JPH0781701B2 - A device for estimating unburned content in ash of a coal combustion furnace - Google Patents

A device for estimating unburned content in ash of a coal combustion furnace

Info

Publication number
JPH0781701B2
JPH0781701B2 JP3071999A JP7199991A JPH0781701B2 JP H0781701 B2 JPH0781701 B2 JP H0781701B2 JP 3071999 A JP3071999 A JP 3071999A JP 7199991 A JP7199991 A JP 7199991A JP H0781701 B2 JPH0781701 B2 JP H0781701B2
Authority
JP
Japan
Prior art keywords
coal
combustion furnace
combustion
furnace
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3071999A
Other languages
Japanese (ja)
Other versions
JPH04309714A (en
Inventor
信二 田中
達也 宮武
和充 山本
裕一 宮本
英一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP3071999A priority Critical patent/JPH0781701B2/en
Priority to US07/828,312 priority patent/US5231939A/en
Priority to EP92102314A priority patent/EP0507060B1/en
Priority to DE69219513T priority patent/DE69219513T2/en
Publication of JPH04309714A publication Critical patent/JPH04309714A/en
Publication of JPH0781701B2 publication Critical patent/JPH0781701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/52Fuzzy logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/90Fuzzy logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は石炭燃焼炉の燃焼排ガ
ス中に含まれる灰中未燃分の濃度を監視して燃焼炉を効
率的に運転するための石炭燃焼炉の灰中未燃分推定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention monitors the concentration of unburned ash in ash contained in the combustion exhaust gas of a coal combustion furnace to efficiently operate the combustion furnace. Estimator

【0002】[0002]

【従来の技術】最近、石油代替えエネルギーとして石炭
が見直され、発電用ボイラとして微粉炭燃焼技術が注目
されている。この技術そのものは既に完成された技術
で、石炭を微粉炭機(ミル)によって粉砕し、得られる
石炭粉末を粗粉分離器によって粗粉炭と微粉炭とに分離
し、微粉炭のみをバーナからガスのように噴出させて燃
焼させるものである。
2. Description of the Related Art Recently, coal has been reviewed as an alternative energy to oil, and pulverized coal combustion technology has attracted attention as a boiler for power generation. This technology itself has already been completed, and the coal is pulverized by a pulverized coal machine (mill), the obtained coal powder is separated into coarse coal and pulverized coal by a coarse powder separator, and only the pulverized coal is gas from the burner. It is something that is jetted out and burned like.

【0003】図4に微粉炭燃焼方式による発電用ボイラ
の概略的構成図を示す。同図において、給炭機10に貯
えられた石炭はミル11に送られてローラ12で必要な
粒度に粉砕され、粗粉分離器13で粗粉炭と微粉炭とに
分離される。粗粉分離器13には、羽根(ベーン)の開
度を変えることによって粗粉炭と微粉炭とを分離するベ
ーン方式と、遠心分離によって分離する回転方式とがあ
る。
FIG. 4 shows a schematic diagram of a power generation boiler using a pulverized coal combustion system. In the figure, the coal stored in the coal feeder 10 is sent to a mill 11, crushed by a roller 12 to a required particle size, and separated by a coarse powder separator 13 into coarse coal and fine coal. The coarse powder separator 13 includes a vane system that separates the coarse coal and the fine coal by changing the opening of the blade (vane) and a rotating system that separates the coarse coal by centrifugal separation.

【0004】粗粉分離器13で分離された微粉炭は一次
空気と共に燃焼炉14のバーナ15に送られる。一次空
気は石炭を乾燥させて燃焼しやすくすると同時に微粉炭
をバーナ15へ送るための運搬用空気であり、燃焼に必
要な空気量の10〜30%程度が使用される。残りの空
気はバーナ15の噴射口の周囲から二次空気として与え
られる。また、着火の安定を図るために、または火炎の
形状を調整するために三次空気を与えることもある。ま
た、バーナ15から離れて燃焼炉14の適当な箇所から
燃焼ガスの進行方向に二段燃焼法による二段燃焼空気を
与える。これらの各空気は押込通風機16から空気予熱
器17を通じて送り込まれる。二段燃焼空気の量は二段
燃焼空気ダンパ18によって調節する。
The pulverized coal separated by the coarse powder separator 13 is sent to the burner 15 of the combustion furnace 14 together with the primary air. The primary air is air for transporting the pulverized coal to the burner 15 at the same time as drying the coal to facilitate combustion, and about 10 to 30% of the amount of air required for combustion is used. The remaining air is provided as secondary air from around the injection port of the burner 15. In addition, tertiary air may be supplied to stabilize ignition or adjust the shape of the flame. Further, apart from the burner 15, the two-stage combustion air by the two-stage combustion method is given from an appropriate part of the combustion furnace 14 in the traveling direction of the combustion gas. Each of these air is sent from the forced draft fan 16 through the air preheater 17. The amount of the two-stage combustion air is adjusted by the two-stage combustion air damper 18.

【0005】燃焼炉14で発生した熱は放射あるいは燃
焼ガスの接触によって蒸発水管19内の水に伝えられ、
水を蒸発させる。燃焼ガスは熱の回収を図るための空気
予熱器17を通り誘引通風機20によって煙突21から
放出される。
The heat generated in the combustion furnace 14 is transferred to the water in the evaporated water pipe 19 by radiation or contact of combustion gas,
Evaporate the water. Combustion gas passes through an air preheater 17 for recovering heat and is discharged from a chimney 21 by an induced draft fan 20.

【0006】ボイラの運転に当たっては、燃焼ガス中に
含まれる窒素酸化物(NOx )や硫黄酸化物(SOx )
等の有害物質を環境対策上規制値以下に抑えると共に、
燃焼効率に影響を及ぼす灰中未燃分(H2 ,CH4
ど)の低減を図る必要がある。とくに石炭を燃料とする
ボイラでは、燃焼速度が石油,ガス等の燃料に比べて格
段に遅いことから燃焼炉の温度の低下に伴って、また低
NOx 燃焼法である二段燃焼法により燃焼炉の温度が低
下するため、灰中未燃分の残存量が増加する傾向にあ
る。
When operating the boiler, nitrogen oxides (NOx) and sulfur oxides (SOx) contained in the combustion gas are used.
In addition to suppressing harmful substances such as
It is necessary to reduce unburned components (H 2 , CH 4, etc.) in ash that affect combustion efficiency. Especially in the case of a coal-fired boiler, the combustion speed is much slower than that of fuels such as oil and gas, so the temperature of the combustion furnace decreases and the two-stage combustion method, which is a low NOx combustion method, is used. Since the temperature of 1 decreases, the residual amount of unburned matter in ash tends to increase.

【0007】灰中未燃分はバーナ15で燃焼する石炭の
微粉粒度によって大きく変動する。微粉粒度が細かいほ
ど燃焼用空気と接触する表面積が大きくなるため、よく
燃焼して灰中未燃分は低減する。従って、ボイラの運転
中には排ガス中の灰中未燃分の濃度を監視し、灰中未燃
分濃度の増加に対しては粗粉分離器13を制御して微粉
粒度を細かくして燃焼効率を上げる必要がある。
The unburned content in the ash varies greatly depending on the particle size of the coal burned in the burner 15. The finer the particle size of the fine powder, the larger the surface area that comes into contact with the combustion air, so that it burns well and reduces the unburned content in ash. Therefore, while the boiler is operating, the concentration of unburned ash in the exhaust gas is monitored, and when the concentration of unburned ash is increased, the coarse powder separator 13 is controlled to reduce the fine powder particle size and burn it. We need to increase efficiency.

【0008】[0008]

【発明が解決しようとする課題】ところで、微粉炭燃焼
は燃料比,石炭中の灰分,粒径分布など多くの因子が複
雑に係わっているため、燃焼過程で灰中未燃分を推定す
ることは極めて困難である。このため、燃焼炉の炉壁に
覗き窓を設け、この窓からバーナの燃焼火炎をカメラに
よって撮影し、得られる火炎画像から火炎温度を算出
し、火炎温度,石炭供給量,空気供給量,予熱空気温度
等のデータから燃焼率を求め、この燃焼率と石炭中の灰
分とから灰中未燃分の濃度を推定するようにした技術が
提案されている(例えば、特開平2−208412号参
照)。
By the way, in pulverized coal combustion, many factors such as fuel ratio, ash content in coal, and particle size distribution are complicatedly involved. Therefore, it is necessary to estimate unburned ash content in the combustion process. Is extremely difficult. Therefore, a peep window is provided on the furnace wall of the combustion furnace, the combustion flame of the burner is photographed from this window, the flame temperature is calculated from the obtained flame image, and the flame temperature, coal supply amount, air supply amount, preheat A technique has been proposed in which a combustion rate is obtained from data such as air temperature, and the concentration of unburned matter in ash is estimated from this combustion rate and ash content in coal (for example, see Japanese Patent Laid-Open No. 208412/1990). ).

【0009】ところが、この従来技術によると、燃焼炉
の炉壁にカメラを設置し、このカメラで撮影したアナロ
グ映像信号をディジタル映像信号に変換し、ディジタル
画像処理技術によって火炎画像から火炎温度を算出する
ようにしているので、装置が複雑となり、また、燃焼炉
出口の灰中未燃分の算出には、火炎温度のみならず燃焼
過程に沿った温度分布や空気比分布が必要となるが、燃
焼炉全体を対象とした温度分布、空気比分布の計測は実
用炉を対象とした場合には困難である。
However, according to this conventional technique, a camera is installed on the wall of the combustion furnace, an analog video signal taken by this camera is converted into a digital video signal, and the flame temperature is calculated from the flame image by the digital image processing technique. Therefore, the apparatus becomes complicated, and in addition to the flame temperature, the temperature distribution and the air ratio distribution along the combustion process are required to calculate the unburned ash content at the outlet of the combustion furnace. It is difficult to measure the temperature distribution and air ratio distribution for the entire combustion furnace when targeting a practical furnace.

【0010】この発明は、燃焼効率に影響のある燃焼排
ガス中の灰中未燃分の濃度を、現在の状況から簡易な手
段で推論して求めることの出来る石炭燃焼炉の灰中未燃
分推定装置を提供することを目的とする。
The present invention is capable of inferring the concentration of unburnt ash content in flue gas, which has an influence on combustion efficiency, from the current situation by a simple means, and obtains the unburnt ash content in coal combustion furnaces. It is an object to provide an estimation device.

【0011】[0011]

【課題を解決するための手段】この発明は、微粉炭燃焼
方式の石炭燃焼炉において、燃焼炉内の温度、燃焼炉の
負荷帯、燃焼炉の汚れ係数、燃焼炉に供給する二段燃焼
空気の割合および燃焼炉に供給する石炭の混炭比率をフ
ァジィ量として取り込み、予め求められている基準炉内
温度分布、基準炉内空気比分布および基準微粉炭粒子径
分布の各基準値を補正する補正データおよび燃料比デー
タを推論し、この補正データによって補正した後の各基
準値と、燃料比データから求まる石炭の反応速度比デー
タとに基づいて燃焼排ガス中の灰中未燃分濃度を算出す
ることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention relates to a pulverized coal combustion type coal combustion furnace, including the temperature inside the combustion furnace, the load zone of the combustion furnace, the dirt coefficient of the combustion furnace, and the two-stage combustion air supplied to the combustion furnace. And the mixed coal ratio of the coal supplied to the combustion furnace as fuzzy quantities, and corrects the standard values of the standard furnace temperature distribution, standard furnace air ratio distribution, and standard pulverized coal particle size distribution that have been obtained in advance. Data and fuel ratio data are inferred, and the unburned ash concentration in the flue gas is calculated based on each reference value after being corrected by this correction data and the reaction rate ratio data of the coal obtained from the fuel ratio data. It is characterized by

【0012】[0012]

【作用】この発明による灰中未燃分推定装置において
は、燃焼炉内の温度、燃焼炉の負荷帯、燃焼炉の汚れ係
数、燃焼炉に供給する二段燃焼空気の割合および燃焼炉
に供給する石炭の混炭比率の各データをファジィ量とし
て対応するメンバーシップ関数によって定性的に評価
し、ある状況のときに出力をどう設定するかを予め定め
たファジィ・ルールから、評価した値にあったルールを
検索してファジィ推論により基準炉内温度分布、基準炉
内空気比分布および基準微粉炭粒子径分布の各基準値を
補正するための各補正データおよび燃料比データを推論
する。
In the ash unburnt content estimating apparatus according to the present invention, the temperature in the combustion furnace, the load zone of the combustion furnace, the dirt factor of the combustion furnace, the proportion of the two-stage combustion air supplied to the combustion furnace, and the supply to the combustion furnace. Each data of coal mixing ratio of coal is evaluated qualitatively by the corresponding membership function as a fuzzy amount, and it is the value evaluated from the predetermined fuzzy rule how to set the output in a certain situation. Retrieval of rules and fuzzy inference are used to infer correction data and fuel ratio data for correcting reference values of reference in-reactor temperature distribution, reference in-reactor air ratio distribution and reference pulverized coal particle size distribution.

【0013】こうして推論した各補正データに基づき、
予め理論的または実験的に求められている基準炉内温度
分布、基準炉内空気比分布および基準微粉炭粒子径分布
の各基準値を補正し、また、推論した燃料比データから
石炭の反応速度比データを求める。そして、補正後の各
基準値と反応速度比データとに基づいて灰中未燃分濃度
を算出する。
Based on the correction data thus inferred,
The reaction rate of coal was corrected theoretically or experimentally in advance by correcting each reference value of the temperature distribution in the standard furnace, the air ratio distribution in the standard furnace, and the standard pulverized coal particle size distribution. Calculate ratio data. Then, the unburned ash concentration is calculated based on the corrected reference values and the reaction rate ratio data.

【0014】[0014]

【実施例】図1は、この発明による石炭燃焼炉の灰中未
燃分推定装置の一実施例を示すブロック図である。この
装置は、燃焼炉内の温度TM,負荷信号QS,炉内汚れ
係数ζB,二段燃焼空気割合TS,混炭比率MC等の各
データを逐次取り込んで炉内温度T,炉内空気比(理想
空気量と実際空気量との比)λ,微粉炭粒子径Dp の各
補正値および炭質の燃料比(揮発成分と固定炭素成分と
の比)FRを推論するファジィ推論部1と、予め理論的
または実験的に求められている炉内温度Tの分布,炉内
空気比λの分布,粒子径Dp の分布,炭質による反応速
度比βの分布がそれぞれ基準分布モデルとして用意され
ている基準部2と、この基準部2から得られる炉内温度
T,炉内空気比λ,微粉炭粒子径Dpの各基準値をファ
ジィ推論部1から得られる対応する補正値に基づいて補
正する補正部3と、この補正部3で補正した各値T,
λ,Dp および基準部2から出力される反応速度比βに
基づいて灰中未燃分濃度Cを算出する演算部4とからな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of the apparatus for estimating the unburned matter in ash of a coal combustion furnace according to the present invention. This device sequentially takes in each data such as temperature TM in the combustion furnace, load signal QS, in-furnace fouling coefficient ζB, two-stage combustion air ratio TS, mixed coal ratio MC, etc. A fuzzy inference unit 1 which infers the correction values of the ratio of the air amount to the actual air amount) λ, the pulverized coal particle diameter Dp, and the carbonaceous fuel ratio (ratio between the volatile component and the fixed carbon component) FR, and theoretically in advance. Or the reference part 2 in which the distribution of the in-reactor temperature T, the distribution of the in-reactor air ratio λ, the distribution of the particle diameter Dp, and the distribution of the reaction rate ratio β depending on the carbonaceous substance, which are experimentally obtained, are prepared as reference distribution models. And a correction unit 3 for correcting the reference values of the furnace temperature T, the furnace air ratio λ, and the pulverized coal particle diameter Dp obtained from the reference unit 2 based on the corresponding correction values obtained from the fuzzy inference unit 1. , Each value T corrected by the correction unit 3,
The calculation unit 4 calculates the unburned ash content C based on λ, Dp and the reaction speed ratio β output from the reference unit 2.

【0015】ファジィ推論部1は、図2に示すように、
評価部1a、ルール部1bおよび推論部1cから構成さ
れる。評価部1aは燃焼炉14内に設置した温度センサ
で測定した炉内温度データTM、二段燃焼空気ダンパ1
8の操作量から得られる二段燃焼空気割合データTS、
ミル11に供給される石炭の混炭比率MC等の各データ
をファジィ量として取り込み、これらの各データを、対
応するメンバーシップ関数によって定性的に評価する。
ルール部1bはある状況のときに出力をどう設定するか
のルールを、これまで蓄積されてきた豊富なデータベー
スに基づいて「if 前件部 then 後件部」の形式で記
述し格納している。推論部1cは評価部1aで評価した
値に合ったルールをルール部1bから検索し、基準炉内
温度分布Tの補正値T’、基準炉内空気比分布λの補正
値λ’、基準粒子径分布Dp の補正値Dp ’の各補正値
と燃料比FRとをそれぞれ推論する。
The fuzzy inference unit 1 is, as shown in FIG.
The evaluation unit 1a, the rule unit 1b, and the inference unit 1c are included. The evaluation unit 1a includes furnace temperature data TM measured by a temperature sensor installed in the combustion furnace 14 and two-stage combustion air damper 1
Two-stage combustion air ratio data TS obtained from the manipulated variable of 8,
Each data such as the coal mixing ratio MC of the coal supplied to the mill 11 is taken in as a fuzzy amount, and each of these data is qualitatively evaluated by the corresponding membership function.
The rule part 1b describes and stores the rule of how to set the output in a certain situation in the form of "if antecedent part then consequent part" based on the abundant database accumulated so far. . The inference unit 1c searches the rule unit 1b for a rule that matches the value evaluated by the evaluation unit 1a, and corrects the correction value T'of the reference furnace temperature distribution T, the correction value λ'of the reference furnace air ratio distribution λ, and the reference particles. The respective correction values of the correction value Dp 'of the diameter distribution Dp and the fuel ratio FR are respectively inferred.

【0016】いま、炉内温度データTMがm1であり、
炉内温度に関するルールが「if TM=sm then
T’=sm」(ルール1),「if TM=md then
T’=md」(ルール2),「if TM=bg then
T’=bg」(ルール3)の3ルール有るとすると、評
価部1aの炉内温度に関するメンバーシップ関数からこ
のルールに当てはまる度合(あいまい度)f1およびf
2が求まる。
Now, the temperature data TM in the furnace is m1,
The rule regarding the temperature inside the furnace is “if TM = sm then
"T '= sm" (rule 1), "if TM = md then"
T ′ = md ”(rule 2),“ if TM = bg then
If there are three rules of “T ′ = bg” (rule 3), the degree (ambiguity) f1 and f that applies to this rule from the membership function regarding the temperature in the furnace of the evaluation unit 1a.
2 is obtained.

【0017】推論部1cでは、推論法として「max−
min論理積」を適用し、ルール1に基づいて度合f1
のフラットなメンバーシップ関数と後件部の「T’=s
m」のメンバーシップ関数との論理積を求め、同様にし
てルール2に基づいて度合f2のフラットなメンバーシ
ップ関数と後件部の「T’=md」のメンバーシップ関
数との論理積を求める。図式的には、図3に示すよう
に、各後件部のメンバーシップ関数の頭切りを行い、s
m’(図a)およびmd’(図b)を求める。次いで、
sm’およびmd’の論理和を取って重心法により図形
の重心を求め(図c)、この求めた重心の台集合の値q
1が確定出力T’(炉内温度Tの補正値)となる。他の
出力λ’,Dp’,FRも同様にして求める。なお、図
中のファジィ・ラベル「sm」、「md」、「bg」は
それぞれ「補正量小(small)」、「補正量中(middl
e )」、「補正量大(big)」を表している。
In the inference unit 1c, "max-
min logical product ”is applied, and the degree f1 is calculated based on rule 1.
Flat membership function and the consequent "T '= s
AND with the membership function of "m", and similarly, based on rule 2, the AND of the flat membership function of the degree f2 and the membership function of "T '= md" in the consequent part is obtained. . Schematically, as shown in FIG. 3, the membership function of each consequent part is truncated, and s
Determine m '(figure a) and md' (figure b). Then
The center of gravity of the figure is obtained by the center of gravity method by taking the logical sum of sm 'and md' (Fig. c), and the value q of the base set of the obtained center of gravity is obtained.
1 is the definite output T '(correction value of furnace temperature T). The other outputs λ ′, Dp ′, FR are similarly obtained. The fuzzy labels “sm”, “md”, and “bg” in the figure are “correction amount small (small)” and “correction amount medium (middl), respectively.
e) ”and“ large correction amount (big) ”.

【0018】基準部2は、燃焼炉の火炉長DLに対する
炉内温度Tの分布を示す基準温度分布テーブル2aと、
火炉長DLに対する炉内空気比λの分布を示す基準空気
比分布テーブル2bと、石炭の粒度Dp の分布を示す基
準粒度分布テーブル2cと、ファジィ推論部1で推論し
た燃料比FRに対する石炭の反応速度比βの分布を示す
基準反応速度比分布テーブル2dとを有する。これらの
各テーブルに格納されているデータは予め理論的に、ま
たは実験的に求められているデータである。なお、燃焼
炉の火炉長DLは演算制御部4eから供給される。
The reference section 2 is a reference temperature distribution table 2a showing the distribution of the in-furnace temperature T with respect to the furnace length DL of the combustion furnace,
Reference air ratio distribution table 2b showing distribution of in-reactor air ratio λ with respect to furnace length DL, reference particle size distribution table 2c showing distribution of coal particle size Dp, and reaction of coal with fuel ratio FR inferred by fuzzy inference unit 1 It has a reference reaction speed ratio distribution table 2d showing the distribution of the speed ratio β. The data stored in each of these tables is theoretically or experimentally obtained in advance. The furnace length DL of the combustion furnace is supplied from the arithmetic control unit 4e.

【0019】補正部3は、基準部2のテーブル2a〜2
cから出力される炉内温度T,炉内空気比λ,粒子径D
p の各基準データを、ファジィ推論部1で推論した対応
する各補正値T’,λ’,Dp ’に基づいて補正し、補
正後の各データを演算部4に供給するもので、ファジィ
推論の特徴を生かした補正の調整が容易な「if 〜then
〜」形式のルール表現が可能であり、また、ルール表
現において、計測の信号のあいまいさを考慮できる。な
お、補正演算は、炉内温度については温度分布の負荷帯
および汚れ係数からのずれを意識して加減算し、炉内空
気比および粒度分布については積の形で行う。
The correction unit 3 includes the tables 2a to 2 of the reference unit 2.
In-furnace temperature T output from c, in-furnace air ratio λ, particle size D
The reference data of p is corrected based on the corresponding correction values T ′, λ ′, Dp ′ inferred by the fuzzy inference unit 1, and each corrected data is supplied to the arithmetic unit 4. It is easy to adjust the correction that makes use of the features of "if ~ then
A rule expression of the form "~" is possible, and the ambiguity of measurement signals can be considered in the rule expression. The correction calculation is performed by adding and subtracting the temperature distribution in the furnace with consideration of the deviation of the temperature distribution from the load zone and the fouling coefficient, and the furnace air ratio and particle size distribution are calculated in the form of products.

【0020】演算部4は、基準部2および補正部3から
供給されるデータに基づいて、拡散律速(化学反応無限
大)時の酸素の拡散速度KMTを算出する拡散律速速度演
算部4a、表面反応律速(拡散速度無限大)時の表面反
応速度KCHを算出する反応律速速度演算部4b、微粉炭
の未燃焼率uを算出する未燃焼率演算部4c、未燃焼率
uに基づいて灰中未燃分濃度Cを算出する灰中未燃分演
算部4d、これら各演算部を制御する演算制御部4eか
らなる。
The calculation unit 4 calculates the diffusion rate K MT of oxygen when the diffusion rate is controlled (infinite chemical reaction) based on the data supplied from the reference unit 2 and the correction unit 3. Based on the reaction rate-controlling rate calculation unit 4b that calculates the surface reaction rate K CH when the surface reaction rate is controlled (infinite diffusion rate), the unburned rate calculation unit 4c that calculates the unburned rate u of pulverized coal, and the unburned rate u An ash unburned-content calculating unit 4d for calculating the ash unburned-content concentration C, and a calculation control unit 4e for controlling each of these calculating units.

【0021】一般に、燃焼炉内に吹き込まれた微粉炭粒
子の燃焼過程は揮発成分の気体燃焼と、残った固体粒子
部分(チャー)の表面燃焼との2段階に分けられ、燃焼
時間の大半は後半のチャー燃焼で占められている。チャ
ーの総括燃焼速度は粒子表面への酸素の拡散速度と粒子
表面での化学反応速度によって決まり、前者は燃料と空
気との混合特性が関係し、後者は燃料の化学的性質に依
存するが微粉炭の粒子径やその運動等の物理的特性も関
係する。
Generally, the combustion process of pulverized coal particles blown into the combustion furnace is divided into two stages, that is, gas combustion of volatile components and surface combustion of the remaining solid particle portion (char), and most of the combustion time is It is occupied by char burning in the second half. The overall burning rate of char is determined by the diffusion rate of oxygen to the particle surface and the chemical reaction rate on the particle surface.The former depends on the mixing characteristics of fuel and air, and the latter depends on the chemical properties of fuel, but Physical properties such as the particle size of charcoal and its movement are also relevant.

【0022】チャーの総括燃焼速度“dm/dt”は、倉田
らによると、 dm/dt=−πDp 2 ×1/(1/KMT+1/KCH) … m :粒子質量 Dp :粒子径 KMT:酸素の拡散速度 KCH:表面反応速度 で表される。
According to Kurata et al., The overall burning velocity "dm / dt" of char is dm / dt = -πDp 2 × 1 / (1 / K MT + 1 / K CH ) ... m: particle mass Dp: particle diameter K MT : oxygen diffusion rate K CH : surface reaction rate.

【0023】拡散速度KMTは拡散律速速度演算部4aで
算出し、表面反応速度KCHは反応律速速度演算部4bで
算出する。拡散速度KMTは、
The diffusion rate K MT is calculated by the diffusion rate controlling rate calculation unit 4a, and the surface reaction rate K CH is calculated by the reaction rate controlling rate calculation unit 4b. The diffusion rate K MT is

【数1】 D :酸素の拡散係数 ρ :ガス密度 Dp :粒子径 T :炉内温度 γ :拡散係数と燃焼反応の量論係数によって決まる値
(γ≒−1) fm :酸素の質量分率 で表される。なお、添字の「0」は標準状態を表す。
[Equation 1] D: oxygen diffusion coefficient ρ: gas density Dp: particle size T: furnace temperature γ: value determined by diffusion coefficient and stoichiometric coefficient of combustion reaction (γ≈-1) fm: expressed by oxygen mass fraction . The subscript "0" represents the standard state.

【0024】反応速度KCHは、 KCH=KCH' ×β=KCH' {1+(2/FR)1.5 ×2}/3 … で表され、βは前述した反応速度比、FRは前述した燃
焼比である。KCH’は広範な石炭の平均値的な表面反応
速度を表しており、炭質によって異なるため、炭質を表
す燃料比FRから定まる反応速度比βによって修正して
いる。この平均値的な反応速度KCH’は、 KCH' = 8710 exp ( − 17980/T)×Po (T≦1500K) =( 3.85 ×10-4T−0.525 )×Po (T>1500K) … Po :酸素の分圧(atm) で表される。
The reaction rate K CH is expressed by K CH = K CH '× β = K CH ' {1+ (2 / FR) 1.5 × 2} / 3, where β is the above reaction rate ratio and FR is the above. Is the combustion ratio. K CH 'represents the average surface reaction rate of a wide range of coal, which varies depending on the carbon quality, and is therefore corrected by the reaction rate ratio β determined from the fuel ratio FR representing the carbon quality. The average reaction rate K CH 'is K CH ' = 8710 exp (-17980 / T) x Po (T ≤ 1500 K) = (3.85 x 10 -4 T-0.525) x Po (T> 1500 K). Po: Expressed by oxygen partial pressure (atm).

【0025】また、酸素分圧Po と基準空気比分布λと
の関係は、 Po /Ptotal =Vo2/Vtotal =O2 % Ptotal :全圧(atm ) Vo2 :酸素容積 Vtotal :全容積 O2 % :酸素濃度(%) λ=21/(21−O2 %) から Po =Ptotal ×21(λ−1)/λ となる。
[0025] The relationship between the oxygen partial pressure Po and the reference air ratio distribution λ is, Po / Ptotal = Vo 2 / Vtotal = O 2% Ptotal: total pressure (atm) Vo 2: Oxygen volume Vtotal: total volume O 2 %: Oxygen concentration (%) From λ = 21 / (21-O 2 %), Po = Ptotal × 21 (λ-1) / λ.

【0026】次に、こうして求めた拡散速度KMTおよび
反応速度KCHに基づいて未燃焼率演算部4cで未燃焼率
uを算出する。燃焼による質量の減分は、チャーの総括
燃焼速度(式)を燃焼時間で積分した結果により求ま
る。従って、単位質量当たりの炭素分の燃焼時間S後の
未燃焼率uは、次式から求まる。
Next, the unburned rate calculator 4c calculates the unburned rate u based on the diffusion rate K MT and the reaction rate K CH thus obtained. The decrement of the mass due to combustion is obtained by integrating the overall combustion speed (formula) of char with the combustion time. Therefore, the unburned rate u after the burning time S of the carbon content per unit mass is obtained from the following equation.

【数2】 [Equation 2]

【0027】従って、原炭の灰分割合をAとすると、単
位質量当たりの炭素分の未燃焼分は“u(1−A)”と
なるから、灰中未燃分濃度Cは、
Therefore, assuming that the ash content of the raw coal is A, the unburned carbon content per unit mass is "u (1-A)".

【数3】 となる。灰分割合Aは石炭の成分を固定炭素,揮発分,
水分,灰分の四つに分けて重量百分率で表したうちの灰
分の割合である。
[Equation 3] Becomes The ash ratio A is the composition of coal including fixed carbon, volatile matter,
It is the proportion of ash in the water and ash divided into four and expressed as a weight percentage.

【0028】こうして得られた灰中未燃分濃度Cに基づ
いて粗粉分離器13のベーン開度または回転数を制御
し、微粉炭の粒度を調節すれば燃焼排ガス中の灰中未燃
分の濃度を安定領域に導くことが出来る。なお、前述の
実施例においては、推論法として「max−min論理
積」を適用するようにしたが、これに限らず他の推論
法、例えば、「max−min代数積」を適用するよう
にしてもよい。
Based on the concentration C of the unburned matter in the ash thus obtained, the vane opening or the rotation speed of the coarse powder separator 13 is controlled, and the particle size of the pulverized coal is adjusted. The concentration of can be led to the stable region. In the above-described embodiment, the "max-min logical product" is applied as the inference method, but the invention is not limited to this, and other inference methods such as "max-min algebraic product" may be applied. May be.

【0029】[0029]

【発明の効果】この発明によれば、燃焼排ガス中に含ま
れる灰中未燃分の濃度を、ファジィ推論によって簡易な
手段で精度よく定性的に求めることができ、石炭燃焼炉
の効率的な運転制御が可能となる。
According to the present invention, the concentration of unburned ash contained in combustion exhaust gas can be qualitatively obtained by a simple means with a simple means by fuzzy reasoning, and an efficient coal combustion furnace can be obtained. Operation control becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1におけるファジィ推論部のブロック図であ
る。
FIG. 2 is a block diagram of a fuzzy inference unit in FIG.

【図3】ファジィ推論部における推論方法を説明するた
めの図である。
FIG. 3 is a diagram for explaining an inference method in a fuzzy inference unit.

【図4】発電用ボイラの概略的構成図である。FIG. 4 is a schematic configuration diagram of a power generation boiler.

【符号の説明】[Explanation of symbols]

1 ファジィ推論部 2 基準部 3 補正部 4 演算部 1a 評価部 1b ルール部 1c 推論部 1 Fuzzy inference part 2 Reference part 3 Correction part 4 Calculation part 1a Evaluation part 1b Rule part 1c Inference part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 裕一 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 原田 英一 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (56)参考文献 特開 平3−29002(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuichi Miyamoto 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries Ltd. Akashi factory (72) Inventor Eiichi Harada 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy industry Co., Ltd. Akashi factory (56) Reference JP-A-3-29002 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭を微粉炭機によって粉砕し、粗粉分
離器によって所定の粒度以下の微粉炭のみを分離し、こ
の分離した微粉炭を燃焼炉で燃焼させる微粉炭燃焼方式
の石炭燃焼炉において、前記燃焼炉内の温度、前記燃焼
炉の負荷帯、前記燃焼炉の汚れ係数、前記燃焼炉に供給
する二段燃焼空気の割合および前記燃焼炉に供給する石
炭の混炭比率をファジィ量として取り込み、予め求めら
れている基準炉内温度分布、基準炉内空気比分布および
基準微粉炭粒子径分布の各基準値を補正する補正データ
および燃料比データを推論し、前記補正データによって
補正した後の前記各基準値と、前記燃料比データから求
まる石炭の反応速度比データとに基づいて燃焼排ガス中
の灰中未燃分濃度を算出することを特徴とする石炭燃焼
炉の灰中未燃分推定装置。
1. A coal combustion furnace of a pulverized coal combustion system in which coal is pulverized by a pulverized coal machine, only a pulverized coal having a predetermined particle size or less is separated by a coarse powder separator, and the separated pulverized coal is burned in a combustion furnace. In the above, the temperature in the combustion furnace, the load zone of the combustion furnace, the dirt factor of the combustion furnace, the ratio of the two-stage combustion air supplied to the combustion furnace and the mixed coal ratio of the coal supplied to the combustion furnace are fuzzy quantities. After taking in, inferring correction data and fuel ratio data for correcting the reference furnace temperature distribution, the reference furnace air ratio distribution, and the reference pulverized coal particle size distribution, which have been obtained in advance, and after inferring the correction data and the fuel ratio data. Each of the reference value of, and the ash unburnt content of the coal combustion furnace, characterized in that the ash unburned content concentration in the combustion exhaust gas is calculated based on the reaction rate ratio data of the coal obtained from the fuel ratio data Estimation apparatus.
【請求項2】 石炭を微粉炭機によって粉砕し、粗粉分
離器によって所定の粒度以下の微粉炭のみを分離し、こ
の分離した微粉炭を燃焼炉で燃焼させる微粉炭燃焼方式
の石炭燃焼炉において、前記燃焼炉内の温度、前記燃焼
炉の負荷帯、前記燃焼炉の汚れ係数、前記燃焼炉に供給
する二段燃焼空気の割合および前記燃焼炉に供給する石
炭の混炭比率の各データをファジィ量として取り込み、
予め求められている基準炉内温度分布、基準炉内空気比
分布および基準微粉炭粒子径分布の各基準値を補正する
補正データおよび燃料比データを推論するファジィ推論
部と、前記基準炉内温度分布、基準炉内空気比分布およ
び基準微粉炭粒子径分布の各基準値と前記燃料比データ
に対する石炭の反応速度比データとがそれぞれ格納され
ている基準部と、前記基準部から出力される前記各基準
値を前記ファジィ推論部から出力される前記補正データ
に基づいて補正する補正部と、前記補正部で補正した前
記各基準値および前記基準部から出力される前記反応速
度比データに基づいて灰中未燃分濃度を算出する演算部
と、からなることを特徴とする石炭燃焼炉の灰中未燃分
推定装置。
2. A coal combustion furnace of a pulverized coal combustion system in which coal is pulverized by a pulverized coal machine, only a pulverized coal having a predetermined particle size or less is separated by a coarse powder separator, and the separated pulverized coal is burned in a combustion furnace. In, the temperature in the combustion furnace, the load zone of the combustion furnace, the dirt coefficient of the combustion furnace, the ratio of the two-stage combustion air to be supplied to the combustion furnace, and each data of the mixed coal ratio of coal to be supplied to the combustion furnace, Capture as fuzzy quantity,
A fuzzy inference unit for inferring correction data and fuel ratio data for correcting each reference value of the reference in-reactor temperature distribution, the in-reactor air ratio distribution, and the in-core pulverized coal particle size distribution that are obtained in advance, and the in-react furnace temperature Distribution, a reference part in which each reference value of the reference in-reactor air ratio distribution and the reference pulverized coal particle size distribution and the reaction rate ratio data of the coal for the fuel ratio data are stored, respectively, and the output from the reference part Based on the correction unit that corrects each reference value based on the correction data output from the fuzzy inference unit, based on the reference value corrected by the correction unit and the reaction speed ratio data output from the reference unit An ash-unburned-content estimating apparatus for a coal combustion furnace, comprising: a calculation unit that calculates the concentration of unburned-content in ash.
JP3071999A 1991-04-05 1991-04-05 A device for estimating unburned content in ash of a coal combustion furnace Expired - Lifetime JPH0781701B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3071999A JPH0781701B2 (en) 1991-04-05 1991-04-05 A device for estimating unburned content in ash of a coal combustion furnace
US07/828,312 US5231939A (en) 1991-04-05 1992-01-30 Apparatus for estimating an unburned component amount in ash in a coal-fired furnace
EP92102314A EP0507060B1 (en) 1991-04-05 1992-02-12 Method and apparatus for determining the amount of unburned in-ash component in waste gases of a powdered coal combustion system.
DE69219513T DE69219513T2 (en) 1991-04-05 1992-02-12 Method and device for determining an unburned amount of components in the ashes of a coal-fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071999A JPH0781701B2 (en) 1991-04-05 1991-04-05 A device for estimating unburned content in ash of a coal combustion furnace

Publications (2)

Publication Number Publication Date
JPH04309714A JPH04309714A (en) 1992-11-02
JPH0781701B2 true JPH0781701B2 (en) 1995-09-06

Family

ID=13476686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071999A Expired - Lifetime JPH0781701B2 (en) 1991-04-05 1991-04-05 A device for estimating unburned content in ash of a coal combustion furnace

Country Status (4)

Country Link
US (1) US5231939A (en)
EP (1) EP0507060B1 (en)
JP (1) JPH0781701B2 (en)
DE (1) DE69219513T2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203267A (en) * 1991-01-22 1993-04-20 New Clear Energy, Inc. Method and apparatus for disposing of waste material
US5386373A (en) * 1993-08-05 1995-01-31 Pavilion Technologies, Inc. Virtual continuous emission monitoring system with sensor validation
US5539638A (en) * 1993-08-05 1996-07-23 Pavilion Technologies, Inc. Virtual emissions monitor for automobile
US5425316A (en) * 1993-10-12 1995-06-20 Nce Concepts, Ltd. Method and apparatus for controlling a waste disposal system
TW256873B (en) * 1993-12-29 1995-09-11 Combustion Eng
US5988079A (en) * 1995-01-13 1999-11-23 Framatome Technologies, Inc. Unburned carbon and other combustibles monitor
US5970426A (en) * 1995-09-22 1999-10-19 Rosemount Analytical Inc. Emission monitoring system
JP3062582B2 (en) * 1995-11-07 2000-07-10 株式会社日立製作所 Method and apparatus for predicting furnace state of pulverized coal combustion equipment
US6289266B1 (en) * 1999-05-14 2001-09-11 Allegheny Power Service Corporation Method of operating a boiler
WO2005025853A1 (en) * 2003-09-05 2005-03-24 Helicon Research, L.L.C. Nanophase multilayer barrier and process
US8768664B2 (en) * 2005-03-18 2014-07-01 CMC Solutions, LLC. Predictive emissions monitoring using a statistical hybrid model
US7421348B2 (en) * 2005-03-18 2008-09-02 Swanson Brian G Predictive emissions monitoring method
US20100330511A1 (en) * 2009-06-25 2010-12-30 Vladimir Moldovanu Method and system of preheating
US9291098B2 (en) 2012-11-14 2016-03-22 General Electric Company Turbomachine and staged combustion system of a turbomachine
JP6047031B2 (en) * 2013-02-19 2016-12-21 出光興産株式会社 Grinding equipment pulverization characteristic judgment program, coal combustion efficiency judgment program, pulverization equipment pulverization characteristic judgment apparatus, and coal combustion efficiency judgment apparatus
US10041672B2 (en) * 2013-12-17 2018-08-07 Schlumberger Technology Corporation Real-time burner efficiency control and monitoring
US10920982B2 (en) 2015-09-28 2021-02-16 Schlumberger Technology Corporation Burner monitoring and control systems
CN110848734B (en) * 2019-11-26 2021-08-27 华润电力技术研究院有限公司 Boiler blended coal selection method and related device
CN113717756B (en) * 2021-09-07 2022-07-12 中国科学院工程热物理研究所 Air distribution method and air distribution device
DE102022117612A1 (en) 2022-07-14 2024-01-25 Vaillant Gmbh Heating system, method for operating a heating system and use of a solar device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582527A (en) * 1981-06-26 1983-01-08 Yokogawa Hokushin Electric Corp Flow controller of pulverized coal
JPS59195012A (en) * 1983-04-20 1984-11-06 Hitachi Ltd Combustion control method
JPS61223425A (en) * 1985-03-27 1986-10-04 Hitachi Ltd Pulverized coal mill control device
US4640204A (en) * 1986-06-09 1987-02-03 Williams Patent Crusher And Pulverizer Company Fluidized bed combustion apparatus and method of operating same
JP2592098B2 (en) * 1988-05-31 1997-03-19 バブコツク日立株式会社 Pulverized coal-fired boiler control unit
JPH0329002A (en) * 1989-06-27 1991-02-07 Mitsubishi Heavy Ind Ltd Learning controller for combustion equipment

Also Published As

Publication number Publication date
EP0507060A2 (en) 1992-10-07
DE69219513T2 (en) 1997-08-14
US5231939A (en) 1993-08-03
JPH04309714A (en) 1992-11-02
EP0507060B1 (en) 1997-05-07
EP0507060A3 (en) 1993-03-17
DE69219513D1 (en) 1997-06-12

Similar Documents

Publication Publication Date Title
JPH0781701B2 (en) A device for estimating unburned content in ash of a coal combustion furnace
US5158024A (en) Combustion control apparatus for a coal-fired furnace
CA2179505C (en) Low emission and low excess air system
JP2006064300A (en) Combustion information monitoring controlling device for stoker type refuse incinerator
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JPS62255717A (en) Combustion control of fractionated waste incinerator
Yousif et al. Modeling of toxic metal emissions from solid fuel combustors
JPH0468533B2 (en)
JPH0468534B2 (en)
JP2696448B2 (en) Garbage incinerator
Junge Boilers fired with wood and bark residues
JP2753839B2 (en) Method for monitoring and controlling combustion state
WO1988001712A1 (en) Method and apparatus for controlling the rate of heat release
CN112664953A (en) Circulating fluidized bed incineration boiler for burning solid waste
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace
JPH09273732A (en) Control method of combustion in incinerating furnace
JPS6136611A (en) Combustion control of refuse incinerator
JPH0152653B2 (en)
JP2005282970A (en) Combustion control method for stoker type garbage incinerator, and garbage incinerator
JPH06105124B2 (en) Method and apparatus for estimating boiler exhaust gas components
JP2759473B2 (en) Method and apparatus for monitoring and controlling combustion state

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960319