JP7231406B2 - Garbage incinerator and its control method - Google Patents

Garbage incinerator and its control method Download PDF

Info

Publication number
JP7231406B2
JP7231406B2 JP2018245506A JP2018245506A JP7231406B2 JP 7231406 B2 JP7231406 B2 JP 7231406B2 JP 2018245506 A JP2018245506 A JP 2018245506A JP 2018245506 A JP2018245506 A JP 2018245506A JP 7231406 B2 JP7231406 B2 JP 7231406B2
Authority
JP
Japan
Prior art keywords
dust
amount
garbage
withering
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018245506A
Other languages
Japanese (ja)
Other versions
JP2020106216A (en
Inventor
陽介 岩崎
亮輔 南
隼太 秋山
大 橋本
信宏 浅井
康平 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2018245506A priority Critical patent/JP7231406B2/en
Priority to PCT/JP2019/048184 priority patent/WO2020137502A1/en
Priority to CN201980085712.9A priority patent/CN113227654B/en
Priority to KR1020217022005A priority patent/KR102470121B1/en
Publication of JP2020106216A publication Critical patent/JP2020106216A/en
Priority to PH12021551068A priority patent/PH12021551068A1/en
Application granted granted Critical
Publication of JP7231406B2 publication Critical patent/JP7231406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H7/00Inclined or stepped grates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

本発明は、ストーカ式搬送装置を備えたごみ焼却炉及びその制御方法に関し、より具体的には、ごみ枯れを予測する技術に関する。 TECHNICAL FIELD The present invention relates to a refuse incinerator equipped with a stoker-type conveying device and a method of controlling the same, and more specifically to technology for predicting the withering of refuse.

従来から、ごみを乾燥段、燃焼段、後燃焼段の順に上流から下流へ向けて搬送するストーカ式搬送装置を備えたごみ焼却炉が知られている。ごみ焼却炉は、乾燥段へごみを供給する給じん装置を備える。給じん装置は、往復駆動されるプッシャを備え、プッシャのストロークや動作周期によって、乾燥段への給じん量が変化する。乾燥段、燃焼段、及び、後燃焼段の各段のごみ搬送速度は、各段の火格子の動作速度によって変化する。 2. Description of the Related Art A waste incinerator equipped with a stoker-type conveying device that conveys waste from upstream to downstream in the order of a drying stage, a combustion stage, and a post-combustion stage is conventionally known. The refuse incinerator is equipped with a dust feeder that supplies refuse to the drying stage. The dust feeder has a reciprocally driven pusher, and the amount of dust fed to the drying stage varies depending on the stroke and operation cycle of the pusher. The refuse conveying speed of each stage of the drying stage, the combustion stage and the post-combustion stage varies according to the operating speed of the grate of each stage.

ごみ焼却炉の排熱は、排熱回収ボイラで回収され、発電に利用される。安定した発電量を維持するために、乾燥段のごみ厚さを検出し、それに基づいてごみ焼却炉の乾燥段への給じん量やストーカによるごみ搬送速度を調整することが知られている。 Exhaust heat from the incinerator is recovered by an exhaust heat recovery boiler and used for power generation. In order to maintain stable power generation, it is known to detect the thickness of the waste in the drying stage and adjust the amount of dust supplied to the drying stage of the waste incinerator and the waste conveying speed by the stoker based on this.

特許文献1には、乾燥段及び燃焼段でのごみ厚さを赤外線検出手段で検出し、検出されたごみ厚さに基づいて、乾燥段のごみ搬送速度と燃焼段のごみ搬送速度とを独立して調整することが記載されている。 In Patent Document 1, the dust thicknesses in the drying stage and the combustion stage are detected by an infrared detecting means, and based on the detected dust thickness, the dust conveying speed in the drying stage and the dust conveying speed in the combustion stage are set independently. It is described to adjust by

また、特許文献2には、乾燥段へ燃焼空気を送る風箱内の圧力と炉内圧力との差圧から、乾燥段のごみ厚さを検出することが記載されている。検出された乾燥段のごみ厚さは、乾燥段のごみ搬送速度の調整に利用される。 Further, Patent Document 2 describes detecting the thickness of the dust in the drying stage from the pressure difference between the pressure in the wind box for sending the combustion air to the drying stage and the pressure in the furnace. The detected dust thickness of the drying stage is used to adjust the dust conveying speed of the drying stage.

また、特許文献3には、乾燥段のごみに対し上方から電波を発振し、その反射波を受振することにより、乾燥段のごみ厚さ(ごみ高さ)を検出することが記載されている。検出された乾燥段のごみ厚さは、乾燥段への給じん量の調整に利用される。 Further, Patent Document 3 describes that the dust thickness (dust height) in the drying stage is detected by oscillating radio waves from above the dust in the drying stage and receiving the reflected waves. . The detected dust thickness of the drying stage is used to adjust the amount of dust supplied to the drying stage.

特開平7-004629号公報JP-A-7-004629 特公平7-9288号公報Japanese Patent Publication No. 7-9288 特開2017-145980号公報JP 2017-145980 A

上記のようなごみ焼却炉において、乾燥段のごみのごみ質が変動する場合がある。ごみ質の変化に伴って、適切な炉内滞留ごみ量も変化する。例えば、同じ体積のごみが燃焼段に搬入されても、ごみの密度が低いと燃焼するごみ量が不足し、ごみの密度が高いと燃焼するごみ量が過剰となることがある。燃焼するごみの著しい不足(以下、「ごみ枯れ」と称する)が生じると、ごみの燃焼により生じる排熱の回収量が低下し、発電量が低下する。このようにごみ質が変動する場合には、乾燥段のごみ厚さを所定の値に維持することは、必ずしも発電量を安定化させることにはならない。 In such a refuse incinerator, the refuse quality of the refuse in the drying stage may fluctuate. As the waste quality changes, the appropriate amount of waste staying in the furnace also changes. For example, even if the same volume of refuse is brought into the combustion stage, if the density of the refuse is low, the amount of refuse to be burned may be insufficient, and if the density of the refuse is high, the amount of refuse to be burned may be excessive. When there is a significant shortage of combustible waste (hereinafter referred to as "waste dryness"), the amount of waste heat recovered from the combustion of waste decreases, resulting in a decrease in power generation. When the dust quality fluctuates in this way, maintaining the dust thickness in the drying stage at a predetermined value does not necessarily stabilize the power generation amount.

本発明は以上の事情に鑑みてされたものであり、その目的は、ストーカ式搬送装置を備えたごみ焼却炉において、ごみ質の変動を考慮して、ごみ枯れを予測する技術を提案することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to propose a technology for predicting waste withering in consideration of fluctuations in waste quality in a waste incinerator equipped with a stoker-type conveying device. It is in.

本発明の一態様に係るごみ焼却炉の制御方法は、
ごみを乾燥させる乾燥段、乾燥したごみを燃焼させる燃焼段、及び、燃焼したごみを灰化させる後燃焼段の順にごみを搬送するストーカ式搬送装置を備えたごみ焼却炉の制御方法であって、
炉内の滞留ごみ量として前記乾燥段のごみ厚さ又はごみ体積を検出すること、
前記滞留ごみ量の時系列データから、所定の評価期間における前記滞留ごみ量の標準値からの変動成分を抽出すること、
前記変動成分のうち減少成分を抽出すること、
前記滞留ごみ量に対して単調減少又は一定となる補正ゲインを求めること、
前記減少成分に前記補正ゲインを乗じることにより当該減少成分を補正すること、及び、
補正された前記減少成分をごみ減少指標とし、当該ごみ減少指標に基づいて所定のごみ枯れ対応処理を行うこと、を含むものである。
A control method for a refuse incinerator according to an aspect of the present invention comprises:
A control method for a garbage incinerator equipped with a stoker-type conveying device that conveys garbage in order of a drying stage for drying garbage, a combustion stage for burning the dried garbage, and a post-combustion stage for incinerating the burned garbage, comprising: ,
Detecting the thickness or volume of dust in the drying stage as the amount of dust remaining in the furnace;
extracting a fluctuation component from a standard value of the amount of accumulated waste in a predetermined evaluation period from the time-series data of the amount of accumulated waste;
extracting a decreasing component from the fluctuating component;
obtaining a correction gain that monotonically decreases or remains constant with respect to the amount of staying dust;
correcting the decrease component by multiplying the decrease component by the correction gain; and
Using the corrected reduction component as a dust reduction index, and performing a predetermined dust withering countermeasure process based on the dust reduction index.

また、本発明の一態様に係るごみ焼却炉は、
ごみを乾燥させる乾燥段、乾燥したごみを燃焼させる燃焼段、及び、燃焼したごみを灰化させる後燃焼段の順にごみを搬送するストーカ式搬送装置を有する燃焼室と、
前記乾燥段へごみを供給する給じん装置と、
炉内の滞留ごみ量として前記乾燥段のごみ厚さ又は体積を検出するごみ量検出装置と、
前記滞留ごみ量の時系列データから、所定の評価期間における前記滞留ごみ量の標準値からの変動成分を抽出し、前記変動成分のうち減少成分を抽出し、前記滞留ごみ量に対して単調減少又は一定となる補正ゲインを求め、前記減少成分に前記補正ゲインを乗じることにより当該減少成分を補正し、補正された前記減少成分をごみ減少指標とし、当該ごみ減少指標に基づいて所定のごみ枯れ対応処理を行う制御装置とを、備えるものである。
Further, the refuse incinerator according to one aspect of the present invention is
a combustion chamber having a stoker-type conveying device for conveying garbage in order of a drying stage for drying garbage, a combustion stage for burning the dried garbage, and a post-combustion stage for incinerating the burned garbage;
a dust supply device that supplies dust to the drying stage;
a dust amount detector for detecting the thickness or volume of dust in the drying stage as the amount of dust remaining in the furnace;
A fluctuation component from a standard value of the amount of accumulated waste in a predetermined evaluation period is extracted from the time series data of the amount of accumulated garbage, a decrease component is extracted from the fluctuation component, and monotonously decreases with respect to the amount of accumulated waste. Alternatively, a constant correction gain is obtained, the reduction component is corrected by multiplying the reduction component by the correction gain, the corrected reduction component is used as a dust reduction index, and a predetermined dust withering is performed based on the dust reduction index. and a control device that performs a corresponding process.

上記ごみ焼却炉及びその制御方法では、計測された炉内の滞留ごみ量、即ち、乾燥段のごみ量から、滞留ごみ量の変動成分のうちの減少成分を求め、減少成分からごみ枯れの兆候を捉える。つまり、特許文献1~3のように、乾燥段のごみ厚さが所定量以上であるか否かに基づくのではなく、乾燥段のごみ厚さの減少変化に基づいて、ごみ枯れが生じる可能性を評価する。そのため、ごみ質の変化に伴って適切な炉内滞留ごみ量が変化しても、それに影響を受けることなくごみ枯れを予測することができ、予測されたごみ枯れに対して適切な処理を行うことができる。 In the above refuse incinerator and its control method, the decreasing component of the fluctuating component of the amount of remaining refuse is obtained from the measured amount of refuse remaining in the furnace, that is, the amount of refuse in the drying stage, and the decreasing component is a sign of refuse withering. catch. In other words, unlike Patent Documents 1 to 3, it is not based on whether the thickness of dust in the drying stage is equal to or greater than a predetermined amount, but it is possible that dust withering may occur based on a decrease in the thickness of dust in the drying stage. Evaluate gender. Therefore, even if the appropriate amount of waste in the furnace changes due to changes in the quality of waste, it is possible to predict waste withering without being affected by it, and perform appropriate processing for the predicted waste withering. be able to.

更に、上記ごごみ焼却炉及びその制御方法において、ごみ減少指標は、求めた減少成分が炉内滞留ごみ量と対応する補正ゲインで補正されたものである。よって、ごみ減少指標に基づいて、実際にごみ枯れが発生する可能性を評価することができ、また、発生するごみ燃料の不足(ごみ枯れ)の程度を評価することができる。 Further, in the garbage incinerator and its control method, the garbage reduction index is obtained by correcting the obtained reduction component with a correction gain corresponding to the amount of garbage staying in the furnace. Therefore, based on the garbage reduction index, it is possible to evaluate the possibility of garbage withering actually occurring, and also to evaluate the degree of shortage of garbage fuel (garbage withering) that will occur.

本発明によれば、ストーカ式搬送装置を備えたごみ焼却炉において、ごみ質の変動を考慮して、ごみ枯れを予測する技術を提案することができる。 ADVANTAGE OF THE INVENTION According to this invention, in the waste incinerator provided with the stoker-type conveying apparatus, the technique which considers the fluctuation|variation of a waste quality and predicts waste withering can be proposed.

図1は、本発明の一実施形態に係るごみ焼却炉を含むごみ焼却プラントの一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a waste incineration plant including a waste incinerator according to one embodiment of the invention. 図2は、滞留ごみ量調整装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the staying dust amount adjusting device. 図3は、滞留ごみ量調整処理のデータフロー図である。FIG. 3 is a data flow diagram of the staying dust amount adjustment process. 図4は、評価期間の炉内滞留ごみ量の時系列変化の一例を表すグラフ1である。FIG. 4 is a graph 1 showing an example of chronological changes in the amount of refuse retained in the furnace during the evaluation period. 図5は、グラフ1の炉内滞留ごみ量の時系列データから抽出された変動成分を表すグラフ2である。FIG. 5 is a graph 2 showing fluctuation components extracted from the time-series data of the amount of in-furnace waste in graph 1. FIG. 図6は、グラフ2の変動成分から抽出された減少成分を表すグラフ3である。FIG. 6 is graph 3 showing the decrease component extracted from the fluctuation component of graph 2. FIG. 図7は、補正ゲイン-滞留ごみ量情報の一例を示す図である。FIG. 7 is a diagram showing an example of correction gain-remaining dust amount information. 図8は、ごみ減少指標-制御補正量情報の一例を示す図である。FIG. 8 is a diagram showing an example of dust reduction index-control correction amount information.

次に、図面を参照して本発明の実施形態を説明する。図1は、本発明の一実施形態に係るごみ焼却炉1を含むごみ焼却プラント100の一例を示す概略図である。 Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a waste incineration plant 100 including a waste incinerator 1 according to one embodiment of the invention.

図1に示すごみ焼却プラント100は、ごみを貯蔵するごみ貯蔵設備3と、ごみを焼却するごみ焼却炉1と、ごみ焼却炉1の排熱を回収するボイラ2と、ボイラ2で回収された排熱を利用して発電を行う発電設備8とを備える。ごみ貯蔵設備3及び発電設備8は焼却プラント100に隣接して設けられてもよい。 The waste incineration plant 100 shown in FIG. and a power generation facility 8 that generates power using exhaust heat. The refuse storage facility 3 and power generation facility 8 may be provided adjacent to the incineration plant 100 .

〔ごみ貯蔵設備3〕
ごみ貯蔵設備3には、ごみ焼却炉1に隣設されて、ごみ焼却炉1で処理されるごみを一時的に貯蔵するピット60が設けられている。ピット60の上方には、ピット60内のごみをごみ焼却炉1へ投入するクレーン6が設けられている。クレーン6は、バケットでピット60内のごみを掴み、そのごみをごみ焼却炉1の後述する投入ホッパ12へ投入する。なお、図1ではクレーン6と投入ホッパ12との間にコンベヤが介在しているが、コンベヤは省略されてもよい。
[Garbage storage facility 3]
The refuse storage facility 3 is provided with a pit 60 adjacent to the refuse incinerator 1 for temporarily storing refuse to be treated by the refuse incinerator 1 . A crane 6 is provided above the pit 60 for throwing the garbage in the pit 60 into the garbage incinerator 1 . The crane 6 grabs the garbage in the pit 60 with a bucket and throws the garbage into the throw-in hopper 12 of the garbage incinerator 1, which will be described later. Although a conveyor is interposed between the crane 6 and the charging hopper 12 in FIG. 1, the conveyor may be omitted.

〔ごみ焼却炉1〕
ごみ焼却炉1は、ストーカ式焼却炉である。ごみ焼却炉1には、主燃焼室14(一次燃焼室)と、二次燃焼室19とが設けられている。主燃焼室14の床部には、上方から下方へ向けて階段状に配置された乾燥ストーカ15、燃焼ストーカ16、及び、後燃焼ストーカ17を備えるストーカ式搬送装置Sが設けられている。乾燥ストーカ15は乾燥段Sを形成し、燃焼ストーカ16は燃焼段Sを形成し、後燃焼ストーカ17は後燃焼段Sを形成する。後燃焼ストーカ17の下流側には、主燃焼室14から焼却灰を排出する排出シュート18が設けられている。
[Waste incinerator 1]
The refuse incinerator 1 is a stoker-type incinerator. The refuse incinerator 1 is provided with a main combustion chamber 14 (primary combustion chamber) and a secondary combustion chamber 19 . The floor of the main combustion chamber 14 is provided with a stoker-type conveying device S including a drying stoker 15, a combustion stoker 16, and a post-combustion stoker 17 arranged stepwise from top to bottom. The drying stoker 15 forms the drying stage S1 , the combustion stoker 16 forms the combustion stage S2 and the post-combustion stoker 17 forms the post-combustion stage S3 . A discharge chute 18 for discharging incinerated ash from the main combustion chamber 14 is provided downstream of the post-combustion stoker 17 .

各段のストーカ15,16,17は、油圧シリンダ15c,16c,17cで駆動される。油圧シリンダ15c,16c,17cによるストーカ15,16,17の往復駆動速度を変化させることで、各段のストーカ15,16,17によるごみの搬送速度を独立して変化させることができる。 The stokers 15, 16, 17 of each stage are driven by hydraulic cylinders 15c, 16c, 17c. By changing the reciprocating driving speed of the stokers 15, 16, 17 by the hydraulic cylinders 15c, 16c, 17c, the speed of transporting the refuse by the stokers 15, 16, 17 of each stage can be changed independently.

各段のストーカ15,16,17の下方には風箱15a,16a,17aが設けられている。風箱15a,16a,17aには一次燃焼空気51が供給され、この一次燃焼空気51がストーカ15,16,17を下方から貫いて主燃焼室14内へ導入される。各風箱15a,16a,17aに供給される一次燃焼空気の流量は、各風箱15a,16a,17aに対して設けられたダンパ15b,16b,17bで調整される。また、主燃焼室14の天井から主燃焼室14内へ向けて二次燃焼空気52が供給される。 Wind boxes 15a, 16a, 17a are provided below the stoker 15, 16, 17 of each stage. Primary combustion air 51 is supplied to the wind boxes 15a, 16a, 17a, and is introduced into the main combustion chamber 14 through the stokers 15, 16, 17 from below. The flow rate of primary combustion air supplied to each wind box 15a, 16a, 17a is adjusted by dampers 15b, 16b, 17b provided for each wind box 15a, 16a, 17a. Secondary combustion air 52 is also supplied from the ceiling of the main combustion chamber 14 into the main combustion chamber 14 .

主燃焼室14の入口には、シュート13を介して投入ホッパ12が接続されている。投入ホッパ12へは、ピット60のごみがクレーン6によって投入される。また、主燃焼室14の入口には、ごみを乾燥段Sへ送り出す給じん装置41が設けられている。給じん装置41は、ごみを押し出すプッシャ41aと、プッシャ41aを水平方向に往復駆動する駆動装置41bとを備える。 An input hopper 12 is connected to the inlet of the main combustion chamber 14 via a chute 13 . Garbage in the pit 60 is thrown into the throw-in hopper 12 by the crane 6 . Also, at the entrance of the main combustion chamber 14, a dust feeder 41 is provided for feeding dust to the drying stage S1 . The dust supply device 41 includes a pusher 41a that pushes out dust, and a drive device 41b that horizontally reciprocates the pusher 41a.

上記構成のごみ焼却炉1では、投入ホッパ12からシュート13を通じて主燃焼室14の入口に投入されたごみが、乾燥段Sの直ぐ上流側に設けられたステップ41cに落下する。ステップ41c上のごみは、給じん装置41によって乾燥段Sへ押し出される。ごみは、乾燥段Sで乾燥されて着火点近傍まで加熱され、燃焼段Sへ送られる。乾燥したごみは、燃焼段Sで搬送されるうちに着火し、着火したごみの一部は熱分解して、可燃性の熱分解ガスを発生する。この熱分解ガスは、一次燃焼空気51に乗って主燃焼室14の上部へ移動して、二次燃焼空気52と共に炎燃焼する。着火したごみの残部は後燃焼段Sで燃焼し、燃焼後に残った焼却灰は排出シュート18から排出され、図示しない灰処理設備へ送られる。主燃焼室14の燃焼排ガスは、主燃焼室14の下流側の天井部分から吹き出す二次燃焼空気52と混合され、二次燃焼室19で完全燃焼する。 In the refuse incinerator 1 constructed as described above, the refuse thrown into the inlet of the main combustion chamber 14 from the throw-in hopper 12 through the chute 13 falls onto the step 41c provided immediately upstream of the drying stage S1 . Dust on the step 41c is pushed out by the dust feeder 41 to the drying stage S1 . The refuse is dried in the drying stage S1 , heated to near the ignition point, and sent to the combustion stage S2 . The dried refuse is ignited while being transported to the combustion stage S2 , and part of the ignited refuse is pyrolyzed to generate combustible pyrolysis gas. This pyrolysis gas rides on the primary combustion air 51 and moves to the upper part of the main combustion chamber 14 and is flame-burned together with the secondary combustion air 52 . The rest of the ignited refuse is burned in the post-combustion stage S3 , and the incineration ash remaining after combustion is discharged from the discharge chute 18 and sent to an ash disposal facility (not shown). The flue gas of the main combustion chamber 14 is mixed with the secondary combustion air 52 blown from the ceiling portion on the downstream side of the main combustion chamber 14 and completely combusted in the secondary combustion chamber 19 .

〔ボイラ2〕
ごみ焼却炉1の二次燃焼室19と連続された煙道20,21,22には、煙道20,21,22を流れる燃焼排ガスから熱エネルギーを回収するボイラ2が構成されている。第1煙道20及び第2煙道21の壁にはボイラドラム24と接続された水管23が張り巡らされている。また、ボイラドラム24は、過熱器25の過熱管27と接続されている。過熱管27は、第3煙道22内に設置され、過熱管27を通る蒸気は第3煙道22を通過する排ガスの熱を回収する。過熱器25から発電設備8へ送られる蒸気の量は蒸気流量計39により計測される。発電設備8は、発電機85及びそれを駆動する蒸気タービン84を含み、ボイラ2から送られた蒸気によって蒸気タービン84が回転する。
[Boiler 2]
The flues 20, 21, 22 connected to the secondary combustion chamber 19 of the refuse incinerator 1 are provided with a boiler 2 for recovering thermal energy from flue gas flowing through the flues 20, 21, 22. A water pipe 23 connected to a boiler drum 24 is stretched around the walls of the first flue 20 and the second flue 21 . Also, the boiler drum 24 is connected to the superheater pipe 27 of the superheater 25 . The superheating pipe 27 is installed inside the third flue 22 , and the steam passing through the superheating pipe 27 recovers the heat of the exhaust gas passing through the third flue 22 . A steam flow meter 39 measures the amount of steam sent from the superheater 25 to the power generation equipment 8 . The power generation equipment 8 includes a generator 85 and a steam turbine 84 that drives it, and the steam sent from the boiler 2 rotates the steam turbine 84 .

ボイラ2を通過した燃焼排ガスは、第3煙道22と接続された排気路28へ排出される。排気路28には、バグフィルタ81や誘引式送風機82などが設けられており、ボイラ2の排ガスは、バグフィルタ81でダストが分離された後、煙突83から大気へ排出される。 The flue gas that has passed through the boiler 2 is discharged to an exhaust passage 28 connected to the third flue 22 . The exhaust path 28 is provided with a bag filter 81, an induced draft fan 82, and the like, and the exhaust gas from the boiler 2 is discharged to the atmosphere through a stack 83 after dust is separated by the bag filter 81.

上記構成のごみ焼却プラント100の運転は、燃焼制御装置10によって制御される。燃焼制御装置10は、蒸気流量計39で検出される主蒸気流量が所定の値となるように(及び/又は、所定のごみ焼却量を満足するように)、給じん装置41による給じん量や、ごみを燃焼するために必要な一次燃焼空気51及び二次燃焼空気52の流量を調整する、いわゆる、自動燃焼制御を行う。 The operation of the refuse incineration plant 100 configured as described above is controlled by the combustion control device 10 . The combustion control device 10 adjusts the amount of dust fed by the dust feeder 41 so that the flow rate of the main steam detected by the steam flowmeter 39 becomes a predetermined value (and/or satisfies a predetermined waste incineration amount). Also, so-called automatic combustion control is performed to adjust the flow rates of the primary combustion air 51 and the secondary combustion air 52 required to burn the waste.

〔滞留ごみ量調整装置7〕
上記のように焼却プラント100は自動燃焼制御されていても、ごみ質の変化やブリッジの発生などによって、燃焼段Sにおけるごみの著しい不足(ごみ枯れ)が生じることがある。ごみ枯れが生じると、ごみの燃焼により発生するエネルギーが低減することから、ボイラ2の主蒸気流量が低減し、ひいては、発電設備8の発電量が不安定となる。そこで、本実施形態に係る焼却プラント100は、滞留ごみ量調整装置7を備え、予測されるごみ枯れに対応して給じん量を増加させることにより、ごみ枯れに起因するボイラ2の主蒸気流量の低減を抑制し、ひいては、発電設備8の発電量を安定化させる。
[Remaining dust amount adjusting device 7]
Even if the incineration plant 100 is under automatic combustion control as described above, a significant shortage of waste (waste dryness) in the combustion stage S2 may occur due to changes in the quality of waste, generation of bridges, and the like. When the waste dries up, the amount of energy generated by burning the waste is reduced, so the main steam flow rate of the boiler 2 is reduced, and the amount of power generated by the power generation equipment 8 becomes unstable. Therefore, the incineration plant 100 according to the present embodiment is provided with the retained waste amount adjusting device 7, and by increasing the dust supply amount in response to the predicted waste withering, the main steam flow rate of the boiler 2 caused by the waste withering , thereby stabilizing the amount of power generated by the power generation equipment 8 .

図2は、滞留ごみ量調整装置7の構成を示すブロック図である。図2に示す滞留ごみ量調整装置7は、炉内滞留ごみ量を検出するごみ量検出装置79(図1、参照)と、検出された炉内滞留ごみ量に基づいてごみ枯れが生じないように炉内滞留ごみ量を制御する制御装置70(滞留ごみ量制御装置)とを備える。本実施形態において、滞留ごみ量調整装置7は、燃焼制御装置10から独立して記載されているが、滞留ごみ量調整装置7は燃焼制御装置10の一機能部として構成されていてもよい。 FIG. 2 is a block diagram showing the configuration of the staying dust amount adjusting device 7. As shown in FIG. The staying dust amount adjusting device 7 shown in FIG. 2 includes a dust amount detecting device 79 (see FIG. 1) for detecting the amount of staying dust in the furnace, and a dust amount detector 79 (see FIG. 1) for detecting the amount of dust staying in the furnace, and a device for preventing the dust from withering based on the detected amount of dust staying in the furnace. is provided with a control device 70 (remaining waste amount control device) for controlling the amount of waste remaining in the furnace. In this embodiment, the accumulated dust amount adjusting device 7 is described independently from the combustion control device 10 , but the accumulated dust amount adjusting device 7 may be configured as a functional part of the combustion control device 10 .

制御装置70は、滞留ごみ量計測部71と、変動成分抽出部72と、減少成分抽出部73と、ゲイン算出部74と、ごみ枯れ対応処理部75との各機能部を備える。制御装置70は、PLC(プログラマブルコントローラ)などの、一種のコンピュータとして具現化されてよい。制御装置70は、CPU、MPU、GPUなどで構成されたプロセッサ70aと、揮発性及び不揮発性のメモリ70bとを備える。プロセッサ70aは、メモリ70bに格納された各種プログラムを読み出して実行することで、制御装置70の各機能部を実現する処理を行う。 The control device 70 includes functional units including a staying dust amount measuring unit 71 , a fluctuation component extracting unit 72 , a decreasing component extracting unit 73 , a gain calculating unit 74 , and a dust withering processing unit 75 . The controller 70 may be embodied as a kind of computer, such as a PLC (Programmable Controller). The control device 70 includes a processor 70a including a CPU, MPU, GPU, etc., and a volatile and nonvolatile memory 70b. The processor 70a reads and executes various programs stored in the memory 70b, thereby performing processing for realizing each functional unit of the control device 70. FIG.

図3は、滞留ごみ量調整処理のデータフロー図である。図2及び図3を参照しつつ、滞留ごみ量調整装置7の制御装置70の各機能部の機能について説明する。 FIG. 3 is a data flow diagram of the staying dust amount adjustment process. The function of each functional unit of the control device 70 of the staying dust amount adjusting device 7 will be described with reference to FIGS. 2 and 3. FIG.

制御装置70は、ごみ量検出装置79と電気的に接続されている。ごみ量検出装置79は、ごみ焼却炉1に設けられて、乾燥段Sのごみ量を周期的に検出する。ごみ量検出装置79で検出されたごみ量は、炉内の滞留ごみ量Rとして制御装置70へ出力される。滞留ごみ量計測部71は、取得した滞留ごみ量Rを検出時刻と関連付けてメモリ70bへ記憶する。このようにして、メモリ70bには、炉内の滞留ごみ量Rの時系列データが蓄積されていく。 The control device 70 is electrically connected to a dust amount detection device 79 . The dust amount detector 79 is provided in the refuse incinerator 1 and periodically detects the amount of refuse in the drying stage S1 . The amount of dust detected by the dust amount detector 79 is output to the control device 70 as the amount R of residual dust in the furnace. The staying dust amount measuring unit 71 stores the obtained staying dust amount R in the memory 70b in association with the detection time. In this manner, time-series data of the amount of waste R in the furnace is accumulated in the memory 70b.

ごみ量検出装置79で検出されるごみ量は、乾燥ストーカ15上のごみ厚さ、或いは、ごみ厚さから求め得る乾燥ストーカ15上のごみの体積であってよい。ごみ量検出装置79は、乾燥ストーカ15上のごみ厚さを検出できるものであれば、その態様を問わない。例えば、ごみ量検出装置79は、赤外線カメラ(又は、可視光カメラ)及び画像処理装置で構成され、画像処理装置がカメラの撮像画像を画像処理することにより、ごみ厚さを求めるものであってよい。また、例えば、ごみ量検出装置79は、超音波又は電波の送受信装置及び処理装置で構成され、送受信装置で乾燥ストーカ15上のごみの表面に向けて波を発振するとともにごみの表面で反射した波を受振し、処理装置が発振から受振までの時間に基づいてごみ層さを求めるものであってよい。また、ごみ厚さは、乾燥ストーカ15上の単一位置において検出された値であってもよいし、乾燥ストーカ15上の複数位置において検出された値の平均値であってもよい。 The amount of dust detected by the dust amount detection device 79 may be the thickness of the dust on the dry stoker 15 or the volume of dust on the dry stoker 15 that can be obtained from the thickness of the dust. The dust amount detection device 79 may be of any type as long as it can detect the thickness of the dust on the drying stoker 15 . For example, the dust amount detection device 79 is composed of an infrared camera (or a visible light camera) and an image processing device. good. Further, for example, the dust amount detection device 79 is composed of an ultrasonic wave or radio wave transmitting/receiving device and a processing device. A wave may be received and the processing device may determine the dust layer based on the time from oscillation to reception. Also, the dust thickness may be a value detected at a single position on the drying stoker 15 or an average value of values detected at a plurality of positions on the drying stoker 15 .

変動成分抽出部72は、滞留ごみ量Rの短期的な変動成分を抽出する。滞留ごみ量Rの短期的な変動成分は、給じん装置41の断続的な給じん操作による炉内滞留ごみ量の変動成分を表す。ここで、変動成分抽出部72は、変動成分を抽出するに際し、滞留ごみ量Rのフィルタリングを行う。ここで使用されるフィルタは、例えば、ハイパスフィルタ、バンドパスフィルタなどであってよい。使用されるフィルタは特に限定されないが、ごみ枯れを事前に検知するという目的から、遅延の大きいフィルタは除かれるべきである。また、フィルタのカットオフ周波数は、給じんのタイミングから、そのエネルギーがボイラ2の主蒸気流量に表れるまでの時間より長いことが望ましい。上記のようにフィルタリングによって抽出された滞留ごみ量Rの短期的変動成分は、滞留ごみ量Rの時系列変化から長期的変動成分が除かれたものである。フィルタで除かれる長期的変動成分は、滞留ごみ量Rの標準値と見做すことができる。つまり、滞留ごみ量Rの短期的な変動成分は、滞留ごみ量Rの標準値からの変動成分ということができる。このように、滞留ごみ量Rに対し短期的変動成分を抽出するフィルタリングを行うことによって、標準値(即ち、長期的変動)を算出することなく、滞留ごみ量Rの標準値からの変動成分を抽出することができる。 The fluctuation component extraction unit 72 extracts short-term fluctuation components of the amount R of staying dust. The short-term fluctuation component of the amount of residual dust R represents the fluctuation component of the amount of residual dust in the furnace due to the intermittent dust supply operation of the dust supply device 41 . Here, the fluctuation component extraction unit 72 filters the amount of staying dust R when extracting the fluctuation component. The filters used here may be, for example, high-pass filters, band-pass filters, and the like. Filters to be used are not particularly limited, but filters with a large delay should be excluded for the purpose of detecting dust withering in advance. Moreover, it is desirable that the cutoff frequency of the filter is longer than the time from the timing of dust supply until the energy appears in the main steam flow rate of the boiler 2 . The short-term fluctuation component of the amount of staying dust R extracted by filtering as described above is obtained by removing the long-term fluctuation component from the time-series change of the amount of staying dust R. FIG. The long-term fluctuation component removed by the filter can be regarded as the standard value of the amount R of retained dust. In other words, it can be said that the short-term fluctuation component of the amount R of staying dust is the fluctuation component from the standard value of the amount R of staying dust. In this way, by performing filtering for extracting the short-term fluctuation component for the amount of residual waste R, the fluctuation component from the standard value of the amount of residual waste R can be extracted without calculating the standard value (that is, the long-term fluctuation). can be extracted.

但し、滞留ごみ量Rの標準値からの変動成分が、算出された炉内滞留ごみ量標準値(以下、「標準値R」と表す)からの変動成分であってもよい。この場合、変動成分抽出部72は、滞留ごみ量Rの所定の評価期間の時系列データをメモリ70bから読み出して、滞留ごみ量Rの標準値Rからの変動成分を抽出する。標準値Rは、滞留ごみ量Rの時系列データのうち直近の所定期間の中央値、平均値、又は移動平均値であってよい。或いは、標準値Rは、オペレータにより適宜入力され、メモリ70bに記憶された値であってもよい。 However, the fluctuation component from the standard value of the amount of retained refuse R may be the fluctuation component from the calculated standard value of the amount of retained refuse in the furnace (hereinafter referred to as “standard value R S ”). In this case, the fluctuation component extractor 72 reads out the time-series data of the amount of accumulated dust R for a predetermined evaluation period from the memory 70b, and extracts the fluctuation component from the standard value RS of the amount of accumulated garbage R. The standard value R S may be a median value, an average value, or a moving average value for the most recent predetermined period of the time-series data of the amount of retained waste R. Alternatively, the standard value RS may be a value appropriately input by the operator and stored in the memory 70b.

図4は、評価期間の炉内滞留ごみ量Rの時系列変化の一例を表すグラフ1であり、縦軸は炉内滞留ごみ量Rを表し、横軸は時間を表す。図5は、グラフ1の炉内滞留ごみ量Rの時系列データから抽出された変動成分を表すグラフ2である。グラフ2の縦軸は変動成分を表し、横軸は時間を表す。グラフ1とグラフ2の横軸(時間)は対応している。 FIG. 4 is a graph 1 showing an example of chronological changes in the amount of refuse remaining in the furnace during the evaluation period, where the vertical axis represents the amount of refuse remaining in the furnace and the horizontal axis represents time. FIG. 5 is a graph 2 showing fluctuation components extracted from the time-series data of the in-furnace waste amount R of the graph 1. FIG. The vertical axis of graph 2 represents the fluctuation component, and the horizontal axis represents time. The horizontal axes (time) of graphs 1 and 2 correspond to each other.

グラフ2に表されるように、滞留ごみ量Rの変動成分は、0より大きい増加成分と、0より小さい減少成分とを含む。減少成分抽出部73は、変動成分から、減少成分のみを抽出する。ここで、減少成分抽出部73は、例えば、滞留ごみ量Rの変動成分のプラスをマイナスに、マイナスをプラスにそれぞれ変換し、下限リミッタで0以下の数を除くことにより、減少成分を抽出してもよい。このようにして抽出された減少成分は、滞留ごみ量Rの変動成分のうち減少成分の絶対値となる。 As shown in Graph 2, the fluctuation component of the amount of retained refuse R includes an increasing component greater than zero and a decreasing component less than zero. The decrease component extraction unit 73 extracts only the decrease component from the fluctuation components. Here, the decrease component extracting unit 73 extracts the decrease component by, for example, converting the plus of the fluctuation component of the amount of staying dust R into minus, converting the minus into plus, and excluding numbers of 0 or less with the lower limiter. may The decrease component extracted in this way is the absolute value of the decrease component of the fluctuation component of the amount R of staying dust.

図6は、グラフ2の変動成分から抽出された減少成分を表すグラフ3である。グラフ3の縦軸は滞留ごみ量Rの変動成分のうち減少成分を表し、横軸は時間を表す。グラフ1~3の横軸(時間)は対応している。 FIG. 6 is graph 3 showing the decrease component extracted from the fluctuation component of graph 2. FIG. The vertical axis of the graph 3 represents the decrease component of the fluctuation component of the amount of staying dust R, and the horizontal axis represents time. The horizontal axes (time) of graphs 1 to 3 correspond.

ゲイン算出部74は、滞留ごみ量Rに対応した補正ゲインGを算出する。より詳細には、ゲイン算出部74は、滞留ごみ量Rを取得し、この滞留ごみ量Rから「補正ゲイン-滞留ごみ量情報」を利用して補正ゲインGを算出する。補正ゲイン-滞留ごみ量情報は、補正ゲインGと滞留ごみ量Rとの関係を表す情報であり、予めメモリ70bに記憶されている。ゲイン算出部74が使用する滞留ごみ量Rは、ごみ量検出装置79で検出された現在の滞留ごみ量Rである。 The gain calculator 74 calculates a correction gain G corresponding to the amount R of staying dust. More specifically, the gain calculation unit 74 obtains the amount of staying dust R, and calculates the correction gain G from this amount of staying dust R by using "correction gain - amount of staying dust information". The correction gain-remaining dust amount information is information representing the relationship between the correction gain G and the staying dust amount R, and is stored in advance in the memory 70b. The amount of staying dust R used by the gain calculator 74 is the current amount of staying dust R detected by the dust amount detection device 79 .

図7には、補正ゲイン-滞留ごみ量情報の一例が示されている。この補正ゲイン-滞留ごみ量情報は、滞留ごみ量Rが0からα1までの範囲において補正ゲインGは最大値GHであり、滞留ごみ量Rがα1からα2までの範囲において補正ゲインGは最大値GHから滞留ごみ量Rの増加に伴って減少し、滞留ごみ量Rがα2以上の範囲において補正ゲインGは最小値GLである。滞留ごみ量Rがα1からα2までの範囲において補正ゲインGは、滞留ごみ量Rに対して単調に減少する。最大値GH及び最小値GLはいずれも0より大きい数である。但し、補正ゲインGは、上記に限定されず、滞留ごみ量Rの値に拘わらず一定の値であってもよい。 FIG. 7 shows an example of correction gain-remaining dust amount information. In this correction gain-remaining dust amount information, the correction gain G is the maximum value GH when the amount of staying dust R is in the range of 0 to α1, and the correction gain G is the maximum value when the amount of staying dust R is in the range of α1 to α2. The correction gain G is the minimum value GL in the range where the amount R of staying dust decreases from GH as the amount R of staying dust increases, and the amount R of staying dust is equal to or greater than α2. The correction gain G monotonically decreases with respect to the amount of staying dust R in the range from α1 to α2. Both the maximum value GH and the minimum value GL are numbers greater than zero. However, the correction gain G is not limited to the above, and may be a constant value regardless of the value of the amount R of staying dust.

ごみ枯れ対応処理部75は、減少成分に補正ゲインGを乗じてごみ減少指標Iを求める。乾燥段Sのごみ厚さが十分に大きいときには、即ち、補正ゲインGの値が小さいときには、減少成分が大きくても、ごみ枯れが生じる可能性は低い。一方で、乾燥段Sのごみ厚さが小さいときには、即ち、補正ゲインGの値が大きいときには、減少成分の増加に伴って、ごみ枯れが生じる可能性が高まる。このように、ごみ減少指標Iは、減少成分が補正ゲインGで補正されることによって、実際にごみ枯れが生じる可能性の評価指標となっている。 The withered dust processing unit 75 obtains a dust reduction index I by multiplying the reduction component by the correction gain G. FIG. When the thickness of the dust in the drying stage S1 is sufficiently large, that is, when the value of the correction gain G is small, even if the decrease component is large, there is a low possibility that the dust will dry up. On the other hand, when the thickness of the dust in the drying stage S1 is small, that is, when the value of the correction gain G is large, the increase in the decrease component increases the possibility that the dust will dry up. In this way, the dust reduction index I is an evaluation index of the possibility that dust withering actually occurs by correcting the reduction component with the correction gain G. FIG.

ごみ枯れ対応処理部75は、更に、ごみ減少指標Iに基づいて、所定のごみ枯れ対応処理を行う。本実施形態において、ごみ枯れ対応処理は、ごみ減少指標Iに基づいて給じん操作量(又は、給じん量)の補正量を求め、当該補正量で補正された給じん操作量を燃焼制御装置10(又は、給じん装置41)へ出力することを含む。ここで、対応処理部75は、ごみ減少指標Iと対応した操作端の制御補正量Cを求める。操作端は、例えば、給じん装置41のプッシャ41aのストローク、プッシャ41aの動作周期のうち少なくとも1つであってよい。ごみ枯れ対応処理部75は、操作端の制御補正量Cを求めるに際し、予めメモリ70bに記憶された「ごみ減少指標-制御補正量情報」を利用する。ごみ減少指標-制御補正量情報は、ごみ減少指標と操作端の制御補正量との関係を表す情報である。 Further, based on the dust reduction index I, the withered dust handling unit 75 performs a predetermined dust withered handling process. In the present embodiment, in the dust withering process, a correction amount for the dust supply operation amount (or dust supply amount) is obtained based on the dust reduction index I, and the dust supply operation amount corrected by the correction amount is applied to the combustion control device. 10 (or dust supply device 41). Here, the correspondence processing unit 75 obtains the control correction amount C of the operating terminal corresponding to the dust reduction index I. The operating end may be, for example, at least one of the stroke of the pusher 41a of the dust feeder 41 and the operation cycle of the pusher 41a. The dust withering processing unit 75 uses the "dust reduction index-control correction amount information" stored in advance in the memory 70b when obtaining the control correction amount C of the operating terminal. The dust reduction index-control correction amount information is information representing the relationship between the dust reduction index and the control correction amount of the operating terminal.

図8には、ごみ減少指標-制御補正量情報の一例が示されている。ごみ減少指標-制御補正量情報は、ごみ減少指標Iが0からβ1までの範囲において制御補正量Cは0から最大補正量CHまで徐々に増加し、ごみ減少指標Iがβ1以上において制御補正量Cは最大補正量CHとなる。制御補正量Cはいずれも0より大きい数である。なお、図8に例示された制御補正量Cは変数であるが、制御補正量Cは定数であってもよい。また、操作端が複数の場合には、ごみ減少指標-制御補正量情報を操作端ごとに設けることで、操作端ごとの制御補正量Cに優劣をつけることが可能となる。 FIG. 8 shows an example of dust reduction index-control correction amount information. In the dust reduction index-control correction amount information, the control correction amount C gradually increases from 0 to the maximum correction amount CH when the dust reduction index I is in the range of 0 to β1, and when the dust reduction index I is β1 or more, the control correction amount is C is the maximum correction amount CH. All of the control correction amounts C are numbers greater than zero. Although the control correction amount C illustrated in FIG. 8 is a variable, the control correction amount C may be a constant. Further, when there are a plurality of operating terminals, by providing the dust reduction index-control correction amount information for each operating terminal, it is possible to determine the superiority of the control correction amount C for each operating terminal.

求めた制御補正量Cは燃焼制御装置10へ出力される。燃焼制御装置10は、取得した制御補正量Cに基づいて給じん装置41の制御量を補正する。つまり、制御補正量Cは、給じん装置41による給じん量の補正量に相当する。これにより、ごみ枯れが予測される場合には、乾燥段Sへの給じん量が増加し、ごみ枯れを回避することができる。 The calculated control correction amount C is output to the combustion control device 10 . The combustion control device 10 corrects the control amount of the dust supply device 41 based on the control correction amount C obtained. In other words, the control correction amount C corresponds to the correction amount of the dust supply amount by the dust supply device 41 . As a result, when the dust withering is predicted, the amount of dust supplied to the drying stage S1 is increased, and the dust withering can be avoided.

以上に説明したように、本実施形態に係るごみ焼却炉1は、ごみを乾燥させる乾燥段S、乾燥したごみを燃焼させる燃焼段S、及び、燃焼したごみを灰化させる後燃焼段Sの順にごみを搬送するストーカ式搬送装置Sを有する燃焼室(主燃焼室14)と、乾燥段Sへごみを供給する給じん装置41と、炉内の滞留ごみ量Rとして乾燥段Sのごみ厚さ又は体積を検出するごみ量検出装置79と、制御装置70とを備える。制御装置70は、滞留ごみ量の時系列データから、所定の評価期間における滞留ごみ量Rの標準値からの変動成分を抽出し、変動成分のうち減少成分を抽出し、滞留ごみ量Rに対して単調減少又は一定となる補正ゲインGを求め、減少成分に補正ゲインGを乗じることにより当該減少成分を補正し、補正された減少成分をごみ減少指標Iとし、当該ごみ減少指標Iに基づいて所定のごみ枯れ対応処理を行う。 As described above, the refuse incinerator 1 according to the present embodiment includes the drying stage S 1 for drying refuse, the combustion stage S 2 for burning the dried refuse, and the post-combustion stage for incinerating the burned refuse. A combustion chamber (main combustion chamber 14) having a stoker-type conveying device S that conveys waste in order of S3 , a dust feeder 41 that supplies waste to the drying stage S1 , and a drying stage as the amount of residual waste R in the furnace A dust amount detector 79 for detecting the dust thickness or volume of S1 and a controller 70 are provided. The control device 70 extracts the fluctuation component from the standard value of the amount of staying dust R in a predetermined evaluation period from the time-series data of the amount of staying dust, extracts the decrease component from the fluctuation components, and A correction gain G that monotonically decreases or is constant is obtained by multiplying the decrease component by the correction gain G, the decrease component is corrected, the corrected decrease component is taken as a dust reduction index I, and based on the dust reduction index I Predetermined dust withering countermeasure processing is performed.

また、本実施形態に係るごみ焼却炉1の制御方法は、炉内の滞留ごみ量Rとして乾燥段Sのごみ厚さ又はごみ体積を検出すること、滞留ごみ量Rの時系列データから、所定の評価期間における滞留ごみ量Rの標準値からの変動成分を抽出すること、変動成分のうち減少成分を抽出すること、滞留ごみ量Rに対して単調減少又は一定となる補正ゲインGを求めること、減少成分に補正ゲインGを乗じることにより当該減少成分を補正すること、及び、補正された減少成分をごみ減少指標Iとし、当該ごみ減少指標Iに基づいて所定のごみ枯れ対応処理を行うこと、を含む。 In addition, the control method of the refuse incinerator 1 according to the present embodiment is to detect the refuse thickness or refuse volume of the drying stage S1 as the refuse amount R retained in the furnace, and from the time-series data of the refuse amount R, Extracting the fluctuation component from the standard value of the amount of staying dust R in a predetermined evaluation period, extracting the decreasing component from the fluctuation component, and obtaining the correction gain G that monotonously decreases or is constant with respect to the amount of staying dust R correcting the reduced component by multiplying the reduced component by a correction gain G; and using the corrected reduced component as a dust reduction index I, and performing predetermined dust withering processing based on the dust reduction index I. including.

上記ごみ焼却炉1及びその制御方法では、計測された炉内の滞留ごみ量R、即ち、乾燥段Sのごみ量から、滞留ごみ量Rの変動成分のうち減少成分を求め、減少成分からごみ枯れの兆候を捉える。このように、滞留ごみ量Rの測定値から抽出された減少成分をごみ枯れの予測に利用するので、ごみ質の変化に伴って適切な炉内滞留ごみ量が変化しても、それに影響を受けることなくごみ燃料の不足(ごみ枯れ)を予測することができ、予測されたごみ枯れに対して適切な処理を行うことができる。 In the refuse incinerator 1 and its control method, the decrease component of the fluctuation component of the amount of retained refuse R is obtained from the measured amount of refuse R in the furnace, that is, the amount of refuse in the drying stage S1 . Recognize the signs of dying litter. In this way, since the decrease component extracted from the measured value of the amount of remaining waste R is used for prediction of waste withering, even if the appropriate amount of waste staying in the furnace changes with changes in the quality of waste, it will not be affected. It is possible to predict the shortage of garbage fuel (waste dryness) without having to deal with it, and to perform appropriate processing for the predicted waste dryness.

上記ごみ焼却炉1及びその制御方法において、ごみ減少指標Iは、求めた減少成分が炉内滞留ごみ量Rと対応する補正ゲインGで補正されたものである。よって、ごみ減少指標Iを利用して、実際にごみ枯れが発生する可能性を評価することができ、また、発生するごみ燃料の不足(ごみ枯れ)の程度を評価することができる。 In the refuse incinerator 1 and its control method, the refuse reduction index I is obtained by correcting the determined reduction component with the correction gain G corresponding to the amount of refuse staying in the furnace. Therefore, by using the garbage reduction index I, it is possible to evaluate the possibility of garbage withering actually occurring, and also to evaluate the degree of shortage of garbage fuel (garbage withering) that will occur.

また、本実施形態に係るごみ焼却炉1においては、上記のごみ枯れ対応処理が、ごみ減少指標Iに基づいて給じん操作量の補正量を求め、当該補正量で補正された給じん操作量を給じん装置41へ出力することを含む。同様に、本実施形態に係るごみ焼却炉1の制御方法においては、上記のごみ枯れ対応処理が、ごみ減少指標Iに基づいて、乾燥段Sへの給じん量の補正量を求めることを含む。 Further, in the refuse incinerator 1 according to the present embodiment, the refuse withering handling process obtains a correction amount of the dust supply operation amount based on the refuse reduction index I, and determines the dust supply operation amount corrected by the correction amount. to the dust feeding device 41. Similarly, in the control method of the refuse incinerator 1 according to the present embodiment, the above-described process for dealing with withered refuse determines the correction amount of the amount of dust supplied to the drying stage S1 based on the refuse reduction index I. include.

このように、ごみ減少指標Iに基づいて乾燥段Sへの給じん量が自動的に補正されるので、良好な炉内滞留ごみ量を自動的に維持することができる。また、給じん操作量の補正量(給じん量の補正量)は、炉内滞留ごみ量Rに対応する補正ゲインGで補正された減少成分(即ち、ごみ減少指標I)に基づくものである。これにより、炉内滞留ごみ量Rが十分に多いときには、給じん量の補正量が抑えられ、炉内滞留ごみ量Rが少ないときに、給じん量の補正量が大きくなる。このようにして、炉内滞留ごみ量Rを適切な値とすることができる。 In this manner, the amount of dust supplied to the drying stage S1 is automatically corrected based on the dust reduction index I, so that a good amount of dust staying in the furnace can be automatically maintained. Further, the correction amount of the dust supply operation amount (correction amount of the dust supply amount) is based on the reduction component (that is, the dust reduction index I) corrected by the correction gain G corresponding to the amount R of dust remaining in the furnace. . As a result, when the amount R of dust remaining in the furnace is sufficiently large, the correction amount of the dust supply amount is suppressed, and when the amount R of dust staying in the furnace is small, the amount of correction of the dust amount is increased. In this way, the in-furnace waste amount R can be set to an appropriate value.

以上に本発明の好適な実施の形態を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。上記のごみ焼却炉1及びその制御方法は、例えば、以下のように変更することができる。 Although the preferred embodiments of the present invention have been described above, the present invention may include modifications of the details of the specific structures and/or functions of the above embodiments without departing from the spirit of the present invention. . The refuse incinerator 1 and its control method described above can be modified, for example, as follows.

上記実施形態に係るごみ焼却炉1及びその制御方法では、ごみ枯れ対応処理は、乾燥段Sへの給じん量(又は給じん操作量)の補正である。但し、ごみ枯れ対応処理は、これに限定されず、また、2種以上の処理を含んでもよい。例えば、上記のごみ枯れ対応処理が、ごみ減少指標Iに基づいてごみ枯れの発生の有無を予測し、ごみ枯れが予測される場合には、それを報知するように報知装置77へ出力することを含んでもよい。この場合、滞留ごみ量調整装置7は、例えば、音声又は光による報知機、ディスプレイモニタなどの報知装置77(図2、参照)を更に備えてよい。 In the refuse incinerator 1 and the control method thereof according to the above-described embodiment, the refuse withering process is correction of the dust supply amount (or dust supply operation amount) to the drying stage S1 . However, the processing for dealing with withered dust is not limited to this, and may include two or more types of processing. For example, in the above-described dust withering process, the presence or absence of dust withering is predicted based on the dust reduction index I, and when dust withering is predicted, output to the notification device 77 so as to notify it. may include In this case, the staying dust amount adjustment device 7 may further include a notification device 77 (see FIG. 2) such as a notification device using sound or light, or a display monitor.

このように、ごみ枯れが予測される場合にそれが報知されることによって、オペレータは、ごみ枯れに対応して給じん量を調整したり、ストーカ式搬送装置Sの各段の搬送速度や一次燃焼空気51の流量を調整したり、投入ホッパ12へのごみ投入量を調整したりすることができる。 In this way, by notifying the predicted dust withering, the operator can adjust the amount of dust to be fed in response to the dust withering, and the conveying speed of each stage of the stoker-type conveying apparatus S and the primary It is possible to adjust the flow rate of the combustion air 51 and adjust the amount of refuse thrown into the throw-in hopper 12 .

また、上記実施形態に係るごみ焼却炉1及びその制御方法では、ごみ減少指標Iに基づいてごみ枯れ対応処理が行われるが、その前に、ごみ枯れ対応処理の必要性が判断されてもよい。例えば、滞留ごみ量調整装置7のごみ枯れ対応処理部75は、ごみ減少指標Iと所定の閾値とを比較することによってごみ枯れの兆候の有無(ごみ枯れの予測)を判断し、ごみ減少指標Iが閾値以下であればごみ枯れが予測されないとして、ごみ枯れ対応処理を省略してもよい。また、ごみ枯れの兆候の有無を判断するに際し、ごみ枯れ対応処理部75は、ごみ減少指標Iと所定の閾値とを比較してもよいし、ごみ減少指標Iの積算値(図6のグラフ3の薄墨部分の面積)と所定の閾値とを比較してもよい。 In addition, in the refuse incinerator 1 and the control method thereof according to the above-described embodiment, the refuse withering response process is performed based on the refuse reduction index I, but before that, the necessity of the refuse withering response process may be determined. . For example, the withered garbage handling unit 75 of the staying garbage amount adjustment device 7 compares the garbage reduction index I with a predetermined threshold value to determine whether or not there is a sign of garbage withering (prediction of garbage withering). If I is equal to or less than the threshold value, it may be assumed that dust withering is not predicted, and the dust withering handling process may be omitted. In addition, when determining whether or not there is a sign of dust withering, the dust withering processing unit 75 may compare the dust reduction index I with a predetermined threshold value, or the integrated value of the dust reduction index I (the graph in FIG. 6). 3) may be compared with a predetermined threshold.

1 :ごみ焼却炉
2 :ボイラ
3 :ごみ貯蔵設備
6 :クレーン
7 :滞留ごみ量調整装置
70a :プロセッサ
70b :メモリ
8 :発電設備
10 :燃焼制御装置
12 :投入ホッパ
13 :シュート
14 :主燃焼室
15 :乾燥ストーカ
16 :燃焼ストーカ
17 :後燃焼ストーカ
15a,16a,17a :風箱
15b,16b,17b :ダンパ
15c,16c,17c :油圧シリンダ
18 :排出シュート
20,21,22 :煙道
24 :ボイラドラム
25 :過熱器
28 :排気路
39 :蒸気流量計
41 :給じん装置
51,52 :燃焼空気
60 :ピット
70 :制御装置
71 :滞留ごみ量計測部
72 :変動成分抽出部
73 :減少成分抽出部
74 :ゲイン算出部
75 :ごみ枯れ対応処理部
77 :報知装置
79 :ごみ量検出装置
84 :蒸気タービン
85 :発電機
100 :焼却プラント
S :ストーカ式搬送装置
:乾燥段
:燃焼段
:後燃焼段
1: Garbage incinerator 2: Boiler 3: Garbage storage equipment 6: Crane 7: Stagnant garbage amount adjustment device 70a: Processor 70b: Memory 8: Power generation equipment 10: Combustion control device 12: Input hopper 13: Chute 14: Main combustion chamber 15: Drying stoker 16: Combustion stoker 17: Post-combustion stoker 15a, 16a, 17a: Wind box 15b, 16b, 17b: Damper 15c, 16c, 17c: Hydraulic cylinder 18: Discharge chute 20, 21, 22: Flue 24: Boiler drum 25 : Superheater 28 : Exhaust passage 39 : Steam flow meter 41 : Dust supply device 51, 52 : Combustion air 60 : Pit 70 : Control device 71 : Remaining dust amount measurement unit 72 : Fluctuation component extraction unit 73 : Reduction component Extraction unit 74 : Gain calculation unit 75 : Waste withering processing unit 77 : Notification device 79 : Waste amount detection device 84 : Steam turbine 85 : Generator 100 : Incineration plant S : Stoker type conveying device S 1 : Drying stage S 2 : Combustion stage S 3 : post-combustion stage

Claims (6)

ごみを乾燥させる乾燥段、乾燥したごみを燃焼させる燃焼段、及び、燃焼したごみを灰化させる後燃焼段の順にごみを搬送するストーカ式搬送装置を備えたごみ焼却炉の制御方法であって、
炉内の滞留ごみ量として前記乾燥段のごみ厚さ又はごみ体積を検出すること、
前記滞留ごみ量の時系列データから、所定の評価期間における前記滞留ごみ量の標準値からの変動成分を抽出すること、
前記変動成分のうち減少成分を抽出すること、
前記滞留ごみ量に対して単調減少又は一定となる補正ゲインを求めること、
前記減少成分に前記補正ゲインを乗じることにより当該減少成分を補正すること、及び、
補正された前記減少成分をごみ減少指標とし、当該ごみ減少指標に基づいて所定のごみ枯れ対応処理を行うこと、を含む、
ごみ焼却炉の制御方法。
A control method for a garbage incinerator equipped with a stoker-type conveying device that conveys garbage in order of a drying stage for drying garbage, a combustion stage for burning the dried garbage, and a post-combustion stage for incinerating the burned garbage, comprising: ,
Detecting the thickness or volume of dust in the drying stage as the amount of dust remaining in the furnace;
extracting a fluctuation component from a standard value of the amount of accumulated waste in a predetermined evaluation period from the time-series data of the amount of accumulated waste;
extracting a decreasing component from the fluctuating component;
obtaining a correction gain that monotonically decreases or remains constant with respect to the amount of staying dust;
correcting the decrease component by multiplying the decrease component by the correction gain; and
using the corrected reduction component as a garbage reduction index, and performing a predetermined garbage withering countermeasure process based on the garbage reduction index;
Control method of garbage incinerator.
前記ごみ枯れ対応処理が、前記ごみ減少指標に基づいて、前記乾燥段への給じん量の補正量を求めることを含む、
請求項1に記載のごみ焼却炉の制御方法。
The dust withering countermeasure process includes obtaining a correction amount for the amount of dust supplied to the drying stage based on the dust reduction index.
A control method for a refuse incinerator according to claim 1.
前記ごみ枯れ対応処理が、前記ごみ減少指標に基づいてごみ枯れの発生の有無を予測し、ごみ枯れが予測される場合には、それを報知することを含む、
請求項1又は2に記載のごみ焼却炉の制御方法。
The garbage withering response process predicts whether or not garbage withering will occur based on the garbage reduction index, and when garbage withering is predicted, notifying it,
A control method for a refuse incinerator according to claim 1 or 2.
ごみを乾燥させる乾燥段、乾燥したごみを燃焼させる燃焼段、及び、燃焼したごみを灰化させる後燃焼段の順にごみを搬送するストーカ式搬送装置を有する燃焼室と、
前記乾燥段へごみを供給する給じん装置と、
炉内の滞留ごみ量として前記乾燥段のごみ厚さ又は体積を検出するごみ量検出装置と、
前記滞留ごみ量の時系列データから、所定の評価期間における前記滞留ごみ量の標準値からの変動成分を抽出し、前記変動成分のうち減少成分を抽出し、前記滞留ごみ量に対して単調減少又は一定となる補正ゲインを求め、前記減少成分に前記補正ゲインを乗じることにより当該減少成分を補正し、補正された前記減少成分をごみ減少指標とし、当該ごみ減少指標に基づいて所定のごみ枯れ対応処理を行う制御装置とを、備える、
ごみ焼却炉。
a combustion chamber having a stoker-type conveying device for conveying garbage in order of a drying stage for drying garbage, a combustion stage for burning the dried garbage, and a post-combustion stage for incinerating the burned garbage;
a dust supply device that supplies dust to the drying stage;
a dust amount detector for detecting the thickness or volume of dust in the drying stage as the amount of dust remaining in the furnace;
A fluctuation component from a standard value of the amount of accumulated waste in a predetermined evaluation period is extracted from the time series data of the amount of accumulated garbage, a decrease component is extracted from the fluctuation component, and monotonously decreases with respect to the amount of accumulated waste. Alternatively, a constant correction gain is obtained, the reduction component is corrected by multiplying the reduction component by the correction gain, the corrected reduction component is used as a dust reduction index, and a predetermined dust withering is performed based on the dust reduction index. A control device that performs corresponding processing,
Garbage incinerator.
前記ごみ枯れ対応処理が、前記ごみ減少指標に基づいて給じん操作量の補正量を求め、当該補正量で補正された給じん操作量を前記給じん装置へ出力することを含む、
請求項4に記載のごみ焼却炉。
The dust withering handling process includes obtaining a correction amount of the dust supply operation amount based on the dust reduction index, and outputting the dust supply operation amount corrected by the correction amount to the dust supply device.
A refuse incinerator according to claim 4.
報知装置を更に備え、
前記ごみ枯れ対応処理が、前記ごみ減少指標に基づいてごみ枯れの発生の有無を予測し、ごみ枯れが予測される場合には、それを報知するように前記報知装置へ出力することを含む、
請求項4又は5に記載のごみ焼却炉。
Further comprising a notification device,
The garbage withering response process predicts whether or not garbage withering will occur based on the garbage reduction index, and when garbage withering is predicted, outputting to the notification device so as to notify it,
The refuse incinerator according to claim 4 or 5.
JP2018245506A 2018-12-27 2018-12-27 Garbage incinerator and its control method Active JP7231406B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018245506A JP7231406B2 (en) 2018-12-27 2018-12-27 Garbage incinerator and its control method
PCT/JP2019/048184 WO2020137502A1 (en) 2018-12-27 2019-12-10 Garbage incinerator and control method therefor
CN201980085712.9A CN113227654B (en) 2018-12-27 2019-12-10 Garbage incinerator and control method thereof
KR1020217022005A KR102470121B1 (en) 2018-12-27 2019-12-10 Garbage incinerator and its control method
PH12021551068A PH12021551068A1 (en) 2018-12-27 2021-05-10 Waste incinerator and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245506A JP7231406B2 (en) 2018-12-27 2018-12-27 Garbage incinerator and its control method

Publications (2)

Publication Number Publication Date
JP2020106216A JP2020106216A (en) 2020-07-09
JP7231406B2 true JP7231406B2 (en) 2023-03-01

Family

ID=71128227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245506A Active JP7231406B2 (en) 2018-12-27 2018-12-27 Garbage incinerator and its control method

Country Status (5)

Country Link
JP (1) JP7231406B2 (en)
KR (1) KR102470121B1 (en)
CN (1) CN113227654B (en)
PH (1) PH12021551068A1 (en)
WO (1) WO2020137502A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116252A (en) 2015-12-17 2017-06-29 Jfeエンジニアリング株式会社 Grate type waste incinerator and waste incineration method with the same
JP2017145980A (en) 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
WO2018003223A1 (en) 2016-06-28 2018-01-04 川崎重工業株式会社 Refuse incineration facility and control method for refuse incineration facility
JP2018021686A (en) 2016-08-01 2018-02-08 株式会社タクマ Combustion control device including garbage moving speed detection function
CN108194934A (en) 2016-12-31 2018-06-22 上海康恒环境股份有限公司 A kind of domestic waste incineration First air independence cloth wind flow interlock control system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236874A (en) * 1975-09-19 1977-03-22 Hitachi Ltd Control system and device for trash incinerator
JP2788394B2 (en) 1993-06-18 1998-08-20 株式会社クボタ Garbage incinerator
JPH09170736A (en) * 1995-12-18 1997-06-30 Nkk Corp Method for supplying specified amount of refuse for refuse incinerator
JPH09273731A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
JPH10238735A (en) * 1996-12-27 1998-09-08 Nkk Corp Refuse incinerating furnace, method and apparatus for detecting hopper bridge
JPH10311519A (en) * 1997-05-14 1998-11-24 Nkk Corp Method and device for controlling crane for charging refuse for refuse incinerator
CN1320309C (en) * 2003-03-27 2007-06-06 株式会社田熊 Automatic combustion controlling method for charging device type refuse incinerator
CN103234207B (en) * 2012-11-28 2015-04-15 上海康恒环境股份有限公司 Automatic incineration garbage layer thickness control system of household garbage incinerator
JP6468628B2 (en) * 2014-04-28 2019-02-13 株式会社タクマ Combustion control method and combustion control system
JP6696816B2 (en) * 2016-04-06 2020-05-20 日立造船株式会社 Stoker incinerator
JP6632490B2 (en) * 2016-04-28 2020-01-22 日立造船株式会社 Computing device, control method for computing device, control program, and recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116252A (en) 2015-12-17 2017-06-29 Jfeエンジニアリング株式会社 Grate type waste incinerator and waste incineration method with the same
JP2017145980A (en) 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator
WO2018003223A1 (en) 2016-06-28 2018-01-04 川崎重工業株式会社 Refuse incineration facility and control method for refuse incineration facility
JP2018021686A (en) 2016-08-01 2018-02-08 株式会社タクマ Combustion control device including garbage moving speed detection function
CN108194934A (en) 2016-12-31 2018-06-22 上海康恒环境股份有限公司 A kind of domestic waste incineration First air independence cloth wind flow interlock control system

Also Published As

Publication number Publication date
CN113227654B (en) 2023-09-22
KR102470121B1 (en) 2022-11-23
JP2020106216A (en) 2020-07-09
CN113227654A (en) 2021-08-06
KR20210102399A (en) 2021-08-19
WO2020137502A1 (en) 2020-07-02
PH12021551068A1 (en) 2021-11-22

Similar Documents

Publication Publication Date Title
JP6927127B2 (en) Waste incinerator method
JP6723864B2 (en) Combustion control device equipped with a garbage moving speed detection function
JP2019178844A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
WO2023037742A1 (en) Control device for incinerator equipment
JP2022069679A (en) Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP7231406B2 (en) Garbage incinerator and its control method
JP2019178848A (en) Waste incinerator and waste incineration method
JP6779779B2 (en) Garbage incineration equipment
JP2788394B2 (en) Garbage incinerator
CN114729746A (en) Control device for combustion facility, control method for combustion facility, and program
JP6973246B2 (en) Waste incinerator method
JP4036768B2 (en) Combustion control device for incinerator
JP5767486B2 (en) Heat recovery plant and operation control method thereof
JP2019178847A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
WO2020137598A1 (en) Garbage supply speed estimation device and garbage supply speed estimation method
JP3669778B2 (en) Combustion control device for garbage incinerator
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JP3669779B2 (en) Combustion control device for garbage incinerator
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP3315036B2 (en) Combustion control device of garbage incinerator
JP3173963B2 (en) Garbage incineration equipment
JP3356936B2 (en) Residual waste amount detection method, combustion control method, and waste incinerator
JP3850228B2 (en) Dust supply control method in incinerator
JP2021050867A (en) Dust removal device of heat transfer pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7231406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150