JP3850228B2 - Dust supply control method in incinerator - Google Patents

Dust supply control method in incinerator Download PDF

Info

Publication number
JP3850228B2
JP3850228B2 JP2001152485A JP2001152485A JP3850228B2 JP 3850228 B2 JP3850228 B2 JP 3850228B2 JP 2001152485 A JP2001152485 A JP 2001152485A JP 2001152485 A JP2001152485 A JP 2001152485A JP 3850228 B2 JP3850228 B2 JP 3850228B2
Authority
JP
Japan
Prior art keywords
dust
amount
dust supply
operation speed
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001152485A
Other languages
Japanese (ja)
Other versions
JP2002349827A (en
Inventor
義明 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001152485A priority Critical patent/JP3850228B2/en
Publication of JP2002349827A publication Critical patent/JP2002349827A/en
Application granted granted Critical
Publication of JP3850228B2 publication Critical patent/JP3850228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、火炉内でゴミを焼却処理する焼却炉において、前記給塵手段による前記火炉内への前記ゴミの供給量を制御する給塵量制御方法に関する。
【0002】
【従来の技術】
従来、ゴミ焼却設備は、火炉にゴミを供給する給塵手段としての給塵機構を備え、火炉の出口温度検出と火炉から排出される排ガスの酸素濃度検出等により、火炉における発熱量を算出し、その発熱量が目標発熱量付近で安定するように、給塵機構の動作速度を調整して、火炉へのゴミの供給量を制御するように構成されることがある。
即ち、2〜3時間の所定時間内における算出した発熱量の移動平均と、同じく所定時間内におけるクレーン等により給塵機構へ投入したゴミの重量の移動平均とから、ゴミの単位重量あたりの発熱量所謂ゴミ質を推測し、このゴミ質と目標発熱量とから、ゴミの単位時間あたりの目標焼却量を求め、さらに、上記所定時間内の給塵機構へ投入したゴミの重量と給塵機構の動作速度とから、給塵機構の動作速度に対するゴミの供給重量である給塵効率を求め、給塵機構によるゴミの供給量がこの目標焼却量となるように、上記目標焼却量と上記給塵効率とを基に、給塵機構の動作速度を設定するのである。
【0003】
【発明が解決しようとする課題】
しかし、上記従来のゴミ焼却設備のゴミの供給量の制御においては、実際に給塵機構により供給されたゴミ質と、上記のように算出した火炉における発熱量から推測したゴミ質との間には、誤差が生じる場合があり、次のような問題を招いていた。
例えば、ゴミの含水率や嵩密度が急激に変化した場合には、火炉内に供給されたゴミの発熱量が急激に変化するが、このことで火炉の出口温度に変化が生じた時点でのゴミの供給量のフィードバック制御を行っても、対応が遅くなることがある。
【0004】
さらに、通常15〜20分程度の周期でクレーンにてホッパにゴミが投入されるが、その投入されたゴミがホッパ内で落下せずにホッパのレベルが下がらないブリッジが発生すると、ゴミの投入周期が長くなる場合がある。また、手動でクレーンを操作している場合、クレーンの操作員のゴミの投入が、何らかの理由で遅れた場合、ゴミのホッパへの投入周期が長くなり、さらに、その反動でその後はゴミの投入周期が短くなる。このため、実際の給塵機構の給塵効率が変動し、火炉内へ供給されたゴミの発熱量に基づく給塵機構の動作速度の制御が追いつかず、ゴミ切れ等が発生する虞がある。
【0005】
従って、本発明は、上記の事情に鑑みて、火炉内でゴミを焼却処理する焼却炉において、給塵手段による火炉内への前記ゴミの供給量を適切に制御することができる給塵量制御方法を実現することを目的とする。
【0006】
【課題を解決するための手段】
〔構成1〕
本発明に係る給塵量制御方法は、請求項1に記載したごとく、火炉内でゴミを焼却処理する焼却炉において、給塵手段による前記火炉内への前記ゴミの供給量を制御する給塵量制御方法であって、
前記給塵手段の動作速度に対する前記ゴミの供給量である給塵効率を算出する給塵効率算出工程と、
前記給塵効率算出工程で算出された給塵効率と、前記ゴミの単位量あたりの発熱量と、前記火炉における目標発熱量とから、前記給塵手段の基準動作速度を算出する基準動作速度算出工程と、
前記給塵手段の動作速度を、前記基準動作速度算出工程で算出された基準動作速度に予め設定してある所定の上乗せ量を加算した動作速度に設定する動作速度設定工程とを実行することを特徴とする。
【0007】
〔作用効果〕
本構成の給塵量制御方法によれば、先ず、給塵効率算出工程において、所定の単位時間内における給塵手段の動作速度と、同じく所定の単位時間内における給塵手段による火炉へのゴミの供給量とから給塵手段の上記給塵効率を算出し、次に、基準動作速度算出工程において、火炉において目標発熱量を達成するための給塵手段の動作速度である上記基準動作速度を算出する。
そして、本発明の給塵制御方法は、動作速度設定工程において、給塵手段の動作速度を、上記基準動作速度に予め設定してある所定の上乗せ量を加算した値、好ましくは、基準動作速度に対して5〜15%程度の割合の上乗せ量を基準動作速度に加算した値に設定する。このように、給塵手段の動作速度を、火炉において目標発熱量を達成する値に対して若干大きい値に設定して、火炉へのゴミの供給を、火炉の能力の範囲内において若干過剰気味とすることで、火炉へ供給されるゴミ質の急激な低下等や、給塵手段の給塵効率の急激な低下が発生しても、火炉のゴミ切れを発生することなく、火炉において常に目標発熱量を確保することができる。
【0008】
〔構成2〕
本発明に係る給塵量制御方法は、請求項2に記載したごとく、上記構成1の給塵量制御方法の構成に加えて、前記基準動作速度に対する前記上乗せ量の割合が、前記ゴミの単位量あたりの発熱量が大きいほど小さく設定されていることを特徴とする。
【0009】
〔作用効果〕
本構成の給塵量制御方法によれば、例えば、過去の所定時間内にクレーン等により給塵手段に投入されたゴミの量の移動平均値と、同じく過去の所定時間内に火炉内で発生した発熱量の移動平均値とから自動的に求めることができる火炉内へ供給されるゴミの単位量あたりの発熱量、又は手動により入力されたゴミの単位量あたりの発熱量を受付け、その受付た発熱量が大きいほど上記上乗せ量を小さく設定することで、本発明の給塵量制御方法において、給塵手段の動作速度を若干過剰気味に設定しても、排ガス処理設備等の上限能力を上回らないように、火炉内における発熱量の過剰上昇を抑制することができる。
【0010】
〔構成3〕
本発明に係る給塵量制御方法は、請求項3に記載したごとく、上記構成1又は2の給塵量制御方法の構成に加えて、前記給塵効率算出工程が、所定時間内における前記給塵手段の動作速度と、同じく所定時間内における前記給塵手段へのゴミの投入量とから、前記給塵効率を算出する工程であることを特徴とする。
【0011】
〔作用効果〕
本構成のごとく、上記給塵効率算出工程において、上記給塵効率を算出するに、動作速度設定工程で設定される給塵手段の動作速度と、給塵手段にゴミを投入するクレーン等により計測されるゴミの投入量との、所定時間内における夫々の移動平均値等から、容易に、上記給塵手段の給塵効率を算出することができる。
【0012】
〔構成4〕
本発明に係る給塵量制御方法は、請求項4に記載したごとく、上記構成1から3の何れかの給塵量制御方法の構成に加えて、前記動作速度設定工程において、前記給塵手段の動作速度を設定するに、前記火炉内の発熱量が前記目標発熱量以上となったときには、前記給塵手段の動作速度を一時的に所定の量を低下させることを特徴とする。
【0013】
〔作用効果〕
本構成の給塵量制御方法によれば、動作速度設定工程において、給塵手段の動作速度を、通常は、基準動作速度に対して若干過剰気味に設定するのであるが、火炉内の発熱量が目標発熱量以上となったときは、給塵手段の動作速度を過剰気味に設定すると火炉の能力以上の発熱量が発生する危険性があるとして、給塵手段の動作速度を、一時的に、通常の動作速度に対して例えば50%程度以上急激に低減した値に設定することで、上記のような火炉の能力を逸脱する発熱量が発生することを抑制することができる。
【0014】
【発明の実施の形態】
上記本発明のゴミ焼却炉における給塵量制御方法の実施の形態について、以下に、図面を参照しながら説明する。
図1に示すように、本発明の給塵量制御方法を適用可能なゴミ焼却設備には、ゴミ焼却炉10の二次燃焼室13からの排ガスを煙突19に導く煙道Dに、前記排ガスの熱、即ち前記火床上で焼却されるゴミの焼却生成熱を回収して蒸気を発生する廃熱ボイラ15と、前記排ガスから除塵するバグフィルタ16と、除塵した後の排ガスを無害化処理する排ガス処理装置17と、無害化処理した後の排ガスを前記煙突に向けて送り出す誘引送風機18とが順に配置されている。このゴミ焼却炉10には、炉内の燃焼量を所定の条件下で制御するための燃焼制御機構20を設けてあり、この燃焼制御機構20には、火炉Fの出口に温度検出端7aを配置して、炉出口における燃焼排ガスの温度を検出する炉出口温度検出手段7と、前記バグフィルタ16の入口側の煙道Dにその検出端8aが配置され、排ガスの温度を検出する排ガス温度検出手段8と、前記バグフィルタ16の出口側の煙道Dに酸素検出端6aを配置して、排ガス中の酸素濃度を検出する酸素濃度検出手段6とを夫々備えている。前記廃熱ボイラ15で生成する蒸気は、タービンを回転駆動して発電する発電装置50の駆動源等として利用される。
【0015】
また、ゴミ焼却炉10には、火炉F内にゴミを投入する給塵機構11と、前記火炉F内に一次空気を供給する一次空気供給機構12と、前記火炉F内での前記ゴミの焼却処理に伴い生成した燃焼ガスを二次燃焼させる二次燃焼空間Sを形成した二次燃焼室13と、前記二次燃焼室13内に二次空気を供給する二次空気供給機構14とを設けてある。その燃焼制御機構20には、給塵機構11による前記火炉F内へのゴミの供給量を、その燃焼発熱量に対し目標発熱量を設定して制御する給塵量制御手段25が設けられている。
【0016】
燃焼制御機構20には、前記二次燃焼空間Sの下流側の煙道Dに、前記二次燃焼空間S出口における排ガス中の酸素濃度を検出する酸素濃度検出手段6が設けられている。さらに、燃焼制御機構20は、その酸素濃度検出手段6で検出する排ガス中の酸素濃度と、前記一次空気供給機構12と前記二次空気供給機構14とにより供給された総燃焼空気量とを基に、前記火炉F内に投入されたゴミの燃焼発熱量を演算導出する燃焼発熱量演算手段21を備え、さらに、このように演算された燃焼発熱量と、クレーン(図示せず)等により給塵機構11に投入されたゴミの重量とを基に、火炉Fに供給されたゴミの単位重量あたりの発熱量をゴミ質として推定するゴミ発熱量推定手段22を備える。
【0017】
そして、燃焼制御機構20は、このように推定された単位重量あたりのゴミの発熱量と、予め設定されるゴミの目標焼却量等とを基に、前記給塵機構11と、前記一次空気供給機構12と、前記二次空気供給機構14とをそれぞれ調節するのである。
【0018】
また、給塵量制御手段25は、給塵機構11の動作速度に対するゴミの供給量である給塵効率を算出する給塵効率算出工程を実行するための給塵効率算出手段26を備えており、給塵効率算出手段25は、2〜3時間の所定時間内における給塵機構11の動作速度の移動平均値と、同じく所定時間内におけるクレーン等から給塵機構11へのゴミの投入重量の移動平均値とを基に、給塵効率を算出する。
【0019】
また、給塵量制御手段25は基準動作速度算出手段27を備えており、基準動作速度算出手段27は、給塵効率算出手段26で算出された給塵効率と、ゴミ発熱量推定手段22で推定されたゴミの単位重量あたりの発熱量と、予め設定されているゴミの目標焼却量から求められる、火炉Fにおける単位時間あたりの目標発熱量とを基に、給塵機構11により目標発熱量を発するゴミを火炉Fに供給することができる給塵機構11の基準動作速度を算出する基準動作速度算出工程を実行する。
【0020】
そして、給塵制御手段25は、このように算出した基準動作速度に基づいて給塵機構11の動作速度を設定する動作速度設定手段28を備えており、動作速度設定手段28は、給塵機構11の動作速度を、基準動作速度算出手段27で算出された基準動作速度に所定の上乗せ量を加算した値、好ましくは、基準動作速度に対して5〜15%程度の割合の上乗せ量を基準動作速度に加算した値に設定する動作速度設定工程を実行し、給塵機構11の動作速度を、火炉Fにおいて目標発熱量を達成することができると推定される値よりも若干大きい値に設定して、急激な給塵効率の低下やゴミ質の低下等が発生しても、火炉Fのゴミ切れの発生を抑制することができる。
【0021】
さらに、動作速度設定手段28は、図2に示すように、先ず、ゴミ発熱量推定手段22で推定したゴミの単位重量あたりの発熱量が設計基準となる基準ゴミ発熱量以下であるときは、基準動作速度に加算する上記上乗せ量の基準動作速度に対する割合である上乗せ率を10%程度に維持し、上記ゴミの単位重量あたりの発熱量が上記基準ゴミ発熱量以上且つ予め設定された高質ゴミ発熱量以下であるときは、上記上乗せ率を10%から5%の範囲内でゴミの単位重量あたりの発熱量が大きいほど小さくなるように設定し、さらに、ゴミの単位重量あたりの発熱量が高質ゴミ発熱量以上であるときは、上記上乗せ率を5%に維持する。このように、動作速度設定手段28は、単位重量あたりの発熱量が大きい高質のゴミが火炉Fに投入された場合に、給塵機構11の動作速度の過剰程度を低めに設定して、火炉F内における発熱量の過剰上昇を抑制するのである。
【0022】
さらにまた、動作速度設定手段28は、通常は、基準動作速度に対して若干過剰気味に設定するのであるが、火炉F内の発熱量が目標発熱量以上となったときは、給塵機構11の動作速度を過剰気味に維持しておくと、火炉Fの能力の上限以上の発熱量が発生する危険性があるとして、給塵機構11の動作速度を、一時的に通常の動作速度に対して例えば50%程度以上低減した値に設定し、さらに、この一時的な動作速度の低減を適正状態に復帰するまでパルス的に行うように構成されている。
【0023】
以上ように構成されたゴミ焼却設備において、発熱量の安定性の確認のために、上記給塵機構11の動作速度の上記上乗せ率を15%に設定して廃熱ボイラ15から発生する水蒸気量を計測した結果、水蒸気量は90%以上の頻度で±5%以内に収まっており、火炉Fの発熱量が安定していることが判る。
【図面の簡単な説明】
【図1】ゴミ焼却設備の概略構成図
【図2】ゴミの発熱量と設定される上乗せ率との関係を示すグラフ図
【符号の説明】
10 焼却炉
11 給塵機構(給塵手段)
20 燃焼制御機構
25 給塵量制御手段
26 給塵効率算出手段
27 基準動作速度算出手段
28 動作速度設定手段
F 火炉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dust supply amount control method for controlling the amount of dust supplied to the furnace by the dust supply means in an incinerator for incinerating waste in a furnace.
[0002]
[Prior art]
Conventionally, garbage incineration equipment has been equipped with a dust supply mechanism as dust supply means for supplying garbage to the furnace, and calculates the amount of heat generated in the furnace by detecting the outlet temperature of the furnace and detecting the oxygen concentration of exhaust gas discharged from the furnace. In some cases, the amount of dust supplied to the furnace is controlled by adjusting the operation speed of the dust supply mechanism so that the heat generation amount is stabilized near the target heat generation amount.
That is, the heat generation per unit weight of the garbage is calculated from the moving average of the calorific value calculated within a predetermined time of 2 to 3 hours and the moving average of the weight of the dust input into the dust supply mechanism by a crane or the like within the predetermined time. Estimate the so-called waste quality, determine the target incineration amount per unit time of the waste from this waste quality and the target calorific value, and further, the weight of the dust introduced into the dust feed mechanism within the predetermined time and the dust feed mechanism The dust infusion efficiency, which is the weight of dust supplied with respect to the operating speed of the dust supply mechanism, is determined from the operating speed of the dust supply mechanism. Based on the dust efficiency, the operating speed of the dust supply mechanism is set.
[0003]
[Problems to be solved by the invention]
However, in the control of the amount of waste supplied from the conventional waste incineration facility, the amount of waste actually supplied by the dust supply mechanism and the amount of waste estimated from the calorific value in the furnace calculated as described above are used. In some cases, errors may occur, causing the following problems.
For example, when the moisture content or bulk density of garbage changes abruptly, the amount of heat generated by the garbage supplied into the furnace changes abruptly, but this causes a change in the furnace outlet temperature. Even if feedback control of the amount of dust supply is performed, the response may be delayed.
[0004]
In addition, trash is thrown into the hopper by a crane usually at a period of about 15 to 20 minutes. However, if a bridge that does not drop in the hopper and the hopper level does not drop is thrown in, the trash is thrown in. The period may be longer. In addition, when the crane is operated manually, if the crane operator throws in the trash for some reason, the trash throwing cycle into the hopper becomes longer. The cycle is shortened. For this reason, the dust supply efficiency of the actual dust supply mechanism fluctuates, the control of the operation speed of the dust supply mechanism based on the amount of heat generated by the dust supplied into the furnace cannot catch up, and there is a risk that the dust will run out.
[0005]
Therefore, in view of the above circumstances, the present invention is a dust supply amount control capable of appropriately controlling the amount of dust supplied to the furnace by dust supply means in an incinerator for incinerating garbage in the furnace. The aim is to realize the method.
[0006]
[Means for Solving the Problems]
[Configuration 1]
The dust supply amount control method according to the present invention is the dust supply control method for controlling the amount of dust supplied to the furnace by dust supply means in an incinerator for incineration of dust in the furnace as described in claim 1. A quantity control method,
A dust supply efficiency calculation step of calculating a dust supply efficiency which is a supply amount of the dust with respect to an operating speed of the dust supply means;
Reference operation speed calculation for calculating the reference operation speed of the dust supply means from the dust supply efficiency calculated in the dust supply efficiency calculation step, the heat generation amount per unit amount of the dust, and the target heat generation amount in the furnace Process,
An operation speed setting step of setting the operation speed of the dust supply means to an operation speed obtained by adding a predetermined additional amount set in advance to the reference operation speed calculated in the reference operation speed calculation step. Features.
[0007]
[Function and effect]
According to the dust supply amount control method of this configuration, first, in the dust supply efficiency calculation step, the operation speed of the dust supply means within a predetermined unit time and the dust to the furnace by the dust supply means within the predetermined unit time are also shown. The dust supply efficiency of the dust supply means is calculated from the supply amount of the dust, and then, in the reference operation speed calculation step, the reference operation speed that is the operation speed of the dust supply means for achieving the target heat generation amount in the furnace is calculated. calculate.
In the dust supply control method of the present invention, in the operation speed setting step, the operation speed of the dust supply means is a value obtained by adding a predetermined additional amount set in advance to the reference operation speed, preferably the reference operation speed. Is set to a value obtained by adding an additional amount of about 5 to 15% to the reference operation speed. In this way, the operating speed of the dust supply means is set to a value slightly larger than the value that achieves the target calorific value in the furnace, and the supply of dust to the furnace is slightly overexposed within the range of the furnace capacity. Therefore, even if there is a sudden drop in the quality of garbage supplied to the furnace, or a sudden drop in the dust supply efficiency of the dust supply means, the furnace always keeps the target in place without causing waste in the furnace. A calorific value can be secured.
[0008]
[Configuration 2]
According to the dust supply amount control method of the present invention, as described in claim 2, in addition to the configuration of the dust supply amount control method of the configuration 1, the ratio of the additional amount to the reference operation speed is a unit of the dust. The larger the heat generation amount per unit, the smaller the setting.
[0009]
[Function and effect]
According to the dust supply amount control method of this configuration, for example, the moving average value of the amount of dust thrown into the dust supply means by a crane or the like within the past predetermined time, and also generated in the furnace within the past predetermined time. Receives the heat generation amount per unit amount of dust supplied into the furnace, which can be automatically determined from the moving average value of the generated heat generation amount, or the heat generation amount per unit amount of dust input manually By setting the additional amount to be smaller as the amount of generated heat is larger, the upper limit capacity of the exhaust gas treatment facility or the like can be increased even if the operating speed of the dust supply means is set slightly excessively in the dust supply amount control method of the present invention. An excessive increase in the amount of heat generated in the furnace can be suppressed so as not to exceed.
[0010]
[Configuration 3]
According to the dust supply amount control method of the present invention, as described in claim 3, in addition to the configuration of the dust supply amount control method of the above configuration 1 or 2, the dust supply efficiency calculation step includes the supply of dust within a predetermined time. It is a step of calculating the dust supply efficiency from the operating speed of the dust means and the amount of dust input to the dust supply means within the same predetermined time.
[0011]
[Function and effect]
As in this configuration, in the dust supply efficiency calculation step, the dust supply efficiency is calculated using the operation speed of the dust supply means set in the operation speed setting step and a crane or the like that throws dust into the dust supply means. The dust supply efficiency of the dust supply means can be easily calculated from the respective moving average values within a predetermined time with the amount of dust input.
[0012]
[Configuration 4]
The dust supply amount control method according to the present invention includes the dust supply means in the operation speed setting step in addition to the configuration of the dust supply amount control method of any one of the configurations 1 to 3, as described in claim 4. When the heat generation amount in the furnace is equal to or higher than the target heat generation amount, the operation speed of the dust supplying means is temporarily reduced by a predetermined amount.
[0013]
[Function and effect]
According to the dust supply amount control method of the present configuration, in the operation speed setting step, the operation speed of the dust supply means is usually set slightly excessively with respect to the reference operation speed. If the operating temperature of the dust supply means is excessively excessive, the operating speed of the dust supply means is temporarily By setting the value rapidly reduced, for example, by about 50% or more with respect to the normal operating speed, it is possible to suppress the generation of heat generation deviating from the furnace capacity as described above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the method for controlling the amount of dust supply in the refuse incinerator of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the waste incineration equipment to which the dust supply amount control method of the present invention can be applied includes the exhaust gas from a secondary combustion chamber 13 of the waste incinerator 10 to a flue D that leads to a chimney 19. The waste heat boiler 15 that generates steam by collecting the heat of the waste, that is, the incineration generated heat of the garbage incinerated on the firebed, the bag filter 16 that removes dust from the exhaust gas, and the exhaust gas after dust removal is detoxified. An exhaust gas treatment device 17 and an induction blower 18 for sending the exhaust gas after detoxification treatment toward the chimney are arranged in order. The refuse incinerator 10 is provided with a combustion control mechanism 20 for controlling the amount of combustion in the furnace under a predetermined condition. The combustion control mechanism 20 includes a temperature detection end 7a at the outlet of the furnace F. An exhaust gas temperature for detecting the temperature of the exhaust gas by arranging the detection end 8a in the flue D on the inlet side of the bag filter 16 and the furnace outlet temperature detecting means 7 arranged to detect the temperature of the combustion exhaust gas at the furnace outlet. A detection means 8 and an oxygen concentration detection means 6 for detecting the oxygen concentration in the exhaust gas by disposing an oxygen detection end 6a in the flue D on the outlet side of the bag filter 16 are provided. The steam generated in the waste heat boiler 15 is used as a drive source for the power generation apparatus 50 that generates power by rotating the turbine.
[0015]
Further, the garbage incinerator 10 includes a dust supply mechanism 11 for introducing garbage into the furnace F, a primary air supply mechanism 12 for supplying primary air into the furnace F, and incineration of the garbage in the furnace F. There is provided a secondary combustion chamber 13 in which a secondary combustion space S for secondary combustion of combustion gas generated by the processing is formed, and a secondary air supply mechanism 14 for supplying secondary air into the secondary combustion chamber 13. It is. The combustion control mechanism 20 is provided with dust supply amount control means 25 for controlling the amount of dust supplied to the furnace F by the dust supply mechanism 11 by setting a target heat generation amount for the combustion heat generation amount. Yes.
[0016]
The combustion control mechanism 20 is provided with an oxygen concentration detection means 6 for detecting the oxygen concentration in the exhaust gas at the outlet of the secondary combustion space S in the flue D on the downstream side of the secondary combustion space S. Further, the combustion control mechanism 20 is based on the oxygen concentration in the exhaust gas detected by the oxygen concentration detection means 6 and the total amount of combustion air supplied by the primary air supply mechanism 12 and the secondary air supply mechanism 14. Is provided with combustion calorific value calculation means 21 for calculating and deriving the combustion calorific value of the waste introduced into the furnace F, and further supplied by a combustion calorific value calculated in this way and a crane (not shown). Waste heat generation amount estimation means 22 that estimates the heat generation amount per unit weight of the dust supplied to the furnace F as the waste quality based on the weight of the dust put into the dust mechanism 11 is provided.
[0017]
Then, the combustion control mechanism 20 uses the dust supply mechanism 11 and the primary air supply based on the heat generation amount of the dust per unit weight estimated in this way and the target incineration amount of the dust set in advance. The mechanism 12 and the secondary air supply mechanism 14 are adjusted.
[0018]
Further, the dust supply amount control means 25 includes a dust supply efficiency calculation means 26 for executing a dust supply efficiency calculation step of calculating dust supply efficiency which is the amount of dust supplied with respect to the operating speed of the dust supply mechanism 11. In addition, the dust supply efficiency calculating means 25 calculates the moving average value of the operation speed of the dust supply mechanism 11 within a predetermined time of 2 to 3 hours, and the input weight of dust from the crane or the like to the dust supply mechanism 11 within the predetermined time. The dust supply efficiency is calculated based on the moving average value.
[0019]
Further, the dust supply amount control means 25 includes a reference operation speed calculation means 27, and the reference operation speed calculation means 27 includes a dust supply efficiency calculated by the dust supply efficiency calculation means 26 and a dust heat generation amount estimation means 22. Based on the estimated heat generation amount per unit weight of the dust and the target heat generation amount per unit time in the furnace F, which is obtained from the preset target incineration amount of the dust, the target heat generation amount by the dust supply mechanism 11 A reference operation speed calculation step of calculating a reference operation speed of the dust supply mechanism 11 that can supply the waste that emits to the furnace F is executed.
[0020]
And the dust supply control means 25 is provided with the operation speed setting means 28 which sets the operation speed of the dust supply mechanism 11 based on the reference | standard operation speed calculated in this way, and the operation speed setting means 28 is the dust supply mechanism. 11 is the value obtained by adding a predetermined additional amount to the reference operating speed calculated by the reference operating speed calculating means 27, preferably, an additional amount of about 5 to 15% with respect to the reference operating speed. An operation speed setting step for setting the value added to the operation speed is executed, and the operation speed of the dust supply mechanism 11 is set to a value slightly larger than a value estimated to be able to achieve the target heat generation amount in the furnace F. Thus, even if there is a sudden drop in dust supply efficiency, a reduction in dust quality, or the like, it is possible to suppress the occurrence of waste in the furnace F.
[0021]
Further, as shown in FIG. 2, the operation speed setting means 28 first, when the heat generation amount per unit weight of the dust estimated by the dust heat generation amount estimation means 22 is equal to or less than the reference dust heat generation amount as a design standard, Maintaining an additional rate, which is a ratio of the additional amount to be added to the reference operation speed, with respect to the reference operation speed to about 10%, and a heat generation amount per unit weight of the dust is equal to or higher than the reference dust heat generation amount and set in advance. When the heat generation amount is less than or equal to the waste heat generation amount, the above-mentioned additional rate is set within the range of 10% to 5% so that the heat generation amount per unit weight of the dust becomes smaller, and further the heat generation amount per unit weight of the dust Is equal to or greater than the amount of heat generated from high-quality dust, the above-mentioned additional rate is maintained at 5%. As described above, the operation speed setting means 28 sets the excess of the operation speed of the dust supply mechanism 11 to be low when high-quality garbage having a large calorific value per unit weight is put into the furnace F, An excessive increase in the amount of heat generated in the furnace F is suppressed.
[0022]
Furthermore, the operation speed setting means 28 is normally set to be slightly excessive with respect to the reference operation speed. However, when the heat generation amount in the furnace F exceeds the target heat generation amount, the dust supply mechanism 11 is set. If the operating speed of the dust supply mechanism 11 is maintained excessively, the operating speed of the dust supply mechanism 11 is temporarily set to the normal operating speed because there is a risk that a heat generation amount exceeding the upper limit of the capacity of the furnace F may occur. For example, the value is set to a value reduced by about 50% or more, and the temporary operation speed is reduced in a pulse manner until the state returns to an appropriate state.
[0023]
In the waste incineration equipment configured as described above, the amount of water vapor generated from the waste heat boiler 15 with the additional rate of the operating speed of the dust supply mechanism 11 set to 15% in order to confirm the stability of the heat generation amount. As a result, the water vapor amount is within ± 5% at a frequency of 90% or more, and it can be seen that the heat generation amount of the furnace F is stable.
[Brief description of the drawings]
[Fig. 1] Schematic configuration diagram of garbage incineration equipment [Fig. 2] Graph diagram showing the relationship between the amount of heat generated by garbage and the set rate of addition
10 Incinerator 11 Dust supply mechanism (dust supply means)
20 Combustion control mechanism 25 Dust supply amount control means 26 Dust supply efficiency calculation means 27 Reference operation speed calculation means 28 Operation speed setting means F Furnace

Claims (4)

火炉内でゴミを焼却処理する焼却炉において、給塵手段による前記火炉内への前記ゴミの供給量を制御する給塵量制御方法であって、
前記給塵手段の動作速度に対する前記ゴミの供給量である給塵効率を算出する給塵効率算出工程と、
前記給塵効率算出工程で算出された給塵効率と、前記ゴミの単位量あたりの発熱量と、前記火炉における目標発熱量とから、前記給塵手段の基準動作速度を算出する基準動作速度算出工程と、
前記給塵手段の動作速度を、前記基準動作速度算出工程で算出された基準動作速度に予め設定してある所定の上乗せ量を加算した動作速度に設定する動作速度設定工程とを実行する給塵量制御方法。
In an incinerator for incinerating waste in a furnace, a dust supply amount control method for controlling the amount of dust supplied to the furnace by dust supply means,
A dust supply efficiency calculation step of calculating a dust supply efficiency which is a supply amount of the dust with respect to an operating speed of the dust supply means;
Reference operation speed calculation for calculating the reference operation speed of the dust supply means from the dust supply efficiency calculated in the dust supply efficiency calculation step, the heat generation amount per unit amount of the dust, and the target heat generation amount in the furnace Process,
An operation speed setting step of setting the operation speed of the dust supply means to an operation speed obtained by adding a predetermined additional amount set in advance to the reference operation speed calculated in the reference operation speed calculation step. Quantity control method.
前記基準動作速度に対する前記上乗せ量の割合が、前記ゴミの単位量あたりの発熱量が大きいほど小さく設定されている請求項1に記載の給塵量制御方法。  2. The dust supply amount control method according to claim 1, wherein a ratio of the additional amount with respect to the reference operation speed is set to be smaller as a heat generation amount per unit amount of the dust is larger. 前記給塵効率算出工程が、所定時間内における前記給塵手段の動作速度と、同じく所定時間内における前記給塵手段へのゴミの投入量とから、前記給塵効率を算出する工程である請求項1又は2に記載の給塵量制御方法。  The dust supply efficiency calculation step is a step of calculating the dust supply efficiency from an operating speed of the dust supply means within a predetermined time and an amount of dust input to the dust supply means within a predetermined time. Item 3. A method for controlling the amount of dust supply according to Item 1 or 2. 前記動作速度設定工程において、前記給塵手段の動作速度を設定するに、前記火炉内の発熱量が前記目標発熱量以上となったときには、前記給塵手段の動作速度を一時的に所定の量を低下させる請求項1から3の何れか1項に記載の給塵量制御方法。  In setting the operation speed of the dust supply means in the operation speed setting step, when the heat generation amount in the furnace is equal to or greater than the target heat generation amount, the operation speed of the dust supply means is temporarily set to a predetermined amount. The method for controlling the amount of dust supply according to any one of claims 1 to 3, wherein:
JP2001152485A 2001-05-22 2001-05-22 Dust supply control method in incinerator Expired - Lifetime JP3850228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152485A JP3850228B2 (en) 2001-05-22 2001-05-22 Dust supply control method in incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152485A JP3850228B2 (en) 2001-05-22 2001-05-22 Dust supply control method in incinerator

Publications (2)

Publication Number Publication Date
JP2002349827A JP2002349827A (en) 2002-12-04
JP3850228B2 true JP3850228B2 (en) 2006-11-29

Family

ID=18997147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152485A Expired - Lifetime JP3850228B2 (en) 2001-05-22 2001-05-22 Dust supply control method in incinerator

Country Status (1)

Country Link
JP (1) JP3850228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628667B2 (en) * 2016-03-31 2020-01-15 日立造船株式会社 Automatic combustion control method for incineration facilities

Also Published As

Publication number Publication date
JP2002349827A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP3850228B2 (en) Dust supply control method in incinerator
CN112105442B (en) Exhaust gas mercury removal system
WO1991014915A1 (en) Method of controlling combustion in fluidized bed incinerator
JPS59129316A (en) Dust feeding control device in refuse incinerater
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP6297343B2 (en) Waste treatment facility
WO2020137598A1 (en) Garbage supply speed estimation device and garbage supply speed estimation method
JP2004060992A (en) Waste heat recovery boiler for incinerator
JPH01114610A (en) Method for operating refuse incineration facility
JP3888870B2 (en) Garbage incinerator
JP4036768B2 (en) Combustion control device for incinerator
JP3590245B2 (en) Combustion control method in fluidized bed incinerator
WO1999018394A1 (en) Combustion control method for refuse incinerator
JP2020001030A (en) Exhaust gas mercury removal system
JPS6136611A (en) Combustion control of refuse incinerator
JP2003161421A (en) Combustion control method and combustion control device of stoker type incinerator
JP2002115833A (en) Refuse incineration installation
JP3665476B2 (en) Combustion control device for incinerator
JP6965842B2 (en) Waste incinerator and waste incinerator method
JP2005164121A (en) Combustion control method for incinerator
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JP2005233501A (en) Combustion control method and waste treatment equipment
JP2005037038A (en) Combustion control method
JP2000205539A (en) Material-to-be-treated supply amount controller for incinerating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

EXPY Cancellation because of completion of term