WO2018000942A1 - 一种柱面及柱面汇聚镜的检测方法及装置 - Google Patents

一种柱面及柱面汇聚镜的检测方法及装置 Download PDF

Info

Publication number
WO2018000942A1
WO2018000942A1 PCT/CN2017/083633 CN2017083633W WO2018000942A1 WO 2018000942 A1 WO2018000942 A1 WO 2018000942A1 CN 2017083633 W CN2017083633 W CN 2017083633W WO 2018000942 A1 WO2018000942 A1 WO 2018000942A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
mirror
converging mirror
cylinder
tested
Prior art date
Application number
PCT/CN2017/083633
Other languages
English (en)
French (fr)
Inventor
郭培基
陈曦
范建彬
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US16/326,244 priority Critical patent/US10627222B2/en
Publication of WO2018000942A1 publication Critical patent/WO2018000942A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront

Definitions

  • the invention relates to the field of optical instrument detection technology, and in particular to a non-contact interference detection method and device for cylindrical surface shape.
  • the meridional section and the sagittal section of the cylindrical optical element have different powers, and thus it is widely used in an optical system for forming a deformed image.
  • cylindrical optical components are used in widescreen lenses, linear detector illumination, holographic illumination, bar code scanning, and optical information processing.
  • the requirements for cylindrical surface accuracy have become higher and higher; however, the application of cylindrical surfaces has been limited by optical processing and detection technology.
  • High-precision detection is the basis and guarantee for high-precision machining of optical components, and is a necessary condition for high-precision machining.
  • it is necessary to solve the problem of high-precision detection of the cylindrical surface.
  • the high-precision detection of the surface quality cannot be performed by the general inspection technique.
  • the methods for detecting the cylinder surface include a template method, a profiler detection method, an auxiliary plane method, an optical fiber method, a standard cylindrical method, and a computational holography method (CGH).
  • the template method and the profiler detection method are contact type detection, which is easy to scratch the cylinder surface to be tested, and the measurement precision is low.
  • the auxiliary plane method cannot detect the asymmetrical deviation of the cylindrical surface type, and the auxiliary plane method and the optical fiber method are effective only for the cylinders with small relative apertures.
  • the computational holography method it is necessary to separately design and fabricate a calculated hologram according to the detected cylinder size and radius of curvature; the light of the whole system is usually small, and the processing interval is difficult, and the precision is difficult to ensure.
  • the standard cylinder method needs to process a standard cylinder with high precision.
  • the detection of the standard cylinder itself is still quite difficult, and the surface accuracy of the standard cylinder directly affects the measurement accuracy of the surface to be inspected, thus increasing the accuracy. Processing and inspection costs.
  • the standard cylinder method is shown in Fig. 1.
  • a bundle of parallel light passes through a standard cylindrical lens 6 for generating a cylindrical wave, and a part of the light is transmitted.
  • the transmitted light first converges into a linear focal line at the center of curvature of the cylindrical surface. 2, and then diverged to reach the cylindrical surface 1 to be tested.
  • the center line of curvature of the cylindrical surface to be tested coincides with the focal line of the standard cylindrical lens, the light wave reflected by the cylindrical surface serves as the detected light wave with cylindrical surface information.
  • the rear surface of the standard cylindrical lens 6 in the figure is a standard cylindrical surface with high surface precision, the center line of curvature coincides with the focal line of the standard cylindrical lens, and the light beam reflected by this surface serves as a reference light wave; the detected light wave and reference The light wave interferes to form an interference pattern, and the surface deviation of the measured cylindrical surface is determined according to the interference pattern.
  • the detection method requires a standard cylindrical lens, which has high surface quality requirements, is difficult to process, and is expensive.
  • the object of the present invention is to provide a method and a device for detecting a cylindrical surface and a cylindrical converging mirror.
  • the cylindrical surface shape is detected by using two cylindrical converging mirrors, and the errors of the two cylinder systems are determined by a difference method. Eliminate, so as to obtain the surface error data of the cylinder to be tested, and also obtain the surface error data of the two cylindrical condenser mirrors.
  • the detection scheme reduces the surface accuracy requirement of the cylindrical condenser mirror, and can realize the mutual inspection of the two cylinder condenser mirrors and the cylinder to be tested, thereby reducing the processing difficulty of the cylinder condenser mirror and reducing the difference by the differential.
  • the measurement error of the cylindrical surface is small, and the technical problem of detecting the cylinder surface without first processing the high-precision inspection tool is realized, and the cylinder surface is realized by mutual inspection and mutual repair of the two cylindrical condenser mirrors and the cylinder to be tested. High precision measurement.
  • Step 1) Collecting the combined surface wavefront error data of the first cylindrical condenser mirror and the cylinder to be tested: an interferometer for providing parallel light and a first pillar for modulating parallel light into a cylindrical wave are sequentially arranged along the optical axis direction.
  • the surface convergence mirror and the cylinder to be tested wherein the curvature center line of the cylinder to be measured and the focal line position of the parallel light passing through the first cylindrical condenser mirror are coincident, and the optical axes of the optical axes are adjusted to share the optical axis, and the interferometer is used.
  • the interference pattern data obtained by obtaining the parallel optical reference wavefront and the detected surface W A of the returning interferometer is measured, wherein the detected surface W A carries the wavefront error W 3 of the first cylindrical condenser mirror and the wavefront error of the cylinder to be tested W 1 ;
  • Step 2) Collecting the wavefront error data of the second cylindrical condenser mirror and the cylinder to be tested. Step: sequentially set the interferometer according to step 1) along the optical axis direction, and the second pillar for modulating the parallel light into a cylindrical wave.
  • the step 1) wherein the center line of curvature of the cylinder to be measured and the position of the focal line formed by the second cylindrical condenser lens are coincident, and the optical elements on the optical axis are adjusted
  • the axis, the interferometer is used to measure the interference pattern data of the parallel optical reference wavefront and the detected surface W B of the returning interferometer, wherein the detected surface W B carries the wavefront error W 4 of the second cylindrical converging mirror and the column to be tested Surface wavefront error W 1 ;
  • Step 3) collecting the first cylindrical condenser lens and the second cylindrical condenser mirror wavefront error data step sequentially setting the interferometer according to step 1) and the first cylindrical condenser mirror according to step 1) along the optical axis direction
  • the planar standard mirror is placed after the second cylindrical converging mirror for returning the parallel light, adjusting the optical axes of the optical elements on the optical axis, using an interferometer Measuring wavefront W C interference pattern data of the parallel optical reference wavefront and the return interferometer carrying the wavefront error W 3 of the first cylindrical condenser mirror and the wavefront error W 4 of the second cylindrical condenser mirror;
  • Step 4) The step of obtaining the shape error by the data processing: obtaining the wavefronts W A , W B , and W C respectively by the wavefront restoration algorithm and the data difference algorithm to recover the cylinder to be tested, the first cylinder convergence mirror, and the first The shape error data of the two-column condenser mirror.
  • the first cylindrical converging mirror in step 3) and the first cylindrical converging mirror in step 1) are identical in position on the optical axis, and the second cylindrical converging mirror in step 3) and step 2
  • the second cylindrical converging mirror has a spatial rotation angle of 180 degrees around the focal line thereof, and the second cylindrical converging mirror is located at a position where the focal line of the second cylindrical converging mirror coincides with the focal line of the first cylindrical converging mirror;
  • the cylinder surface to be tested may be a convex cylinder surface or a concave cylinder surface; if it is a convex surface, the curvature radius R of the convex cylinder surface to be tested is smaller than the focal length f of any cylindrical condenser lens combined with the detection, and is in the detection optical path.
  • the convex surface to be tested is placed at the front end of the focal line of the cylindrical converging mirror, and the light emitted from the cylindrical converging mirror is reflected back into the interferometer; if it is concave, it is viewed along the optical axis direction.
  • the concave cylindrical surface is placed at the rear end of the focal line of the cylindrical converging mirror.
  • the cylinder with an arbitrary radius of curvature can be detected.
  • the light intensity of the reflected light and the contrast of the stripe should be considered.
  • the splicing measurement method can be used to plan a plurality of sub-aperture cylinders on the cylinder surface to be tested, and the cylindrical measurement of the large-diameter cylinder is realized by splicing the measurement results of each sub-aperture cylinder surface respectively.
  • a three-dimensional translation matching three-dimensional rotation adjustment frame may be selected, and the second cylindrical convergence lens is fixed on the turntable, the turntable is fixed on the adjustment frame, and the parallel light is adjusted by the adjustment frame and the turntable posture adjustment.
  • the focal line formed by the second cylindrical converging mirror coincides with the position of the curvature center line of the cylinder to be tested.
  • step 3 the turntable is rotated by 180 degrees, and the focal line adjustment of the second cylindrical condenser lens is coincident with the focal line of the first cylindrical condenser lens using the adjustment frame.
  • the first cylindrical converging mirror or the second cylindrical converging mirror may be a standard cylindrical lens, a computational hologram that converges parallel light into a cylinder, a monolithic lens for modulating parallel light into a cylindrical surface, or a plurality of lenses.
  • a cylindrical concentrating system composed of a sheet lens, the first cylindrical concentrating mirror may be combined with any one of the above types and the second cylindrical concentrating mirror, and vice versa.
  • the cylindrical concentrating mirror is not limited to the above types, and the others A device that can converge parallel light into a cylindrical wave can be used.
  • the first cylindrical converging mirror and the second cylindrical converging mirror are replaced by a first hologram and a second hologram that converge the parallel light into a cylinder, and the +1 order diffracted light of the computing hologram is selected as an interference carrier.
  • a slit spatial filter is placed at the +1 order diffracted optical line of the hologram, and the spatial filter position is adjusted so that the +1 order diffracted light of the hologram is calculated to pass through the slit, and the slit can be filtered out of the +1 order.
  • the stray light improves the quality of the interference fringes; the computed hologram can use a transmissive amplitude type or phase type grating.
  • the present invention also provides a detecting device for the cylindrical and cylindrical converging mirrors.
  • the invention relates to a detecting device for a cylindrical surface and a cylindrical collecting mirror, comprising a horizontal substrate, an adjusting frame, an adjusting frame and an adjusting frame arranged on the horizontal substrate, a horizontal turntable fixed on the adjusting frame, and a first column arranged on the adjusting frame a face collecting mirror, a second cylindrical collecting mirror disposed on the turntable, and a cylindrical surface to be tested and a standard standard mirror mounted on the adjusting frame;
  • the first cylindrical condenser lens and the second cylindrical condenser mirror and the planar standard mirror common optical axis form a first combined test zone;
  • the first cylindrical condenser mirror and the cylinder to be tested have a common optical axis, and constitute a first a combined test area;
  • a second cylindrical condenser mirror and a common optical axis of the cylinder to be tested forming a third combined test zone;
  • the second cylindrical condenser lens in the first combined test zone is placed at the rear end of the first cylindrical condenser mirror, and the focal line position of the second cylindrical condenser mirror coincides with the focal line position of the first cylindrical condenser mirror, and the second The cylindrical converging mirror is configured to re-modulate the divergent rays passing through the focal line into parallel light, and the planar standard mirror is placed at the rear end of the second cylindrical converging mirror for returning the parallel light;
  • the cylinder to be tested in the second combined test zone is placed at the rear end of the first cylindrical condenser lens, and the center line of curvature of the cylinder to be tested and the focal line formed by the first cylindrical condenser mirror are coincident;
  • the cylinder to be tested in the third combined test area is placed at the rear end of the second cylindrical converging mirror, and the center line of curvature of the cylinder to be tested and the focal line formed by the parallel light passing through the second cylindrical converging mirror are coincident;
  • the spatial rotation angle of the second cylindrical converging mirror in the first combined test zone and the second cylindrical converging mirror in the third combined test zone along the focal line direction thereof is a degree.
  • the apparatus can also include a digital wavefront interferometer for providing parallel light sources, the interferometers being associated with optical elements in the combined test zone, combined test zone, and combined test zone, respectively.
  • the invention has the significant advantages: (1) it is not necessary to process high precision for generating a cylindrical wave inspection tool such as a standard cylindrical lens or a computational hologram, thereby reducing the processing of the inspection tool itself.
  • the difficulty of detection (2)
  • the mutual error of the combination of the two cylindrical condenser mirrors and the cylindrical mirror reduces the systematic error during measurement.
  • the device can realize high-precision detection of convex or concave cylindrical mirrors and cylindrical condenser mirrors.
  • FIG. 1 Schematic diagram of the cylindrical surface light path by standard cylindrical method
  • Figure 2 Schematic diagram of the combination of the first cylindrical condenser 3 and the cylinder 1 to be tested;
  • FIG. 3 Schematic diagram of the combination of the second cylindrical condenser 4 and the cylinder 1 to be tested;
  • Figure 4 Schematic diagram of the combined detection of the first cylindrical converging mirror 3 and the second cylindrical converging mirror 4;
  • Figure 5 Schematic diagram of the combined detection of the cylindrical hologram and the cylinder 1 to be tested
  • FIG. 1 Schematic diagram of the combined detection of two cylindrical concentrating holograms
  • FIG. 1 Schematic diagram of the structure of the first combined test zone
  • FIG. 1 Schematic diagram of the structure of the second combined test zone
  • FIG. 1 Schematic diagram of the structure of the third combined test zone
  • Figure 10 Schematic diagram of the detection optical path when the cylinder to be tested is a convex cylinder
  • FIG. 11 Schematic diagram of the detection optical path when the cylinder to be tested is a cylindrical converging mirror
  • Figure 12 Schematic diagram of detecting the optical path of the large-caliber cylinder to be tested by the splicing method
  • 3 is a first cylindrical converging mirror for modulating parallel light into a cylindrical wave
  • 10 to 12 are respectively the first adjustment frame, the second adjustment frame, and the third adjustment frame;
  • Embodiment 1 A method for detecting a cylindrical and cylindrical converging mirror includes the following steps:
  • Step 1) Collecting the combined surface error data of the first cylindrical condenser 3 and the cylinder 1 to be tested. Steps: As shown in FIG. 2 and FIG. 8, a commercial digital wavefront interferometer is arranged in the optical axis direction, and the standard lens of the interferometer is used.
  • a 4-inch planar standard mirror is used to provide parallel light;
  • the focal length of the first cylindrical condenser 3 is 100 mm, and the parallel wavefronts are concentrated into a cylindrical wave and intersected at the focal line 2;
  • the cylinder 1 to be tested is a concave cylinder
  • the radius of curvature is 45mm, and the position of the cylinder to be tested is adjusted so that the center line of curvature and the position of the focal line 2 coincide;
  • the optical axis of each optical element on the optical axis is adjusted, and the parallel optical reference wavefront and the returning interferometer are obtained by using an interferometer.
  • Step 2) Collecting the combined surface error data of the second cylindrical converging mirror 4 and the cylinder 1 to be tested. Steps: as shown in FIG. 3 and FIG. 9, replacing the first cylindrical converging mirror 3 with another second having a focal length of 150 mm.
  • the cylindrical converging mirror 4, and repeating step 1) using the interferometer to measure the interference pattern data of the parallel optical reference wavefront and the detected surface W B of the returning interferometer, wherein the detected surface W B carries the second cylindrical surface convergence the wavefront aberration of the lens 4 wavefront aberration W 4 and W 1 measured cylinder 1;
  • Step 3) Collecting the first cylindrical surface converging mirror 3 and the second cylindrical converging mirror 4 to combine the wavefront error data steps: as shown in FIG. 4 and FIG. 7, the interferometer and the step described in step 1) are sequentially disposed along the optical axis direction.
  • Step 4) The step of obtaining the surface shape error by the data processing: the wave surface W A , W B , W C respectively obtained by the above three measurements are recovered by the wave surface restoration algorithm and the data difference algorithm, and the first cylinder surface convergence mirror 3 is recovered.
  • Embodiment 2 In order to facilitate data processing, on the basis of Embodiment 1, the first cylindrical converging mirror 3 in the step 3) and the first cylindrical converging mirror 3 in the step 1) have the same position on the optical axis.
  • the second cylindrical converging mirror 4 in the step 3) and the second cylindrical converging mirror 4 in the step 2) have a space rotation angle of 180 degrees around the focal line thereof, and the second cylindrical converging mirror 4 is located at the focal line thereof.
  • Embodiment 3 The method for detecting the cylindrical and cylindrical converging mirrors based on the first embodiment, wherein the first cylindrical converging mirror 3 and the second cylindrical converging mirror 4 are replaced by a phase-type transmission grating, the first computational holography
  • the sheet 8 and the second computing hologram 9 are as shown in FIG. 5 and FIG. 6, and the +1 order diffracted light of the hologram is selected as an interference carrier, and is placed at the +1 order diffracted optical line of the hologram.
  • the slit spatial filter 7 adjusts the position of the spatial filter 7 so that the +1 order diffracted light of the hologram is calculated to pass through the slit.
  • Embodiment 4 a method for detecting a cylindrical surface and a cylindrical convergence mirror based on the first embodiment, wherein the cylinder to be tested may be The concave cylindrical surface or the convex cylindrical surface may also be a cylindrical converging mirror; as shown in FIG. 10, when the cylinder surface to be tested is a convex cylindrical surface, the convex radius of the convex cylindrical surface is smaller than the first cylindrical converging mirror combined with the detection thereof.
  • a focal length of 3 or 4 and placed at the front end of the focal line 2 of the cylindrical converging mirror, such that the center line of curvature coincides with the focal line of the focal line 2 of the cylindrical converging mirror; as shown in Fig.
  • the cylinder to be tested is also The cylindrical converging mirror uses three cylindrical converging mirrors to realize mutual inspection between each other; as shown in Fig. 12, when the cylinder to be tested is a large-diameter cylinder, several sub-apertures are planned on the large-diameter cylinder surface, and Each sub-aperture is measured separately and finally the large-caliber cylinder is detected by a data splicing algorithm.
  • Embodiment 5 A detecting device for a cylindrical surface and a cylindrical collecting mirror, as shown in FIG. 7, includes a horizontal substrate 14, a first adjusting frame 10, a second adjusting frame 11, and a third adjustment disposed on the horizontal substrate 14. a frame 12, a horizontal turntable 13 fixed on the second adjusting frame 11, a first cylindrical collecting mirror 3 disposed on the first adjusting frame 10, and a second cylindrical collecting mirror 4 disposed on the rotating table 13, clamped in the frame The cylinder 1 to be tested on the second mounting frame 11 and the plane standard mirror 5;
  • the first cylindrical converging mirror 3 and the second cylindrical converging mirror 4 and the planar standard mirror 5 have a common optical axis, forming a first combined test zone 15; the first cylindrical converging mirror 3 and the cylinder 1 to be tested have a common optical axis, Forming a second combined test zone 16; a second cylindrical condenser 4 and a common optical axis of the cylinder 1 to form a third combined test zone 17;
  • the second cylindrical condenser 4 in the first combined test zone 15 is placed at the rear end of the first cylindrical converging mirror 3 and the focal length 2 of the second cylindrical converging mirror 4 and the focal point of the first cylindrical converging mirror 3
  • the line positions are coincident, the second cylindrical converging mirror 4 is used to remodulate the divergent rays passing through the focal line 2 into parallel light, and the plane standard mirror 5 is placed at the rear end of the second cylindrical converging mirror 4 for the parallel light. return;
  • the cylinder 1 to be tested in the second combined test zone 16 is placed at the rear end of the first cylindrical converging mirror 3 and the center line of curvature of the cylinder 1 to be tested and the focal line formed by the parallel light passing through the first cylindrical converging mirror 3 2 positions coincide;
  • the cylindrical surface 1 to be tested in the third combined test area 17 is placed at the rear end of the second cylindrical converging mirror 4 and the center line of curvature of the cylinder surface 1 to be tested and the focal line formed by the parallel light passing through the second cylindrical converging mirror 4 2 positions coincide;
  • the spatial rotation angle of the second cylindrical converging mirror 4 of the second cylindrical converging mirror 4 and the third combined testing zone 17 in the first combined test zone 15 along its focal line direction is 180 degrees.
  • the invention realizes high-precision measurement by introducing two cylindrical condenser mirrors by combining mutual inspection.
  • the advantage is that the surface shape testing problem of the inspection tool itself used for detecting the cylinder surface is avoided, and the differential algorithm can effectively reduce the column.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种柱面及柱面汇聚镜的检测方法及装置,涉及光学仪器检测技术领域,特别是涉及一种非接触式干涉检测柱面面形的方法,使用两块能将平行光调制成柱面光波的汇聚镜(3,4)分别与待测柱面(1)组合,测试获得带有汇聚镜(3,4)和待测柱面(1)的组合波面误差数据,然后将两块柱面汇聚镜(3,4)组合,获得两块柱面汇聚镜(3,4)的组合波面误差数据,使用差分算法以及波面复原算法分别获得待测柱面(1)以及两个柱面汇聚镜(3,4)的面形误差数据,具有检测光路简单,不需要使用高精度的测量好的检具即可实现对柱面较高精度的面形检测,特别适合光学加工领域中的柱面加工。

Description

一种柱面及柱面汇聚镜的检测方法及装置 技术领域
本发明涉及光学仪器检测技术领域,特别是涉及一种非接触式干涉检测柱面面形的方法及装置。
背景技术
圆柱面光学元件的子午截面和弧矢截面的光焦度不同,因此它被广泛应用于形成变形图像的光学系统中。在民用领域,柱面光学元件多应用在宽荧幕镜头、线性探测器照明、全息照明、条形码扫描、光信息处理等方面。近年来,随着强激光系统、同步辐射光束线、线形测试仪器等的迅速发展,人们对圆柱面精度的要求越来越高;然而,圆柱面的应用一直受光学加工和检测技术的限制。尽管目前光学加工技术发展迅速,但圆柱面的检测技术却相对缓慢,总体上无法满足现在的应用需求;因此,高精度的圆柱面检测技术成为制约圆柱面应用的关键问题,研发高精度的圆柱面检测技术也显得尤为迫切。高精度检测是光学元件高精度加工的依据和保证,是高精度加工的必要条件。要制作符合要求的高精度圆柱面,必须解决圆柱面的高精度检测的问题,但由于圆柱面的特殊光学特性,采用一般的检测技术无法对其面形质量进行高精度检测。
目前,检测柱面的方法有样板法、轮廓仪检测法、辅助平面法、光纤法、标准柱面法、计算全息法(CGH)。其中样板法和轮廓仪检测法都属于接触式检测,容易划伤待测柱面,测量精度较低。辅助平面法不能检测柱面面型的非对称偏差,且辅助平面法和光纤法只对小相对孔径的柱面有效。计算全息法中,需要根据被检测的柱面尺寸、曲率半径单独设计并制作计算全息图;的光通常全系图上栅线最小刻划间隔很小,其加工困难,精度难以保证。标准柱面法需要先加工一个精度很高的标准柱面,其标准柱面自身的检测依然相当困难,并且标准柱面的面形精度直接影响了被检柱面的测量精度,从而增大了加工与检测成本。
标准柱面法如图1所示,一束平行光通过用于产生柱面波的标准柱面透镜6,一部分光透射,此透射光首先在圆柱面曲率中心位置会聚成一条直线状的焦线2,然后发散到达待测圆柱面1,当待测圆柱面曲率中心线和标准柱面透镜的焦线重合时,经圆柱面反射的光波作为带有圆柱面面形信息的被检光波。图中标准柱面透镜6的后表面是面形精度很高的标准柱面,其曲率中心线和标准柱面透镜的焦线重合,经此面反射的光束作为参考光波;被检光波和参考光波发生干涉形成干涉图样,根据干涉图样确定被测圆柱面的面形偏差。该检测方法需要标准柱面透镜,其面形质量要求较高,加工难度大且价格昂贵。
发明内容
本发明的目的在于提供一种柱面及柱面汇聚镜的检测方法及装置,通过使用两个柱面汇聚镜分别对柱面面形进行检测,再通过差分法将两组柱面系统的误差消除,从而得到待测柱面的面形误差数据,同时还可以得到这两个柱面汇聚镜的面形误差数据。这种检测方案,降低了对柱面汇聚镜的面形精度要求,可以实现两个柱面汇聚镜与待测柱面的互检,既降低了柱面汇聚镜的加工难度,又通过差分减小了柱面的测量误差,实现了不需要先加工出高精度的检具才能检测柱面的技术问题,通过对两个柱面汇聚镜与待测柱面的互检互修实现柱面的高精度测量。
具体的本发明技术方案的关键步骤依次如下:
步骤1)采集第一柱面汇聚镜与待测柱面组合波面误差数据步骤:沿光轴方向依次设置用于提供平行光的干涉仪、用于将平行光调制成柱面波的第一柱面汇聚镜以及待测柱面,其中待测柱面的曲率中心线和平行光通过第一柱面汇聚镜形成的焦线位置重合,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的被检波面WA的干涉图样数据,其中被检波面WA中携带有第一柱面汇聚镜的波面误差W3与待测柱面的波面误差W1
步骤2)采集第二柱面汇聚镜与待测柱面组合波面误差数据步骤:沿光轴方向依次设置步骤1)所述的干涉仪、用于将平行光调制成柱面波的第二柱面汇聚镜、步骤1)所述待测柱面,其中待测柱面的曲率中心线和平行光通过第二柱面汇聚镜形成的焦线位置重合,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的被检波面WB的干涉图样数据,其中被检波面WB中携带有第二柱面汇聚镜的波面误差W4与待测柱面的波面误差W1
步骤3)采集第一柱面汇聚镜与第二柱面汇聚镜组合波面误差数据步骤:沿光轴方向依次设置步骤1)所述的干涉仪、步骤1)所述的第一柱面汇聚镜、步骤2)所述的第二柱面汇聚镜以及平面标准反射镜,其中第二柱面汇聚镜的焦线位置与第一柱面汇聚镜的焦线位置重合,第二柱面汇聚镜用于将通过焦线后的发散光线重新调制为平行光,平面标准反射镜放置于第二柱面汇聚镜之后用于将平行光返回,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的携带有第一柱面汇聚镜的波面误差W3和第二柱面汇聚镜的波面误差W4信息的波面WC干涉图样数据;
步骤4)数据处理获取面形误差的步骤:将上述三次测量分别得到波面WA、WB、WC通过波面复原算法以及数据差分算法恢复出待测柱面、第一柱面汇聚镜、第二柱面汇聚镜 的面形误差数据。
优选技术方案:
为了便于后期数据处理,步骤3)中的第一柱面汇聚镜与步骤1)中的第一柱面汇聚镜在光轴上位置相同,步骤3)中的第二柱面汇聚镜与步骤2)中的第二柱面汇聚镜绕其焦线的空间旋转角为180度,第二柱面汇聚镜位置位于其焦线与第一柱面汇聚镜焦线重合处;
波面复原算法为傅里叶变换法、多路径积分法或泽尼克拟合法;数据差分算法为W1=(WA+WB-WC)/2,W3=(WA+WC-WB)/2,W4=(WB+WC-WA)/2。
上述的待测柱面为可以为凸柱面或者凹柱面;如果为凸面则待测凸柱面的曲率半径R小于任何一个与其组合检测的柱面汇聚镜的焦距f,并且在检测光路中,沿光轴方向看,待测凸柱面放置在柱面汇聚镜的焦线前端,将从柱面汇聚镜射出的光反射回干涉仪中;如果为凹面则,沿光轴方向看,待测凹柱面放置在柱面汇聚镜的焦线后端,原则上可以检测任意曲率半径的柱面,实际检测时还需要考虑反射光的光强,条纹对比度等因素;对于大口径的待测柱面,可以使用拼接测量的办法,在待测柱面上规划处多个子孔径柱面,通过分别对每一个子孔径柱面测量结果的拼接实现对大口径的柱面测量。
上述步骤2)中为了便于调整光路,可以选用三维平移配合三维旋转的调整架,将第二柱面汇聚镜固定在转台上,转台固定在调整架上,通过调整架与转台姿态调整使平行光通过第二柱面汇聚镜的形成的焦线与待测柱面的曲率中心线位置重合。
上述步骤3)中,将转台旋转180度,并使用调整架将第二柱面汇聚镜的焦线调整与第一柱面汇聚镜焦线重合。
上述的第一柱面汇聚镜或第二柱面汇聚镜可以选用标准柱面透镜、将平行光汇聚成柱面的计算全息片、单片用于将平行光调制成柱面的透镜或者由多片透镜组成的柱面汇聚系统,第一柱面汇聚镜可以在以上类型中任选一个与第二柱面汇聚镜组合,反之亦然,当然柱面汇聚镜也不仅限于上述几种类型,其他能起到将平行光汇聚成柱面波的装置都可使用。
第一柱面汇聚镜与第二柱面汇聚镜都用将平行光汇聚成柱面的第一全息片和第二全息片替换,选用所述计算全息片的﹢1级衍射光作为干涉载波,在所述全息片的﹢1级衍射光焦线处放置狭缝空间滤波器,调整空间滤波器位置使计算全息片的﹢1级衍射光通过狭缝,狭缝可以滤掉+1级之外的杂光,提高干涉条纹的质量;所述的计算全息片可以使用透射式的振幅型或者位相型光栅。
基于上述的柱面及柱面汇聚镜的检测方法,本发明还提供了一种柱面及柱面汇聚镜的检测装置。
一种柱面及柱面汇聚镜的检测装置,包括水平基板,设置于水平基板上的调整架、调整架、调整架,固定在调整架上的水平转台,设置于调整架上的第一柱面汇聚镜,设置于转台上的第二柱面汇聚镜,装夹在调整架上的待测柱面与平面标准反射镜;
其特征在于:第一柱面汇聚镜与第二柱面汇聚镜以及平面标准反射镜共光轴,构成第一组合测试区;第一柱面汇聚镜与待测柱面共光轴,构成第二组合测试区;第二柱面汇聚镜与待测柱面共光轴,构成第三组合测试区;
其中第一组合测试区中第二柱面汇聚镜放置于第一柱面汇聚镜的后端且第二柱面汇聚镜的焦线位置与第一柱面汇聚镜的焦线位置重合,第二柱面汇聚镜用于将通过焦线后的发散光线重新调制为平行光,平面标准反射镜放置于第二柱面汇聚镜的后端用于将平行光返回;
其中第二组合测试区中待测柱面放置在第一柱面汇聚镜的后端且待测柱面的曲率中心线和平行光通过第一柱面汇聚镜形成的焦线位置重合;
其中第三组合测试区中待测柱面放置于第二柱面汇聚镜的后端且待测柱面的曲率中心线和平行光通过第二柱面汇聚镜形成的焦线位置重合;
第一组合测试区中第二柱面汇聚镜与第三组合测试区的中第二柱面汇聚镜沿其焦线方向的空间旋转角为度。
该装置还可以包括用于提供平行光源的数字波面干涉仪,干涉仪分别与组合测试区、组合测试区、组合测试区中的光学元件共光轴。
本发明与现有技术相比,其显著优点:(1)不需要事先加工出高精度的用于产生柱面波检具如标准柱面透镜或计算全息图,减小了检具本身的加工检测难度;(2)通过两个柱面汇聚镜与柱面镜组合互检减小了测量时的系统误差。运用本装置可以实现对凸面或者凹面柱面镜以及柱面汇聚镜的高精度检测。
附图说明
图1.标准柱面法检测圆柱面光路示意图;
图2.第一柱面汇聚镜3与待测柱面1组合检测示意图;
图3.第二柱面汇聚镜4与待测柱面1组合检测示意图;
图4.第一柱面汇聚镜3与第二柱面汇聚镜4组合检测示意图;
图5.柱面汇聚全息片与待测柱面1组合检测示意图;
图6.两块柱面汇聚全息片组合检测示意图;
图7.第一组合测试区结构示意图;
图8.第二组合测试区结构示意图;
图9.第三组合测试区结构示意图;
图10.待测柱面为凸面柱面时的检测光路示意图;
图11.待测柱面为柱面汇聚镜时的检测光路示意图;
图12.拼接法检测大口径待测柱面光路示意图;
其中:
1为待测柱面;
2为焦线;
3为用于将平行光调制成柱面波的第一柱面汇聚镜;
4为另一个用于将平行光调制成柱面波的第二柱面汇聚镜;
5为平面标准反射镜;
6为标准柱面透镜;
7为狭缝空间滤波器;
8为用于将平行光调制成柱面波的第一全息片;
9为另一块用于将平行光调制成柱面波的第二全息片;
10~12分别为第一调整架、第二调整架、第三调整架;
13为转台;
14为水平基板;
15为第一组合测试区;
16为第二组合测试区;
17为第三组合测试区。
具体实施方式
下面结合附图及实施例对本发明“柱面及柱面汇聚镜的检测方法及装置”做进一步描述。
实施例一:一种柱面及柱面汇聚镜的检测方法,包括如下步骤:
步骤1)采集第一柱面汇聚镜3与待测柱面1组合波面误差数据步骤:如图2及图8所示,沿光轴方向依次设置商用的数字波面干涉仪,干涉仪的标准镜头选用4英寸平面标准镜用于提供平行光;第一柱面汇聚镜3的焦距为100mm,将平行光波面汇聚成柱面波并相交于焦线2处;待测柱面1为凹面柱面其曲率半径为45mm,调整待测柱面的位置使其 曲率中心线和焦线2位置重合;调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的被检波面WA的干涉图样数据,其中被检波面WA中携带有第一柱面汇聚镜3的波面误差W3与待测柱面1的波面误差W1
步骤2)采集第二柱面汇聚镜4与待测柱面1组合波面误差数据步骤:如图3及图9所示,将第一柱面汇聚镜3替换为另一块焦距为150mm的第二柱面汇聚镜4,并重复步骤1),使用干涉仪测量获得平行光参考波面与返回干涉仪的被检波面WB的干涉图样数据,其中被检波面WB中携带有第二柱面汇聚镜4的波面误差W4与待测柱面1的波面误差W1
步骤3)采集第一柱面汇聚镜3与第二柱面汇聚镜4组合波面误差数据步骤:如图4及图7所示,沿光轴方向依次设置步骤1)所述的干涉仪、步骤1)所述的第一柱面汇聚镜3、步骤2)所述的第二柱面汇聚镜4以及平面标准反射镜5,其中第二柱面汇聚镜4的焦线2位置与第一柱面汇聚镜3的焦线位置重合,第二柱面汇聚镜4用于将通过焦线2后的发散光线重新调制为平行光,平面标准反射镜5放置于第二柱面汇聚镜4之后用于将平行光返回,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的携带有第一柱面汇聚镜3的波面误差W3和第二柱面汇聚镜4的波面误差W4信息的波面WC干涉图样数据;
步骤4)数据处理获取面形误差的步骤:将上述三次测量分别得到波面WA、WB、WC通过波面复原算法以及数据差分算法恢复出待测柱面1、第一柱面汇聚镜3、第二柱面汇聚镜4的面形误差数据。
实施例二:为了便于数据处理,在实施例一的基础上,其步骤3)中的第一柱面汇聚镜3与步骤1)中的第一柱面汇聚镜3在光轴上位置相同,步骤3)中的第二柱面汇聚镜4与步骤2)中的第二柱面汇聚镜4绕其焦线的空间旋转角为180度,第二柱面汇聚镜4位置位于其焦线与第一柱面汇聚镜3焦线重合处;所述步骤4)中,波面复原算法为傅里叶变换法、多路径积分法或泽尼克拟合法;数据差分算法为W1=(WA+WB-WC)/2,W3=(WA+WC-WB)/2,W4=(WB+WC-WA)/2。
实施例三:在实施例一基础上的柱面及柱面汇聚镜的检测方法,将其中的第一柱面汇聚镜3与第二柱面汇聚镜4替换为位相型透射光栅第一计算全息片8和第二计算全息片9,如图5以及图6所示,选用所述计算全息片的﹢1级衍射光作为干涉载波,在所述全息片的﹢1级衍射光焦线处放置狭缝空间滤波器7,调整空间滤波器7位置使计算全息片的﹢1级衍射光通过狭缝。
实施例四:在实施例一基础上的柱面及柱面汇聚镜的检测方法,其中的待测柱面可以为 凹面柱面、凸面柱面,也可以为柱面汇聚镜;如图10所示,当待测柱面为凸柱面时,凸柱面的曲率半径小于与其组合检测的第一柱面汇聚镜3或4的焦距,且放置在柱面汇聚镜的焦线2前端,使其曲率中心线与柱面汇聚镜的焦线2的焦线重合;如图11所示,待测柱面也可是柱面汇聚镜,用三个柱面汇聚镜实现彼此之间的互检;如图12所示,待测柱面为大口径柱面时,在大口径柱面上规划若干个子孔径,通过对每个子孔径单独测量最后用数据拼接算法实现对大口径柱面的检测。
实施例五:一种柱面及柱面汇聚镜的检测装置,如图7所示,包括水平基板14,设置于水平基板14上的第一调整架10、第二调整架11、第三调整架12,固定在第二调整架11上的水平转台13,设置于第一调整架10上的第一柱面汇聚镜3,设置于转台13上的第二柱面汇聚镜4,装夹在第二调整架11上的待测柱面1与平面标准反射镜5;
第一柱面汇聚镜3与第二柱面汇聚镜4以及平面标准反射镜5共光轴,构成第一组合测试区15;第一柱面汇聚镜3与待测柱面1共光轴,构成第二组合测试区16;第二柱面汇聚镜4与待测柱面1共光轴,构成第三组合测试区17;
其中第一组合测试区15中第二柱面汇聚镜4放置于第一柱面汇聚镜3的后端且第二柱面汇聚镜4的焦线2位置与第一柱面汇聚镜3的焦线位置重合,第二柱面汇聚镜4用于将通过焦线2后的发散光线重新调制为平行光,平面标准反射镜5放置于第二柱面汇聚镜4的后端用于将平行光返回;
其中第二组合测试区16中待测柱面1放置在第一柱面汇聚镜3的后端且待测柱面1的曲率中心线和平行光通过第一柱面汇聚镜3形成的焦线2位置重合;
其中第三组合测试区17中待测柱面1放置于第二柱面汇聚镜4的后端且待测柱面1的曲率中心线和平行光通过第二柱面汇聚镜4形成的焦线2位置重合;
第一组合测试区15中第二柱面汇聚镜4与第三组合测试区17的中第二柱面汇聚镜4沿其焦线方向的空间旋转角为180度。
本发明是通过引入两个柱面汇聚镜通过组合互检实现了高精度测量,优点是避免了检测柱面时其所使用的检具本身的面形测试难题,通过差分算法可以有效地降低柱面汇聚镜的加工精度要求;此外柱面汇聚镜可以在标准柱面透镜、计算全息片、单片用于将平行光调制成柱面的透镜或者由多片透镜组成的柱面汇聚系统等结构中任意选择,具有较大的灵活性;还可以使用本发明结合拼接算法实现对于大口径的柱面的检测。

Claims (10)

  1. 一种柱面及柱面汇聚镜的检测方法,其特征在于,包括:
    步骤1)采集第一柱面汇聚镜(3)与待测柱面(1)组合波面误差数据步骤:沿光轴方向依次设置用于提供平行光的干涉仪、用于将平行光调制成柱面波的第一柱面汇聚镜(3)以及待测柱面(1),其中待测柱面(1)的曲率中心线和平行光通过第一柱面汇聚镜(3)形成的焦线(2)位置重合,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的被检波面WA的干涉图样数据,其中被检波面WA中携带有第一柱面汇聚镜(3)的波面误差W3与待测柱面(1)的波面误差W1
    步骤2)采集第二柱面汇聚镜(4)与待测柱面(1)组合波面误差数据步骤:沿光轴方向依次设置步骤1)所述的干涉仪、用于将平行光调制成柱面波的第二柱面汇聚镜(4)、步骤1)所述待测柱面(1),其中待测柱面(1)的曲率中心线和平行光通过第二柱面汇聚镜(4)形成的焦线(2)位置重合,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的被检波面WB的干涉图样数据,其中被检波面WB中携带有第二柱面汇聚镜(4)的波面误差W4与待测柱面(1)的波面误差W1
    步骤3)采集第一柱面汇聚镜(3)与第二柱面汇聚镜(4)组合波面误差数据步骤:沿光轴方向依次设置步骤1)所述的干涉仪、步骤1)所述的第一柱面汇聚镜(3)、步骤2)所述的第二柱面汇聚镜(4)以及平面标准反射镜(5),其中第二柱面汇聚镜(4)的焦线(2)位置与第一柱面汇聚镜(3)的焦线位置重合,第二柱面汇聚镜(4)用于将通过焦线(2)后的发散光线重新调制为平行光,平面标准反射镜(5)放置于第二柱面汇聚镜(4)之后用于将平行光返回,调整使光轴上各个光学元件共光轴,使用干涉仪测量获得平行光参考波面与返回干涉仪的携带有第一柱面汇聚镜(3)的波面误差W3和第二柱面汇聚镜(4)的波面误差W4信息的波面WC干涉图样数据;
    步骤4)数据处理获取面形误差的步骤:将上述三次测量分别得到波面WA、WB、WC通过波面复原算法以及数据差分算法恢复出待测柱面(1)、第一柱面汇聚镜(3)、第二柱面汇聚镜(4)的面形误差数据。
  2. 根据权利要求1所述的一种柱面及柱面汇聚镜的检测方法,其特征在于,所述步骤3)中的第一柱面汇聚镜(3)与步骤1)中的第一柱面汇聚镜(3)在光轴上位置相同,步骤3)中的第二柱面汇聚镜(4)与步骤2)中的第二柱面汇聚镜(4)绕其焦线的空间旋转角为180度,第二柱面汇聚镜(4)位置位于其焦线与第一柱面汇聚镜(3)焦线重合处。
  3. 根据权利要求2所述的一种柱面及柱面汇聚镜的检测方法,其特征在于,所述步骤4)中,波面复原算法为傅里叶变换法、多路径积分法或泽尼克拟合法;数据差分算法为 W1=(WA+WB-WC)/2,W3=(WA+WC-WB)/2,W4=(WB+WC-WA)/2。
  4. 根据权利要求1所述的一种柱面及柱面汇聚镜的检测方法,其特征在于,所述的待测柱面(1)为凸柱面或者为凹柱面或者为柱面汇聚镜。
  5. 根据权利要求1至4之一所述的一种柱面及柱面汇聚镜的检测方法,其特征在于,所述步骤2)中的第二柱面汇聚镜(4)固定在转台上,转台固定在调整架上,通过调整架与转台姿态调整使平行光通过第二柱面汇聚镜(4)的形成的焦线(2)与待测柱面(1)的曲率中心线位置重合。
  6. 根据权利要求5所述的一种柱面及柱面汇聚镜的检测方法,其特征在于,所述步骤3)中,将步骤2)中固定有第二柱面汇聚镜(4)的转台旋转180度,并使用调整架将第二柱面汇聚镜(4)的焦线调整与第一柱面汇聚镜(3)焦线重合。
  7. 根据权利要求5所述的一种柱面及柱面汇聚镜的检测方法,其特征在于:所述的第一柱面汇聚镜(3)或第二柱面汇聚镜(4)可以选用标准柱面透镜、将平行光汇聚成柱面的计算全息片、单片用于将平行光调制成柱面的透镜或者由多片透镜组成的柱面汇聚系统。
  8. 根据权利要求5所述的一种柱面及柱面汇聚镜的检测方法,其特征在于,所述第一柱面汇聚镜(3)与第二柱面汇聚镜(4)都选用将平行光汇聚成柱面的计算全息片,选用所述计算全息片的﹢1级衍射光作为干涉载波,在所述全息片的﹢1级衍射光焦线处放置狭缝空间滤波器(7),调整空间滤波器(7)位置使计算全息片的﹢1级衍射光通过狭缝。
  9. 一种柱面及柱面汇聚镜的检测装置,包括水平基板(14),设置于水平基板(14)上的第一调整架(10)、第二调整架(11)、第三调整架(12),固定在第二调整架(11)上的水平转台(13),设置于第一调整架(10)上的第一柱面汇聚镜(3),设置于转台(13)上的第二柱面汇聚镜(4),装夹在第二调整架(11)上的待测柱面(1)与平面标准反射镜(5);
    其特征在于,第一柱面汇聚镜(3)与第二柱面汇聚镜(4)以及平面标准反射镜(5)共光轴,构成第一组合测试区(15);第一柱面汇聚镜(3)与待测柱面(1)共光轴,构成第二组合测试区(16);第二柱面汇聚镜(4)与待测柱面(1)共光轴,构成第三组合测试区(17);
    其中第一组合测试区(15)中第二柱面汇聚镜(4)放置于第一柱面汇聚镜(3)的后端且第二柱面汇聚镜(4)的焦线(2)位置与第一柱面汇聚镜(3)的焦线位置重合,第二柱面汇聚镜(4)用于将通过焦线(2)后的发散光线重新调制为平行光,平面标准反射镜(5)放置于第二柱面汇聚镜(4)的后端用于将平行光返回;
    其中第二组合测试区(16)中待测柱面(1)放置在第一柱面汇聚镜(3)的后端且待测柱面(1)的曲率中心线和平行光通过第一柱面汇聚镜(3)形成的焦线(2)位置重合;
    其中第三组合测试区(17)中待测柱面(1)放置于第二柱面汇聚镜(4)的后端且待测柱面(1)的曲率中心线和平行光通过第二柱面汇聚镜(4)形成的焦线(2)位置重合;
    第一组合测试区(15)中第二柱面汇聚镜(4)与第三组合测试区(17)的中第二柱面汇聚镜(4)沿其焦线方向的空间旋转角为180度。
  10. 根据权利要求9所述的柱面及柱面汇聚镜的检测装置,其特征在于,还包括用于提供平行光源的数字波面干涉仪,干涉仪分别与第一组合测试区(15)、第二组合测试区(16)、第三组合测试区(17)中的光学元件共光轴。
PCT/CN2017/083633 2016-07-01 2017-05-09 一种柱面及柱面汇聚镜的检测方法及装置 WO2018000942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/326,244 US10627222B2 (en) 2016-07-01 2017-05-09 Method and apparatus for detecting cylinder and cylindrical converging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610504450.3A CN106197311B (zh) 2016-07-01 2016-07-01 一种柱面及柱面汇聚镜的检测方法及装置
CN201610504450.3 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018000942A1 true WO2018000942A1 (zh) 2018-01-04

Family

ID=57464464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083633 WO2018000942A1 (zh) 2016-07-01 2017-05-09 一种柱面及柱面汇聚镜的检测方法及装置

Country Status (3)

Country Link
US (1) US10627222B2 (zh)
CN (1) CN106197311B (zh)
WO (1) WO2018000942A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890543B (zh) 2016-07-01 2019-01-08 苏州大学 一种凹柱面及柱面发散镜的检测方法及装置
CN106197311B (zh) 2016-07-01 2018-11-27 苏州大学 一种柱面及柱面汇聚镜的检测方法及装置
CN107990838B (zh) * 2017-11-09 2019-12-20 中国科学院上海光学精密机械研究所 锥镜及柱面镜面形测量装置和测量方法
CN108254815B (zh) * 2017-12-27 2019-12-03 中国科学院西安光学精密机械研究所 双柱罐拼接装调方法
CN108362225B (zh) * 2018-02-11 2019-12-20 中国科学院上海光学精密机械研究所 锥形镜柱面镜面形的测量装置及测量方法
CN113008133B (zh) * 2021-03-04 2023-02-17 苏州慧利仪器有限责任公司 一种检测用柱面镜头
CN113008162B (zh) * 2021-03-04 2022-10-28 苏州慧利仪器有限责任公司 一种离轴椭圆柱面镜表面形貌的检测装置以及检测方法
CN114894126B (zh) * 2022-05-07 2023-11-10 中国科学院电工研究所 一种实现高精度磁场输出的同轴测量工装、超导磁体结构及其装调方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485275A (en) * 1992-06-17 1996-01-16 Canon Kabushiki Kaisha Apparatus and method for measuring the error of an apparatus which measure a cylindrical shape using an interferometer
JPH10325709A (ja) * 1997-05-26 1998-12-08 Agency Of Ind Science & Technol 円筒面検査用ホログラム干渉計
CN202747999U (zh) * 2012-08-28 2013-02-20 江苏宇迪光学股份有限公司 对柱面进行干涉检测的镜头
CN103175486A (zh) * 2013-03-07 2013-06-26 上海大学 一种圆柱度误差的拼接干涉测量装置及方法
CN103591888A (zh) * 2013-10-28 2014-02-19 中国科学院长春光学精密机械与物理研究所 大口径离轴非球面光学元件几何参数的测算方法
CN104704333A (zh) * 2012-10-05 2015-06-10 国立大学法人香川大学 分光特性测量装置
CN105318843A (zh) * 2014-06-04 2016-02-10 南京理工大学 一种应用共轭差分法检测柱面镜绝对面形的方法
CN105444693A (zh) * 2015-11-25 2016-03-30 中国科学院长春光学精密机械与物理研究所 一种浅度非球面的面形误差测量方法
CN106197311A (zh) * 2016-07-01 2016-12-07 苏州大学 一种柱面及柱面汇聚镜的检测方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904084A (en) * 1988-12-27 1990-02-27 United Technologies Corporation Arrangement for testing complex concave reflecting surfaces for shape deviations
US5706086A (en) * 1996-02-28 1998-01-06 Hughes Aircraft Company System for measuring surface aberrations of concave cylindrical surfaces
GB2404014B (en) * 2003-07-18 2006-06-28 Taylor Hobson Ltd Surface profiling method and apparatus
CN103292738B (zh) * 2013-06-26 2015-12-09 中国科学院光电技术研究所 一种球面面形误差绝对检测方法
CN104697465B (zh) * 2015-03-31 2017-05-31 中国人民解放军国防科学技术大学 椭球面的无像差绝对检验方法
CN104976964B (zh) * 2015-06-09 2017-07-14 中国科学院长春光学精密机械与物理研究所 球面镜和平面镜面形误差的绝对检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485275A (en) * 1992-06-17 1996-01-16 Canon Kabushiki Kaisha Apparatus and method for measuring the error of an apparatus which measure a cylindrical shape using an interferometer
JPH10325709A (ja) * 1997-05-26 1998-12-08 Agency Of Ind Science & Technol 円筒面検査用ホログラム干渉計
CN202747999U (zh) * 2012-08-28 2013-02-20 江苏宇迪光学股份有限公司 对柱面进行干涉检测的镜头
CN104704333A (zh) * 2012-10-05 2015-06-10 国立大学法人香川大学 分光特性测量装置
CN103175486A (zh) * 2013-03-07 2013-06-26 上海大学 一种圆柱度误差的拼接干涉测量装置及方法
CN103591888A (zh) * 2013-10-28 2014-02-19 中国科学院长春光学精密机械与物理研究所 大口径离轴非球面光学元件几何参数的测算方法
CN105318843A (zh) * 2014-06-04 2016-02-10 南京理工大学 一种应用共轭差分法检测柱面镜绝对面形的方法
CN105444693A (zh) * 2015-11-25 2016-03-30 中国科学院长春光学精密机械与物理研究所 一种浅度非球面的面形误差测量方法
CN106197311A (zh) * 2016-07-01 2016-12-07 苏州大学 一种柱面及柱面汇聚镜的检测方法及装置

Also Published As

Publication number Publication date
CN106197311A (zh) 2016-12-07
CN106197311B (zh) 2018-11-27
US10627222B2 (en) 2020-04-21
US20190212134A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018000942A1 (zh) 一种柱面及柱面汇聚镜的检测方法及装置
US7072042B2 (en) Apparatus for and method of measurement of aspheric surfaces using hologram and concave surface
US7605926B1 (en) Optical system, method of manufacturing an optical system and method of manufacturing an optical element
US6456382B2 (en) Interferometer that measures aspherical surfaces
US8593642B2 (en) Method of measuring a shape of an optical surface based on computationally combined surface region measurements and interferometric measuring device
WO2018000943A1 (zh) 一种凹柱面及柱面发散镜的检测方法及装置
CN101261183B (zh) 一种大口径非球面镜检测系统
JPH0666537A (ja) システムエラー測定方法及びそれを用いた形状測定装置
WO2020000999A1 (zh) 用于基于计算全息来测量光学元件的顶点的半径的方法和装置
US20160363440A1 (en) Polarization-based coherent gradient sensing systems and methods
JPH0324432A (ja) 光学系、特に眼鏡用レンズの位相検出検査用光学装置
CN114396887B (zh) 一种动态干涉仪及测量方法
CN103196390A (zh) 消除圆对称位相型计算全息基片条纹图形畸变的方法
US8294904B2 (en) Fizeau lens having aspheric compensation
JPH07229721A (ja) 非球面波発生装置及びそれを用いた非球面形状測定方法
JPS5890110A (ja) 干渉装置
CN114562954B (zh) 柱面镜的cgh补偿绝对检验方法
JP4007473B2 (ja) 波面形状測定方法
JPH116784A (ja) 非球面形状測定装置および測定方法
Palum Surface profile error measurement for small rotationally symmetric surfaces
JP2000097657A (ja) 干渉計
JPH0814854A (ja) 計算機ホログラムを有する平板及びそれを用いた計測 方法
Nasyrov et al. Interferometric method for controlling the assembly quality of an optical system with an eccentrically arranged aspheric lense
guo Kang et al. New design techniques and alignment methods for CGH-null testing of aspheric surface
CN114608479A (zh) 一种基于条纹透射法的非球面透镜检测系统与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818939

Country of ref document: EP

Kind code of ref document: A1