JPS582527A - Flow controller of pulverized coal - Google Patents

Flow controller of pulverized coal

Info

Publication number
JPS582527A
JPS582527A JP10036281A JP10036281A JPS582527A JP S582527 A JPS582527 A JP S582527A JP 10036281 A JP10036281 A JP 10036281A JP 10036281 A JP10036281 A JP 10036281A JP S582527 A JPS582527 A JP S582527A
Authority
JP
Japan
Prior art keywords
pulverized coal
flow rate
signal
flow
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10036281A
Other languages
Japanese (ja)
Inventor
Akio Satori
聡夫 佐鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Hokushin Electric Works Ltd
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Electric Works Ltd, Yokogawa Hokushin Electric Corp filed Critical Hokushin Electric Works Ltd
Priority to JP10036281A priority Critical patent/JPS582527A/en
Publication of JPS582527A publication Critical patent/JPS582527A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To know a quantity of pulverized coal accurately and to carry out precise flow control, by obtaining the flow of the pulverized coal through values of a solid and a gaseous phase fluids and a solid-gas ratio. CONSTITUTION:Inactive gas is sent within a main duct 1 in an arrow direction through pressure by a blower 3. A dumping device of pulverized coal 9 is provided next to a valve 8. A flow signal Q of the inactive gas obtained by an evolution arithmetic unit 6 is multiplied by a constant K by a multiplier 16 depending on necessity and converted into a signal F. A pulverized coal weight signal W obtained from a belt scale 13 and the signal F are applied to a divider 17 and a solid-gas ratio W/F=Z is computed. A signal Qi showing a flow of the pulverized coal 9 is obtained by obtaining a signal DELTAPG through correction by the ratio Z of a measured differential pressure signal DELTAPtm of a flow meter 25a constituted with a venturi tube. The flow Wi of the pulverized coal is given by Wi=W.Qi/Q. With this, the flow of the pulverized coal can be found accurately and its flow control can be done precisely.

Description

【発明の詳細な説明】 C0発−は液体燃料に替えて微粉炭tm−゛科とする場
合に用いられる゛微粉炭流量制御装置に関すゐ・例え1
f、高炉の羽口或は各種の工業用燃焼装置では%燃、l
!供給路の藺便なこと、及び流量測定と制御の信頼性の
点から従来は重油或は灯油のよう1に痕、体皇、科が用
いられて−る・然し乍ら載体燃料O高騰及び資源の有効
刑期O面から、微粉炭を燃料とすることが考えられそい
る。
[Detailed Description of the Invention] Example 1 regarding a pulverized coal flow rate control device used when pulverized coal is used instead of liquid fuel.
f, % combustion, l in blast furnace tuyeres or various industrial combustion devices;
! Conventionally, fuel oil or kerosene has been used for fuel oil or kerosene due to the inconvenience of the supply route and the reliability of flow rate measurement and control. Considering the effective prison term, it seems likely that pulverized coal will be used as fuel.

黴l#縦を燃料として用いる場合に大別・すると次の2
つの障書が発生すゐ。
When using mold #vertical as fuel, it can be roughly divided into the following 2 types:
There are two problems.

そのlとしては微粉炭管如何にして燃焼装置に移送する
−かである゛、黴看炭は空気と振触している状態で粒子
間で摩擦し静電気によ〕火鞄放電が弛生ずると爆発事故
を起し危険であ↓、このため一般には不活性ガ′Xをキ
′今リヤガスとし、不活性ガス管管IIC流し、その不
m憔tヌO流れに投下してam装置に徽肴炭t$遇する
こ七が考えられている。            ・ その2としては微粉炭の流量を測定する方法である0%
に微粉炭を不活性fXJIc投入し固気2椙状態にした
後、管の、先を複数の管に分鋏し同11に複数の燃焼装
[KII[1B炭を送給する場合には各分岐管における
微粉炭OR量は微粉炭の投化量と1=1で対応しない、
従うて各分岐管におけゐ微粉炭の流量を測定する仁とが
要求される。
One of these is how the pulverized coal is transferred to the combustion equipment through the pipe.When the molten coal is in contact with the air, friction between the particles causes static electricity, and spark discharge occurs. It is dangerous to cause an explosion, so in general, inert gas is used as a rear gas, flowed through the inert gas pipe IIC, and dropped into the flow of the inert gas to the AM device. It is thought that there will be 7 servings of charcoal and t$.・The second method is 0%, which is a method to measure the flow rate of pulverized coal.
After injecting pulverized coal into the inert fXJIc and making it into a solid air state, divide the tip of the tube into multiple tubes, and connect multiple combustion devices to the same 11 [KII [When feeding 1B coal, each The amount of pulverized coal in the branch pipe does not correspond to the amount of pulverized coal thrown in at 1=1.
Therefore, a device is required to measure the flow rate of pulverized coal in each branch pipe.

第10陣書は従来か゛ら提案されている技術によ)解決
で■るが、11X2の障害にりいては末だこれを解消す
る逼幽な、技術は提案されてぃな−。
The 10th team book uses previously proposed techniques to solve the problem, but when it comes to the 11X2 problem, no technology has been proposed that would solve it.

つt夛不活性ガスと微粉炭から成る固気二相流体の流量
tiII定する測定手段としては、例えに放射性トレー
サ法、マイクロウェー1法、静電容量層相関法等が提案
されている。然し乍らこれらの流量測定手段は、高価で
且つ複雑に過ぎる欠点がある。41に高炉羽目のよ5に
一基尚1130〜40台も用いゐのに適していない。
As measuring means for determining the flow rate of a solid-gas two-phase fluid consisting of an inert gas and pulverized coal, the radioactive tracer method, the microwave method, the capacitive layer correlation method, and the like have been proposed. However, these flow measuring means have the disadvantage of being expensive and overly complex. It is not suitable for 41 to 40 blast furnaces in use.

この発−は構造が簡単で安価な流量針を用いて固気二相
流体の流量を一定し、その流量音制御する流量制御装置
を提供しようとするものである・このIAij!ではペ
ンチ、v管を用いて固気二相流体の流量tm定すると共
にその固気二相流体の固気比を一定し、その固気比と固
気二相流体の流量とから固体である微粉炭の流量を求め
るようkしたものである。
The purpose of this project is to provide a flow rate control device that uses a simple and inexpensive flow rate needle to maintain a constant flow rate of a solid-gas two-phase fluid and to control the flow rate sound. Now, use pliers and a V-tube to determine the flow rate tm of the solid-gas two-phase fluid, and keep the solid-gas ratio of the solid-gas two-phase fluid constant, and from the solid-gas ratio and the flow rate of the solid-gas two-phase fluid, it is determined that it is solid. It is designed to find the flow rate of pulverized coal.

従ってこの発明によれば従来から広く用いられているペ
ンチ、り管を用いて同気二s#1体のCl量【Cl定す
ることかで龜る。よりて安価Kll気二相流体t)R量
測定装置を得ることかで龜る。然もその流量測定値tm
気比によって補正し固体流量を求め良から黴11嶽の流
量を正確に求める仁とがで詣る。よって精度の高い流量
制御をlI行できる利点が得られる。
Therefore, according to the present invention, it is difficult to determine the amount of Cl in the same atmosphere using pliers and a tube, which have been widely used in the past. Therefore, it is difficult to obtain a low-cost KII gas two-phase fluid t) R amount measuring device. However, the flow rate measurement value tm
The solid flow rate is calculated by correcting it by the air ratio, and the flow rate of 11 times of mold is accurately determined. Therefore, there is an advantage that highly accurate flow rate control can be performed.

以下にこの発明の一実施例管図面管用いて詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained in detail below using a drawing of a tube.

第1図において1は本管を示す。本管lの置端K例えば
チッソのような不活性ガスを発生する不活性ガス源2が
接続され、送風機3によル不wi性ガスを本管1を矢印
40方向に圧送する。送風様3によって送風される不活
性ガスは流量計5によって流量が測定さ五る。流量計S
は、この例ではペンチ、り管を利用し良場合管示す、ペ
ンチ、り管によゐ流量測定は周知のように絞シの入口側
と絞p部分の圧力差t−渕定し、その圧力差を開平演算
1111によ〕−平演算して流量信号Qに変換して一定
するものである。ζO流量信号Qは調節計7の測定信号
入力端子PV K4見られる。調節計7の出力によ〉弁
8を制御し不活性ガスの流量管制−゛する。
In FIG. 1, 1 indicates the main pipe. An inert gas source 2 that generates an inert gas such as nitrogen is connected to the end K of the main pipe 1, and a blower 3 pumps the inert gas through the main pipe 1 in the direction of the arrow 40. The flow rate of the inert gas blown by the blowing method 3 is measured by a flow meter 5. Flowmeter S
In this example, pliers and a tube are used to measure the flow rate. The pressure difference is subjected to square root calculation 1111 to be converted into a flow rate signal Q and made constant. The ζO flow rate signal Q is seen at the measurement signal input terminal PV K4 of the controller 7. The output of the controller 7 controls the valve 8 to control the flow rate of the inert gas.

弁8の次KF!@粉lR90投下手段11が設けもれる
。微粉炭90投下手段11は、例えばホッパ12と、ベ
ルトスケール13J:、ベルトスクール13・を駆動す
るモーター4とによ)構成することができる。ベルトス
ケール13によって単位時間毎′に送られる微粉炭90
重量を一定し、その重量Wを調節計ISK、入力する。
Next KF after valve 8! @Powder lR90 dropping means 11 is omitted. The pulverized coal 90 dropping means 11 can be configured, for example, by a hopper 12 and a motor 4 that drives a belt scale 13J and a belt school 13. 90 pulverized coal sent per unit time by belt scale 13
Keep the weight constant and input the weight W into the controller ISK.

調節針16の出力によp4−タ14の速度を制御して本
管IK投入される微粉炭9の量tm御する。
The speed of the P4-tater 14 is controlled by the output of the adjustment needle 16 to control the amount tm of pulverized coal 9 introduced into the main pipe IK.

開平演算器1で得られた不活性ガスの流量信号Qは必要
に応じて乗算器16にて定数K1乗算し一号FK変換さ
れる。信号rとベルトスケール13から得られた微粉炭
重量信号Wは割Jl@17に供給され・この割算器17
にて!!−2.演算すみ。
The inert gas flow rate signal Q obtained by the square root calculator 1 is multiplied by a constant K1 in a multiplier 16 and subjected to No. 1 FK conversion, if necessary. The signal r and the pulverized coal weight signal W obtained from the belt scale 13 are supplied to the divider Jl@17.
At! ! -2. Calculation corner.

つま〕この2は微粉炭9と不活性ガスとの比であシ、こ
れ管通常固気比と称してい為、l!りて流量計5と、開
平演算aS、ベルトスケール13と。
[T] This 2 is the ratio of pulverized coal 9 to inert gas, and this is usually called the solid-gas ratio, so l! and a flow meter 5, a square root calculation aS, and a belt scale 13.

乗S器16.及び割算器17によって固気比zvt測定
する手段18−fi構成される。
Square S unit 16. and a divider 17 constitute means 18-fi for measuring the solid-gas ratio zvt.

固気比2を一定する手!R18は例えば纂2閣に示すよ
うに@威することもで龜る*m2図k・お−゛いて21
はペンテ、り管を示・す゛、−4ノ、チ、り管21の絞
〕の部分に発生する差圧4P1゛と−、出口・側の破シ
部分と開放部分の差圧I’mとt差圧計2コ2・ど・2
3によって一定し、゛これら差EノPムとlPm、を利
用、して演算するζ゛とによ)圃気二s#1体の剛気比
zを求めることかで1゛・、る、この発−ではζ1の何
れの方法で固気比2を求めてもよいものとする。
How to maintain a solid-air ratio of 2! For example, R18 can also be used as shown in Figure 2.
indicates the pent-hole tube, the differential pressure 4P1 generated at the constriction part of the tube 21 and the differential pressure I'm between the broken part on the outlet side and the open part. and t differential pressure gauge 2 pieces 2.do.2
3, and by calculating the stiffness ratio z of the field 2s#1 body by ``using these differences E, Pm and lPm, and calculating ζ'', we obtain 1゛. , In this calculation, it is assumed that the solid-gas ratio 2 may be determined by any method of ζ1.

本管lは微粉炭・9′・′の投・入位置の下流側にお−
て複数の″支管2−”141′# ’2・4 b 、 
24 a−・−・・・・24−m −に分1IItされ
る。黴゛粉炭・會は例えに2″OOメッシ、程度とする
から本管1かb分岐管ト1〜2・4mK分WItされて
%固気比2は変化しなiもの・Clることかで1.ゐ゛
The main pipe 1 is located downstream of the pulverized coal/9'/' input position.
multiple "branch pipes 2-"141'#'2, 4 b,
24 a-...24-m - is divided into 1IIt. For example, if the moldy powder coal is 2"OO mesh, then the main pipe 1 or the branch pipe B will be heated for 1 to 2.4 mK, and the % solid-air ratio 2 will not change. So 1.ゐ゛.

各分舷管241〜241にはペンチ、・り管によって構
成′され″た流量計25 a e 25 h a ’l
 3 @ −・・−2% mと流量を制御する弁ff1
8m−18m251EIlけられゐ0m″c、#i′分
腋管・2]&に関して・だ砂水している。ペンチ、・り
管にようて・構成さ・れ、良゛、流量計−25a401
1定差圧信号jPi、は割算器27に供給され、この割
算器27において固気比ZKよ為補正演算゛か施される
。こO補正演算によ〉微粉炭9が流れることKよって発
生するKMlj4する差圧ΔPa を得る。この差圧Δ
Pa を開平演算器28によシ関平演算す□ることによ
〕−粉炭9の流量を表わ゛す信号Qi を得る。ζJ−
量儒号Qiは乗算@2Gkて黴粉縦90重量信号Wと乗
算し、更に割算器31でW−Qiを不活性ガスの流量信
号Qで割算し、黴′粉炭の流量Wi■−・Qi を得る
。よってこれら演JEl!−嵩27.28.29.31
によル黴扮炭流゛量を求める演算手段30か構成される
。この微粉炭9の流量i号Wiは一節針32に与えられ
ゐ。
Each of the branch pipes 241 to 241 has a flow meter 25 a e 25 h a 'l configured with pliers and a pipe.
3 @ -...-2% Valve ff1 that controls m and flow rate
8m-18m251EIl is cut 0m''c, #i' axillary pipe 2] & is draining water. Use pliers, pipe is constructed, good, flowmeter-25a401
The constant differential pressure signal jPi is supplied to a divider 27, where a correction calculation is performed based on the solid-air ratio ZK. By this O correction calculation, the differential pressure ΔPa generated by KMlj4 due to the flow of pulverized coal 9 is obtained. This differential pressure Δ
A signal Qi representing the flow rate of the pulverized coal 9 is obtained by calculating the square root of Pa using the square root calculator 28. ζJ-
The quantity Qi is multiplied by the mold powder vertical 90 weight signal W by multiplication @2Gk, and further, the divider 31 divides W-Qi by the inert gas flow rate signal Q to obtain the mold coal powder flow rate Wi■-・Obtain Qi. Therefore, these performances JEl! -Bulk 27.28.29.31
A calculation means 30 for determining the amount of coal flowing through the mold is also constructed. The flow rate i of this pulverized coal 9 is given to the one-node needle 32.

調節計°32の設定信号入力端′f−8PKはこの例で
は空燃比測定手段33から空燃比に対応し九傷号Wdを
与え、微粉炭9の流量W1が空燃比信号W41と一弁2
6aKより電流量を制′御さ゛れた′囲気二相流°体は
燃焼装置34aK供給され漬、この例では゛燃焼装置3
4としぞバーチを用いた場合を示す、パーすには送風Δ
イfsst通じて熱風か供給される。送風Δイタ3s 数に対応し良数に分線される.各分岐管351〜351
には流量計36mと弁37mが挿入される。
In this example, the setting signal input terminal 'f-8PK of the controller °32 corresponds to the air-fuel ratio from the air-fuel ratio measuring means 33 and gives a nine-fault number Wd, and the flow rate W1 of the pulverized coal 9 is equal to the air-fuel ratio signal W41 and the one valve 2.
The ambient two-phase fluid whose current amount is controlled by the combustion device 34aK is supplied to the combustion device 34aK, and in this example, the “combustion device 3
4 shows the case of using Shizo Birch.
Hot air is supplied through the fsst. The line is divided into good numbers corresponding to the number of air blow Δita 3s. Each branch pipe 351-351
A flow meter 36m and a valve 37m are inserted in the .

図では分岐管35についてだけ示す.流量計36mも例
えばペンチ、゛す□普會用いる□ことかで亀る.rIL
量計36aO測定値は開平演算器38で開平演算し、流
量信号QAi K変換される.この流量信号QAiは調
節計39に入力され、調節計39の出力によシ弁371
″1制御し、空気の供給量塵=″定゛値管保持するよう
に制−する。
In the figure, only the branch pipe 35 is shown. The flowmeter 36m can also be adjusted by using pliers, for example. rIL
The measured value of the quantity meter 36aO is subjected to a square root calculation by a square root calculation unit 38, and converted into a flow rate signal QAiK. This flow rate signal QAi is input to the controller 39, and the output of the controller 39 causes the valve 371 to
``1 control, and control the air supply amount dust = ``constant value tube'' to be maintained.

尚開平演ーー′380′出力は加算@41と演算器42
にも供給される=この加算器41では他の分岐管351
〜3511K設けた流量針からOvL量信号を全て加算
し、空気量漬−量ΣQi を求める.こは−先′に説明
゛した調゛ー針゛320設定値入゛ー力端子89に与え
られる。
Shang Kaiping - '380' output is addition @41 and arithmetic unit 42
Also supplied to other branch pipes 351 in this adder 41
Add all the OvL quantity signals from the flow rate needles installed at ~3511K to find the air quantity ΣQi. This is applied to the adjustment needle 320 set value input terminal 89 described above.

一方この尭明Km−いては固気二相流体の流量管測定す
る流量針28a〜2sIkの前に流量計L5m〜251
を洗浄する手段44管設ける.この洗浄子llI44は
例えばスチーム発射ノズルに−よりて柳威すゐことかで
自為.即ち固気二相流体はペンチ1り管Oように絞at
持り部分においでは七の絞シ部分に微粉炭9が付着し、
測定誤差管発生させる欠点がある.このためこの尭@に
おいては流量針25m0fIN.つ重〕例え鑓流量計!
SaO位置から分岐管2 4 a 0IIIID O 
Is IFa度以上のj:流@にスチーム発射ノズル4
4&を取付ける・4!たスチーム発射ノズル441の更
に上流側には弁4satll&け,タイ−t40の指令
によ〕弁nsaを閉じて,II気二椙流体O@t’Lを
停止書せ,この状態でタイツ400al令によ〉ツメ#
44aからスチームt重量針ts&に肉うて射出させ流
量計zsat洗浄する・ζO洗浄紘タイマ40によりて
各分岐管24h〜24mKMImした壺流量針2sa〜
2s謳について馴次一定時IMI侮に行なう。
On the other hand, in this Yamei Km, flowmeters L5m to 251 are installed in front of the flow rate needles 28a to 2sIk that measure the flow rate pipes of solid-gas two-phase fluid.
A means for cleaning 44 pipes is provided. This cleaning element llI44 is made by, for example, a steam emitting nozzle. In other words, the solid-gas two-phase fluid is squeezed with pliers like a tube O.
In the holding part, pulverized coal 9 adheres to the squeezed part of 7,
It has the disadvantage of generating measurement error tubes. Therefore, in this case, the flow rate needle is 25m0fIN. 〔Silver flowmeter〕For example!
Branch pipe 2 4 a 0IIID O from SaO position
Is IFa degree or higher: Flow @ steam emitting nozzle 4
Install 4&・4! On the further upstream side of the steam discharge nozzle 441, close the valve nsa according to the command from the tie t40, and write to stop the II gas fluid O@t'L.In this state, the tights 400al command is written. yo〉claw #
Inject steam from 44a to the weight needle ts& and clean the flowmeter zsat. ζO cleaning timer 40 for each branch pipe 24h~24mKMIm.Flow rate needle 2sa~
Regarding the 2s song, IMI will perform at certain times.

このように流量計25m−2!!atヌチームによりて
洗浄するように構成し良ことによ)微粉炭がぺ3’ f
 、り管のtD部分に付着しても、これを一定時間毎に
職シ除くことが’e@る.よって測定槽′ilt常に正
常な状11KJII持することができる。
In this way, the flowmeter is 25m-2! ! If the pulverized coal is washed with steam, the pulverized coal is
Even if it adheres to the tD part of the pipe, it can be removed at regular intervals. Therefore, the measurement tank can always be maintained in a normal state.

尚スチームによゐ洗浄は流量計25&〜!l!IsmK
対してだけでなく、例えば流量制御弁261に対しても
同様に設けることもできる。
For cleaning with steam, use the flow meter 25 &~! l! IsmK
For example, the flow control valve 261 can also be provided in the same manner.

更にこの!l@ではペンチ、す管によって構成した流量
計25m−25mの差圧調定を確保する構造をも提案す
る.即ちペンチ、り管tMい光流置針ではg311に示
すように絞〕2゛16入力側と絞ル部分の関に発生する
差圧管差圧計46によ)測定するように構成される.こ
のため管24at)絞シ部分の入力側と、−絞〕部分と
から導管4 7 、 411が導出され為.これら導管
4tea8にはペリチ、り管210近くと差圧計4(i
0近(k弁49a。
Furthermore, this! At l@, we also propose a structure that ensures differential pressure adjustment between 25 m and 25 m of flowmeters constructed with pliers and a pipe. In other words, the pliers and optical flow positioning needle are configured to measure the differential pressure generated between the input side of the tube and the tube differential pressure gauge 46 as shown in g311. For this reason, conduits 47 and 411 are led out from the input side of the constriction part of the pipe 24at) and the conduit part. These conduits 4tea8 are connected to the peripheral pipe 210 and the differential pressure gauge 4 (i).
Near 0 (k valve 49a.

49%及び51a.51bt挿入し、差圧計460一定
入力q関に弁ssを接続する.常時は弁s2を閉じてm
−(が、差圧゛計4@t)4゛口点1**すゐ1)合a
弁49 bkUs 1 b を閉e−C”弁52tll
lけ、この状態で4mm点管補正する。
49% and 51a. 51b and connect valve ss to differential pressure gauge 460 constant input q. Normally, valve s2 is closed.
- (but, differential pressure ゛total 4@t) 4゛mouth point 1** sui 1) total a
Close valve 49 bkUs 1 b e-C” valve 52tll
In this state, correct the 4mm point tube.

このような差圧測定系においてペンチ、り管を流れる固
気二相流体に含まれる微粉炭が導管47゜48に流入す
ると、導管47.48が微粉炭によ)塞がれてしまうお
それがある。よって導管47゜48に常時(測定中)不
活性ガス源2かも減圧弁53.54tムじて不活性ガス
を与え、その不活性Iスtm定二相流体の通路に放出さ
せるととによ〉導管47.48に微粉炭か侵入すること
を防ぐ仁とができる。この2龜の不活性ガスの流量は測
定流体の流量の0.s−1度に選定すればこの不活性ガ
スによりて一定に影響を与えゐことが防止で龜る。
In such a differential pressure measurement system, if pulverized coal contained in the solid-gas two-phase fluid flowing through the pipes flows into the conduits 47 and 48, there is a risk that the conduits 47 and 48 will be blocked by the pulverized coal. be. Therefore, by constantly supplying inert gas to the conduits 47 and 48 (during measurement) through the inert gas source 2 or the pressure reducing valve 53.54 t, and releasing it into the passage of the inert Istm constant two-phase fluid. > A layer is formed to prevent pulverized coal from entering the conduits 47 and 48. The flow rate of these two inert gases is 0.0% of the flow rate of the measurement fluid. If the temperature is selected to be s-1 degrees, it is possible to prevent the inert gas from exerting a constant influence.

上述したようにこの発明によれば、各分舷管246〜2
41を流れる固気二相流体の流量値と固気比ZKよ)微
粉炭9の流量を求め九から、各燃焼装置34a〜34+
aK与、へられる微粉炭の量を正確に知ることがで自る
。然も流量針は全て標準仕様の流量針管用い、更に各演
算要素も標準仕様品で構成で暑るかも金体として安価に
作ることがで龜る。
As described above, according to the present invention, each branch pipe 246-2
Based on the flow rate value of the solid-gas two-phase fluid flowing through 41 and the solid-gas ratio ZK), calculate the flow rate of pulverized coal 9, and from 9, calculate each combustion device 34a to 34+.
It is possible to accurately know the amount of pulverized coal to be given and reduced. However, the flow rate needles are all standard specification flow needle tubes, and each calculation element is also made of standard specification products, so it can be made cheaply as a metal body even though it may be hot.

更にこの発−では固気二相流体の流量【Il定する流量
計2sa〜flsmK関してスチームによる洗浄手段4
49設け、ζO洗浄手段44によ〕一定時間毎に順次流
量計25m−15mtfi1.#するように構成したか
ら、微粉炭の付着による一定−差の発生を阻止すること
がで龜る。
Furthermore, in this issue, with respect to the flow meters 2sa to flsmK that determine the flow rate of the solid-gas two-phase fluid, a cleaning means 4 using steam is used.
49, and the flowmeters 25m-15mtfi1. Since the structure is configured to have #, it is possible to prevent the occurrence of a constant difference due to the adhesion of pulverized coal.

更にこの発−ではペンチ、り管における差圧針の導管4
7・48に対し常時微量の不活性ガJを流すようにした
から差圧計46に過じみ導管47゜48に微粉炭が侵入
することがない、よって導管47.411が微粉炭下車
がりでしまうことがなく。
Furthermore, in this development, the pliers and the conduit 4 of the differential pressure needle in the tube are
Since a small amount of inert gas J is always flowed to 7 and 48, there is no leakage to the differential pressure gauge 46 and pulverized coal does not enter the conduits 47 and 48, so conduits 47 and 411 are placed under the pulverized coal. Without a doubt.

長期にわえって安定して動作させることができる。It can operate stably over a long period of time.

尚上述では各演算要素17,18.27.,28゜2G
、31.318.41.42.43に4に別に構成され
る要素とし下底−したが、第4図に示すように各演JE
II*0.演算及び弁26畠の制御を計算器s5、によ
りて行なわせゐことができる。この例では高炉又はlイ
ツ等かbo温度信号−56によ)微粉炭9の投下量を制
御するように構成し九場合管示す、微粉炭の投下量Wと
不活性Iス0流量。
In the above description, each calculation element 17, 18, 27. ,28°2G
, 31.318.41.42.43 as an element composed separately in 4, but as shown in Figure 4, each performance JE
II*0. Calculations and control of the valve 26 can be performed by the calculator s5. In this example, the blast furnace or the like is configured to control the amount of pulverized coal 9 thrown in (by the temperature signal -56), and the tube shows the amount W of pulverized coal thrown in and the flow rate of inert I.

とかも固気比zを算出し、固気比2と各分鋏管24a〜
2411の流量信号によ〕各分鋏管24&−24−の微
粉炭の流量を求め、各羽口の空気流量針36畠〜38m
0償号によ〕告別日毎に最適な微粉炭量を弁26a〜2
6難によりて制御する。
In addition, the solid-air ratio z is calculated, and the solid-air ratio 2 and each dividing scissor tube 24a ~
Based on the flow rate signal of 2411], determine the flow rate of pulverized coal in each branch pipe 24 & -24-, and set the air flow rate needle 36 to 38 m of each tuyere.
Depending on the farewell date] select the optimum amount of pulverized coal for each farewell date from valves 26a to 2.
Controlled by six difficulties.

オた一定時間毎に洗浄手段44を動作させる制御も計算
器55によりて制御することができる・t 友上述テq
e分皺w 24 m 、 24 k =”24 mta
れる固気二相流体の流量管弁26a〜26鳳によりて各
別に制御する場合tWi明し九が、纂5mK示すよう#
C空気量だけを制御するよ5K”lll威すゐこともで
きる。この場合には流量計28a〜261で一定した固
気二相流体の一定値から例えば微粉炭9の投下量を制御
し、固気比zを変化させて微粉炭9の流量を制御するよ
うkした場合を示す。
Additionally, the operation of the cleaning means 44 at regular intervals can also be controlled by the calculator 55.
e minute wrinkle w 24 m, 24 k =”24 mta
When the flow rate of the solid-gas two-phase fluid is controlled separately by the pipe valves 26a to 26,
It is also possible to control only the amount of C air. In this case, for example, the amount of pulverized coal 9 to be dropped may be controlled from a constant value of the solid-gas two-phase fluid using the flowmeters 28a to 261. A case is shown in which the flow rate of pulverized coal 9 is controlled by changing the solid-gas ratio z.

【図面の簡単な説明】[Brief explanation of the drawing]

鯖1図はこの発明の一実施例ta@するためのツ■、り
図%露2rlJはζO発−の要部の他の実施例Yt@i
jiするためO#面S、纂3図はこの発明の要部の^体
的な実施例を示す配置図、$14#tJ7!Fji第s
gは、こO発明0IIO実施例を示ナッ宵ツク図で番る
。            、l・・・本管、2−・・
不活性f x @[%3・−送風装置。 11・・・微粉置設下手JR%i @ −、−固気比測
定手段。 25 a m 26 率=ペンテ、り管によha量計。 26畠〜26mm−・制御弁、SO−・・−見比と固気
二相流体の流量とから微粉炭流量tjlltlする演算
手段1341〜34鳳・・・燃焼装置、。 特許出願人 株式会社 北辰電機員作所代1人 単゛ 
野   卓
Figure 1 is an example of the present invention.
3 is a layout diagram showing a concrete embodiment of the main part of this invention, $14#tJ7! Fji sth
g is a diagram showing the embodiments of this invention. , l...main, 2-...
Inert f x @[%3・-Blower. 11... Fine powder placement JR%i @ -, - Solid-gas ratio measuring means. 25 am 26 rate = pente, ha amount meter by pipe. 26 - 26 mm - control valve, SO - - calculation means 1341 - 34 O - combustion device, which calculates the pulverized coal flow rate tjlltl from the ratio and the solid-gas two-phase fluid flow rate. Patent applicant: Hokushin Electric Co., Ltd. (1 person)
Taku No

Claims (1)

【特許請求の範囲】[Claims] 管に不活性f、lLt送凰する手段七、上記管管流れる
不活性ガスに微粉炭を投下する手段と%固気比1闘定す
、る測定手段と、、上記不活性ガスと微粉炭から成る一
気二椙流体の流量tag定するペンチ、り管と1こOベ
ンチ、り管で測定された固気二mm体01!IE欄定値
と上記固気比とから微粉炭の流量を求める演算手段と、
この演J#釆によj)微粉炭の一流量管制御する手段と
を・A1して成る微粉炭流量制御装置、   。
means for sending inert gas and pulverized coal into the pipe; means for dropping pulverized coal into the inert gas flowing through the pipe; and measuring means for determining the % solid-air ratio 1; and the inert gas and pulverized coal. The flow rate of two fluids at once consisting of pliers, a pipe and one O bench, and a solid gas measured with a pipe and a 2mm body 01! a calculation means for calculating the flow rate of pulverized coal from the IE column fixed value and the solid-air ratio;
According to this performance, a pulverized coal flow rate control device comprising a means for controlling a single flow rate pipe of pulverized coal;
JP10036281A 1981-06-26 1981-06-26 Flow controller of pulverized coal Pending JPS582527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10036281A JPS582527A (en) 1981-06-26 1981-06-26 Flow controller of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10036281A JPS582527A (en) 1981-06-26 1981-06-26 Flow controller of pulverized coal

Publications (1)

Publication Number Publication Date
JPS582527A true JPS582527A (en) 1983-01-08

Family

ID=14271960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10036281A Pending JPS582527A (en) 1981-06-26 1981-06-26 Flow controller of pulverized coal

Country Status (1)

Country Link
JP (1) JPS582527A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597622A (en) * 1982-07-07 1984-01-14 Hitachi Ltd Pulverized coal carrying device
JPS5949421A (en) * 1982-09-11 1984-03-22 Babcock Hitachi Kk Controller for dispensed amount of pulverized coal
JPS6017623A (en) * 1983-07-08 1985-01-29 Hitachi Ltd Powder supplying volume control equipment
JPS6097121A (en) * 1983-11-02 1985-05-30 Sumitomo Metal Ind Ltd Powder flow distribution control method
EP0383093A2 (en) * 1989-02-14 1990-08-22 Paul Wurth S.A. Method for the pneumatic and dosed injection of pulverised material into a vessel, subjected to a variable pressure
US5158024A (en) * 1991-03-26 1992-10-27 Kawasaki Jukogyo Kabushiki Kaisha Combustion control apparatus for a coal-fired furnace
US5231939A (en) * 1991-04-05 1993-08-03 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for estimating an unburned component amount in ash in a coal-fired furnace
US7594539B2 (en) 2004-02-19 2009-09-29 Panasonic Corporation Heat exchange type ventilator
JP2011505535A (en) * 2007-11-16 2011-02-24 ポール ヴルス エス.エイ. Solid granular material input system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597622A (en) * 1982-07-07 1984-01-14 Hitachi Ltd Pulverized coal carrying device
JPS5949421A (en) * 1982-09-11 1984-03-22 Babcock Hitachi Kk Controller for dispensed amount of pulverized coal
JPH0357369B2 (en) * 1982-09-11 1991-08-30
JPS6017623A (en) * 1983-07-08 1985-01-29 Hitachi Ltd Powder supplying volume control equipment
JPH0370126B2 (en) * 1983-07-08 1991-11-06 Hitachi Ltd
JPS6097121A (en) * 1983-11-02 1985-05-30 Sumitomo Metal Ind Ltd Powder flow distribution control method
EP0383093A2 (en) * 1989-02-14 1990-08-22 Paul Wurth S.A. Method for the pneumatic and dosed injection of pulverised material into a vessel, subjected to a variable pressure
US5158024A (en) * 1991-03-26 1992-10-27 Kawasaki Jukogyo Kabushiki Kaisha Combustion control apparatus for a coal-fired furnace
US5231939A (en) * 1991-04-05 1993-08-03 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for estimating an unburned component amount in ash in a coal-fired furnace
US7594539B2 (en) 2004-02-19 2009-09-29 Panasonic Corporation Heat exchange type ventilator
JP2011505535A (en) * 2007-11-16 2011-02-24 ポール ヴルス エス.エイ. Solid granular material input system

Similar Documents

Publication Publication Date Title
US5226728A (en) Method and apparatus for measuring mass flow and energy content using a differential pressure meter
EP0543273A2 (en) Method and apparatus for measuring mass flow and energy content using a linear flow meter
CN109682924B (en) Device and method for testing leakage ignition of high-pressure gas pipeline to form injection fire
EP0608514A2 (en) Volumetric flow corrector and method
WO2019000259A1 (en) Detection device and method for circulating type gas turbine flowmeter
JPS582527A (en) Flow controller of pulverized coal
GB1597977A (en) Thermal power measurment apparatus
CN103308106B (en) High-pressure inert gas fire extinguishing agent mass flowmeter
Arnberg Review of critical flowmeters for gas flow measurements
Gajan et al. The influence of pulsating flows on orifice plate flowmeters
CN108709609A (en) A kind of natural gas big flow is real to flow calibrating installation and method
CN108072410A (en) Air flow meter detecting system
CN102341679A (en) Applications for real-time mass ratio, mass flow and particle size measurement of particle laden flows
JP4205300B2 (en) Combustion control method of gas equipment by gas component monitoring
CN105806873A (en) Cooling equal expansion ratio cooling effect test device of turbine blade of gas turbine
JP3155814B2 (en) Flow measurement control system
CN107421608A (en) A kind of system calibration method of gas flowmeter
JP2002257584A (en) Energy transaction system, server computer, program and recording medium
Tezuka et al. Calibration tests of pulse-Doppler flow meter at national standard loops
JPS61159143A (en) Adjusting device for calorific value of natural gas
Graham et al. Impact of Using ISO/TR 11583 for a Venturi Tube in 3-Phase Wet-Gas Conditions
CN205484405U (en) Cross -section formula warm -pressing flows integrative measuring device
Marxman et al. Expansion coefficients for orifice meters in pipes less than one inch in diameter
RU2769093C1 (en) Method and device for determining the mass flow rate of gas
JPS61128124A (en) Flow meter