JP2696448B2 - Garbage incinerator - Google Patents

Garbage incinerator

Info

Publication number
JP2696448B2
JP2696448B2 JP3289204A JP28920491A JP2696448B2 JP 2696448 B2 JP2696448 B2 JP 2696448B2 JP 3289204 A JP3289204 A JP 3289204A JP 28920491 A JP28920491 A JP 28920491A JP 2696448 B2 JP2696448 B2 JP 2696448B2
Authority
JP
Japan
Prior art keywords
amount
water
furnace temperature
primary air
supply control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3289204A
Other languages
Japanese (ja)
Other versions
JPH0599411A (en
Inventor
善利 関口
邦夫 佐々木
英雄 下谷
正 河野
正生 木下
守 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP3289204A priority Critical patent/JP2696448B2/en
Publication of JPH0599411A publication Critical patent/JPH0599411A/en
Application granted granted Critical
Publication of JP2696448B2 publication Critical patent/JP2696448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、焼却室内に水を噴霧し
て未燃分の発生を抑制するごみ焼却炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refuse incinerator for spraying water into an incinerator to suppress generation of unburned components.

【0002】[0002]

【従来の技術】従来、都市ごみ,産業廃棄物等のごみを
焼却するごみ処理施設等のごみ焼却炉においては、ごみ
の高カロリー化に伴なう燃焼空気(1次空気)の不足に
より一酸化炭素(CO),炭化水素等の未燃分が生じ易
く、この未燃分が排ガスとともに大気中に放出される
と、ダイオキシン等の有害物質が生成されて大気汚染が
生じる。
2. Description of the Related Art Conventionally, in a refuse incinerator such as a refuse disposal facility for incinerating refuse such as municipal refuse and industrial waste, there is a shortage of combustion air (primary air) due to high calorie of refuse. Unburned components such as carbon oxides (CO) and hydrocarbons are apt to be generated, and when this unburned portion is discharged into the atmosphere together with exhaust gas, harmful substances such as dioxin are generated, resulting in air pollution.

【0003】そこで、本出願人は特願平2−31988
8号の出願の明細書及び図面に記載されているように、
空気,水蒸気を用いて霧化した水を燃焼室内に噴霧し、
完全燃焼を促進するとともに水性ガス反応を誘引して未
燃分の発生を抑制することを発明している。
Accordingly, the present applicant has filed Japanese Patent Application No. 2-31988.
As described in the specification and drawings of the application No. 8,
Atomized water is sprayed into the combustion chamber using air and steam,
It has been invented to promote complete combustion and induce a water gas reaction to suppress the generation of unburned components.

【0004】[0004]

【発明が解決しょうとする課題】前記のように燃焼室内
に水を噴霧して未燃分の発生を抑制する場合、この抑制
の効果を極力高くするように噴霧水量等を設定(調整)
することが望まれるが、そのための具体的な構成は発明
されていない。そして、噴霧水量及び1次空気量をそれ
ぞれ一定に保持するのみでは、例えばごみ質等の変化に
伴なう炉温変化により燃焼状況が変動すると、つぎに説
明するように未燃分が増加したりする問題点がある。
As described above, when water is sprayed into the combustion chamber to suppress the generation of unburned components, the amount of spray water is set (adjusted) so as to maximize the effect of this suppression.
However, a specific configuration has not been invented. If the amount of spray water and the amount of primary air are each kept constant, for example, if the combustion state fluctuates due to a change in the furnace temperature accompanying a change in the quality of the refuse, the unburned portion increases as described below. Problem.

【0005】すなわち、噴霧水量を一定に保持すると、 a.炉温が低下したときに、噴霧水量が過剰になって炉
温が一層低下し、さらに不完全な燃焼状態になり、未燃
分が増加する。 b.炉温が上昇したときに、噴霧水量が不足してサーマ
ルNOx,クリンカが発生する。
That is, when the spray water amount is kept constant, a. When the furnace temperature decreases, the amount of spray water becomes excessive and the furnace temperature further decreases, resulting in an incomplete combustion state and an increase in unburned matter. b. When the furnace temperature rises, the amount of spray water is insufficient, and thermal NOx and clinker are generated.

【0006】また、1次空気量を一定にすると、 c,炉温が高い状態での1次空気量の不足によりCO濃
度が高くなって未燃分が増加する。 d,炉温が低い状態での1次空気量の過多によりCO濃
度が高くなって未燃分が増加する。
If the amount of primary air is kept constant, c, due to lack of the amount of primary air when the furnace temperature is high, the CO concentration increases, and the unburned portion increases. d, The CO concentration increases due to an excessive amount of primary air in a state where the furnace temperature is low, and the unburned content increases.

【0007】本発明は、燃焼状況に応じて噴霧水量及び
1次空気量を可変し、未燃分の発生の水の噴霧による抑
制効果を高めるようにしたごみ焼却炉を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refuse incinerator in which the amount of spray water and the amount of primary air are varied in accordance with the combustion conditions to enhance the effect of suppressing the generation of unburned water by spraying water. I do.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明のごみ焼却炉においては、炉温,COの発
生量から燃焼室内への噴霧水量及び燃焼室に供給する1
次空気量の過不足をファジィ推論演算により判定して、
前記炉温に比例して噴霧水量を増減する前記水の供給制
御信号及び前記一酸化炭素の発生量が増加したときに前
記炉温に比例して前記1次空気量を増減する1次空気
供給制御信号を発生する制御量演算部と、前記両供給制
御信号により前記水量及び1次空気の供給量を調節する
供給制御手段とを備える。
In order to achieve the above object, in a refuse incinerator according to the present invention, the amount of water sprayed into the combustion chamber and the amount of water supplied to the combustion chamber are determined based on the furnace temperature and the amount of generated CO.
Determine the excess or deficiency of the next air amount by fuzzy inference calculation,
The water supply system for increasing or decreasing the amount of spray water in proportion to the furnace temperature.
Before the control signal and the amount of carbon monoxide generated increase
A control amount calculation unit for generating a primary air supply control signal for increasing or decreasing the primary air amount in proportion to the furnace temperature, and a supply for adjusting the water amount and the primary air supply amount based on the two supply control signals Control means.

【0009】[0009]

【作用】前記のように構成された本発明のごみ焼却炉の
場合、燃焼状況を示す炉温,COの発生量から噴霧水量
及び1次空気量の過不足がファジィ推論演算により判定
され、この判定に基づき、過不足を解消するように噴霧
水量及び1次空気量が燃焼状況に応じて可変調整され
る。この可変調整により、燃焼状況が変わっても噴霧水
量,1次空気量が未燃分の発生が少なく、CO濃度が低
い最適値に維持され、未燃分及びCOの発生の抑制効果
が向上する。
In the case of the refuse incinerator of the present invention constructed as described above, the excess and deficiency of the amount of spray water and the amount of primary air are determined by fuzzy inference from the furnace temperature indicating the combustion state and the amount of generated CO. Based on the determination, the amount of spray water and the amount of primary air are variably adjusted according to the combustion state so as to eliminate excess or deficiency. This variable adjustment, spraying water also changes the combustion conditions, the primary air amount is rather small, the generation of unburned, CO concentration is kept low <br/> have optimum values, generation of unburned and CO The effect of suppressing is improved.

【0010】[0010]

【実施例】1実施例について、図1ないし図4を参照し
て説明する。図2の全体構成に示すように、ごみ焼却炉
内部はほぼ1次,2次燃焼室1,2及びガス排出路3に
より形成され、投入ホッパ4から投入されたごみ5は上
方の火格子6から下方の火格子6に順に移動する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described with reference to FIGS. As shown in the overall configuration of FIG. 2, the inside of the refuse incinerator is substantially formed by primary and secondary combustion chambers 1 and 2 and a gas discharge passage 3, and refuse 5 introduced from a charging hopper 4 is filled with an upper grate 6. To the grate 6 below.

【0011】この移動中に、空気管路7から各火格子6
の風箱8を介して供給される1次空気の熱風によりごみ
5の乾燥,燃焼が行われ、燃焼後の灰は灰ピット9に堆
積する。また、水管路10の噴霧用の水が空気管路11
の空気により霧化され、ホッパ4に近い前側の火格子6
の上部に設けられた高圧噴霧ノズル12から1次燃焼室
1内に噴霧される。
During this movement, each grate 6 is removed from the air line 7.
The refuse 5 is dried and burned by the hot air of the primary air supplied through the wind box 8, and the ash after burning is deposited on the ash pit 9. Further, water for spraying in the water pipe 10 is supplied to the air pipe 11.
Of the front grate 6 near the hopper 4
Is sprayed into the primary combustion chamber 1 from a high-pressure spray nozzle 12 provided at the upper part of the fuel cell.

【0012】この噴霧によりつぎに説明するように、完
全燃焼が促進されるとともに水性ガス反応が誘起され、
未燃分の発生が抑制される。
As will be described below, this spray promotes complete combustion and induces a water gas reaction.
The generation of unburned components is suppressed.

【0013】すなわち、ごみ5が高カロリーの可燃ごみ
等の場合、前側の火格子6で多量の不揮発分が発生し、
この不揮発分が燃焼して炉温が上昇する。このとき、1
次空気量が不足すると、揮発分の不完全燃焼が生じてC
O,炭化水素等の未燃分が火炎13とともに上昇し、2
次燃焼室2からガス排出路3を介して大気に放出され、
大気汚染を引起す。
That is, when the refuse 5 is high calorie combustible refuse, a large amount of non-volatile components are generated in the front grate 6,
The non-volatile components burn and the furnace temperature rises. At this time, 1
If the amount of secondary air is insufficient, incomplete combustion of volatile components will occur and C
Unburned components such as O and hydrocarbons rise with the flame 13 and
It is released from the next combustion chamber 2 to the atmosphere via the gas discharge path 3,
Causes air pollution.

【0014】しかし、ノズル12から適量の水を噴霧す
ると、上昇した未燃分と後側の火格子6から上昇した1
次空気とが噴流により適度に混合され、未燃分の燃焼が
促進される。また、噴霧された水により、つぎの化1の
水性ガス反応が生じて未燃分の発生が減少する。
However, when an appropriate amount of water is sprayed from the nozzle 12, the unburned portion that has risen and the 1 that has risen from the grate 6 on the rear side have risen.
The secondary air is appropriately mixed with the jet to promote the combustion of unburned components. In addition, the sprayed water causes the following water gas reaction of Chemical Formula 1 to reduce the generation of unburned components.

【0015】[0015]

【化1】C+H2 O →CO+H2 C+2H2 O→CO2 +2H2 CO+H2 O→CO2 +H2 ## STR1 ## C + H 2 O → CO + H 2 C + 2H 2 O → CO 2 + 2H 2 CO + H 2 O → CO 2 + H 2

【0016】さらに、噴霧された水により前側の火格子
6の周辺の温度が低下し、炉温が下がるとともにNO
x,クリンカの発生等も防止される。
Further, the temperature around the front grate 6 is lowered by the sprayed water, and the furnace temperature is lowered and the NO.
The generation of x and clinker is also prevented.

【0017】ところで、噴霧水量及び1次空気量の最適
値は前記a〜dで説明したように燃焼状況に応じて変わ
るが、噴霧水量を炉温の逆に調整し、未燃分の指標値と
してのCO濃度が増大したときにのみ1次空気量を炉温
の逆に調整すると、噴霧水量及び1次空気量が最適値に
維持できる。
The optimum values of the amount of spray water and the amount of primary air change according to the combustion conditions as described in the above items a to d. By adjusting the primary air amount to the opposite of the furnace temperature only when the CO concentration increases, the spray water amount and the primary air amount can be maintained at the optimum values.

【0018】そこで、空気管路7,水管路10に調節弁
14,15を設けるとともに2次燃焼室2,ガス排出路
3に温度センサ16,COガスセンサ17それぞれを設
け、両センサ16,17の炉温,CO濃度の検出値に基
づき供給制御手段としての調整弁14,15を調整して
噴霧水量及び1次空気量を制御するマイクロコンピュー
タ構成の制御装置18を備える。
Therefore, control valves 14 and 15 are provided in the air pipe 7 and the water pipe 10, and a temperature sensor 16 and a CO gas sensor 17 are provided in the secondary combustion chamber 2 and the gas discharge path 3, respectively. A control device 18 having a microcomputer structure for controlling the amount of spray water and the amount of primary air by adjusting the regulating valves 14 and 15 as supply control means based on the detected values of the furnace temperature and the CO concentration is provided.

【0019】この制御装置18は図1に示すように入力
インタフェース部19,制御量演算部20,出力インタ
フェース部21により形成され、センサ16,17の炉
温,CO濃度の時々刻々の検出値が入力インタフェース
部19を介して制御量演算部20に取込まれる。
As shown in FIG. 1, the control device 18 is formed by an input interface unit 19, a control amount calculating unit 20, and an output interface unit 21. The detected values of the furnace temperature and the CO concentration of the sensors 16 and 17 are constantly changed. It is taken into the control amount calculation unit 20 via the input interface unit 19.

【0020】そして、制御量演算部20は炉温,CO濃
度に基づくファジイ推論演算により、噴霧水量及び1次
空気量の最適値からの過不足を判定し、最適値に近づけ
る噴霧水量及び1次空気量の供給制御信号(弁開度信
号)を形成する。
The control amount calculation unit 20 determines whether the spray water amount and the primary air amount are over or under the optimum values by fuzzy inference calculation based on the furnace temperature and the CO concentration, and determines the spray water amount and the primary air amount that approach the optimum values. An air amount supply control signal (valve opening degree signal) is formed.

【0021】この両供給制御信号が出力インタフェース
部21を介して調整弁14,15それぞれに供給され、
両調整弁の弁開度が可変設定され、噴霧水量及び1次空
気量が最適値に自動調整される。
These two supply control signals are supplied to the respective regulating valves 14 and 15 via the output interface unit 21.
The valve openings of the two adjustment valves are variably set, and the amount of spray water and the amount of primary air are automatically adjusted to optimal values.

【0022】つぎに、制御量演算部20のファジィ推論
演算の具体的な処理について説明する。この場合「IF
THEN」形式の制御ルールが用いられ、このルール
の前件部の炉温,CO濃度のメンバーシップ関数は例え
ば図3の(a),(b)に設定され、後件部の噴霧水
量,1次空気量(増減量)のメンバーシップ関数は例え
ば同図の(c),(d)に設定される。なお、図3の
(a)〜(d)のB,M,Sは高(大),中(中),低
(小)の各関数ラベルである。
[0022] Next, the fuzzy inference of the control amount calculation unit 20
The specific processing of the calculation will be described. In this case, "IF
A control rule of the THEN type is used, and the membership functions of the furnace temperature and the CO concentration in the antecedent part of this rule are set in, for example, (a) and (b) of FIG. The membership function of the secondary air amount (increase / decrease amount) is set to, for example, (c) and (d) in FIG. Note that B, M, and S in FIGS. 3A to 3D are high (large), medium (medium), and low (small) function labels.

【0023】 また、前記制御ルールは例えばつぎの〜からなる。 IF 炉温=S THEN 水量=S IF 炉温=M THEN 水量=M IF 炉温=B THEN 水量=B IF CO濃度=S THEN 1次空気量=M IF CO濃度≧Mかつ炉温=M THEN 1次空
気量=M IF CO濃度≧Mかつ炉温=S THEN 1次空
気量=S IF CO濃度≧Mかつ炉温=B THEN 1次空
気量=B
The control rules include, for example, the following. IF furnace temperature = S THEN water amount = S IF furnace temperature = M THEN water amount = M IF furnace temperature = B THEN water amount = B IF CO concentration = S THEN primary air amount = M IF CO concentration ≧ M and furnace temperature = M THEN Primary air amount = M IF CO concentration ≧ M and furnace temperature = S THEN Primary air amount = S IF CO concentration ≧ M and furnace temperature = B THEN Primary air amount = B

【0024】そして、制御量演算部20は時々刻々の炉
温,CO濃度の検出値に基づき図3の(a),(b)の
前件部の関数から炉温,CO濃度を求め、この炉温,C
O濃度に基づく制御ルールの演算を実行し、同図
(c),(d)の後件部の関数から噴霧水量,一次空気
量の最適値からの過不足を判定する。
The control amount calculating section 20 obtains the furnace temperature and the CO concentration from the functions of the antecedents in FIGS. 3A and 3B based on the detected values of the furnace temperature and the CO concentration every moment. Furnace temperature, C
The calculation of the control rule based on the O concentration is executed, and it is determined from the functions of the consequent parts in FIGS.

【0025】さらに、この過不足の判定結果から調整弁
14,15それぞれの弁開度を決定し、例えば弁開度に
応じた電圧の供給制御信号を形成して両調整弁14,1
5それぞれに供給し、いわゆるファジイ制御で噴霧水
量,1次空気量を燃焼状況に応じて自動調整する。
Further, the valve opening of each of the regulating valves 14 and 15 is determined from the result of the determination of excess or deficiency. For example, a supply control signal of a voltage corresponding to the valve opening is formed to form the two regulating valves 14 and 1.
5, and the amount of spray water and the amount of primary air are automatically adjusted in accordance with combustion conditions by so-called fuzzy control.

【0026】ところで、噴霧水量,炉温に対してCO濃
度は図4,図5に示すように変化する。図4は噴霧水量
に対するCO濃度変化の実測例であり、横軸はノズル1
2の噴霧水量/噴霧空気量に設定され、○,□,△を結
ぶ実線ア,イ,ウは炉温の低,中,高の代表値850
℃,900℃,950℃での変化特性を示し、破線エは
噴霧水量の最適値の特性線を示す。
Meanwhile, the CO concentration changes as shown in FIGS. 4 and 5 with respect to the amount of spray water and the furnace temperature. FIG. 4 is an example of actual measurement of a change in CO concentration with respect to the amount of sprayed water.
The solid lines a, b, and c connecting the circles, △, and さ れ are representative values of low, medium, and high furnace temperatures of 850.
The change characteristics at 900 ° C., 900 ° C., and 950 ° C. are shown.

【0027】図5は炉温に対するCO濃度変化の実測例
であり、○,△,▽,□を結ぶ実線オ,カ,キ,クは噴
霧水量/噴霧空気量が0,0.1,0.2,0.3のと
きの特性曲線を示し、破線ケは前記の自動調整で噴霧水
量を制御したときの特性曲線を示す。なお、図4,図5
において、炉内の酸素(O2)濃度は6〜8%である。
FIG. 5 shows an example of the actual measurement of the change in the CO concentration with respect to the furnace temperature. The solid lines O, C, K and C connecting the circles, △, ▽ and □ indicate the spray water amount / spray air amount of 0, 0.1, 0. ., 0.3, and the broken line shows the characteristic curve when the amount of sprayed water is controlled by the automatic adjustment. 4 and 5
In the oxygen (O 2) concentration in the furnace 6 to 8%.

【0028】そして、前記自動調整により、炉温が低い
ときは噴霧水量が減少し、炉温の低下が防止されると同
時にノズル12からの空気噴射量が増加して排ガス,未
燃分の燃焼が促進され、炉温が上昇して未燃分の発生が
抑えられる。また、炉温が高いときは噴霧水量が増加
し、炉温の過度の高温化に伴うサーマルNOx,クリン
カの発生が抑えられると同時に前記化1の水性ガス反応
が促進されて燃焼改善が行われ、未燃分の発生が抑えら
れる。
By the automatic adjustment, when the furnace temperature is low, the amount of sprayed water is reduced, and the fall of the furnace temperature is prevented. Is promoted, the furnace temperature rises, and the generation of unburned components is suppressed. Further, when the furnace temperature is high, the amount of spray water increases, and the generation of thermal NOx and clinker due to the excessively high furnace temperature is suppressed, and at the same time, the water gas reaction of Chemical Formula 1 is promoted to improve combustion. And the generation of unburned components is suppressed.

【0029】しかも、炉温の低い状態でCOの発生量が
多くなる1次空気量の過剰時,炉温の高い状態でCOの
発生量が多くなる1次空気量の不足時に1次空気量が減
少,増加それぞれに補正され、1次空気量が常にCOの
発生量の少ない適量になり、水の噴霧に基づく効果が常
に最良に維持される。
In addition, when the amount of primary air is excessive when the furnace temperature is low and the amount of CO is increased, and when the amount of primary air is insufficient when the furnace temperature is high and the amount of CO is increased, the primary air amount is reduced. Is corrected to decrease and increase respectively, and the primary air amount is always an appropriate amount with a small amount of generated CO, and the effect based on the water spray is always kept at the best.

【0030】[0030]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。炉温,一酸
化炭素の発生量に基づくファジィ推論演算ら燃焼室内
の水の噴霧量及び1次空気量の過不足を判定し、この判
に基づく制御量演算部の噴霧量及び1次空気量の供
給制御信号を形成し、両供給制御信号により供給制御手
段を介して前記水及び1次空気の供給量を調整し、炉温
に比例して噴霧水量を増減し、一酸化炭素の発生量が増
加したときに炉温に比例して1次空気量を増減したた
め、燃焼状況に応じて噴霧水量,1次空気量を可変し、
それぞれを最適値に自動調整して水の噴霧に基づく未燃
及び一酸化炭素の発生を極めて良好に抑制することが
できる。
Since the present invention is configured as described above, the following effects can be obtained. Furnace temperature, to determine the excess and deficiency of spray amount and primary air quantity of the fuzzy inference operation or we combustion chamber water based on the amount of generated carbon monoxide, the determine
Forming a supply control signal of the spray water quantity and the primary air amount control amount calculation unit based on the constant, the supply amount of the water and the primary air adjusted through the Rikyo supply control unit by the two supply control signal , Furnace temperature
Increase or decrease the amount of sprayed water in proportion to the
The primary air amount was increased / decreased in proportion to the furnace temperature when it was added, and the amount of spray water and the amount of primary air were varied according to the combustion situation.
By automatically adjusting each of them to optimal values, it is possible to extremely favorably suppress the generation of unburned components and carbon monoxide due to water spray.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のごみ焼却炉の1実施例の制御装置のブ
ロック図である。
FIG. 1 is a block diagram of a control device of one embodiment of a refuse incinerator according to the present invention.

【図2】図1の制御装置を備えた焼却炉の全体構成図で
ある。
FIG. 2 is an overall configuration diagram of an incinerator provided with the control device of FIG. 1;

【図3】(a)〜(d)は図1の制御量演算部の各メン
バーシップ関数の説明図である。
3 (a) to 3 (d) are explanatory diagrams of each membership function of the control amount calculation unit in FIG.

【図4】図1の噴霧水量に対するCO濃度変化の特性図
である。
FIG. 4 is a characteristic diagram of a change in CO concentration with respect to a spray water amount in FIG. 1;

【図5】図1の炉温に対するCO濃度変化の特性図であ
る。
FIG. 5 is a characteristic diagram of a change in CO concentration with respect to a furnace temperature in FIG. 1;

【符号の説明】[Explanation of symbols]

1,2 燃焼室 5 ごみ 14,15 調整弁 16 温度センサ 17 ガスセンサ 18 制御装置 20 制御量演算部 1, 2 combustion chamber 5 refuse 14, 15 regulating valve 16 temperature sensor 17 gas sensor 18 control device 20 control amount calculation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 正 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 木下 正生 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 近藤 守 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (56)参考文献 特開 昭64−14515(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Kono 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Inside Tachibashi Shipbuilding Co., Ltd. (72) Inventor Masao Kinoshita 5-3-1 Nishikujo, Konohana-ku, Osaka-shi No. 28 Nippon Shipbuilding Co., Ltd. (72) Inventor Mamoru Kondo 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Nitachi Shipbuilding Co., Ltd. (56) References JP-A 64-14515 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼室内に水を噴霧して未燃分の発生を
抑制するごみ焼却炉において、 炉温,一酸化炭素の発生量から前記水の噴霧量及び前記
燃焼室に供給する1次空気量の過不足をファジィ推論演
算により判定して、前記炉温に比例して噴霧水量を増減
する前記水の供給制御信号及び前記一酸化炭素の発生量
が増加したときに前記炉温に比例して前記1次空気量を
増減する1次空気の供給制御信号を発生する制御量演算
部と、 前記両供給制御信号により前記水及び前記1次空気の供
給量を調節する供給制御手段とを備えたことを特徴とす
るごみ焼却炉。
1. A waste incinerator for spraying water into a combustion chamber to suppress generation of unburned components, comprising: a furnace temperature, a generation amount of carbon monoxide, a water spray amount and a primary supply to the combustion chamber. Fuzzy reasoning performance of excess and deficiency of air volume
And increase or decrease the amount of spray water in proportion to the furnace temperature.
The water supply control signal and the amount of carbon monoxide generated
When the primary air volume increases in proportion to the furnace temperature
A refuse comprising: a control amount calculation unit for generating a supply control signal for increasing / decreasing primary air ; and supply control means for adjusting supply amounts of the water and the primary air based on the two supply control signals. Incinerator.
JP3289204A 1991-10-07 1991-10-07 Garbage incinerator Expired - Lifetime JP2696448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289204A JP2696448B2 (en) 1991-10-07 1991-10-07 Garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3289204A JP2696448B2 (en) 1991-10-07 1991-10-07 Garbage incinerator

Publications (2)

Publication Number Publication Date
JPH0599411A JPH0599411A (en) 1993-04-20
JP2696448B2 true JP2696448B2 (en) 1998-01-14

Family

ID=17740131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289204A Expired - Lifetime JP2696448B2 (en) 1991-10-07 1991-10-07 Garbage incinerator

Country Status (1)

Country Link
JP (1) JP2696448B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882933A4 (en) 1996-12-06 2000-01-26 Nippon Kokan Kk Burning apparatus and method for restricting the occurrence of dioxins
JP3319327B2 (en) * 1997-03-26 2002-08-26 日本鋼管株式会社 Combustion control method and device for refuse incinerator
JP3351320B2 (en) * 1997-06-19 2002-11-25 日本鋼管株式会社 Waste incineration apparatus and method with reduced generation of dioxins
JP3596354B2 (en) 1999-06-21 2004-12-02 株式会社日立製作所 Combustion state monitoring method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414515A (en) * 1987-07-08 1989-01-18 Kurimoto Ltd Incinerating disposer for plastic series waste

Also Published As

Publication number Publication date
JPH0599411A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US5158024A (en) Combustion control apparatus for a coal-fired furnace
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JPS5837415A (en) Nox decreasing incinerator
US5231939A (en) Apparatus for estimating an unburned component amount in ash in a coal-fired furnace
CA2071691C (en) Combustion control method of refuse incinerator
CA2121295A1 (en) Method for Burning Fuels, Particularly for Incinerating Garbage
JPH02504302A (en) Automatic combustion control of rotary incinerators
JP2696448B2 (en) Garbage incinerator
JPS5556514A (en) Method of automatic combustion control for refuse incinerating furnace
EP0919770A1 (en) Method and apparatus for controlling refuse feeding quantity of industrial waste incinerator
JPH04324014A (en) Method of introducing air into rotary incinerator
JP3247066B2 (en) Freeboard temperature control method for fluidized bed incinerator.
US7845291B2 (en) Control method for waste incineration plants with auxiliary burner operation
US4782773A (en) Method for controlling incineration in combustor for radioactive wastes
JP2003106509A (en) Combustion control device
CN112664953A (en) Circulating fluidized bed incineration boiler for burning solid waste
JPH0152653B2 (en)
KR100306291B1 (en) Control method of flue gas mixture discharged from garbage incinerator
WO1988001712A1 (en) Method and apparatus for controlling the rate of heat release
Fujii et al. Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace
JPS6136611A (en) Combustion control of refuse incinerator
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
CN213066123U (en) Circulating fluidized bed incineration boiler for burning solid wastes
JPH09273733A (en) Control method of combustion in incinerating furnace