合わせ使用されている。 Although not shown in FIGS. 4 and 5, in the refuse combustion control in the furnace, the waste surface temperature on the stoker, the gas flow rate in the furnace, the dioxin precursor concentration in the exhaust gas, the waste quality of the supplied waste Waste heat generation amount, steam generation amount and steam temperature (pressure) of waste heat boiler, CO concentration and O 2 concentration in recirculation gas G ′, etc. are input to the combustion controller (or combustion control device) 21 as control elements. The basic combustion control is appropriately combined and used.

而して、前記図4や図5に示したような新世代型ストーカ炉の定常状態における燃焼制御は、一般に次の(a)、(b)及び(c)の単ループ制御を組み合せることにより行われている。(a)供給ごみ熱量・・供給ごみ熱量制御−(燃焼中心位置・燃切点制御による補正)−(空気比制御による補正)−ごみ供給プッシャ・ストーカ速度の調整、(b)ボイラ蒸発量・・燃焼熱量制御−(燃切点位置制御・未燃物制御による補正)−一次燃焼空気−(乾燥空気量・燃焼空気量・後燃焼空気量)の調整−(空燃比制御による補正)−ごみ供給プッシャ・ストーカ速度制御及び(c)O2 濃度計測・・二次燃焼空気供給量リアルタイム制御−(CO濃度制御等による補正)−二次燃焼空気量の調整。 Thus, the combustion control in the steady state of the new generation stoker furnace as shown in FIG. 4 and FIG. 5 is generally a combination of the following single loop controls (a), (b) and (c). It is done by. (A) Supply waste heat amount / Supply waste heat amount control-(Correction by combustion center position / fuel cut point control)-(Correction by air ratio control)-Adjustment of waste supply pusher / stoker speed, (b) Boiler evaporation amount /・ Combustion heat quantity control-(Fuel cut point position control / Unburnt substance control)-Primary combustion air-(Dry air quantity, Combustion air quantity, Post combustion air quantity) adjustment-(Correction by air-fuel ratio control)-Garbage Supply pusher / stoker speed control and (c) O 2 concentration measurement / Secondary combustion air supply amount real-time control-(Correction by CO concentration control etc.)-Adjustment of secondary combustion air amount.

しかし、上記(a)、(b)及び(c)等の各制御系は、夫々の単ループ内でその制御が相互に独立して実施されており、ごみ焼却炉内で計測されている制御対象も、夫々の単ループ毎に独立して計測されている。そのため、制御度合によっては各単ループにおける制御が相互に干渉し合うと云う事態を招くことになり、より安定した燃焼の実現が困難になると云う状態にある。   However, the control systems such as (a), (b) and (c) are controlled independently from each other in each single loop, and are controlled in the incinerator. The object is also measured independently for each single loop. For this reason, depending on the degree of control, there is a situation where the control in each single loop interferes with each other, and it is difficult to realize more stable combustion.

例えば、ボイラ蒸発量を基準とする前記(b)の制御にあっては、ボイラ蒸発量が不足してくると燃焼熱量を増加するために一次燃焼空気量を増し、空燃比制御を介して給じん速度及びストーカ速度を増加させる。
これに対して、排ガス内のO2 濃度を基準とする前記(c)の制御は、O2 濃度が上昇すると二次燃焼空気量リアルタイム制御を介して二次燃焼空気量を減少させ、また、逆にO2 濃度が低下すると、二次燃焼空気量を増加させる。
そのため、前記(b)の制御ループの要求する一次燃焼空気量の増加と、前記(c)の制御ループの要求する二次燃焼空気量の減少とが対応していれば総空気比に問題はないが、仮に(b)の制御ループが一次燃焼空気の増加を、また(c)の制御ループが二次燃焼空気の増加を夫々要求するような場合には、総空気比を設定値に保持した状態でO2 濃度を設定値に保った安定燃焼の達成が困難になる。
For example, in the control (b) based on the boiler evaporation amount, when the boiler evaporation amount becomes insufficient, the primary combustion air amount is increased in order to increase the combustion heat amount, and is supplied via the air-fuel ratio control. Increase dust and stalker speeds.
On the other hand, the control of (c) based on the O 2 concentration in the exhaust gas reduces the secondary combustion air amount via the secondary combustion air amount real-time control when the O 2 concentration increases, Conversely, when the O 2 concentration decreases, the amount of secondary combustion air is increased.
Therefore, if the increase in the amount of primary combustion air required by the control loop (b) corresponds to the decrease in the amount of secondary combustion air required by the control loop (c), there is a problem with the total air ratio. However, if the control loop in (b) requires an increase in primary combustion air and the control loop in (c) requires an increase in secondary combustion air, the total air ratio is maintained at the set value. In this state, it becomes difficult to achieve stable combustion while maintaining the O 2 concentration at the set value.

特開2003−106509JP 2003-106509 A 特開2003−254524JP2003-254524 特開2003−302027JP2003-302027 特開2003−329229JP 2003-329229 A 特開2003−322321JP2003-322321A

本発明は、従前のアドバンスト型ストーカ式ごみ焼却炉の燃焼制御における上述の如き問題、即ち供給ごみ熱量、燃焼中心・燃切点検出、ごみ表面温度分布、炉出口排ガスのO2 濃度及びごみ層厚さ等のごみ燃焼炉内で計測されている制御対象は、夫々の単ループ内で独立して各制御対象を設定値に保持するように制御されているため、制御度合によっては各単ループにおける制御が相互に干渉し合い、安定した燃焼の実現が困難な状態になると云う問題を解決せんとするものであり、供給ごみ熱量・燃焼中心・燃切点検出・炉出口O2 濃度・ごみ層厚演算等のごみ焼却炉内で計測されている制御対象の全てを一つのシステムとして構築し、ごみ投入ホッパから排ガス出口にかけての各情報を総合的に表示すると共に、この情報を総合的に利用して燃焼状態の判断並びに制御を行い、更に、計算機等で前記表示情報を用いて判断した燃焼状態と理想の燃焼状態のシミュレーションとの比較を実施して、制御対象の操作端をどのように制御すれば各制御対象を最適に近づけるかを推論し、この推論した結果にもとづいて各操作端を制御することにより、より安定した燃焼状態を実現することを可能にしたストーカ型ごみ焼却炉の燃焼情報監視制御装置を提供するものである。 The present invention relates to the above-mentioned problems in the combustion control of a conventional advanced stoker type waste incinerator, that is, the amount of waste heat supplied, the detection of the combustion center / cutting point, the surface temperature distribution of the waste, the O 2 concentration of the exhaust gas from the furnace, and the waste layer. The controlled objects measured in the waste-burning furnace such as the thickness are controlled so that each controlled object is held at the set value independently in each single loop. It is intended to solve the problem that the control in each other interferes with each other and it becomes difficult to realize stable combustion. The amount of supplied waste heat, combustion center, burn-off point detection, furnace outlet O 2 concentration, waste All of the controlled objects measured in the waste incinerator such as layer thickness calculation are constructed as one system, and each information from the waste hopper to the exhaust gas outlet is displayed comprehensively, and this information is comprehensively displayed. Use Then, the combustion state is judged and controlled, and the comparison between the combustion state judged using the display information by a computer or the like and the simulation of the ideal combustion state is carried out to determine the operation end of the controlled object. It is inferred whether each controlled object is optimally controlled if it is controlled, and by controlling each operation end based on the inferred result, a more stable combustion state can be realized. A combustion information monitoring and control device is provided.

請求項1の発明はストーカ型ごみ焼却炉における複数の異なる制御の中の少なくとも供給ごみ熱量制御と燃焼中心・燃切点制御と二次燃焼空気リアルタイム制御とを一つのシステムとして構築すると共に、ごみ投入ホッパから炉出口にかけて前記各制御における供給ごみ熱量、燃焼中心・燃切点位置、炉出口排ガスのO2 濃度、ごみ表面温度分布及びごみ層厚の各情報を総合的に表示する構成としたことを発明の基本構成とするものである。 According to the first aspect of the present invention, at least supply waste heat amount control, combustion center / fire point control, and secondary combustion air real-time control among a plurality of different controls in a stoker-type waste incinerator are constructed as one system, and garbage is disposed. From the input hopper to the furnace outlet, it is configured to comprehensively display the information on the amount of waste heat supplied, the combustion center / fuel cut-off position, the O 2 concentration of the exhaust gas at the furnace outlet, the waste surface temperature distribution, and the waste layer thickness. This is the basic configuration of the invention.

請求項2の発明は、請求項1の発明において、表示された情報からごみ焼却炉内の燃焼状態を総合的に判断し、各制御対象の操作端への入力を制御することにより安定した燃焼を実現する構成としたものである。   The invention of claim 2 is the stable combustion according to the invention of claim 1 by comprehensively judging the combustion state in the waste incinerator from the displayed information and controlling the input to the operation end of each control object. It is set as the structure which implement | achieves.

請求項3の発明は、請求項1の発明において、表示された各情報と、予め求めたごみ層厚、炉内温度分布、ごみ表面温度分布、O2 分布、CO分布、NOx分布、ガス流れ方向、ガス流速、ごみ質、ごみの乾燥及び燃焼状態の最適シミュレーション情報の中の前記表示された各情報に対応する情報とを比較し、前記表示情報を最適シミュレーション情報に近づけるための各制御対象の操作端への入力を推論すると共に、当該推論した入力に基いて前記各操作端を制御するようにしたものである。 The invention of claim 3 is the invention according to claim 1, wherein each of the displayed information and the previously obtained dust layer thickness, furnace temperature distribution, dust surface temperature distribution, O 2 distribution, CO distribution, NOx distribution, gas flow Each control object for comparing the displayed information to the optimum simulation information by comparing the information corresponding to each displayed information in the optimum simulation information of the direction, gas flow rate, garbage quality, garbage drying and combustion state The input to the operation terminal is inferred, and the operation terminals are controlled based on the inferred input.

本発明においては、ごみ焼却炉における複数の異なる制御の中の主要なもの、即ち供給ごみ熱量制御、燃焼中心・燃切点制御、炉出口排ガスのO2 濃度に基づく二次燃焼空気リアルタイム制御、ごみ層厚制御等にを一つのシステムとして構築すると共に、ごみ投入ホッパから炉出口にかけての前記各制御における制御内容の全情報を総合的に表示し、また、この情報を総合的に利用して燃焼状態を判断し、これ等の結果に基づいて各制御対象の操作端の制御を行うようにしている。
これにより、従前のごみ燃焼制御の場合に比較して、より安定したストーカ型ごみ焼却炉におけるごみの完全燃焼を実現することが可能となる。
In the present invention, the main among a plurality of different controls in a waste incinerator, namely, supply waste heat amount control, combustion center / fire point control, secondary combustion air real-time control based on O 2 concentration of the furnace outlet exhaust gas, In addition to constructing the waste layer thickness control etc. as one system, all the control details in each control from the waste hopper to the furnace outlet are comprehensively displayed, and this information is used comprehensively. The combustion state is determined, and the operation end of each control target is controlled based on these results.
As a result, it is possible to achieve more stable complete combustion of waste in a stoker-type waste incinerator as compared to conventional waste combustion control.

更に、本発明においては、前記炉内の各制御対象の情報と、予め求めた最適シミュレーションにおける各制御対象のシミュレーション情報とを対比し、前者を最適シミュレーション情報に近づけるのに必要な各制御対象の操作端の制御量を推論し、この推論に基づいて各制御端を制御する構成としている。その結果、炉内の各制御対象を全体として迅速且つ確実に最適値に近づけることができ、より安定したストーカ型ごみ焼却炉におけるごみの完全燃焼が可能となる。   Furthermore, in the present invention, the information on each control object in the furnace is compared with the simulation information on each control object in the optimal simulation obtained in advance, and each control object required to bring the former closer to the optimal simulation information. The control amount at the operation end is inferred, and each control end is controlled based on this inference. As a result, each control object in the furnace can be quickly and reliably brought close to the optimum value as a whole, and more stable waste combustion in a stoker-type waste incinerator is possible.

以下、図面に基づいて本発明の実施形態を説明する。図1は、本発明の燃焼情報監視制御装置を適用したストーカ型ごみ焼却炉の一例を示すものである。
図1において、41は炉本体、42はストーカ、43はストーカ駆動装置、44はプッシャ、45はプッシャ駆動装置、46はごみ供給ホッパ、47は一次燃焼空気供給ファン、48ファン駆動装置、49は二次燃焼空気供給ファン、50はファン駆動装置、51は二次燃焼空気調整ダンパ、52はダンパ駆動装置、53a〜53gは一次燃焼空気調整ダンパ、54はダンパ駆動装置、55は還流ガスファン、56はファン駆動装置、57はNOx濃度計、58はO2 濃度計、59はダイオキシン前駆物質濃度計(CO濃度計)、60はごみ投入重量検出計、61はレーザ距離計(ごみ検出計)、62はガス流速検出計、63は走査型赤外線放射温度計、64は蒸気圧力・温度検出計、65は蒸気流量計、66はごみ層レベルセンサ、67は廃熱回収ボイラ、68は排ガス処理装置、69は燃焼情報監視制御装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a stoker-type waste incinerator to which the combustion information monitoring control device of the present invention is applied.
In FIG. 1, 41 is a furnace body, 42 is a stalker, 43 is a stalker driving device, 44 is a pusher, 45 is a pusher driving device, 46 is a dust supply hopper, 47 is a primary combustion air supply fan, 48 fan driving device, 49 is Secondary combustion air supply fan, 50 is a fan drive device, 51 is a secondary combustion air adjustment damper, 52 is a damper drive device, 53a to 53g are primary combustion air adjustment dampers, 54 is a damper drive device, 55 is a recirculation gas fan, 56 is a fan drive device, 57 is a NOx concentration meter, 58 is an O 2 concentration meter, 59 is a dioxin precursor concentration meter (CO concentration meter), 60 is a waste input weight detector, and 61 is a laser distance meter (garbage detector). , 62 is a gas flow rate detector, 63 is a scanning infrared radiation thermometer, 64 is a steam pressure / temperature detector, 65 is a steam flow meter, 66 is a dust layer level sensor, and 67 is Heat recovery boiler, 68 exhaust gas treatment apparatus, 69 is a combustion information monitoring controller.

尚、本実施形態では、ストーカ型ごみ焼却炉として、所謂炉内の後燃焼部上方空間の燃焼ガスG′を還流させて二次燃焼室の上流部に還元ゾーンを形成する型式の炉を使用しているが、炉の型式としては燃焼排ガスを再循環させる型式の炉やその他の型式の炉であってもよいことは勿論である。   In this embodiment, as a stoker type waste incinerator, a furnace of a type that forms a reduction zone in the upstream part of the secondary combustion chamber by recirculating the combustion gas G ′ in the space above the rear combustion part in the so-called furnace. However, as a furnace type, it is needless to say that a furnace of a type for recirculating combustion exhaust gas and other types of furnaces may be used.

前記、燃焼情報監視装置69へは、ストーカ炉の燃焼制御に関係する各制御対象に関する情報が全て入力されている。即ち、図1の実施形態では、NOx濃度計57、O2 濃度計58、CO濃度計59、ごみ投入重量検出計60、レーザー距離計61、ガス流速計62、赤外線放射温度計63、蒸気圧力・温度検出計64、蒸気流量計65等からの各検出信号(検出情報)が夫々入力されており、且つ各入力情報が目視可能に表示(図示省略)されている。 In the combustion information monitoring device 69, all the information regarding each control object related to the combustion control of the stoker furnace is inputted. That is, in the embodiment of FIG. 1, a NOx concentration meter 57, an O 2 concentration meter 58, a CO concentration meter 59, a dust input weight detector 60, a laser distance meter 61, a gas flow meter 62, an infrared radiation thermometer 63, a vapor pressure. Each detection signal (detection information) from the temperature detector 64, the steam flow meter 65, etc. is input, and each input information is displayed (not shown) so as to be visible.

また、燃焼情報監視制御装置69からは、ストーカ駆動装置43、プッシャ駆動装置45、一次燃焼空気供給ファン駆動装置48、二次燃焼空気供給ファン駆動装置50、二次燃焼空気ダンパ駆動装置52、一次燃焼空気ダンパ駆動装置54、還流ガスファン駆動装置56等へ夫々制御信号(制御情報)が出力されている。   Also, from the combustion information monitoring control device 69, the stalker drive device 43, the pusher drive device 45, the primary combustion air supply fan drive device 48, the secondary combustion air supply fan drive device 50, the secondary combustion air damper drive device 52, the primary Control signals (control information) are output to the combustion air damper drive device 54, the recirculation gas fan drive device 56, and the like.

即ち、燃焼情報監視制御装置69には入力情報表示部72が設けられており、CRT画面上に、供給ごみ熱量、燃焼中心・燃切点位置、炉出口排ガスO2 濃度、ごみ表面温度分布、ごみ層厚およびごみ分布等の各情報が総合的に表示される。そのため、外部から一目瞭然に、ごみ焼却炉内の状態を把握することができ、例えば燃焼が不安定になった場合に手動介入をする際でも、不安定になった原因がどこなのかを入力情報表示部72の画面を見れば簡単に突き止めることができる。その結果、どこを調整するのが一番よいのか確認・理解しながら対応ができることになり、安定した燃焼への復帰が比較的容易に行えるようになる。 That is, the combustion information monitoring control device 69 is provided with an input information display unit 72. On the CRT screen, the amount of supplied waste heat, the combustion center / fuel cut point position, the furnace outlet exhaust gas O 2 concentration, the waste surface temperature distribution, Each information such as dust layer thickness and dust distribution is displayed comprehensively. Therefore, it is possible to grasp the state of the waste incinerator clearly from the outside. For example, even when manual intervention is performed when combustion becomes unstable, the input information indicates the cause of the instability. The screen can be easily identified by looking at the screen of the display unit 72. As a result, it is possible to respond while confirming and understanding where adjustment is best, and it becomes relatively easy to return to stable combustion.

また、燃焼情報監視制御装置69には、後述するように最適燃焼状態シミュレーション演算部70、基本制御要素演算部73及びトータル制御システム部74等の各種の機構が設けられており、供給ごみ熱量、燃焼中心・燃切点位置、炉出口排ガスO2 濃度、ごみ表面温度分布、ごみ層厚およびごみ分布等の各情報を総合的に集約することによって、例えば燃焼状態や燃焼空気比状態が以下のような複数の段階に評価・分類される。
[ごみ燃焼状態]・・安定燃焼中・ごみ枯れ傾向・ごみ枯れ傾向から復旧中・ごみ過剰傾向・ごみ過剰傾向から復旧中・未燃箇所発生。
[燃焼空気比状態]・・安定燃焼中・不完全燃焼発生中・空気過剰中。
そして、前記各分類ごとで、それぞれ安定燃焼中になるように、ごみ供給プッシャ・ストーカの速度や、一次燃焼空気量や空気分配、二次燃焼空気量や空気分配を自動的に燃焼制御装置で操作する。これにより、単ループ制御の際には、制御の度合いによってお互いの制御が干渉することになることが解消されることとなる。
The combustion information monitoring control device 69 is provided with various mechanisms such as an optimal combustion state simulation calculation unit 70, a basic control element calculation unit 73, and a total control system unit 74, as will be described later. By comprehensively collecting each information such as the combustion center / fuel cut point position, furnace outlet exhaust gas O 2 concentration, dust surface temperature distribution, dust layer thickness and dust distribution, for example, the combustion state and combustion air ratio state are as follows: It is evaluated and classified into multiple stages.
[Waste-burning state] ・ During stable combustion ・ Waste-withering tendency ・ Waste-withering tendency is being restored ・ Waste-recovering tendency ・ Waste-recovering tendency is being restored ・ Unburned parts are generated.
[Combustion air ratio] ・ ・ Stable combustion ・ Incomplete combustion is occurring ・ Air is excessive.
The speed of the waste supply pusher / stoker, the amount of primary combustion air and air distribution, and the amount of secondary combustion air and air distribution are automatically adjusted by the combustion control device so that stable combustion is performed for each category. Manipulate. Thereby, in the case of single loop control, it will be solved that the mutual control interferes with the degree of control.

更に、燃焼情報監視制御装置69には、後述するように入力情報・シミュレーション情報の対比・表示部75、制御情報推論部76及び各操作端への出力部77等が設けられており、ごみ焼却炉内で計測されている内容や各制御ループの制御内容に関する各情報が一つに集約されることによって、計算機による物理モデル法を用いた炉内シミュレーションを行った結果との相違が一目瞭然でわかる。その結果、燃焼状態の良否を正確且つ迅速に判断することができる。   Further, the combustion information monitoring control device 69 is provided with a comparison / display unit 75 for input information / simulation information, a control information inference unit 76, an output unit 77 for each operation end, and the like, as will be described later. By collecting all the information about the contents measured in the furnace and the control contents of each control loop into one, the difference from the result of the in-reactor simulation using the physical model method by the computer can be seen at a glance. . As a result, the quality of the combustion state can be determined accurately and quickly.

また、計算機による物理モデル法を用いた炉内シミュレーションから現状の燃焼状態を理想の安定燃焼状態にする為に最適な各制御値はいくらなのかを算出することができ、その制御量を自動燃焼制御装置の制御量としてフィードバックすることで安定燃焼を図ることが可能となる。   In addition, it is possible to calculate how much each control value is optimal in order to make the current combustion state an ideal stable combustion state from in-reactor simulation using a physical model method by a computer. By providing feedback as the control amount of the control device, stable combustion can be achieved.

更に、現状の燃焼状況のデータから10〜30分程度後の燃焼状態をシミュレーションして、そのシミュレーション内容が安定燃焼から崩れてごみ枯れ傾向にあると判断すれば、事前にストーカ速度や一次空気分配比の自動燃焼制御装置の制御量をフィードフォワード制御的に変更することで、将来の燃焼崩れを未然に防止することができる。   Furthermore, if the combustion state after about 10 to 30 minutes is simulated from the current combustion state data and it is judged that the content of the simulation has collapsed from stable combustion and tends to wither the dust, the stalker speed and primary air distribution will be determined in advance. By changing the control amount of the ratio automatic combustion control device in a feed-forward manner, future combustion collapse can be prevented in advance.

図2は、前記燃焼情報監視制御装置69を形成する各演算制御部を示すブロック図である。
図2において、70は最適燃焼状態シミュレーション演算部、71は最適シミュレーション情報表示部、72は入力情報表示部、73は基本制御要素演算部、73aは供給ごみ熱量演算部、73bは燃焼中心・燃切点位置の検出(演算)部、73cは二次空気量リアルタイム演算部、73dは蒸気発生量演算部、73eは炉内温度分布演算部、75は入力情報・シミュレーション情報対比部、74はトータル制御システム部、75は入力情報・シミュレーション情報の対比・表示部、76は制御情報推論部、77は各操作端(各駆動制御装置)への出力部である。
FIG. 2 is a block diagram showing each calculation control unit forming the combustion information monitoring control device 69.
In FIG. 2, 70 is an optimal combustion state simulation calculation unit, 71 is an optimal simulation information display unit, 72 is an input information display unit, 73 is a basic control element calculation unit, 73a is a supply waste heat amount calculation unit, and 73b is a combustion center / fuel. Cut point position detection (calculation) unit, 73c is a secondary air amount real-time calculation unit, 73d is a steam generation amount calculation unit, 73e is a furnace temperature distribution calculation unit, 75 is an input information / simulation information comparison unit, and 74 is a total. A control system unit, 75 is a comparison / display unit for input information / simulation information, 76 is a control information inference unit, and 77 is an output unit to each operation end (each drive control device).

前記最適燃焼状態シミュレーション演算部70では、稼動中のストーカ炉のその時のごみ燃焼条件下での最適燃焼状態における各制御対象の最適値がコンピュータにより演算され、これが最適シミュレーション情報表示部71に表示される。   In the optimum combustion state simulation calculation unit 70, the optimum value of each control object in the optimum combustion state under the current waste combustion condition of the operating stoker furnace is calculated by a computer, and this is displayed on the optimum simulation information display unit 71. The

また、炉内の各検出装置等からの入力情報は、入力情報表示部72において目視可能な型で表示されると共に、当該入力情報と前記最適シミュレーション情報との対比が、対比部75で行われる。
更に、当該対比・表示部75で得た各制御対象の演算値を用いて、制御情報推論部76において、入力情報を最適シミュレーション情報に近づけるのに必要な制御情報を演算、推論し、その推論した制御情報をトータル制御システム部74へ入力する。
In addition, input information from each detector in the furnace is displayed in a form that can be seen in the input information display unit 72, and the input unit and the optimum simulation information are compared by the comparison unit 75. .
Further, the control information inference unit 76 calculates and infers control information necessary to bring the input information closer to the optimum simulation information using the operation values of the respective control objects obtained by the comparison / display unit 75, and the inference The control information is input to the total control system unit 74.

当該トータル制御システム部74は、後述するように複数の所謂単ループ制御の制御対象を一つのシステムに集合構築したものであり、組み合わせる制御対象の数に応じて、複数のトータル制御システム部74が予め準備されている。   As will be described later, the total control system unit 74 is configured by integrating a plurality of so-called single loop control targets in one system. Depending on the number of control targets to be combined, a plurality of total control system units 74 are provided. Prepared in advance.

前記基本制御要素演算部73からの各演算情報と制御情報推論部76からの制御情報とが前記トータル制御システム部74へ入力され、ここからトータル制御システム部74を構成する各制御対象の駆動部(操作端)へ、所定の操作信号(制御信号)が発信される。   The calculation information from the basic control element calculation unit 73 and the control information from the control information inference unit 76 are input to the total control system unit 74, from which the control target drive units constituting the total control system unit 74 are input. A predetermined operation signal (control signal) is transmitted to the (operation end).

図2に示した燃焼情報監視制御装置の実施形態において、前記供給ごみ熱量演算部73aは、ごみ投入重量検出計60と走査型レーザ距離計61からの入力情報により、ごみ比重とごみの発熱量を推定すると共に、ごみ供給ホッパ46内のごみ容積の単位時間当りの変化量から炉本体41内へ供給されるごみの熱量を演算する。
そして、炉本体41内へのごみの供給熱量が定量化するように、トータル制御システム部74において、プッシャ44及びストーカ42が前記演算された供給ごみ熱量に基づいて制御される。
In the embodiment of the combustion information monitoring and control apparatus shown in FIG. 2, the supplied waste heat amount calculation unit 73a is based on the input information from the waste input weight detector 60 and the scanning laser distance meter 61, and the specific gravity of the waste and the heat value of the waste. Is calculated, and the amount of heat of the waste supplied into the furnace body 41 is calculated from the amount of change per unit time of the waste volume in the waste supply hopper 46.
Then, the pusher 44 and the stoker 42 are controlled on the basis of the calculated amount of supplied waste heat in the total control system unit 74 so that the amount of heat supplied to the waste in the furnace body 41 is quantified.

また、前記燃焼中心・燃切点検出部73bは、走査型赤外線放射温度計63を中心にして構成されており、ストーカ上のごみ表面温度の分布をごみの流れ方向に連続的に検出することにより、燃焼中心位置と燃切点を演算検出すると共に、炉内温度を計測する。これ等二つの検出値(制御要素)は、トータル制御システム部74において燃焼ストーカ速度やプッシャの作動速度、一次燃焼空気量の分配制御等に用いられ、最適な燃焼温度とガス流れ状態の確保等を通して、低NOx及び低ダイオキシンの維持が図られる。   The combustion center / cut-off point detection unit 73b is configured around the scanning infrared radiation thermometer 63, and continuously detects the distribution of dust surface temperature on the stoker in the direction of dust flow. By calculating and detecting the combustion center position and the fuel cutoff point, the temperature in the furnace is measured. These two detection values (control elements) are used in the total control system unit 74 for combustion stoker speed, pusher operating speed, primary combustion air amount distribution control, etc., ensuring optimal combustion temperature and gas flow state, etc. Through this, low NOx and low dioxin can be maintained.

更に、前記二次燃焼空気リアルタイム演算部73cは、レーザ式分析計より成る排ガス出口のO2 濃度を時間遅れなしで計測し、O2 濃度が設定範囲を外れた場合には、トータル制御システム部74からの制御信号により二次燃焼空気量を調整制御する。 Furthermore, the secondary combustion air real-time calculation unit 73c measures the O 2 concentration at the exhaust gas outlet composed of a laser analyzer without time delay, and if the O 2 concentration is out of the set range, the total control system unit The amount of secondary combustion air is adjusted and controlled by a control signal from 74.

同様に、蒸気発生量制御部73dは、蒸気圧・温度検出計64と蒸気流量計65の両信号から蒸気発生量を演算し、蒸気発生量が設定範囲を外れた場合には、トータル制御システム部74からの制御信号により、一次燃焼空気量及びプッシャ44の作動速度並びにストーカ42の作動速度を調整する所謂燃焼熱量制御が行われる。   Similarly, the steam generation amount control unit 73d calculates the steam generation amount from both signals of the steam pressure / temperature detector 64 and the steam flow meter 65, and if the steam generation amount falls outside the set range, the total control system The control signal from the unit 74 performs so-called combustion heat amount control for adjusting the primary combustion air amount, the operating speed of the pusher 44 and the operating speed of the stalker 42.

前記炉内温度分布演算部73eは、走査型赤外線温度計63の検出情報から炉内のごみ表面温度の分布や炉内温度分布を演算すると共に、ごみ層レベルセンサ66の信号を用いてその変動をチェックする。
また、ごみ表面温度及びごみ層厚が設定範囲より外れると、トータル制御システム74に於いて、一次燃焼空気量及び用プッシャー44並びにストーカ42の作動速度を調整する。
The furnace temperature distribution calculation unit 73e calculates the distribution of the dust surface temperature in the furnace and the temperature distribution in the furnace from the detection information of the scanning infrared thermometer 63, and uses the signal of the dust layer level sensor 66 to change the fluctuation. Check.
Further, when the dust surface temperature and the dust layer thickness are out of the set ranges, the total control system 74 adjusts the primary combustion air amount and the operating speed of the pusher 44 and the stoker 42.

図3は、図2の実施例におけるストーカ炉の定常運転状態下のトータル制御システム部74の基本ブロック構成図を示すものである。当該トータル制御システム部74は、供給ごみ熱量演算部73aと、燃焼中心・燃切点検出演算部73bと、二次空気リアルタイム演算部73dと炉内温度分布演算部73eの各演算値が入力される一つの制御システムとして構成されている。   FIG. 3 shows a basic block configuration diagram of the total control system unit 74 under the steady operation state of the stoker furnace in the embodiment of FIG. The total control system unit 74 receives the calculated values of the supplied waste heat amount calculation unit 73a, the combustion center / cut-off point detection calculation unit 73b, the secondary air real-time calculation unit 73d, and the furnace temperature distribution calculation unit 73e. It is configured as one control system.

即ち、当該トータル制御システム部74では、プッシャ及びストーカの速度と一次燃焼空気と二次燃焼空気とが、供給ごみ熱量(供給ごみ熱量制御)とボイラ蒸発量(燃焼熱量制御)とO2 濃度(二次空気リアルタイム制御)と燃焼中心・燃切り点位置とごみ表面温度・ごみ層厚とによって相関的に調整若しくは補正され、各制御対象の操作端(駆動装置)へ適宜の制御信号が出力される構成となっている。 That is, in the total control system unit 74, the speed of the pusher and the stoker, the primary combustion air, and the secondary combustion air are supplied to supply waste heat amount (supply waste heat amount control), boiler evaporation amount (combustion heat amount control), and O 2 concentration ( Secondary air real-time control), combustion center, burn-off point position, dust surface temperature, dust layer thickness are adjusted or corrected in a correlated manner, and appropriate control signals are output to the operation ends (drive devices) of each control target It is the composition which becomes.

尚、図3の供給ごみ熱量制御B1 は、炉本体内へ投入されるごみ量(ごみ熱量)を設定値に保持するようにプッシャ44やストーカ42の速度を調整する制御であり、また、空燃比制御B2 は一次・二次燃焼空気量とごみ量とのバランスのずれをストーカの速度調整により補正する制御である。更に、燃焼熱量制御B3 は、ボイラ蒸発量を設定値に保持するように一次燃焼空気量とプッシャ44等の作動速度を調整する制御であり、燃焼中心位置・燃切点制御73bは燃焼中心・燃切点のずれを一次燃焼空気量の調整又はこれとストーカ速度調整との併合により補正するものである。
尚、上記各制御は、何れも所謂偏差の大きさによりPIDの比例ゲインを自動変更する公知の可変ゲインPIDが採用されている。
The supply waste heat control B 1 in FIG. 3 is a control to adjust the speed of the pusher 44 and the stoker 42 to hold the amount dust is introduced into the furnace body (the waste heat) to the appropriate value, also, air-fuel ratio control B 2 is a control to correct the deviation of the balance between the primary and secondary combustion air amount and the amount of waste by the speed adjustment of the stoker. Further, the combustion heat amount control B 3 is a control for adjusting the primary combustion air amount and the operating speed of the pusher 44 and the like so as to maintain the boiler evaporation amount at a set value, and the combustion center position / fuel cut point control 73b is a combustion center.・ The deviation of the burnout point is corrected by adjusting the primary combustion air amount or by combining this with the stoker speed adjustment.
Each of the above controls employs a known variable gain PID that automatically changes the proportional gain of the PID according to the so-called deviation.

また、本実施例では、トータル制御システム部74を、供給ごみ熱量、ボイラ蒸発量、二次空気リアルタイム制御、燃焼中心・燃切点位置制御等の各制御要素を一つに構築することにより形成しているが、前記以外の他の制御要素(例えばCO濃度やNOx濃度等)を組み入れたトータル制御システム部としてもよいことは勿論である。   Further, in this embodiment, the total control system unit 74 is formed by constructing control elements such as supply waste heat amount, boiler evaporation amount, secondary air real-time control, combustion center / fuel cut-off position control, etc. into one. However, it is needless to say that a total control system unit incorporating other control elements (for example, CO concentration, NOx concentration, etc.) other than those described above may be used.

更に、本実施形態に於いては、トータル制御システム部74を安定燃焼状態をベースにしたものとして構成しているが、所謂ごみ枯れ等の非定常状態に対する対応を組み入れしたトータル制御システム部とすることも可能である。   Furthermore, in the present embodiment, the total control system unit 74 is configured based on the stable combustion state, but the total control system unit incorporates a response to an unsteady state such as so-called garbage withering. It is also possible.

本発明は、主として都市ごみや産業廃棄物等の燃焼処理に用いるストーカ式焼却炉に利用されるものであり、バガスや汚泥等の焼却処理にも適用できるものである。   The present invention is mainly used in a stoker-type incinerator used for combustion treatment of municipal waste, industrial waste, etc., and can also be applied to incineration treatment of bagasse, sludge and the like.

本発明を適用したストーカ型ごみ焼却炉の一例を示す全体系統図である。1 is an overall system diagram showing an example of a stoker-type waste incinerator to which the present invention is applied. 本発明に係る燃焼情報監視制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the combustion information monitoring control apparatus which concerns on this invention. 本発明の実施形態に係るトータル制御システム部の一例を示すブロック構成図である。It is a block block diagram which shows an example of the total control system part which concerns on embodiment of this invention. 従前のストーカ型ごみ焼却炉の燃焼制御方法の一例を示す説明図である。It is explanatory drawing which shows an example of the combustion control method of the conventional stoker type | mold waste incinerator. 従前のストーカ型ごみ焼却炉の燃焼制御方法の他の例を示す説明図である。It is explanatory drawing which shows the other example of the combustion control method of the conventional stoker type | mold waste incinerator.

符号の説明Explanation of symbols

41は炉本体、42はストーカ、43はストーカ駆動装置、44はプッシャ、45はプッシャ駆動装置、46はごみ供給ホッパ、47は一次燃焼空気供給ファン、48はファン駆動装置、49は二次燃焼空気供給ファン、50はファン駆動装置、51は二次燃焼空気調整ダンパ、52はダンパ駆動装置、53は一次燃焼空気調整ダンパ、54はダンパ駆動装置、55は還流ガスファン、56はファン駆動装置、57はNOx濃度計、58はO2 濃度計、59はCO濃度計、60はごみ投入重量検出計、61はレーザ距離計(ごみ検出計)、62はガス流速検出計、63は走査型赤外線放射温度計、64は蒸気圧力・温度検出計、65は蒸気流量計、66はごみ層レベルセンサ、67は廃熱回収ボイラ、68は排ガス処理装置、69は燃焼情報監視制御装置、70は最適燃焼状態シミュレーション演算部、71は最適シミュレーション情報表示部、72は入力情報表示部、73は基本制御要素演算部、73aは供給ごみ熱量演算部、73bは燃焼中心・燃切点位置検出(演算)部、73cは二次空気量リアルタイム演算部、73dは蒸気発生量演算部、73eは炉内温度分布演算部、74はトータル制御システム部、75は入力情報・最適シミュレーション情報の対比・表示部、76は制御情報推論部、77は各操作端(駆動装置)への出力部である。 41 is a furnace body, 42 is a stalker, 43 is a stalker drive device, 44 is a pusher, 45 is a pusher drive device, 46 is a dust supply hopper, 47 is a primary combustion air supply fan, 48 is a fan drive device, 49 is a secondary combustion An air supply fan, 50 is a fan drive device, 51 is a secondary combustion air adjustment damper, 52 is a damper drive device, 53 is a primary combustion air adjustment damper, 54 is a damper drive device, 55 is a recirculation gas fan, and 56 is a fan drive device , 57 is a NOx concentration meter, 58 is an O 2 concentration meter, 59 is a CO concentration meter, 60 is a dust input weight detector, 61 is a laser distance meter (garbage detector), 62 is a gas flow rate detector, and 63 is a scanning type. Infrared radiation thermometer, 64 is a steam pressure / temperature detector, 65 is a steam flow meter, 66 is a dust layer level sensor, 67 is a waste heat recovery boiler, 68 is an exhaust gas treatment device, and 69 is combustion information. The visual control device, 70 is an optimal combustion state simulation calculation unit, 71 is an optimal simulation information display unit, 72 is an input information display unit, 73 is a basic control element calculation unit, 73a is a supply waste heat amount calculation unit, and 73b is a combustion center / fuel. Cut point position detection (calculation) unit, 73c is a secondary air amount real-time calculation unit, 73d is a steam generation amount calculation unit, 73e is a furnace temperature distribution calculation unit, 74 is a total control system unit, and 75 is input information / optimum simulation. An information comparison / display unit, 76 is a control information reasoning unit, and 77 is an output unit to each operation end (drive device).

Claims (3)

ストーカ型ごみ焼却炉における複数の異なる制御の中の少なくとも供給ごみ熱量制御と燃焼中心・燃切点制御と二次燃焼空気リアルタイム制御とを一つのシステムとして構築すると共に、ごみ投入ホッパから炉出口にかけて前記各制御における供給ごみ熱量、燃焼中心・燃切点位置、炉出口排ガスのO2 濃度、ごみ表面温度分布及びごみ層厚の各情報を総合的に表示する構成としたことを特徴とするストーカ型ごみ焼却炉の燃焼情報監視制御装置。 At least one of the different controls in the stoker-type waste incinerator, control of the amount of waste heat, combustion center / fire point control and real-time control of secondary combustion air are constructed as one system, and from the waste hopper to the furnace outlet. Stoker characterized by comprehensively displaying each information of supply waste heat quantity, combustion center / fuel cut point position, furnace exhaust gas O 2 concentration, dust surface temperature distribution and dust layer thickness in each control. Combustion information monitoring and control system for type waste incinerators. 表示された情報からごみ焼却炉内の燃焼状態を総合的に判断し、各制御対象の操作端への入力を制御することにより安定した燃焼を実現する構成としたことを特徴とする請求項1に記載のストーカ型ごみ焼却炉の燃焼情報制御装置。   2. A configuration in which stable combustion is realized by comprehensively judging a combustion state in a waste incinerator from displayed information and controlling an input to an operation end of each control target. Combustion information control device for stoker-type waste incinerator as described in 1. 表示された各情報と、予め求めたごみ層厚、炉内温度分布、ごみ表面温度分布、O2 分布、CO分布、NOx分布、ガス流れ方向、ガス流速、ごみ質、ごみの乾燥及び燃焼状態の最適シミュレーション情報の中の前記表示された各情報に対応する情報とを比較し、前記表示された各情報を最適シミュレーション情報に近づけるための各制御対象の操作端への入力を推論すると共に、当該推論した入力に基いて前記各操作端を制御するようにした請求項1に記載のストーカ型ごみ焼却炉の燃焼情報監視制御装置。 Each displayed information and the previously obtained dust layer thickness, furnace temperature distribution, waste surface temperature distribution, O 2 distribution, CO distribution, NOx distribution, gas flow direction, gas flow rate, waste quality, waste drying and combustion state And comparing the information corresponding to each of the displayed information in the optimal simulation information of, and inferring the input to the operation end of each control object to bring the displayed information closer to the optimal simulation information, The combustion information monitoring and control device for a stoker-type waste incinerator according to claim 1, wherein each operation end is controlled based on the inferred input.
JP2004247976A 2004-08-27 2004-08-27 Combustion information monitoring and control system for stoker-type waste incinerator Expired - Fee Related JP4292126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247976A JP4292126B2 (en) 2004-08-27 2004-08-27 Combustion information monitoring and control system for stoker-type waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247976A JP4292126B2 (en) 2004-08-27 2004-08-27 Combustion information monitoring and control system for stoker-type waste incinerator

Publications (2)

Publication Number Publication Date
JP2006064300A true JP2006064300A (en) 2006-03-09
JP4292126B2 JP4292126B2 (en) 2009-07-08

Family

ID=36110934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247976A Expired - Fee Related JP4292126B2 (en) 2004-08-27 2004-08-27 Combustion information monitoring and control system for stoker-type waste incinerator

Country Status (1)

Country Link
JP (1) JP4292126B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008586A (en) * 2006-06-30 2008-01-17 Takuma Co Ltd Combustion control method for combustion furnace and its combustion control system
JP2008057935A (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method
WO2008029712A1 (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Industries, Ltd. Stoker-type incinerator and method for controlling combustion in the incinerator
JP2008064361A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Stoker-type incinerator and combustion control method therefor
JP2008076012A (en) * 2006-09-25 2008-04-03 Kobe Steel Ltd Control method and device of incinerator and program
WO2008044341A1 (en) * 2006-10-13 2008-04-17 Mitsubishi Heavy Industries, Ltd. Combustion control unit for stoker-fired combustion furnace
JP2009150626A (en) * 2007-12-21 2009-07-09 Takuma Co Ltd Combustion control system for combustion furnace and its combustion control method
CN102607039A (en) * 2012-04-01 2012-07-25 光大环保科技发展(北京)有限公司 Control method for air supply system of refuse incinerator
CN102840586A (en) * 2012-09-13 2012-12-26 宁明辉 Automatic burning control system of domestic garbage burning furnace
CN104154545A (en) * 2014-07-28 2014-11-19 光大环保技术装备(常州)有限公司 Automatic combustion control method and automatic combustion control system for incinerator
JP2015224822A (en) * 2014-05-28 2015-12-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
WO2018003223A1 (en) * 2016-06-28 2018-01-04 川崎重工業株式会社 Refuse incineration facility and control method for refuse incineration facility
JP2018021686A (en) * 2016-08-01 2018-02-08 株式会社タクマ Combustion control device including garbage moving speed detection function
CN111006238A (en) * 2019-11-14 2020-04-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Method for automatically adjusting up-down position of flame center of hearth of pulverized coal fired boiler with four tangential corners
CN113654026A (en) * 2021-08-27 2021-11-16 西安热工研究院有限公司 Intelligent boiler combustion optimization system based on electric energy
EP3816515A4 (en) * 2018-06-08 2022-03-09 Ebara Environmental Plant Co., Ltd. Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP7354930B2 (en) 2020-05-28 2023-10-03 Jfeエンジニアリング株式会社 Information processing device, information processing method, combustion control device, and combustion control method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008586A (en) * 2006-06-30 2008-01-17 Takuma Co Ltd Combustion control method for combustion furnace and its combustion control system
JP4701138B2 (en) * 2006-09-04 2011-06-15 三菱重工環境・化学エンジニアリング株式会社 Stoker-type incinerator and its combustion control method
JP2008057935A (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Ind Ltd Stoker type incinerator and its combustion control method
WO2008029712A1 (en) * 2006-09-04 2008-03-13 Mitsubishi Heavy Industries, Ltd. Stoker-type incinerator and method for controlling combustion in the incinerator
JP2008064361A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Stoker-type incinerator and combustion control method therefor
JP4701140B2 (en) * 2006-09-06 2011-06-15 三菱重工環境・化学エンジニアリング株式会社 Stoker-type incinerator and its combustion control method
JP4486628B2 (en) * 2006-09-25 2010-06-23 株式会社神戸製鋼所 Incinerator control method and apparatus, and program
JP2008076012A (en) * 2006-09-25 2008-04-03 Kobe Steel Ltd Control method and device of incinerator and program
JP2008096045A (en) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd Combustion controller for stoker type incinerator
WO2008044341A1 (en) * 2006-10-13 2008-04-17 Mitsubishi Heavy Industries, Ltd. Combustion control unit for stoker-fired combustion furnace
JP2009150626A (en) * 2007-12-21 2009-07-09 Takuma Co Ltd Combustion control system for combustion furnace and its combustion control method
CN102607039A (en) * 2012-04-01 2012-07-25 光大环保科技发展(北京)有限公司 Control method for air supply system of refuse incinerator
CN102607039B (en) * 2012-04-01 2014-10-01 光大环保科技发展(北京)有限公司 Control method for air supply system of refuse incinerator
CN102840586A (en) * 2012-09-13 2012-12-26 宁明辉 Automatic burning control system of domestic garbage burning furnace
CN102840586B (en) * 2012-09-13 2015-11-18 宁明辉 Domestic waste incineration automatic combustion control system
JP2015224822A (en) * 2014-05-28 2015-12-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method
CN104154545A (en) * 2014-07-28 2014-11-19 光大环保技术装备(常州)有限公司 Automatic combustion control method and automatic combustion control system for incinerator
CN104154545B (en) * 2014-07-28 2016-08-17 光大环保技术装备(常州)有限公司 Automatic combustion control method and automatic combustion control system for incinerator
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
WO2017085941A1 (en) * 2015-11-19 2017-05-26 株式会社タクマ Waste incineration control method, and incineration control apparatus using same
JP2017096517A (en) * 2015-11-19 2017-06-01 株式会社タクマ Waste material combustion method and combustion control device applying the same
WO2018003223A1 (en) * 2016-06-28 2018-01-04 川崎重工業株式会社 Refuse incineration facility and control method for refuse incineration facility
JP2018004113A (en) * 2016-06-28 2018-01-11 川崎重工業株式会社 Refuse incineration facility and method for controlling the same
JP2018021686A (en) * 2016-08-01 2018-02-08 株式会社タクマ Combustion control device including garbage moving speed detection function
EP3816515A4 (en) * 2018-06-08 2022-03-09 Ebara Environmental Plant Co., Ltd. Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
CN111006238A (en) * 2019-11-14 2020-04-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Method for automatically adjusting up-down position of flame center of hearth of pulverized coal fired boiler with four tangential corners
JP7354930B2 (en) 2020-05-28 2023-10-03 Jfeエンジニアリング株式会社 Information processing device, information processing method, combustion control device, and combustion control method
CN113654026A (en) * 2021-08-27 2021-11-16 西安热工研究院有限公司 Intelligent boiler combustion optimization system based on electric energy

Also Published As

Publication number Publication date
JP4292126B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4292126B2 (en) Combustion information monitoring and control system for stoker-type waste incinerator
EP1726876A1 (en) Improved method of combusting solid waste
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
WO2018003223A1 (en) Refuse incineration facility and control method for refuse incineration facility
JP6153090B2 (en) Waste incinerator and waste incineration method
JPH0781701B2 (en) A device for estimating unburned content in ash of a coal combustion furnace
JP4448799B2 (en) A waste combustion state detection method using a grate temperature in a stoker type incinerator, a waste incineration control method and a grate temperature control method using the method.
JP2019178848A (en) Waste incinerator and waste incineration method
JPH04208307A (en) Method for controlling supplying of fuel for solid item combustion device
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP4184291B2 (en) Combustion method of garbage by stoker type incinerator
JP2001033017A (en) Method for controlling combustion of refuse incinerator
WO2021079845A1 (en) Waste combustion device and waste combustion method
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JP7120105B2 (en) Control parameter determination support device and control parameter determination support method for combustion control device of waste incinerator
JP2001082719A (en) Combustion control for refuse incinerating plant
JPS62255717A (en) Combustion control of fractionated waste incinerator
JP2971421B2 (en) Combustion control method for fluidized bed incinerator
KR100194446B1 (en) Combustion control method and apparatus for waste incinerator
JPH0670481B2 (en) Combustion control method in fluidized bed furnace
JPS61143617A (en) Method of controlling combustion in refuse incinerator
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JPH1114027A (en) Method of controlling combustion of incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace
JP2006125759A (en) Operation control device for incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150410

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees