JP2000205539A - Material-to-be-treated supply amount controller for incinerating furnace - Google Patents

Material-to-be-treated supply amount controller for incinerating furnace

Info

Publication number
JP2000205539A
JP2000205539A JP11001990A JP199099A JP2000205539A JP 2000205539 A JP2000205539 A JP 2000205539A JP 11001990 A JP11001990 A JP 11001990A JP 199099 A JP199099 A JP 199099A JP 2000205539 A JP2000205539 A JP 2000205539A
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
supply amount
correction
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001990A
Other languages
Japanese (ja)
Inventor
Akihisa Kamisaki
顕久 神先
Masaaki Tsuchimoto
正明 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11001990A priority Critical patent/JP2000205539A/en
Publication of JP2000205539A publication Critical patent/JP2000205539A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material-to-be-treated amount controller adapted to control a total exhaust amount of harmful substance in an incinerating furnace constituted to control a supplying mechanism based on a material-to-be-treated supply amount set to a supply amount setting means. SOLUTION: The incinerating furnace comprises a total exhaust gas amount sensor 25 capable of sensing a total exhaust gas amount from a furnace, an upper limit value setting means 27 capable of setting a preset target upper limit value, and a correcting value calculating means 29 for calculating and guiding a correcting value for the set material-to-be-treated supply amount if the total exhaust gas amount sensed by the sensor 25 exceeds the target upper limit value. Thus, the material-to-be-treated supply amount can be corrected based on the calculated and guided correcting value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼却炉における被
処理物の供給量を制御可能な被処理物供給量制御装置に
関し、詳しくは、受入ホッパに投入された被処理物を火
炉に供給する供給機構と、被処理物の一日の目標焼却処
理量に基づき前記火炉への所定時間当たりの被処理物供
給量を設定可能な供給量設定手段とを設けて、前記供給
量設定手段に設定された被処理物供給量を基に前記供給
機構を制御するように構成してある焼却炉の被処理物供
給量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a supply amount of an object to be treated in an incinerator, and more particularly, to an object to be treated supplied to a receiving hopper to a furnace. A supply mechanism, and supply amount setting means for setting a supply amount of the processing target per predetermined time to the furnace based on a target incineration processing amount of the processing target per day; The present invention relates to an apparatus for controlling a supply amount of a workpiece in an incinerator configured to control the supply mechanism based on the supplied supply amount of the workpiece.

【0002】[0002]

【従来の技術】従来、焼却炉においては、炉内への被処
理物供給量を制御するのに、一日の目標焼却処理量を達
成するように、単位時間当たりの被処理物供給量を設定
しており、これを基準に供給機構を制御し、炉内状況に
変動がなければ、定常的に被処理物を供給していた。つ
まり、被処理物供給量を調節する特別な手段は備えてい
なかった。炉内に供給する空気量は、例えば図8に示す
ストーカ式火床4を備えるゴミ焼却炉のように、受入ホ
ッパ1に投入された被処理物を火炉に供給する供給機構
2を構成するプッシャ機構2Aは、目標供給量設定手段
24に設定される一日の目標焼却処理量に対して、時間
当たりの被処理物供給量を算出し、その被処理物供給量
に基づき、駆動のサイクルタイムを設定していた。ま
た、火炉からの煙道17に備える廃熱ボイラ6からの蒸
気によって蒸気タービン19aにより発電機19bを駆
動して発電する発電装置19を備える場合には、その電
力量を維持するために被処理物供給量を調整する場合も
あった。こうした焼却炉においては、燃焼制御手段20
を備えており、前記供給機構2により炉内に供給された
被処理物の燃焼に必要な一次空気の供給量は、炉内に供
給された被処理物の性状に合わせ、また、炉内の燃焼状
態に合わせて前記燃焼制御手段20に備える一次空気制
御手段21によって調節され、二次燃焼室5に供給され
る二次空気(或いはガス冷却室を備えるものにおいて
は、そのがす冷却室に供給される冷却空気)の供給量
は、集塵装置であるバグフィルタ12の出口の下流側
に、前記燃焼制御手段20の検出端として配置された酸
素濃度検出手段20a及び一酸化炭素濃度検出手段20
bで検出した残存酸素濃度や一酸化炭素の割合が所定範
囲に収まるように、二次空気制御手段22によって調節
されていた。こうした空気量の調節は、前記燃焼制御手
段20のみで行い、炉内の燃焼状態を良好に維持するこ
とを目的とするほかに、排ガス中に同時に排出される窒
素酸化物やダイオキシン等の有害物質の濃度を規制値以
下に維持することも目的としていた。
2. Description of the Related Art Conventionally, in an incinerator, in order to control a supply amount of an object to be treated into the furnace, a supply amount of an object to be treated per unit time is controlled so as to achieve a target incineration amount per day. The supply mechanism was controlled based on this, and if there was no change in the furnace condition, the workpiece was constantly supplied. That is, there is no special means for adjusting the supply amount of the workpiece. The amount of air to be supplied into the furnace is, for example, a pusher which constitutes a supply mechanism 2 for supplying an object to be treated, which has been put into the receiving hopper 1, to the furnace, such as a garbage incinerator having a stoker type grate 4 shown in FIG. The mechanism 2A calculates the supply amount of the processing target per hour with respect to the target incineration processing amount of the day set by the target supply setting unit 24, and based on the processing target supply amount, the drive cycle time. Was set. When a power generator 19 is provided for driving a generator 19b by a steam turbine 19a with steam from a waste heat boiler 6 provided in a flue 17 from a furnace to generate electric power, the power generation apparatus 19 needs to be treated in order to maintain its electric energy. In some cases, the amount of supply was adjusted. In such an incinerator, the combustion control means 20
The supply amount of the primary air necessary for burning the object supplied into the furnace by the supply mechanism 2 is adjusted according to the property of the object supplied into the furnace. The secondary air supplied to the secondary combustion chamber 5 is adjusted by the primary air control means 21 provided in the combustion control means 20 in accordance with the combustion state (or, in the case of having a gas cooling chamber, the secondary cooling chamber). The supply amount of the supplied cooling air) is determined by an oxygen concentration detecting means 20a and a carbon monoxide concentration detecting means which are disposed on the downstream side of the outlet of the bag filter 12 which is a dust collecting device as the detecting end of the combustion control means 20. 20
The secondary air control means 22 has adjusted the residual oxygen concentration and the ratio of carbon monoxide detected in b to fall within predetermined ranges. The adjustment of the amount of air is performed only by the combustion control means 20 for the purpose of maintaining a good combustion state in the furnace, and in addition to harmful substances such as nitrogen oxides and dioxins discharged simultaneously in the exhaust gas. The purpose was also to maintain the concentration of the compound below the regulation value.

【0003】[0003]

【発明が解決しようとする課題】つまり、上記従来の焼
却炉においては、設定された被処理物供給量に基づき炉
内に被処理物が供給され、これを効率よく燃焼させ、し
かも、排ガス中の有害物質の濃度が規制値以下になるよ
うに、一次空気、二次空気等の空気供給量を独立に燃焼
制御手段20で調節していたのである。ところで、最
近、こうした有害物質に関しては、排出濃度規制では不
十分であり、排出総量規制が必要であるとの認識が高ま
ってきている。このために、排ガス総量を規制しようと
する動きがある。こうした排ガス総量規制に対しては、
従来の有害物排出抑制の手法は適合していない。つま
り、上記の手法では、有害物の排出量が増せば、それに
応じて空気の量を増して薄めることで規制値以下に維持
することが可能であるが、これは排ガス総量の増加を招
くのである。従来は、排ガスの総量を増加する点につい
ては、全く問題があるとはしていなかったのである。つ
まり、従来の方法による限りにおいては、排ガス総量を
抑制できないから、排出される有害物質の環境における
濃度を抑制することが無理であるという問題があった。
そこで、本発明の焼却炉の被処理物供給量制御装置は、
上記の問題点を解決し、有害物質の排出総量を規制する
に適応した手段を提供することを目的とする。
That is, in the above-described conventional incinerator, the object to be treated is supplied into the furnace based on the set amount of supply of the object to be treated, and this is efficiently burned. The air supply amounts of the primary air, the secondary air, and the like are independently adjusted by the combustion control means 20 so that the concentration of the harmful substance becomes equal to or less than the regulation value. Meanwhile, regarding these harmful substances, it has been increasingly recognized that regulation of emission concentration is insufficient, and that regulation of total emission is required. For this reason, there is a movement to regulate the total amount of exhaust gas. In response to these emissions regulations,
Conventional methods for controlling harmful emissions are not compatible. In other words, with the above method, if the amount of harmful emissions increases, the amount of air can be increased and diluted accordingly to maintain the level below the regulation value, but this causes an increase in the total amount of exhaust gas. is there. Conventionally, there has been no problem with increasing the total amount of exhaust gas. That is, since the total amount of exhaust gas cannot be suppressed by the conventional method, there is a problem that it is impossible to suppress the concentration of discharged harmful substances in the environment.
Therefore, the apparatus for controlling the supply amount of the incinerator of the present invention,
It is an object of the present invention to solve the above problems and to provide a means adapted to regulate the total emission amount of harmful substances.

【0004】[0004]

【課題を解決するための手段】〔第1特徴構成〕上記の
目的のための本発明に係る焼却炉の被処理物供給量制御
装置の第1特徴構成は、請求項1に記載の如く、火炉か
らの総排出ガス量を検出可能な排ガス総量センサと、予
め設定される目標上限値を設定可能な上限値設定手段と
を設けると共に、前記排ガス総量センサで検出した総排
出ガス量が前記目標上限値を超える場合に、前記設定さ
れた被処理物供給量に対する補正値を演算導出する補正
値演算手段を設けて、前記演算導出した補正値に基づき
前記被処理物供給量を補正可能に構成してある点にあ
る。
Means for Solving the Problems [First characteristic configuration] A first characteristic configuration of an apparatus for controlling a supply amount of an object to be treated in an incinerator according to the present invention for the above object is as described in claim 1. A total exhaust gas sensor capable of detecting a total exhaust gas amount from the furnace, and an upper limit value setting unit capable of setting a preset target upper limit value, and the total exhaust gas amount detected by the total exhaust gas sensor is set to the target exhaust gas amount. A correction value calculating unit configured to calculate and derive a correction value for the set processing object supply amount when the upper limit value is exceeded, so that the processing target supply amount can be corrected based on the calculation and derived correction value; It is in the point that has been.

【0005】上記の目的のための本発明に係る焼却炉の
被処理物供給量制御装置の第2特徴構成は、請求項2に
記載の如く、前記第1特徴構成における補正値が、所定
時間内に排ガス総量センサで検出された総排出ガス量を
平均した平均排ガス量の目標上限値に対する偏差に、予
め設定された補正係数を乗じて補正値演算手段において
演算導出されるものである点にある。
According to a second aspect of the present invention, there is provided an apparatus for controlling a supply amount of an object to be treated in an incinerator according to the present invention, wherein the correction value in the first aspect is a predetermined value. The deviation from the target upper limit value of the average exhaust gas amount obtained by averaging the total exhaust gas amount detected by the exhaust gas total amount sensor is multiplied by a preset correction coefficient to be calculated and derived by the correction value calculating means. is there.

【0006】上記の目的のための本発明に係る焼却炉の
被処理物供給量制御装置の第3特徴構成は、請求項3に
記載の如く、第2特徴構成における総排出ガス量を所定
時間積算して、時間当たりの平均排ガス量を求める平均
排ガス量検出手段と、求めた平均排ガス量の目標上限値
に対する偏差を前記平均排ガス量で除した値に、目標焼
却処理量を乗じて補正量を求める補正量演算手段とを設
けて、補正値演算手段を、求めた補正量に、補正係数を
乗じて補正値を演算導出するように構成してある点にあ
る。
According to a third aspect of the present invention, there is provided an apparatus for controlling a supply amount of an object to be treated in an incinerator according to the present invention. An average exhaust gas amount detecting means for integrating and calculating an average exhaust gas amount per time; and a correction amount obtained by multiplying a value obtained by dividing a deviation of the obtained average exhaust gas amount from a target upper limit value by the average exhaust gas amount by a target incineration treatment amount. Is provided, and the correction value calculating means is configured to calculate and derive a correction value by multiplying the obtained correction amount by a correction coefficient.

【0007】上記の目的のための本発明に係る焼却炉の
被処理物供給量制御装置の第4特徴構成は、請求項4に
記載の如く、第1乃至第3の何れかの特徴構成におい
て、補正後の被処理物供給量を回復のために予め設定さ
れた増加率に基づいて、補正値により被処理物供給量を
補正した後の補正供給量を、目標焼却処理量に基づく被
処理物供給量にまで増加する回復手段を設けてある点に
ある。
According to a fourth aspect of the present invention, there is provided an apparatus for controlling a supply amount of an object to be treated in an incinerator according to the present invention. The corrected supply amount after correcting the supply amount of the processing object by the correction value based on the preset increase rate for recovering the supply amount of the processing object after the correction is processed based on the target incineration processing amount. The point is that a recovery means for increasing the supply amount of the material is provided.

【0008】〔各特徴構成の作用効果〕上記第1乃至第
4特徴構成の何れによっても、排ガス中の有害物質濃度
を所定範囲内に維持した状態で、総排出ガス量を所定量
以下に維持できるようになる。つまり、排ガス総量セン
サによって検出した総排ガス量と、上限値設定手段に設
定した排出量の目標上限値とを基に、従来の有害物排出
濃度の抑制手法を用いて排ガス中の有害物濃度を所定範
囲内に維持しながら、有害物排出量を抑制するのであ
る。詳しくは、目標焼却処理量に基づき供給量設定手段
で設定された被処理物供給量に対して、前記総排ガス量
が前記目標上限値を超える場合に、その総排ガス量を前
記目標上限値以下に低減するために必要とする被処理物
の減少目標値を算定して、この減少目標値を基に炉の特
性等を考慮に入れた補正値を補正値演算手段で演算導出
するのである。その補正値に基づき供給量設定手段に設
定されている被処理物供給量を補正すれば、燃焼を好適
に維持した状態での総排ガス量が、前記目標上限値以下
に抑えられるのである。その結果、排ガスと共に排出さ
れる有害物質の総量が抑制できるようになる。
[Effects of Each Feature] In any of the first to fourth features, the total amount of exhaust gas is maintained at a predetermined value or less while the concentration of harmful substances in the exhaust gas is maintained within a predetermined range. become able to. In other words, based on the total exhaust gas amount detected by the exhaust gas total amount sensor and the target upper limit value of the emission amount set by the upper limit value setting means, the harmful substance concentration in the exhaust gas is determined using the conventional harmful substance emission concentration control method. The emission of harmful substances is suppressed while maintaining the value within the predetermined range. Specifically, when the total exhaust gas amount exceeds the target upper limit value with respect to the processing object supply amount set by the supply amount setting means based on the target incineration processing amount, the total exhaust gas amount is equal to or less than the target upper limit value. The target value required for the reduction of the object to be processed is calculated, and a correction value taking into account the characteristics of the furnace and the like is calculated and derived by the correction value calculating means based on the target value. By correcting the supply amount of the processing target set in the supply amount setting means based on the correction value, the total exhaust gas amount in a state where combustion is suitably maintained can be suppressed to the target upper limit value or less. As a result, the total amount of harmful substances discharged together with the exhaust gas can be suppressed.

【0009】尚、上記第2特徴構成によれば、上記第1
特徴構成の作用効果を奏しながら、検出した総排出ガス
量を所定時間内で平均した平均排ガス量の目標上限値に
対する偏差を求めることで、刻々に総排出ガス量の監視
ができ、これに予め設定した補正係数を乗ずることで補
正値を補正値演算手段で求めて、より適正な被処理物供
給量を設定できるようになる。尚、前記補正係数は、炉
の特性、操業条件、被処理物の性状等に対応して適宜設
定されうるものである。
According to the second characteristic configuration, the first feature
By obtaining the deviation from the target upper limit value of the average exhaust gas amount obtained by averaging the detected total exhaust gas amount within a predetermined time while exerting the function and effect of the characteristic configuration, the total exhaust gas amount can be monitored every moment, and By multiplying by the set correction coefficient, a correction value is obtained by the correction value calculation means, and a more appropriate supply amount of the workpiece can be set. The correction coefficient can be appropriately set according to the characteristics of the furnace, the operating conditions, the properties of the object to be treated, and the like.

【0010】また、上記第3特徴構成によれば、上記第
2特徴構成の作用効果を奏しながら、平均排ガス量検出
手段で求めた平均排ガス量と、目標焼却処理量とを基
に、補正量演算手段で補正量を求めるようにしてあるか
ら、補正値演算手段でこれに補正係数を乗じて求めた補
正値は、前記目標焼却処理量が基準となっており、総排
ガス量を目標上限値以下に維持しながら、前記目標焼却
処理量を達成しやすくなる。因みに、前記平均排ガス量
が、目標上限値に満たない場合に、被処理物供給量の増
量の余地があれば、逆方向の補正量を求めることも可能
であり、前記被処理物供給量を増量して、前記平均排ガ
ス量が前記目標上限値を超えない条件下で、処理を促進
することも可能である。
According to the third aspect, the correction amount is obtained based on the average exhaust gas amount obtained by the average exhaust gas amount detecting means and the target incineration processing amount while exhibiting the operation and effect of the second characteristic configuration. Since the correction amount is obtained by the calculating means, the correction value obtained by multiplying the correction coefficient by the correction value calculating means is based on the target incineration processing amount, and the total exhaust gas amount is determined by the target upper limit value. It is easy to achieve the target incineration treatment amount while maintaining the following. By the way, when the average exhaust gas amount is less than the target upper limit, if there is room for increasing the supply amount of the workpiece, it is also possible to obtain a correction amount in the reverse direction, and the supply amount of the workpiece is It is also possible to increase the amount to promote the treatment under the condition that the average exhaust gas amount does not exceed the target upper limit value.

【0011】さらに、上記第3特徴構成によれば、上記
第1乃至第3の特徴構成の夫々の作用効果を奏しなが
ら、補正後の被処理物供給量を予め設定された増加率に
基づいて増加することで、補正により減少する焼却処理
量を少なくすることができる。
Further, according to the third characteristic configuration, while providing the respective effects of the first to third characteristic configurations, the corrected workpiece supply amount is determined based on a preset increase rate. By increasing the amount, the amount of incineration that decreases due to the correction can be reduced.

【0012】[0012]

【発明の実施の形態】上記本発明に係る焼却炉の被処理
物供給量制御装置の実施の形態の一例について、以下
に、図面を参照しながら説明する。図1は本発明に係る
焼却炉の一例を示す構成図である。尚、前記従来の技術
において説明した要素と同じ要素並びに同等の機能を有
する要素に関しては、先の図8に付したと同一の符号を
付し、詳細の説明の一部は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an embodiment of the apparatus for controlling the amount of material to be treated in an incinerator according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an example of the incinerator according to the present invention. Note that the same elements as those described in the related art and elements having the same functions are denoted by the same reference numerals as those in FIG. 8, and a part of the detailed description is omitted.

【0013】本発明に係る焼却炉は、図1に示すよう
に、被処理物供給量制御装置23に独特の構成を採用す
る。つまり、煙道17に総排出ガス量を検出する排ガス
総量センサ25を設けると共に、被処理物供給量制御装
置23にその排ガス総量センサ25で検出した総排出ガ
ス量の所定時間内の平均として平均排ガス量を求める平
均排ガス量検出手段26と、前記総排出ガス量の目標上
限値を設定可能な上限値設定手段27と、供給量設定手
段28に設定された被処理物供給量を所定の条件で補正
して補正供給量を演算導出する補正値演算手段29とを
設け、さらに、前記補正供給量を、所定の条件下で一日
の目標焼却処理量に基づき前記供給量設定手段28に設
定した被処理物供給量に回復させる回復手段31を設け
てある。
In the incinerator according to the present invention, as shown in FIG. That is, the exhaust gas total amount sensor 25 for detecting the total exhaust gas amount is provided in the flue 17, and the to-be-processed material supply amount control device 23 averages the total exhaust gas amount detected by the exhaust gas total amount sensor 25 within a predetermined time. The average exhaust gas amount detecting means 26 for obtaining the exhaust gas amount, the upper limit value setting means 27 capable of setting the target upper limit value of the total exhaust gas amount, and the supply amount of the workpiece set in the supply amount setting means 28 are determined under predetermined conditions. And a correction value calculating means 29 for calculating and calculating a corrected supply amount, and setting the corrected supply amount in the supply amount setting means 28 based on a target incineration processing amount per day under predetermined conditions. A recovery means 31 is provided for recovering the supply amount of the processing object.

【0014】前記補正値演算手段29には、補正量演算
手段30を備えておけばさらによく、前記排ガス総量セ
ンサ25で検出した総排出ガス量を前記上限値設定手段
27に設定されている目標上限値と比較し、前記総排ガ
ス量が前記目標上限値を超える場合に、前記平均排ガス
量検出手段26で検出した平均排ガス量の前記目標上限
値に対する偏差に基づいて補正量を求めるようにすれば
よい。前記補正値演算手段29における補正演算は、前
記補正量に所定の補正係数を乗じて補正値を求め、最初
の補正供給量を前記供給量設定手段28に設定された被
処理物供給量として、前記補正供給量に前記補正値を加
算して、新たな補正供給量とする。
The correction value calculating means 29 may be provided with a correction amount calculating means 30. The total exhaust gas amount detected by the exhaust gas total amount sensor 25 is set in the upper limit value setting means 27. When the total exhaust gas amount exceeds the target upper limit value as compared with an upper limit value, a correction amount is determined based on a deviation of the average exhaust gas amount detected by the average exhaust gas amount detection means 26 from the target upper limit value. I just need. The correction calculation in the correction value calculation means 29 obtains a correction value by multiplying the correction amount by a predetermined correction coefficient, and sets the first correction supply amount as the processing object supply amount set in the supply amount setting unit 28. The correction value is added to the corrected supply amount to obtain a new corrected supply amount.

【0015】前記被処理物供給量制御装置23における
被処理物供給量の補正処理の具体例について一例を挙げ
て以下に説明する。ここでは説明を簡単にするために、
被処理物供給量として、図1に示すようなストーカ式ゴ
ミ焼却炉への供給ゴミ量のみを制御する例について説明
する。供給機構2としてのプッシャ機構2Aの押し込み
サイクルは、補正値演算手段29から出力される補正供
給量から設定する。先ず、前記補正値演算手段29の補
正供給量に、目標供給量設定手段24に設定される目標
焼却処理量に基づき、供給量設定手段28により設定さ
れる被処理物供給量を設定する。次いで、受入ホッパ1
に投入されたゴミについて推定される低位発熱量に基づ
き一次空気制御手段21で所要一次空気量を算出して、
一次空気供給機構8に供給一次空気量を設定する。この
供給一次空気量は、火炉F内でのゴミの燃焼状態に応じ
て随時調節される。また、火炉Fの下流側に備える二次
燃焼室5に供給される二次空気の供給量は、その二次燃
焼室5の出口近傍で計測される炉出口温度を所定温度範
囲(例えば950℃前後)に維持するように、二次空気
制御手段22により二次空気供給機構9を制御して調節
される。これら一次空気制御手段21及び二次空気制御
手段22で燃焼制御手段20を構成している。この燃焼
制御手段20は、前記供給量設定手段28の出力に合わ
せて供給空気量を設定するように構成される。そして、
バグフィルタ12下流側の煙道17に備える酸素濃度検
出手段20aで検出される排ガス中の酸素濃度を所定範
囲(例えば8%前後)に維持するように、排ガス冷却機
構10に供給される冷却空気量を、これも前記二次空気
制御手段22により制御して調節される。この二次空気
制御手段22には、一酸化炭素濃度検出手段20bで検
出される排ガス中一酸化炭素濃度も入力され、上記制御
に際して参照される。図示の例においては、ダイオキシ
ン、窒素酸化物等の排ガス中の有害成分を最終的に除去
するために、前記バグフィルタ12の下流側の煙道17
に排ガス洗浄装置15を設けてある。前記焼却炉からの
排ガスは、順次各設備を通って、誘引送風機構16によ
り前記排ガス洗浄装置15から煙道17を経て誘引さ
れ、煙突18へと送り出される。
A specific example of the processing for correcting the supply amount of the workpiece in the workpiece supply amount control device 23 will be described below by way of an example. Here, for simplicity,
An example in which only the amount of refuse supplied to the stoker-type refuse incinerator as shown in FIG. The pushing cycle of the pusher mechanism 2A as the supply mechanism 2 is set based on the corrected supply amount output from the correction value calculation means 29. First, the processing object supply amount set by the supply amount setting means 28 is set to the correction supply amount of the correction value calculating means 29 based on the target incineration processing amount set by the target supply amount setting means 24. Next, the receiving hopper 1
The required primary air amount is calculated by the primary air control means 21 based on the lower heating value estimated for the dust put in the
The amount of primary air supplied to the primary air supply mechanism 8 is set. The supply primary air amount is adjusted as needed in accordance with the state of combustion of the refuse in the furnace F. Further, the supply amount of the secondary air supplied to the secondary combustion chamber 5 provided on the downstream side of the furnace F is determined by adjusting the furnace outlet temperature measured near the outlet of the secondary combustion chamber 5 to a predetermined temperature range (for example, 950 ° C.). (Before and after), the secondary air supply means 9 is controlled by the secondary air control means 22 and adjusted. The primary air control means 21 and the secondary air control means 22 constitute the combustion control means 20. The combustion control means 20 is configured to set the supply air amount in accordance with the output of the supply amount setting means 28. And
Cooling air supplied to the exhaust gas cooling mechanism 10 so as to maintain the oxygen concentration in the exhaust gas detected by the oxygen concentration detecting means 20a provided in the flue 17 downstream of the bag filter 12 in a predetermined range (for example, about 8%). The quantity is adjusted, also controlled by the secondary air control means 22. The concentration of carbon monoxide in the exhaust gas detected by the carbon monoxide concentration detecting means 20b is also input to the secondary air control means 22, and is referred to in the above control. In the illustrated example, in order to finally remove harmful components in exhaust gas such as dioxins and nitrogen oxides, the flue gas 17 downstream of the bag filter 12 is used.
Is provided with an exhaust gas cleaning device 15. Exhaust gas from the incinerator passes sequentially through each facility, is drawn from the exhaust gas cleaning device 15 via a flue 17 by an induction blower mechanism 16, and is sent out to a chimney 18.

【0016】以上のようにして設定・調節される被処理
物供給量、供給一次空気量、供給二次空気量は、以下の
ようにして補正される。このための前記補正値演算手段
29における具体的な演算例について説明すると、補正
量は、補正量演算手段30において、場合により異なる
方法で、例えば20分毎に以下のように算出される。
The supply amount of the workpiece, the supply primary air amount, and the supply secondary air amount set and adjusted as described above are corrected as follows. A specific calculation example of the correction value calculation means 29 for this purpose will be described. The correction amount is calculated by the correction amount calculation means 30 by a different method depending on the case, for example, every 20 minutes as follows.

【0017】排ガス総量センサ25で検出する総排出ガ
ス量(Et)が目標上限値(Eu)以下である場合に
は、前記補正値演算手段29では補正値(Ag)をゼロ
として目標供給量設定手段24で設定される被処理物供
給量(Gs)がそのまま補正供給量(Ga)として出力
される。つまり、各量の関係式は以下のようになる。 ΔE=Et−Eu≦0 を条件として、 ΔE=0 ΔG=α×ΔE/Em=0 Gs=Gd Ag=Ca×ΔG=0 Ga=Gs−Ag=Gs 但し、Etは総排出ガス量、Euは目標上限値、ΔEは
総排出ガス量(Et)の目標上限値(Eu)に対する偏
差、Emは20分平均の平均排ガス量、αは偏差(Δ
E)から相当被処理物量を算出するための換算係数、Δ
Gは補正量、Gdは1日当たりの目標焼却処理量、Gs
は1日当たりの被処理物供給量、Caは補正係数、Ag
は補正値、Gaは補正供給量(1日当たり)である。被
処理物供給量制御手段23から供給機構2の制御指標と
して出力されるのは、1時間当たりの被処理物供給量と
して与えられる目標焼却ペースである。
When the total exhaust gas amount (Et) detected by the total exhaust gas sensor 25 is equal to or less than the target upper limit value (Eu), the correction value calculating means 29 sets the correction value (Ag) to zero and sets the target supply amount. The processing object supply amount (Gs) set by the means 24 is directly output as the correction supply amount (Ga). That is, the relational expression of each quantity is as follows. On the condition that ΔE = Et−Eu ≦ 0, ΔE = 0 ΔG = α × ΔE / Em = 0 Gs = Gd Ag = Ca × ΔG = 0 Ga = Gs−Ag = Gs where Et is the total exhaust gas amount, Eu Is a target upper limit value, ΔE is a deviation of the total exhaust gas amount (Et) from the target upper limit value (Eu), Em is an average exhaust gas amount averaged over 20 minutes, and α is a deviation (Δ
E), a conversion coefficient for calculating the amount of the object to be treated, Δ
G is the correction amount, Gd is the target incineration amount per day, Gs
Is the supply amount of the object to be treated per day, Ca is the correction coefficient, Ag
Is a correction value, and Ga is a correction supply amount (per day). What is output as the control index of the supply mechanism 2 from the processing object supply amount control means 23 is the target incineration pace given as the processing object supply amount per hour.

【0018】前記総排出ガス量(Et)が前記目標上限
値(Eu)を超える場合には、前記補正量演算手段30
で前記総排出ガス量(Et)の前記目標上限値(Eu)
に対する偏差(ΔE)を焼却する被処理物量に換算して
補正量(ΔG)を算出し、前記補正値演算手段29で
は、これに対して、総排出ガス量(Et)の変動を考慮
した係数(例えば1.6)を乗じて補正値(Ag)を算
出し、先に設定された補正供給量(Ga)にこの補正値
(Ag)を加算することでさらに補正して、補正供給量
(Ga)を出力する。各量の関係式は以下のようにな
る。 ΔE=Et−Eu>0 を条件として、 ΔG=α×ΔE/Em Gs=Gd Ag=Ca×ΔG Ga=Ga+Ag 尚、各数量記号の意味は上記の通りである。
If the total exhaust gas amount (Et) exceeds the target upper limit value (Eu), the correction amount calculating means 30
And the target upper limit value (Eu) of the total exhaust gas amount (Et)
The correction amount (ΔG) is calculated by converting the deviation (ΔE) with respect to the amount of the material to be incinerated, and the correction value calculating means 29 calculates the correction amount (ΔG) by taking into account the variation of the total exhaust gas amount (Et). (For example, 1.6) to calculate the correction value (Ag), and further add this correction value (Ag) to the previously set correction supply amount (Ga) to further correct the correction supply amount (Ag). Ga) is output. The relational expression for each quantity is as follows. On the condition that ΔE = Et−Eu> 0, ΔG = α × ΔE / Em Gs = Gd Ag = Ca × ΔG Ga = Ga + Ag The meaning of each quantity symbol is as described above.

【0019】上記手順で補正供給量(Ga)を減少する
処理を繰り返すと、その日の目標焼却処理量(Gd)を
達成できなくなる。そこで、回復手段31を設けてあ
り、検出した平均排ガス量(Em)が前記目標上限値
(Eu)を下回るようになった場合には、予めその回復
手段31に設定された増加率(Ri)(例えば25%)
を基に、前記偏差(ΔE)が正の値を示すようにならな
い限り、数回に分けて前記補正供給量(Ga)を増加し
て、当初の被処理物供給量(Gs)に近付けるようにす
る。つまり、前記偏差(ΔE)の絶対量に前記増加率
(Ri)を乗じた値を補正値(Ag)とするのである。
つまり、 ΔE=Et−Eu<0 を条件として、 Gi=Ag×Ri Ag=Ag−Gi として、補正値(Ag)を修正する。尚、Riは予め設
定してある増加率である。
If the process for reducing the corrected supply amount (Ga) is repeated in the above procedure, the target incineration amount (Gd) cannot be achieved on that day. Therefore, the recovery means 31 is provided, and when the detected average exhaust gas amount (Em) falls below the target upper limit (Eu), the increase rate (Ri) preset in the recovery means 31 is set. (For example, 25%)
As long as the deviation (ΔE) does not become a positive value based on the above, the correction supply amount (Ga) is increased in several steps so as to approach the original treatment object supply amount (Gs). To That is, a value obtained by multiplying the absolute amount of the deviation (ΔE) by the increase rate (Ri) is set as the correction value (Ag).
That is, under the condition that ΔE = Et−Eu <0, the correction value (Ag) is corrected as Gi = Ag × Ri Ag = Ag−Gi. Note that Ri is a preset increase rate.

【0020】以上示した補正供給量(Ga)の補正処理
サイクル、例えば図2のような流れ図として表される。
即ち、予め補正供給量(Ga)に供給量設定手段28に
より設定された被処理物供給量(Gs)を代入してお
く。 [*1] 排ガス総量センサ25で検出した総排出ガス
量(Et)を予め上限値設定手段27に設定してある目
標上限値(Eu)と比較し、その偏差(ΔE)を求め
る。 [*2] [*1]で求めた偏差(ΔE)の正負を判定
する。判定の結果が正でないならば、[*7]以下を実
行する。 [*3] 上述の式に基づき、補正量演算手段30で補
正量(ΔG)を算出する。 [*4] 補正値演算手段29で、前記補正量(ΔG)
に基づき、補正値(Ag)を算出する。 [*5] 出力した補正値(Ag)に予め設定された増
加率(Ri)を乗じて増加量(Gi)を求め、[*1
2]を実行する。尚、供給量設定手段28に設定された
被処理物供給量(Gs)或いは補正量演算手段30に設
定された補正量(ΔG)が設定変更されておれば、その
設定変更を記録しておく。 [*6] [*1]で求めた偏差(ΔE)の正負を判定
する。判定の結果が負でなければ、20分経過後に[*
1]に戻って、それ以降を実行する。 [*7] [*5]で設定変更が記録されてない場合
は、[*11]以下を実行する。 [*8] [*5]で設定変更された被処理物供給量
(Gs)を、補正供給量(Ga)に代入する。 [*9] 前記補正量(ΔG)を基に、補正値(Ag)
を算出する。 [*10]算出した補正値(Ag)に基づいて増加量
(Gi)を算出する。 [*11]増加量(Gi)を基に、補正値(Ag)を修
正する。 [*12]前記補正値(Ag)を基に、補正供給量(G
a)を補正して出力し、20分後に[*1]に戻って、
[*1]以下を実行する
A correction processing cycle of the correction supply amount (Ga) described above, for example, is shown as a flow chart as shown in FIG.
That is, the processing object supply amount (Gs) set in advance by the supply amount setting means 28 is substituted for the correction supply amount (Ga). [* 1] The total exhaust gas amount (Et) detected by the exhaust gas total amount sensor 25 is compared with a target upper limit value (Eu) set in the upper limit value setting means 27 in advance, and a deviation (ΔE) thereof is obtained. [* 2] The sign of the deviation (ΔE) obtained in [* 1] is determined. If the result of the determination is not positive, the following [* 7] is executed. [* 3] The correction amount (ΔG) is calculated by the correction amount calculating means 30 based on the above equation. [* 4] The correction value calculating means 29 calculates the correction amount (ΔG)
, A correction value (Ag) is calculated. [* 5] The output correction value (Ag) is multiplied by a preset increase rate (Ri) to obtain an increase amount (Gi), and [* 1]
2]. If the processing object supply amount (Gs) set in the supply amount setting means 28 or the correction amount (ΔG) set in the correction amount calculation means 30 has been changed, the setting change is recorded. . [* 6] The sign of the deviation (ΔE) obtained in [* 1] is determined. If the result of the judgment is not negative, [*
1] and execute the subsequent steps. [* 7] If no setting change is recorded in [* 5], execute [* 11] and subsequent steps. [* 8] The processing object supply amount (Gs) whose setting has been changed in [* 5] is substituted for the correction supply amount (Ga). [* 9] Correction value (Ag) based on the correction amount (ΔG)
Is calculated. [* 10] The amount of increase (Gi) is calculated based on the calculated correction value (Ag). [* 11] The correction value (Ag) is corrected based on the increase amount (Gi). [* 12] Based on the correction value (Ag), the correction supply amount (G
a) is corrected and output, and after 20 minutes, returns to [* 1],
[* 1] Execute the following

【0021】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態に於いては、図1を参照して、ス
トーカ式ゴミ焼却炉への供給ゴミ量のみを制御する例に
ついて説明したが、例えば図3に示すように、回転胴式
の焼却炉を用いてゴミと共に汚泥、廃油等の廃棄物を共
に焼却し、さらに、前記焼却炉からの焼却灰を溶融処理
する溶融炉を設けて、廃プラスチック等の廃棄物を焼却
処理すると共に、焼却処理できない廃棄物を溶融処理す
るようにした廃棄物処理プラントにも適用可能である。
勿論、これらの一部で構成された廃棄物処理プラントに
も適用可能である。同図に示した廃棄物処理プラントに
おいては、受入ホッパ1から投入されたゴミを焼却回転
胴3内にの火炉Fに供給するプッシャ機構2Aと、投入
されたゴミの中に汚泥を投入する汚泥フィーダ2Bと、
二次燃焼室5入口近傍に配置された廃油噴霧機構2Cと
を被処理物供給機構2として備えた焼却炉が例示され
る。上記焼却炉を例示した図においては、排出ガスの量
を多くしないために、排ガス冷却機構10には冷却水噴
霧機構11を設けて水冷すると同時に、噴霧水中に苛性
ソーダを添加して、排ガス中の酸性分を除去できるよう
にしてある。また、この焼却炉から排出される焼却灰を
炉内に供給する焼却灰供給機構2Dと、この焼却灰と共
に焼却して溶融処理する選別廃棄物を炉内に投入する選
別廃棄物供給機構2Eを被処理物供給機構2として備え
て、投入される被処理物を溶融処理する廃棄物溶融炉1
3を共に設けてある例を示すことができる。前記廃棄物
溶融炉13には、火炉Fからの燃焼排ガスを二次燃焼さ
せる二次燃焼室5を備えると共に、不足空気の条件で燃
焼した前記二次燃焼室5からの燃焼排ガスを後燃焼させ
る後燃焼室7を煙道17に設けてあるものを示すことが
できる。このような廃棄物処理プラントにおいては、前
記焼却炉からの排ガスと、前記廃棄物溶融炉13からの
排ガスとを一括して排出する煙突からの総排出ガス量に
対して夫々の被処理物供給量を制御することになる。
Next, another embodiment of the present invention will be described. <1> In the above-described embodiment, an example in which only the amount of refuse supplied to the stoker-type refuse incinerator is controlled with reference to FIG. 1 is described. For example, as shown in FIG. The incinerator is used to incinerate waste such as sludge and waste oil together with garbage.Furthermore, a melting furnace for melting and processing incineration ash from the incinerator is provided to incinerate waste such as waste plastic. The present invention is also applicable to a waste treatment plant that melts waste that cannot be incinerated.
Of course, the present invention is also applicable to a waste treatment plant constituted by a part of these. In the waste treatment plant shown in the figure, a pusher mechanism 2A for supplying refuse introduced from the receiving hopper 1 to the furnace F in the incineration rotary drum 3, and a sludge for introducing sludge into the inputted refuse. Feeder 2B,
An incinerator equipped with a waste oil spraying mechanism 2 </ b> C disposed near the entrance of the secondary combustion chamber 5 as the workpiece supply mechanism 2 is exemplified. In the figure illustrating the incinerator, in order not to increase the amount of exhaust gas, the exhaust gas cooling mechanism 10 is provided with a cooling water spray mechanism 11 and water-cooled. It is designed to remove acidic components. Further, an incineration ash supply mechanism 2D for supplying incineration ash discharged from the incinerator into the furnace and a sorting waste supply mechanism 2E for injecting into the furnace the sorting waste to be incinerated and melted together with the incineration ash. Waste melting furnace 1 provided as workpiece supply mechanism 2 for melting and processing the loaded workpiece
An example in which 3 is provided together can be shown. The waste melting furnace 13 is provided with a secondary combustion chamber 5 for secondary combustion of the combustion exhaust gas from the furnace F, and post-combustion the combustion exhaust gas from the secondary combustion chamber 5 burned under insufficient air conditions. It can be shown that the afterburning chamber 7 is provided in the flue 17. In such a waste treatment plant, the amount of each of the materials to be treated is determined based on the total amount of exhaust gas from the chimney which collectively discharges the exhaust gas from the incinerator and the exhaust gas from the waste melting furnace 13. You will control the amount.

【0022】〈2〉上記実施の形態に於いては、ストー
カ式ゴミ焼却炉の供給ゴミを制御する例について説明し
たが、このゴミ焼却炉を、例えば図3に示すような回転
胴式ゴミ焼却炉にも適用可能であり、同図に示すよう
に、汚泥、廃油を共に焼却処理する場合には、以下のよ
うに構成することが可能である。構成説明の前提とし
て、図3に示した焼却炉の構成について補足的に説明す
れば、受入ホッパ1から投入された被処理物を火炉Fに
供給するプッシャ機構2Aへの前記被処理物の供給路
に、前記受入ホッパ1から投入された被処理物中に汚泥
を供給するスクリューフィーダからなる汚泥フィーダ2
Bを備えた汚泥供給機構14を設けて、供給された被処
理物を焼却する焼却回転胴3内に前記火炉Fを形成して
あり、その焼却回転胴3から排出される焼却残渣を後燃
焼させるストーカ式火床4を備える後燃焼部を備え、前
記ストーカ式火床4の上方に廃油を水和物として吹き込
み燃焼させる廃油噴霧機構2Cを設けて、その上方空間
に二次燃焼室5を形成してある。この焼却炉の一次空気
供給機構8は、前記焼却回転胴3の入口側からと、前記
ストーカ式火床4の下方からの両方から一次空気を供給
するように構成してあり、二次空気供給機構9は、前記
二次燃焼室5に二次空気を供給するように構成してあ
る。
<2> In the above embodiment, an example in which the refuse supplied to the stoker type refuse incinerator is controlled has been described. However, this refuse incinerator is, for example, a rotary body type refuse incinerator as shown in FIG. The present invention is also applicable to a furnace, and as shown in the figure, when both sludge and waste oil are incinerated, the following configuration is possible. As a premise of the configuration description, if the configuration of the incinerator shown in FIG. 3 is supplementarily described, supply of the workpiece to a pusher mechanism 2A that supplies the workpiece fed from the receiving hopper 1 to the furnace F A sludge feeder 2 comprising a screw feeder for supplying sludge into the material to be treated inputted from the receiving hopper 1
B is provided with a sludge supply mechanism 14, and the furnace F is formed in the incineration rotary drum 3 for incinerating the supplied material to be treated, and the incineration residue discharged from the incineration rotary drum 3 is post-burned. A post-combustion unit having a stoker type grate 4 to be provided, and a waste oil spraying mechanism 2C for blowing and burning waste oil as a hydrate above the stoker type grate 4 is provided; It is formed. The primary air supply mechanism 8 of the incinerator is configured to supply primary air from both the inlet side of the incineration rotary drum 3 and from below the stoker type grate 4, and the secondary air supply The mechanism 9 is configured to supply secondary air to the secondary combustion chamber 5.

【0023】上記焼却回転胴3を備える回転胴式焼却炉
のみへの被処理物供給量の調節の例について以下に説明
する。被処理物供給量制御のロジックは、例えば図2の
ような流れ図で表現されるものを、夫々の被処理物に対
して個々に適用する。この場合には、夫々の被処理物に
対する影響割合を適正にするように、補正係数(Ca)
を設定する。 (プッシャ機構の制御)被処理物供給機構2であるプッ
シャ機構2Aの基準プッシャ速度を設定して、その基準
プッシャ速度を制御指標としてプッシャ機構2Aを制御
する。前記プッシャ基準速度(単位:サイクル/h)の
実例を挙げれば、 基準プッシャ速度=目標焼却ペース/プッシャ速度算定
係数 として求められる。プッシャ速度算定係数は、予め測定
に基づいて求められた、プッシャ機構の一動作当たりの
押し込みゴミ量である。前記目標焼却ペースは、前記被
処理物供給量制御装置23から出力される補正供給量
(Ga)の中のゴミ相当分である。 (汚泥供給機構の制御)被処理物供給機構2である汚泥
供給機構14を構成する汚泥フィーダ2Bの回転数を基
準汚泥供給速度として設定して、これを指標としてその
汚泥供給機構14を制御する。前記基準汚泥供給速度
(単位:rpm)の実例を挙げれば、 基準汚泥供給速度=目標汚泥焼却ペース×平均プッシャ
速度/(平均汚泥供給量×基準プッシャ速度×汚泥供給
速度算定係数) として求められる。平均プッシャ速度は、実測されたプ
ッシャ速度の3時間移動平均値であり、平均汚泥供給量
は、実測された汚泥供給量の3時間移動平均値であり、
汚泥供給速度算定係数は、汚泥フィーダ2Bの単位回転
当たりの供給汚泥量である。各値の単位は、目標汚泥焼
却ペース及び平均汚泥供給量ではt/h、平均プッシャ
速度及び基準プッシャ速度ではサイクル/hである。前
記目標汚泥焼却ペースは、前記被処理物供給量制御装置
23から出力される補正供給量(Ga)の中の汚泥相当
分である。 (廃油噴霧機構の制御)被処理物供給機構2である廃油
噴霧機構2Cを構成する廃油噴霧ノズルからの噴霧量と
して基準廃油噴霧量を設定して、その基準廃油噴霧量を
制御指標としてその廃油噴霧機構2Cを制御する。前記
基準廃油噴霧量(単位:L/H)の実例を挙げれば、 基準廃油噴霧量=目標廃油焼却ペース として求められる。目標廃油焼却ペースの単位はL/H
である。前記目標廃油焼却ペースは、前記被処理物供給
量制御装置23から出力される補正供給量(Ga)の中
の廃油相当分である。
An example of the adjustment of the supply amount of the object to be processed only to the rotary drum type incinerator having the above described rotary drum 3 will be described below. The processing object supply amount control logic, for example, a flow chart shown in FIG. 2 is individually applied to each processing object. In this case, the correction coefficient (Ca) is adjusted so that the ratio of influence on each object to be processed is appropriate.
Set. (Control of Pusher Mechanism) The reference pusher speed of the pusher mechanism 2A which is the workpiece supply mechanism 2 is set, and the pusher mechanism 2A is controlled using the reference pusher speed as a control index. Taking an example of the pusher reference speed (unit: cycle / h), the reference pusher speed = target incineration pace / pusher speed calculation coefficient. The pusher speed calculation coefficient is the amount of pushed dust per one operation of the pusher mechanism, which is obtained based on measurement in advance. The target incineration pace is equivalent to dust in the corrected supply amount (Ga) output from the workpiece supply amount control device 23. (Control of sludge supply mechanism) The number of rotations of the sludge feeder 2B constituting the sludge supply mechanism 14, which is the workpiece supply mechanism 2, is set as a reference sludge supply speed, and the sludge supply mechanism 14 is controlled using this as an index. . As an example of the reference sludge supply speed (unit: rpm), the reference sludge supply speed = target sludge incineration pace × average pusher speed / (average sludge supply amount × reference pusher speed × sludge supply speed calculation coefficient). The average pusher speed is a 3-hour moving average of the actually measured pusher speed, and the average sludge supply is a 3-hour moving average of the actually measured sludge supply.
The sludge supply speed calculation coefficient is the amount of sludge supplied per unit rotation of the sludge feeder 2B. The unit of each value is t / h for the target sludge incineration pace and the average sludge supply amount, and is cycle / h for the average pusher speed and the reference pusher speed. The target sludge incineration pace is equivalent to sludge in the corrected supply amount (Ga) output from the processing object supply amount control device 23. (Control of Waste Oil Spray Mechanism) A reference waste oil spray amount is set as a spray amount from a waste oil spray nozzle constituting a waste oil spray mechanism 2C which is the workpiece supply mechanism 2, and the reference waste oil spray amount is used as a control index for the waste oil. The spray mechanism 2C is controlled. Taking an example of the reference waste oil spray amount (unit: L / H), the reference waste oil spray amount = target waste oil incineration pace is obtained. The unit of target waste oil incineration pace is L / H
It is. The target waste oil incineration pace is equivalent to waste oil in the corrected supply amount (Ga) output from the processing object supply amount control device 23.

【0024】〈3〉図2に示した流れ図は一例であっ
て、ロジックがこれに限るものではなく、例えば図7に
示した連続循環型のものであってもよい。 〈4〉上記実施の形態においては、補正値演算手段29
に補正量演算手段30を設けた例について説明したが、
前記補正量演算手段30を省略して、前記補正値演算手
段29において直接補正値(Ag)を算出するようにし
てあってもよい。また、補正値、補正量等の呼称は任意
であって、供給量設定手段28における補正供給量(G
a)を直接補正するように構成してあってもよい。 〈5〉上記実施の形態においては、被処理物供給量制御
装置23において、当初から補正値演算手段29の出力
値として被処理物供給量(Gs)を設定する例について
説明したが、補正を開始するまでは供給量設定手段28
に設定された被処理物供給量(Gs)を基に制御量を出
力し、補正を開始した後は、補正値演算手段29で算出
した補正値(Ag)に基づいて求めた補正供給量(G
a)を基に制御量を出力するように、切り替えて出力す
るようにしてあってもよい。 〈6〉上記実施の形態においては、補正した後に、補正
供給量(Ga)が被処理物供給量(Gs)に回復するま
で、補正値(Ag)を増加量(Gi)に基づいて減ずる
例について説明したが、平均排ガス量(Em)が目標上
限値(Eu)に満たない場合には、その偏差(ΔE)に
基づいて、増加量(Gi)を求めて、被処理物供給量
(Gs)を増量するように構成してあってもよい。この
ように構成すれば、有害物の排出総量を所定量以下に規
制しながら、焼却処理量を目標焼却処理量(Gd)によ
り近付け、或いは一致させることが可能となる。
<3> The flowchart shown in FIG. 2 is an example, and the logic is not limited to this. For example, a continuous circulation type shown in FIG. 7 may be used. <4> In the above embodiment, the correction value calculating means 29
The example in which the correction amount calculating means 30 is provided in
The correction amount calculating means 30 may be omitted, and the correction value calculating means 29 may directly calculate the correction value (Ag). The names of the correction value, the correction amount, and the like are arbitrary, and the correction supply amount (G
a) may be configured to be directly corrected. <5> In the above-described embodiment, an example has been described in which the workpiece supply amount control device 23 sets the workpiece supply amount (Gs) as the output value of the correction value calculating means 29 from the beginning. Until the start, the supply amount setting means 28
After the control amount is output based on the processing object supply amount (Gs) set in the step (a) and the correction is started, the correction supply amount (Ag) calculated based on the correction value (Ag) calculated by the correction value calculating means 29. G
The control amount may be switched and output so as to be output based on a). <6> In the above embodiment, an example in which the correction value (Ag) is reduced based on the increase amount (Gi) after the correction and until the corrected supply amount (Ga) recovers to the workpiece supply amount (Gs). However, when the average exhaust gas amount (Em) is less than the target upper limit value (Eu), the increase amount (Gi) is obtained based on the deviation (ΔE), and the processing object supply amount (Gs) is obtained. ) May be configured to be increased. With this configuration, it is possible to make the incineration amount closer to or equal to the target incineration amount (Gd) while restricting the total amount of discharged harmful substances to a predetermined amount or less.

【0025】[0025]

【実施例】以上のプロセスを実行した結果を、図4乃至
図6に示す。何れも目標焼却処理量(Gd)を50ton/
day に、目標上限値(Eu)を22450Nm3/hに、補
正係数(Ca)を1.6に、補正回復のための増加率
(Ri)を25%に、それぞれ設定したものである。上
記補正処理サイクルは、20分間隔で実行された。尚、
この場合には、上記プロセスにおける[1]の目標上限
値(Eu)と比較する比較対象を、総排ガス量に代え
て、総排ガス量を20分間につき平均した平均排ガス量
(Em)としている。このようにしてあっても、上記プ
ロセスとは実質的に異ならない結果となる。
FIG. 4 to FIG. 6 show the results of executing the above process. In all cases, the target incineration throughput (Gd) is 50ton /
In the day, the target upper limit (Eu) is set to 22450 Nm 3 / h, the correction coefficient (Ca) is set to 1.6, and the rate of increase (Ri) for correction recovery is set to 25%. The correction processing cycle was executed at intervals of 20 minutes. still,
In this case, the target to be compared with the target upper limit (Eu) of [1] in the above process is the average exhaust gas amount (Em) obtained by averaging the total exhaust gas amount for 20 minutes instead of the total exhaust gas amount. Even so, the result is not substantially different from the above process.

【0026】[第一実施例]図4は総排出ガス量(E
t)が一度目標上限値(Eu)を超過し、その後、正常
に回復した例である。 [a]第1経過時間t1 においては、平均排ガス量(E
m)は22000Nm3/hであり、目標上限値(2245
0Nm3/h)以下であるから、設定変更は行われず、被処
理物供給量(Gs)により設定される目標焼却ペースは
初期の値の2.08t/hを維持し、偏差(ΔE)をゼロ
としているから、補正量(ΔG)並びに増加量(Gi)
は共にゼロで、被処理物供給量(Gs)を変化させてい
ない。 [b]第2経過時間t2 、つまりt1 から20分後にお
いては、平均排ガス量(Em)が23500Nm3/hに増
加しており、目標上限値(22450Nm3/h)を超えて
いるから、偏差(ΔE)の1050Nm3/hに対して補正
値(Ag)を算出し、補正値(Ag)を3.6t/dと
し、これを基に目標焼却ペースを1.93t/hに修正し
た。これと共に、増加量(Gi)を前記補正値(Ag)
の25%にあたる0.9t/dに設定しておいた。 [c]第3経過時間t3 、つまりt2 から20分後にお
いては、平均排ガス量(Em)が20000Nm3/hに減
少しており、目標上限値(22450Nm3/h)以下とな
っているから、前記補正値(Ag)を、前記増加量(G
i)を減じて2.7t/dに修正し、これを基に目標焼却
ペースを1.97t/hに修正した。 [d]第4経過時間t4 、つまりt3 から20分後にお
いては、平均排ガス量(Em)が20500Nm3/hに幾
分増加しているものの、目標上限値(22450Nm3/
h)以下となっているから、前記補正値(Ag)を、前
記増加量(Gi)を減じて1.8t/dに修正し、これを
基に目標焼却ペースを2.01t/hに修正した。 [e]第5経過時間t5 、つまりt4 から20分後にお
いては、平均排ガス量(Em)が21000Nm3/hに幾
分増加しているものの、目標上限値(22450Nm3/
h)以下となっているから、前記補正値(Ag)を、前
記増加量(Gi)を減じて0.9t/dに修正し、これを
基に目標焼却ペースを2.05t/hに修正した。 [f]第6経過時間t6 、つまりt5 から20分後にお
いては、平均排ガス量(Em)が21500Nm3/hに増
加しているものの、目標上限値(22450Nm3/h)以
下となっているから、前記補正値(Ag)を、前記増加
量(Gi)を減じて0.0t/dに修正した。その結果、
目標焼却ペースは2.08t/hに修正して回復させて、
正常状態に回復した。
FIG. 4 shows the total exhaust gas amount (E
This is an example in which t) once exceeds the target upper limit value (Eu) and then recovers normally. [A] At the first elapsed time t 1 , the average exhaust gas amount (E
m) is 22000 Nm 3 / h, and the target upper limit (2245)
0Nm 3 / h) or less, the setting is not changed, and the target incineration pace set by the supply amount of treated material (Gs) maintains the initial value of 2.08 t / h, and the deviation (ΔE) is reduced. Since it is set to zero, the correction amount (ΔG) and the increase amount (Gi)
Are zero, and the supply amount of the object to be processed (Gs) is not changed. [B] the second elapsed time t 2, that is, in 20 minutes after the t 1, the average quantity of exhaust gas (Em) has increased to 23500Nm 3 / h, is exceeded the target upper limit (22450Nm 3 / h) , A correction value (Ag) is calculated for the deviation (ΔE) of 1050 Nm 3 / h, the correction value (Ag) is set to 3.6 t / d, and based on this, the target burning rate is set to 1.93 t / h. Fixed. At the same time, the amount of increase (Gi) is changed to the correction value (Ag).
0.9t / d, which is 25% of the above. [C] Third elapsed time t 3, in 20 minutes after the words t 2, the average amount of exhaust gas (Em) has decreased to 20000 nm 3 / h, equal to or less than the target upper limit value (22450Nm 3 / h) Therefore, the correction value (Ag) is changed to the increase amount (G
i) was reduced to 2.7 t / d and the target burning rate was revised to 1.97 t / h based on this. [D] Fourth elapsed time t 4, that is, in the 20 minutes after the t 3, although the average amount of exhaust gas (Em) is somewhat increased 20500Nm 3 / h, the target upper limit value (22450Nm 3 /
h) Since it is less than the above, the correction value (Ag) is corrected to 1.8 t / d by subtracting the increase amount (Gi), and the target incineration pace is corrected to 2.01 t / h based on this. did. [E] Fifth elapsed time t 5, that is, in the 20 minutes after the t 4, although the average amount of exhaust gas (Em) is somewhat increased 21000Nm 3 / h, the target upper limit value (22450Nm 3 /
h) Since the value is less than or equal to the above, the correction value (Ag) is corrected to 0.9 t / d by subtracting the increase amount (Gi), and the target burning rate is corrected to 2.05 t / h based on this. did. [F] After the sixth elapsed time t 6 , that is, 20 minutes after t 5 , although the average exhaust gas amount (Em) has increased to 21500 Nm 3 / h, it has become equal to or less than the target upper limit value (22450 Nm 3 / h). Therefore, the correction value (Ag) was corrected to 0.0 t / d by subtracting the increase amount (Gi). as a result,
The target incineration pace was corrected to 2.08 t / h and restored,
It has recovered to normal.

【0027】[第二実施例]図5は総排出ガス量(E
t)が一度目標上限値(Eu)を超過し、その後、正常
に回復する過程で総排出ガス量(Et)が再度目標上限
値(Eu)を超過し、その後、正常に回復した例であ
る。 [a]第1経過時間t1 においては、平均排ガス量(E
m)は22000Nm3/hであり、目標上限値(2245
0Nm3/h)以下であるから、設定変更は行われず、被処
理物供給量(Gs)により設定される目標焼却ペースは
初期の値の2.08t/hを維持し、偏差(ΔE)をゼロ
としているから、補正量(ΔG)並びに増加量(Gi)
は共にゼロでで、被処理物供給量(Gs)を変化させて
いない。 [b]第2経過時間t2 、つまりt1 から20分後にお
いては、平均排ガス量(Em)が23800Nm3/hに増
加しており、目標上限値(22450Nm3/h)を超えて
いるから、偏差(ΔE)の1350Nm3/hに対して補正
値(Ag)を算出し、補正値(Ag)を4.5t/dと
し、これを基に目標焼却ペースを1.89t/hに修正し
た。これと共に、増加量(Gi)を前記補正値(Ag)
の25%にあたる1.1t/dに設定しておいた。 [c]第3経過時間t3 、つまりt2 から20分後にお
いては、平均排ガス量(Em)が21000Nm3/hに減
少しており、目標上限値(22450Nm3/h)以下とな
っているから、前記補正値(Ag)を、前記増加量(G
i)を減じて3.4t/dに修正し、これを基に目標焼却
ペースを1.94t/hに修正した。 [d]第4経過時間t4 、つまりt3 から20分後にお
いては、平均排ガス量(Em)が22000Nm3/hに再
度増加しているものの、目標上限値(22450Nm3/
h)を超えているないから、前記補正値(Ag)を、前
記増加量(Gi)を減じて2.3t/dに修正し、これを
基に目標焼却ペースを1.99t/hに修正した。 [e]第5経過時間t5 、つまりt4 から20分後にお
いては、平均排ガス量(Em)がさらに23000Nm3/
hに増加しており、目標上限値(22450Nm3/h)を超
えているから、偏差(ΔE)の550Nm3/hに対して前
回の補正値(Ag)を基準に改めて補正値(Ag)を算
出し、補正値(Ag)を4.1t/dとし、これを基に目
標焼却ペースを1.91t/hに修正する。これと共に、
増加量(Gi)を前記補正値(Ag)の25%にあたる
1.0t/dに設定しておいた。 [f]第6経過時間t6 、つまりt5 から20分後にお
いては、平均排ガス量(Em)が20000Nm3/hに減
少しており、目標上限値(22450Nm3/h)以下とな
っているから、前記補正値(Ag)を、前記増加量(G
i)を減じて3.1t/dに修正し、これを基に目標焼却
ペースを1.96t/hに修正した。 [g]第7経過時間t7 、つまりt6 から20分後にお
いては、平均排ガス量(Em)が20500Nm3/hに幾
分増加しているものの、目標上限値(22450Nm3/
h)以下となっているから、前記補正値(Ag)を、前
記増加量(Gi)を減じて2.0t/dに修正し、これを
基に目標焼却ペースを2.00t/hに修正した。 [h]第8経過時間t8 、つまりt7 から20分後にお
いては、平均排ガス量(Em)が21000Nm3/hに幾
分増加しているものの、目標上限値(22450Nm3/
h)以下となっているから、前記補正値(Ag)を、前
記増加量(Gi)を減じて1.0t/dに修正し、これを
基に目標焼却ペースを2.04t/hに修正した。 [i]第9経過時間t9 、つまりt8 から20分後にお
いては、平均排ガス量(Em)が21500Nm3/hに増
加しているものの、目標上限値(22450Nm3/h)以
下となっているから、前記補正値(Ag)を、前記増加
量(Gi)を減じて0.0t/dに修正し、その結果、目
標焼却ペースを2.08t/hに修正して回復させた。
[Second Embodiment] FIG. 5 shows the total exhaust gas amount (E
In this example, the total exhaust gas amount (Et) exceeds the target upper limit (Eu) again during the process of normal recovery after t) once exceeds the target upper limit (Eu), and then recovers normally. . [A] At the first elapsed time t 1 , the average exhaust gas amount (E
m) is 22000 Nm 3 / h, and the target upper limit (2245)
0Nm 3 / h) or less, the setting is not changed, and the target incineration pace set by the supply amount of treated material (Gs) maintains the initial value of 2.08 t / h, and the deviation (ΔE) is reduced. Since it is set to zero, the correction amount (ΔG) and the increase amount (Gi)
Are zero, and the supply amount (Gs) of the workpiece is not changed. [B] After 20 minutes from the second elapsed time t 2 , that is, t 1 , the average exhaust gas amount (Em) has increased to 23800 Nm 3 / h, and has exceeded the target upper limit value (22450 Nm 3 / h). , A correction value (Ag) is calculated for the deviation (ΔE) of 1350 Nm 3 / h, the correction value (Ag) is set to 4.5 t / d, and based on this, the target burning rate is set to 1.89 t / h. Fixed. At the same time, the amount of increase (Gi) is changed to the correction value (Ag).
Was set at 1.1 t / d, which is 25% of the above. [C] Third elapsed time t 3, in 20 minutes after the words t 2, the average amount of exhaust gas (Em) has decreased to 21000Nm 3 / h, equal to or less than the target upper limit value (22450Nm 3 / h) Therefore, the correction value (Ag) is changed to the increase amount (G
i) was reduced to 3.4 t / d and the target incineration pace was revised to 1.94 t / h based on this. [D] Fourth elapsed time t 4, that is, in the 20 minutes after the t 3, although the average amount of exhaust gas (Em) is increased again 22000Nm 3 / h, the target upper limit value (22450Nm 3 /
h), the correction value (Ag) is corrected to 2.3 t / d by subtracting the increase amount (Gi), and the target incineration pace is corrected to 1.99 t / h based on this. did. [E] In the fifth elapsed time t 5 , that is, 20 minutes after t 4 , the average exhaust gas amount (Em) further increases to 23000 Nm 3 /
h, and exceeds the target upper limit value (22450 Nm 3 / h). Therefore, the correction value (Ag) is again corrected for the deviation (ΔE) of 550 Nm 3 / h based on the previous correction value (Ag). Is calculated, the correction value (Ag) is set to 4.1 t / d, and based on this, the target incineration pace is corrected to 1.91 t / h. With this,
The increase (Gi) was set to 1.0 t / d, which is 25% of the correction value (Ag). [F] At the sixth elapsed time t 6 , that is, 20 minutes after t 5 , the average exhaust gas amount (Em) has decreased to 20,000 Nm 3 / h, and has become equal to or less than the target upper limit value (22450 Nm 3 / h). Therefore, the correction value (Ag) is changed to the increase amount (G
i) was reduced to 3.1 t / d and the target incineration pace was revised to 1.96 t / h based on this. [G] Seventh elapsed time t 7, that is, in the 20 minutes after the t 6, although the average amount of exhaust gas (Em) is somewhat increased 20500Nm 3 / h, the target upper limit value (22450Nm 3 /
h) Since it is less than the above, the correction value (Ag) is corrected to 2.0 t / d by subtracting the increase amount (Gi), and the target incineration pace is corrected to 2.00 t / h based on this. did. [H] Eighth elapsed time t 8, that is, in the 20 minutes after the t 7, although the average amount of exhaust gas (Em) is somewhat increased 21000Nm 3 / h, the target upper limit value (22450Nm 3 /
h) Since it is less than or equal to the above, the correction value (Ag) is corrected to 1.0 t / d by subtracting the increase amount (Gi), and the target burning rate is corrected to 2.04 t / h based on this. did. [I] At the ninth elapsed time t 9 , that is, 20 minutes after t 8 , although the average exhaust gas amount (Em) has increased to 21500 Nm 3 / h, it has become equal to or less than the target upper limit value (22450 Nm 3 / h). Therefore, the correction value (Ag) was corrected to 0.0 t / d by subtracting the increase amount (Gi), and as a result, the target incineration pace was corrected to 2.08 t / h to recover.

【0028】[第三実施例]図6は総排出ガス量(E
t)が二度に亘って連続して目標上限値(Eu)を超過
し、その後、正常に回復した例である。 [a]第1経過時間t1 においては、平均排ガス量(E
m)は22000Nm3/hであり、目標上限値(2245
0Nm3/h)以下であるから、設定変更は行われず、被処
理物供給量(Gs)により設定される目標焼却ペースは
初期の値の2.08t/hを維持し、偏差(ΔE)をゼロ
としているから、補正量(ΔG)並びに増加量(Gi)
は共にゼロでで、被処理物供給量(Gs)を変化させて
いない。 [b]第2経過時間t2 、つまりt1 から20分後にお
いては、平均排ガス量(Em)が24000Nm3/hに増
加しており、目標上限値(22450Nm3/h)を超えて
いるから、偏差(ΔE)の1550Nm3/hに対して補正
値(Ag)を算出し、補正値(Ag)を5.2t/dと
し、これを基に目標焼却ペースを1.87t/hに修正し
た。これと共に、増加量(Gi)を前記補正値(Ag)
の25%にあたる1.3t/dに設定しておいた。 [c]第3経過時間t3 、つまりt2 から20分後にお
いては、平均排ガス量(Em)が23000Nm3/hに減
少したものの、目標上限値(22450Nm3/h)を超え
ているから、偏差(ΔE)の550Nm3/hに対して前回
の補正値(Ag)を基準に再び補正値(Ag)を算出
し、補正値(Ag)を6.9t/dとし、これを基に目標
焼却ペースを1.80t/hに修正した。これと共に、増
加量(Gi)を前記補正値(Ag)の25%にあたる
1.7t/dに設定しておいた。 [d]第4経過時間t4 、つまりt3 から20分後にお
いては、平均排ガス量(Em)が21500Nm3/hに減
少し、目標上限値(22450Nm3/h)に満たなくなっ
たから、前記補正値(Ag)を、前記増加量(Gi)を
減じて5.2t/dに修正し、これを基に目標焼却ペース
を1.87t/hに修正した。 [e]第5経過時間t5 、つまりt4 から20分後にお
いては、平均排ガス量(Em)が22000Nm3/hに減
少しており、目標上限値(22450Nm3/h)以下とな
っているから、前記補正値(Ag)を、前記増加量(G
i)を減じて3.4t/dに修正し、これを基に目標焼却
ペースを1.94t/hに修正した。 [f]第6経過時間t6 、つまりt5 から20分後にお
いては、平均排ガス量(Em)が21800Nm3/hに減
少しており、目標上限値(22450Nm3/h)以下とな
っているから、前記補正値(Ag)を、前記増加量(G
i)を減じて1.7t/dに修正し、これを基に目標焼却
ペースを2.01t/hに修正した。 [g]第7経過時間t7 、つまりt6 から20分後にお
いては、平均排ガス量(Em)が22000Nm3/hに幾
分増加しているものの、目標上限値(22450Nm3/
h)以下となっているから、前記補正値(Ag)を、前
記増加量(Gi)を減じて0.0t/dに修正し、その結
果、目標焼却ペースを2.08t/hに修正して回復させ
た。
[Third Embodiment] FIG. 6 shows the total exhaust gas amount (E
This is an example in which t) continuously exceeds the target upper limit value (Eu) twice and then recovers normally. [A] At the first elapsed time t 1 , the average exhaust gas amount (E
m) is 22000 Nm 3 / h, and the target upper limit (2245)
0Nm 3 / h) or less, the setting is not changed, and the target incineration pace set by the supply amount of treated material (Gs) maintains the initial value of 2.08 t / h, and the deviation (ΔE) is reduced. Since it is set to zero, the correction amount (ΔG) and the increase amount (Gi)
Are zero, and the supply amount (Gs) of the workpiece is not changed. [B] the second elapsed time t 2, that is, in 20 minutes after the t 1, the average quantity of exhaust gas (Em) has increased to 24000Nm 3 / h, is exceeded the target upper limit (22450Nm 3 / h) , A correction value (Ag) is calculated for the deviation (ΔE) of 1550 Nm 3 / h, the correction value (Ag) is set to 5.2 t / d, and based on this, the target burning rate is set to 1.87 t / h. Fixed. At the same time, the amount of increase (Gi) is changed to the correction value (Ag).
Was set at 1.3 t / d, which is 25% of the above. [C] After 20 minutes from the third elapsed time t 3 , that is, t 2 , the average exhaust gas amount (Em) decreased to 23000 Nm 3 / h, but exceeded the target upper limit value (22450 Nm 3 / h). The correction value (Ag) is calculated again based on the previous correction value (Ag) for the difference (ΔE) of 550 Nm 3 / h, and the correction value (Ag) is set to 6.9 t / d. The target incineration pace has been revised to 1.80 t / h. At the same time, the amount of increase (Gi) was set to 1.7 t / d, which is 25% of the correction value (Ag). [D] Fourth elapsed time t 4, in 20 minutes after the words t 3, since the average amount of exhaust gas (Em) is reduced to 21500Nm 3 / h, no longer reach the target upper limit value (22450Nm 3 / h), the The correction value (Ag) was corrected to 5.2 t / d by subtracting the increase (Gi), and based on this, the target burning rate was corrected to 1.87 t / h. [E] In the fifth elapsed time t 5 , that is, 20 minutes after t 4 , the average exhaust gas amount (Em) has decreased to 22000 Nm 3 / h, and has become equal to or less than the target upper limit value (22450 Nm 3 / h). Therefore, the correction value (Ag) is changed to the increase amount (G
i) was reduced to 3.4 t / d and the target incineration pace was revised to 1.94 t / h based on this. [F] At the sixth elapsed time t 6 , that is, 20 minutes after t 5 , the average exhaust gas amount (Em) has decreased to 21800 Nm 3 / h, and has become equal to or less than the target upper limit value (22450 Nm 3 / h). Therefore, the correction value (Ag) is changed to the increase amount (G
i) was reduced to 1.7 t / d and the target incineration pace was revised to 2.01 t / h based on this. [G] Seventh elapsed time t 7, that is, in the 20 minutes after the t 6, although the average amount of exhaust gas (Em) is somewhat increased 22000Nm 3 / h, the target upper limit value (22450Nm 3 /
h) Since it is below, the correction value (Ag) is corrected to 0.0 t / d by subtracting the increase amount (Gi), and as a result, the target incineration pace is corrected to 2.08 t / h. And recovered.

【0029】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る焼却炉の一例を示す構成図FIG. 1 is a configuration diagram showing an example of an incinerator according to the present invention.

【図2】本発明に係る廃棄物供給量制御の一例を示す流
れ図
FIG. 2 is a flowchart showing an example of waste supply control according to the present invention.

【図3】本発明に係る焼却炉の他の例を示す構成図FIG. 3 is a configuration diagram showing another example of the incinerator according to the present invention.

【図4】本発明に係る被処理物供給量設定の第一実施例
を説明する線図
FIG. 4 is a diagram illustrating a first embodiment of setting a supply amount of a processing target according to the present invention.

【図5】本発明に係る被処理物供給量設定の第二実施例
を説明する線図
FIG. 5 is a diagram for explaining a second embodiment of setting the supply amount of the workpiece according to the present invention.

【図6】本発明に係る被処理物供給量設定の第三実施例
を説明する線図
FIG. 6 is a diagram for explaining a third embodiment of setting the supply amount of the workpiece according to the present invention.

【図7】本発明に係る廃棄物供給量制御の他の例を示す
流れ図
FIG. 7 is a flowchart showing another example of waste supply control according to the present invention.

【図8】従来の焼却炉の一例を示す構成図FIG. 8 is a configuration diagram showing an example of a conventional incinerator.

【符号の説明】[Explanation of symbols]

1 受入ホッパ 2 供給機構 25 排ガス総量センサ 26 平均排ガス量検出手段 27 上限値設定手段 28 供給量設定手段 29 補正値演算手段 30 補正量演算手段 31 回復手段 DESCRIPTION OF SYMBOLS 1 Receiving hopper 2 Supply mechanism 25 Exhaust gas total amount sensor 26 Average exhaust gas amount detecting means 27 Upper limit value setting means 28 Supply amount setting means 29 Correction value calculating means 30 Correction amount calculating means 31 Recovery means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受入ホッパ(1)に投入された被処理物
を火炉に供給する供給機構(2)と、被処理物の一日の
目標焼却処理量に基づき前記火炉への所定時間当たりの
被処理物供給量を設定可能な供給量設定手段(28)と
を設けて、前記供給量設定手段(28)に設定された被
処理物供給量を基に前記供給機構(2)を制御するよう
に構成してある焼却炉の被処理物供給量制御装置であっ
て、 前記火炉からの総排出ガス量を検出可能な排ガス総量セ
ンサ(25)と、予め設定される目標上限値を設定可能
な上限値設定手段(27)とを設けると共に、前記排ガ
ス総量センサ(25)で検出した総排出ガス量が前記目
標上限値を超える場合に、前記設定された被処理物供給
量に対する補正値を演算導出する補正値演算手段(2
9)を設けて、前記演算導出した補正値に基づき前記被
処理物供給量を補正可能に構成してある焼却炉の被処理
物供給量制御装置。
A supply mechanism (2) for supplying an object to be treated put into a receiving hopper (1) to a furnace; A supply amount setting means (28) capable of setting a supply amount of the workpiece is provided, and the supply mechanism (2) is controlled based on the supply amount of the workpiece set in the supply amount setting means (28). An incinerator feed amount control device configured as described above, wherein a total exhaust gas amount sensor (25) capable of detecting a total exhaust gas amount from the furnace and a preset target upper limit value can be set. When the total exhaust gas amount detected by the exhaust gas total amount sensor (25) exceeds the target upper limit value, the correction value for the set processing object supply amount is set. Correction value calculating means (2)
9) An apparatus for controlling the supply amount of an incinerator to be treated, wherein the supply amount of the object to be treated can be corrected based on the correction value calculated and derived.
【請求項2】 前記補正値が、所定時間内に前記排ガス
総量センサ(25)で検出された総排出ガス量を平均し
た平均排ガス量の前記目標上限値に対する偏差に、予め
設定された補正係数を乗じて前記補正値演算手段(2
9)において演算導出されるものである請求項1記載の
焼却炉の被処理物供給量制御装置。
2. A correction coefficient preset to a deviation of the average exhaust gas amount obtained by averaging the total exhaust gas amount detected by the exhaust gas total amount sensor within a predetermined time from the target upper limit value. And the correction value calculating means (2
2. The apparatus according to claim 1, wherein the apparatus is derived from the calculation in (9).
【請求項3】 前記総排出ガス量を所定時間積算して、
時間当たりの平均排ガス量を求める平均排ガス量検出手
段(26)と、求めた平均排ガス量の前記目標上限値に
対する偏差を前記平均排ガス量で除した値に、前記目標
焼却処理量を乗じて補正量を求める補正量演算手段(3
0)とを設けて、前記補正値演算手段(29)を、求め
た補正量に、前記補正係数を乗じて前記補正値を演算導
出するように構成してある請求項2記載の焼却炉の被処
理物供給量制御装置。
3. The total exhaust gas amount is integrated for a predetermined time,
An average exhaust gas amount detecting means for obtaining an average exhaust gas amount per hour; and a correction in which a value obtained by dividing a deviation of the obtained average exhaust gas amount from the target upper limit value by the average exhaust gas amount is multiplied by the target incineration processing amount. Correction amount calculating means (3)
The correction value calculation means (29) is configured to multiply the obtained correction amount by the correction coefficient to calculate and derive the correction value. Processing object supply amount control device.
【請求項4】 補正後の被処理物供給量を回復のために
予め設定された増加率に基づいて、前記補正値により被
処理物供給量を補正した後の補正供給量を、前記目標焼
却処理量に基づく被処理物供給量にまで増加する回復手
段(31)を設けてある請求項1〜3の何れか1項に記
載の焼却炉の被処理物供給量制御装置。
4. A method for correcting the corrected supply amount after correcting the supply amount of the workpiece by the correction value based on a preset increase rate for recovering the corrected supply amount of the workpiece. 4. The apparatus according to claim 1, further comprising a recovery unit configured to increase the supply amount of the processing target based on the processing amount. 5.
JP11001990A 1999-01-07 1999-01-07 Material-to-be-treated supply amount controller for incinerating furnace Pending JP2000205539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001990A JP2000205539A (en) 1999-01-07 1999-01-07 Material-to-be-treated supply amount controller for incinerating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001990A JP2000205539A (en) 1999-01-07 1999-01-07 Material-to-be-treated supply amount controller for incinerating furnace

Publications (1)

Publication Number Publication Date
JP2000205539A true JP2000205539A (en) 2000-07-25

Family

ID=11516925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001990A Pending JP2000205539A (en) 1999-01-07 1999-01-07 Material-to-be-treated supply amount controller for incinerating furnace

Country Status (1)

Country Link
JP (1) JP2000205539A (en)

Similar Documents

Publication Publication Date Title
JP2000205539A (en) Material-to-be-treated supply amount controller for incinerating furnace
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
WO1991014915A1 (en) Method of controlling combustion in fluidized bed incinerator
JP3868206B2 (en) Waste gasification combustion apparatus and combustion method
JP2007205704A (en) Steam pressure control method in automatic start/stop of waste processing boiler
JP3888870B2 (en) Garbage incinerator
JP4108624B2 (en) Combustion control method and waste treatment apparatus
JP2004060992A (en) Waste heat recovery boiler for incinerator
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP2020098081A (en) Combustion control method
JP2004101047A (en) Waste incinerator and incineration method by it
JP3850228B2 (en) Dust supply control method in incinerator
JP2002221308A (en) Combustion control method and waste treatment equipment
JP3744741B2 (en) Incinerator operation control method
JP3807882B2 (en) Combustion control method and combustion control apparatus for waste melting furnace
JPH07190327A (en) Combustion controller for refuse incinerator
JPH08128615A (en) Combustion controller for incinerating furnace
JP2004245519A (en) Combustion controller for incinerator
JP3015266B2 (en) Waste melting equipment
JPH09273731A (en) Control method of combustion in incinerating furnace
JP3916572B2 (en) Combustion control device for incinerator
JP4283254B2 (en) Operation control method and apparatus for gasification and melting system
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JP2004132648A (en) Combustion control method and combustion control device for gasification melting furnace
JPS59122812A (en) Combustion controller of multi-stage incinerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees