WO2020000999A1 - 用于基于计算全息来测量光学元件的顶点的半径的方法和装置 - Google Patents

用于基于计算全息来测量光学元件的顶点的半径的方法和装置 Download PDF

Info

Publication number
WO2020000999A1
WO2020000999A1 PCT/CN2019/071182 CN2019071182W WO2020000999A1 WO 2020000999 A1 WO2020000999 A1 WO 2020000999A1 CN 2019071182 W CN2019071182 W CN 2019071182W WO 2020000999 A1 WO2020000999 A1 WO 2020000999A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
measurement
optical path
cat
optical element
Prior art date
Application number
PCT/CN2019/071182
Other languages
English (en)
French (fr)
Inventor
吴高峰
陈强
宋伟红
侯溪
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to US16/626,952 priority Critical patent/US20210364278A1/en
Publication of WO2020000999A1 publication Critical patent/WO2020000999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods

Definitions

  • the invention belongs to the field of optical manufacturing and detection, and relates to an optical detection device for measuring the apex radius of an optical element.
  • the lens is the main component of the optical system.
  • the curvature radius of the optical element is one of the important parameters that determine the optical characteristics of the optical element. It is one of the important indexes to judge the processing quality of the optical element during the processing.
  • Spherical curvature radius measurement methods can be summarized into two types: contact and non-contact.
  • the principles of these measurement methods are mainly divided into the following four types: the curvature radius is indirectly obtained by measuring the sagittal height of the measured spherical surface, the surface morphology of the measured spherical surface is scanned and passed The curvature radius is obtained by the fitting calculation, the curvature radius is directly measured by measuring the curvature of the measured spherical surface, and the relative distance between the center position of the measured surface and the spherical center is directly obtained to obtain the curvature radius.
  • the contact measurement mainly includes the spherical surface method, the Newton's ring method, the ball diameter method, the three-coordinate measurement method, and the laser tracker method.
  • Non-contact measurement mainly includes knife-edge shadow method, auto-collimation microscope method, laser interferometry method, laser differential confocal method and other methods.
  • laser interferometry uses laser interference to measure the radius of curvature of optical elements. It needs to be equipped with an interferometer (such as: Fizeau interferometer), an axial translation guide, a five-dimensional adjustment frame, and a precise length measurement system that can record the movement position (such as: Laser ranging interferometer.
  • the basic principle is to translate the optical element to be measured along the guide rail during measurement, and determine the position of the vertex of the measured surface and the position of the center of curvature by observing the interference fringe on the interferometer. When the convergence point of the standard lens is measured, When the curvature centers of the surfaces coincide, zero fringes can be observed.
  • the reflected spherical wavefront is flipped relative to the incident spherical wavefront, that is, the incident to the The light on the measuring sphere is reflected at the same angle, and at this time, zero fringes can be observed in the field of view.
  • the relative distance between the two positions is measured to obtain the radius of curvature of the measured optical element (see Figure 6.).
  • This method Since this method has two position movements, there are Abbe errors and measurement system errors introduced by the angle between the measurement axis and the optical axis. Therefore, on this basis, we propose a method and device for radius measurement based on computational holography. This method eliminates the Abbe error of the laser interference measurement method and improves the measurement accuracy because there is no moving mechanism.
  • a measuring device for measuring a radius of an apex of an optical element based on a calculated hologram, which is characterized by including an interferometer (1), a computer hologram (2), and a device under test (3).
  • the holographic alignment measurement optical path is used to precisely align the position of the hologram in the optical path; the cat's eye alignment optical path is used to accurately locate the design position of the device under test (3) in the test optical path; the main holographic test optical path is used to measure the optical surface And use this measurement data to calculate the radius of the vertex of the optical element.
  • the computer hologram is configured to have three endless bands: a holographic alignment endless band (1) for adjusting the computational holography to a theoretical theoretical position; The focus point originally converged on the focal position of the lens is adjusted to the center of the device under test; the main holographic ring (3) is used to measure the shape of the device under test.
  • the hologram is adjusted to a design position by calculating an outermost alignment ring of the hologram. This position satisfies the condition that the ring zone power is the smallest.
  • the device under test is adjusted to the designed cat-eye position.
  • the radius of the vertex of the device under test is obtained by calculating the measurement result of the master hologram.
  • the side member has a concave spherical surface.
  • the side surface member has a convex spherical surface.
  • a measurement method for measuring a radius of a vertex of an optical element by using the measurement device including the following steps:
  • the radius of the optical element is calculated based on the measurement results.
  • An object of the present invention is to provide a measuring device for measuring a radius of a vertex of an optical element based on a calculation hologram.
  • the device is based on a holographic interference measurement optical path, which does not require movement of the optical element.
  • the radius of the optical element is calculated by measuring the surface shape of the surface of the optical element, eliminating system errors and improving measurement accuracy.
  • the technical solution adopted by the present invention is: a measuring device for measuring the radius of the apex of an optical element based on a calculated hologram, which includes an interferometer (1), a computer hologram (2), a measured object (3), and a standard lens ( 4).
  • Computer holography includes three parts: alignment hologram (1), cat's eye hologram (2), main test hologram (3); the entire measurement optical path includes three parts: holographic alignment measurement optical path, cat's eye alignment measurement optical path, and surface shape measurement Light path.
  • the holographic alignment measurement optical path is used to precisely align the position of the hologram in the optical path; the cat's eye alignment optical path is used to accurately locate the design position of the DUT in the test optical path; the main holographic test optical path is used to measure the surface shape of the optical surface And use this measurement data to calculate the radius of the apex of the optical element.
  • the present invention has the following advantages:
  • the positioning accuracy of the cat's eye confocal position is high, and the radius measurement accuracy is high.
  • FIG. 1 is a schematic structural diagram of a measurement device according to the present invention.
  • FIG. 2 is a schematic structural diagram of a calculation hologram
  • FIG. 3 is a schematic diagram of a holographic alignment measurement optical path
  • FIG. 4 is a schematic diagram of a cat's eye holographic measurement optical path
  • FIG. 5 is a schematic diagram of a main holographic measurement optical path.
  • FIG. 6 is a schematic diagram of measuring an optical path by a laser interference method.
  • a measuring device for measuring a radius of an apex of an optical element based on a calculated hologram includes an interferometer (1), a computer hologram (2), a device under test (3), and a standard lens (4).
  • the computational holographic structure designed therein is shown in FIG. 2 and includes an alignment hologram (1), a cat's eye hologram (2), and a main test hologram (3).
  • the entire measurement optical path includes three parts (Figure 2): a holographic alignment measurement optical path (Figure 3), a cat's eye alignment measurement optical path ( Figure 4), and a planar measurement optical path ( Figure 5).
  • the holographic alignment measurement optical path is used to precisely align the position of the hologram in the optical path;
  • the cat's eye alignment optical path is used to accurately locate the design position of the device under test (3) in the test optical path;
  • the main holographic test optical path is used to measure the optical surface And use this measurement data to calculate the radius of the vertex of the optical element.
  • the computer hologram is configured with three endless bands: a holographic aligned endless band (1) for adjusting the computational hologram to the theoretical position of the design; a cat's eye aligned endless band (2) for The focal point originally converged at the focal position of the lens is adjusted to the center of the device under test; the main holographic ring (3) is used to measure the surface shape of the device under test.
  • the hologram is adjusted to the design position by calculating the outermost alignment ring of the hologram. This position satisfies the condition that the ring zone power is the smallest.
  • the device under test is adjusted to the designed cat's eye position by calculating a holographic cat's eye alignment ring ( Figure 4).
  • the radius of the vertex of the device under test is calculated by calculating the measurement result of the master hologram (FIG. 5).
  • the side member has a concave spherical surface.
  • the side member has a convex spherical surface.
  • the interferometer 1 emits a parallel beam.
  • the parallel beam passes through the standard lens 6 and reaches the laser beam on the calculation hologram 2 for diffractive transmission according to the different areas.
  • the position of the test piece is adjusted after the calculation of the hologram, so that it focuses on the center of the test piece and reflects back to the interferometer.
  • Light interference When adjusting, adjust the defocus value of this area to the minimum.
  • the diffracted light of the calculated holographic master hologram After the diffracted light of the calculated holographic master hologram passes through the calculated hologram, it reaches the measured optical element and returns to complete the measurement of the optical surface shape.
  • the measurement process and detection steps of the device of the present invention are as follows:
  • Step 1 As shown in Figure 3, set up the optical path and adjust the calculation hologram so that the measurement result of the alignment hologram is free of tilt and defocus.
  • Step 2 As shown in FIG. 4, adjust the optical element to be measured so that the vertex of the optical element is located at the focal point of the cat's eye ring zone diffraction, so that the measurement result of the ring zone does not include tilt and defocus.
  • Step 3 As shown in FIG. 5, the measurement of the optical element by the main holographic diffraction is completed.
  • Step 4 Compute the radius of the optical element based on the measurement results.
  • the results of the interferometer will have a defocus value.
  • the relationship between the defocus value (P) and the radius is:
  • R is the nominal radius
  • D is the aperture of the device under test
  • P is the defocus value measured by the interferometer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Holo Graphy (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种用于基于计算全息来测量光学元件的半径的测量方法和测量装置,属于光电技术检测领域。通过一片计算全息(2)同时产生共焦波前和猫眼波前两个共扼波面,同时获取猫眼位置和共焦位置干涉图并测量其面形参数,并根据测量结果求解光学元件半径。

Description

用于基于计算全息来测量光学元件的顶点的半径的方法和装置 技术领域
本发明属于光学制造与检测领域,涉及一种光学检测装置,用于光学元件顶点半径测量。
背景技术
透镜是光学系统的主要组成部分,光学元件曲率半径是决定光学元件光学特性的重要参数之一,它是加工过程中判断光学元件加工质量的重要指标之一。
球面曲率半径测量方法可归纳为接触式和非接触式两大类,这些测量方法的原理主要归为以下四种:通过测量被测球面矢高间接得到曲率半径,扫描被测球面表面形貌并通过拟合计算得到曲率半径,直接测量被测球面曲率得到曲率半径,以及直接测量被测表面中心位置与球心之间的相对距离得到曲率半径。其中,接触式测量主要有球面样板法、牛顿环法、球径仪法、三坐标测量法、激光跟踪仪法。非接触式测量主要有刀口阴影法、自准直显微镜法、激光干涉测量法、激光差动共焦法等方法。
其中,激光干涉测量法利用激光干涉来测量光学元件曲率半径,需要配备干涉仪(如:Fizeau干涉仪)、轴向平移导轨、五维调整架和能记录移动位置的精密测长系统(如:激光测距干涉仪。其基本原理是测量时沿导轨平移被测光学元件,通过观察干涉仪上的干涉条纹确定被测面顶点的位置与曲率中心的位置。当标准镜头的会聚点与被测面的曲率中心重合时,能观察到零条纹。当标准镜头的会聚点与被测球面的顶点的位置重合时,此时反射球面波前相对于入射球面波前发生了翻转,即入射到被测球面上的光线以同一角度反射,此时亦可在视场中观察到零条纹。最后测量两位置之间的相对距离,即可得到被测光学元件的曲率半径(如图6.)。
该方法由于存在两个位置的移动,因此存在测量轴与光轴的夹角引入的阿贝误差和测量系统误差。因此,在此基础上,我们提出了基于计算全息的半径测量方法和装置,该方法由于不存在运动机构,因此可以消除激光干涉测量方法的阿贝误差,提高测量精度。
发明内容
根据本发明的一方面,提供一种用于基于计算全息来测量光学元件的顶点的半径的测量装置,其特征在于:包括干涉仪(1)、计算机全息(2)、被测件(3)、标准镜头(4);计算机全息包括三个部分:对准全息(1)、猫眼全息(2)、主测试全息(3);整个测量光路包括三个部分:全息对准测量光路、猫眼对准测量光路、面形测量光路。全息对准测量光路用于精确 对准计算全息在光路之中的位置;猫眼对准光路用于精确定位被测件(3)在测试光路中的设计位置;主全息测试光路用于测量光学表面的面形,并将此测量数据用于计算得到光学元件的顶点的半径。
根据本发明的一个实施例,计算机全息被构造为具有三个环带:全息对准环带(1),用于将计算全息调整到设计的理论位置;猫眼对准环带(2),用于将原本汇聚在镜头焦点位置的聚焦点调整到被测件中心;主全息环带(3),用于测量被测件的面形。
根据本发明的一个实施例,通过计算全息最外对准环,将全息调整到设计位置。该位置满足的条件为,环带光焦度最小。
根据本发明的一个实施例,通过计算全息猫眼对准环,将被测件调整到设计的猫眼位置。
根据本发明的一个实施例,通过计算主全息的测量结果,求出被测件的顶点的半径。
根据本发明的一个实施例,所述被侧件具有凹面球面。
根据本发明的一个实施例,所述被侧件具有凸球面。
根据本发明的另一方面,提供一种利用上述测量装置来测量光学元件的顶点的半径的测量方法,包括如下步骤:
搭建光路,调整计算全息,使得对准全息测量结果无倾斜和离焦相差;
调整被测光学元件,使得光学元件的顶点位于猫眼环带衍射的焦点上,使得该环带的测量结果不包含倾斜和离焦;
完成主全息衍射对光学元件的测量;
根据测量结果完成光学元件的半径计算。
本发明的目的是提供一种用于基于计算全息来测量光学元件的顶点的半径的测量装置。本装置基于全息干涉测量光路,无需光学元件移动,通过测量光学元件表面的面形来计算光学元件的半径,消除系统误差,提高测量精度。
本发明采用的技术方案为:一种用于基于计算全息来测量光学元件的顶点的半径的测量装置,包括干涉仪(1)、计算机全息(2)、被测件(3)、标准镜头(4)。计算机全息包括三个部分:对准全息(1)、猫眼全息(2)、主测试全息(3);整个测量光路包括三个部分:全息对准测量光路、猫眼对准测量光路、面形测量光路。全息对准测量光路用于精确对准计算全息在光路之中的位置;猫眼对准光路用于精确定位被测件在测试光路中的设计位置;主全息测试光路用于测量光学表面的面形,并将此测量数据用于计算得到光学元件的顶点的半径。
本发明与现有技术相比具有下述优点:
1.采用干涉测量技术,猫眼共焦位置定位精度高,半径测量精度高。
2.相比于常用的激光干涉测量,由于不需要猫眼位置和共焦位置之间的移动,消除了由于光轴和运动轴之间存在的夹角引入的误差,提高了测量精度。
附图说明
图1为本发明一种测量装置的结构示意图;
图2为计算全息图的结构示意图;
图3为全息对准测量光路的示意图;
图4为猫眼全息测量光路的示意图;
图5为主全息测量光路的示意图。
图6为激光干涉法测量光路的示意图。
具体实施方式
下面结合附图及具体实施方式详细介绍本发明。
如图1所示,用于基于计算全息来测量光学元件的顶点的半径的测量装置,包括干涉仪(1)、计算机全息(2)、被测件(3)、标准镜头(4)。其中设计的计算全息结构如图2所示,包括对准全息(1)、猫眼全息(2)、主测试全息(3)。
如图2-5所示,整个测量光路包括三个部分(图2):全息对准测量光路(图3)、猫眼对准测量光路(图4)、面形测量光路(图5)。全息对准测量光路用于精确对准计算全息在光路之中的位置;猫眼对准光路用于精确定位被测件(3)在测试光路中的设计位置;主全息测试光路用于测量光学表面的面形,并将此测量数据用于计算得到光学元件的顶点的半径。
如图2所示,计算机全息被构造为具有三个环带:全息对准环带(1),用于将计算全息调整到设计的理论位置;猫眼对准环带(2),用于将原本汇聚在镜头焦点位置的聚焦点调整到被测件中心;主全息环带(3),用于测量被测件的面形。
在一个实施例中,通过计算全息最外对准环,将全息调整到设计位置。该位置满足的条件为,环带光焦度最小。
在一个实施例中,通过计算全息猫眼对准环,将被测件调整到设计的猫眼位置(图4)。
在一个实施例中,通过计算主全息的测量结果,求出被测件的顶点的半径(图5)。
在一个实施例中,所述被侧件具有凹面球面。
在一个实施例中,所述被侧件具有凸球面。
在测量时,干涉仪1发出平行光束,平行光束通过标准镜头6后到达计算全息2上的激光光束按到达的不同区域进行衍射传输。
在计算全息最外对准环上的光线直接按设计的衍射光路返回后,调整全息基板位置,使得标准镜头反射回的参考光和对准环的光线进行干涉,调整倾斜和位移,完成全息基板的准确定位(图3)。
在计算全息中间环带位置的猫眼对准环带上的光线衍射透过计算全息后,调整被测件位置,使得其聚焦在被测件的中心后反射回干涉仪,标准镜头反射回的参考光干涉,调整时要将该区域与的离焦值调整到最小。
在计算全息主全息的光线衍射透过计算全息后,到达被测光学元件后返回,完成光学面形的测量。
本发明装置的测量过程和检测步骤如下:
第一步:如图3所示,搭建光路,调整计算全息,使得对准全息测量结果无倾斜和离焦相差。
第二步:如图4所示,调整被测光学元件,使得光学元件的顶点位于猫眼环带衍射的焦点上,使得该环带的测量结果不包含倾斜和离焦。
第三步:如图5所示,完成主全息衍射对光学元件的测量。
第四步:根据测量结果完成光学元件的半径计算。主全息的测量结果中,由于半径存在误差,将导致干涉仪的结果存在离焦值。该离焦值(P)与半径的关系为:
Δ R离焦=-8(R/D) 2×P
这里R为名义半径,D为被测件的口径,P为干涉仪测量得出的离焦值。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内的局部修改或替换,都应涵盖在本发明的包含范围之内。

Claims (8)

  1. 一种用于基于计算全息来测量光学元件的顶点的半径的测量装置,其特征在于:包括干涉仪(1)、计算机全息(2)、被测件(3)、标准镜头(4);计算机全息包括三个部分:对准全息(1)、猫眼全息(2)、主测试全息(3);整个测量光路包括三个部分:全息对准测量光路、猫眼对准测量光路、面形测量光路,全息对准测量光路用于精确对准计算全息在光路之中的位置;猫眼对准光路用于精确定位被测件在测试光路中的设计位置;主全息测试光路用于测量光学表面的面形,并将此测量数据用于计算得到光学元件的顶点的半径。
  2. 如权利要求1所述的测量装置,其特征在于,
    计算机全息被构造为具有三个环带:全息对准环带(1),用于将计算全息调整到设计的理论位置;猫眼对准环带(2),用于将原本汇聚在镜头焦点位置的聚焦点调整到被测件中心;主全息环带(3),用于测量被测件的面形。
  3. 如权利要求1所述的测量装置,其特征在于,
    通过计算全息最外对准环,将全息调整到设计位置,该位置满足的条件为,环带光焦度最小。
  4. 如权利要求1所述的测量装置,其特征在于,
    通过计算全息猫眼对准环,将被测件调整到设计的猫眼位置。
  5. 如权利要求1所述的测量装置,其特征在于,
    通过计算主全息的测量结果,求出被测件的顶点的半径。
  6. 如权利要求1所述的测量装置,所述被侧件具有凹面球面。
  7. 如权利要求1所述的测量装置,所述被侧件具有凸球面。
  8. 一种利用根据权利要求1-7中任一项所述的测量装置来测量光学元件的顶点的半径的 测量方法,包括如下步骤:
    搭建光路,调整计算全息,使得对准全息测量结果无倾斜和离焦相差;
    调整被测光学元件,使得光学元件的顶点位于猫眼环带衍射的焦点上,使得该环带的测量结果不包含倾斜和离焦;
    完成主全息衍射对光学元件的测量;
    根据测量结果完成光学元件的半径计算。
PCT/CN2019/071182 2018-06-27 2019-01-10 用于基于计算全息来测量光学元件的顶点的半径的方法和装置 WO2020000999A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/626,952 US20210364278A1 (en) 2018-06-27 2019-01-10 Method And Device For Measuring Apex Radius Of Optical Element Based On Computer-Generated Hologram

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810676220.4 2018-06-27
CN201810676220.4A CN108895972A (zh) 2018-06-27 2018-06-27 一种基于计算全息的光学元件顶点半径测量的方法和装置

Publications (1)

Publication Number Publication Date
WO2020000999A1 true WO2020000999A1 (zh) 2020-01-02

Family

ID=64346431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071182 WO2020000999A1 (zh) 2018-06-27 2019-01-10 用于基于计算全息来测量光学元件的顶点的半径的方法和装置

Country Status (3)

Country Link
US (1) US20210364278A1 (zh)
CN (1) CN108895972A (zh)
WO (1) WO2020000999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746940C1 (ru) * 2020-05-29 2021-04-22 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для измерения радиусов кривизны сферических поверхностей

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895972A (zh) * 2018-06-27 2018-11-27 中国科学院光电技术研究所 一种基于计算全息的光学元件顶点半径测量的方法和装置
CN110986824B (zh) * 2019-12-19 2021-06-11 华中科技大学 一种大口径凸自由曲面反射镜镜面面形检测系统和方法
RU200617U1 (ru) * 2020-05-29 2020-11-02 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для измерения радиусов кривизны сферических поверхностей
CN112902875B (zh) * 2021-03-31 2022-02-11 中国科学院长春光学精密机械与物理研究所 一种非球面反射镜曲率半径检测装置及方法
CN112923871B (zh) * 2021-03-31 2021-12-28 中国科学院长春光学精密机械与物理研究所 一种自由曲面反射镜曲率半径检测装置及方法
CN117075293B (zh) * 2023-10-17 2023-12-22 长春长光智欧科技有限公司 计算全息的亚微米级多环带多级次对准检测装置与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864402A (en) * 1997-10-23 1999-01-26 Raytheon Company Holder for holographic testing of aspherical lenses with spherical and flat reflective surfaces
CN101858736A (zh) * 2010-05-10 2010-10-13 北京理工大学 多焦全息差动共焦超大曲率半径测量方法与装置
CN102778210A (zh) * 2012-07-13 2012-11-14 中国科学院光电技术研究所 一种基于计算全息的非球面绝对检测方法
CN103335615A (zh) * 2013-07-08 2013-10-02 中国科学院光电技术研究所 一种用于光学元件在光轴方向位置对准的装置与方法
CN105157598A (zh) * 2015-04-30 2015-12-16 西安工业大学 弯月透镜的透射波前检测装置及检测方法
CN108895972A (zh) * 2018-06-27 2018-11-27 中国科学院光电技术研究所 一种基于计算全息的光学元件顶点半径测量的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU557621A1 (ru) * 1975-10-07 1978-03-05 Предприятие П/Я Г-4671 Способ контрол радиуса кривизны сферических поверхностей
CN101949691A (zh) * 2010-09-07 2011-01-19 中国科学院长春光学精密机械与物理研究所 非零位补偿浅度光学非球面面形检测方法
CN104048619B (zh) * 2014-07-09 2017-04-05 南通大学 一种判断旋转轴对称非球面能否采用直接干涉检测的方法
CN104315985B (zh) * 2014-10-27 2017-03-15 中国科学院光电技术研究所 一种透镜中心厚度干涉测量方法
DE102015202695A1 (de) * 2015-02-13 2016-08-18 Carl Zeiss Smt Gmbh Prüfvorrichtung sowie Verfahren zum Prüfen eines Spiegels
CN105627945B (zh) * 2015-12-21 2017-12-26 中国科学院长春光学精密机械与物理研究所 非球面元件中心与外圆中心偏离量的测量装置及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864402A (en) * 1997-10-23 1999-01-26 Raytheon Company Holder for holographic testing of aspherical lenses with spherical and flat reflective surfaces
CN101858736A (zh) * 2010-05-10 2010-10-13 北京理工大学 多焦全息差动共焦超大曲率半径测量方法与装置
CN102778210A (zh) * 2012-07-13 2012-11-14 中国科学院光电技术研究所 一种基于计算全息的非球面绝对检测方法
CN103335615A (zh) * 2013-07-08 2013-10-02 中国科学院光电技术研究所 一种用于光学元件在光轴方向位置对准的装置与方法
CN105157598A (zh) * 2015-04-30 2015-12-16 西安工业大学 弯月透镜的透射波前检测装置及检测方法
CN108895972A (zh) * 2018-06-27 2018-11-27 中国科学院光电技术研究所 一种基于计算全息的光学元件顶点半径测量的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746940C1 (ru) * 2020-05-29 2021-04-22 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для измерения радиусов кривизны сферических поверхностей

Also Published As

Publication number Publication date
US20210364278A1 (en) 2021-11-25
CN108895972A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2020000999A1 (zh) 用于基于计算全息来测量光学元件的顶点的半径的方法和装置
JP3926264B2 (ja) 凹面及びホログラムを有する非球面測定装置及び方法
CN101261183B (zh) 一种大口径非球面镜检测系统
EP2478328B1 (en) Method of measuring a shape of an optical surface
US5757493A (en) Interferometer with catadioptric imaging system having expanded range of numerical aperture
WO2021203707A1 (zh) 一种激光干涉面形检测自动检测装置与方法
CA2001612A1 (en) Method of examining an optical component and arrangement therefor
WO2018000942A1 (zh) 一种柱面及柱面汇聚镜的检测方法及装置
CN104111163A (zh) 凸透镜焦距的测量装置和测量方法
US8154733B2 (en) Method and system for the optical measurement of large radii of curvature of optical functional surfaces
CN100585362C (zh) 一种大口径非球面镜全场检测方法
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
WO2018000943A1 (zh) 一种凹柱面及柱面发散镜的检测方法及装置
CN112902875B (zh) 一种非球面反射镜曲率半径检测装置及方法
CN108507489B (zh) 大口径锥镜面形检测系统及检测方法
CN110631510B (zh) 一种基于迈克尔逊结构的高精度测角装置及测角方法
CN103278105A (zh) 轴锥镜面形和锥角的检测方法
CN112923871B (zh) 一种自由曲面反射镜曲率半径检测装置及方法
CN108956098B (zh) 一种用于平凸非球面透镜波前测试中的消倾斜装置及方法
CN107907307B (zh) 一种楔形透镜透射波前的测量装置和方法
Scholz et al. Concept for improving the form measurement results of aspheres and freeform surfaces in a tilted-wave interferometer
JP4007473B2 (ja) 波面形状測定方法
JPH07229721A (ja) 非球面波発生装置及びそれを用いた非球面形状測定方法
JPH06174430A (ja) 中心厚測定方法およびそれに使用する装置
JPH116784A (ja) 非球面形状測定装置および測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826061

Country of ref document: EP

Kind code of ref document: A1