RU200617U1 - Голографическое устройство для измерения радиусов кривизны сферических поверхностей - Google Patents

Голографическое устройство для измерения радиусов кривизны сферических поверхностей Download PDF

Info

Publication number
RU200617U1
RU200617U1 RU2020118805U RU2020118805U RU200617U1 RU 200617 U1 RU200617 U1 RU 200617U1 RU 2020118805 U RU2020118805 U RU 2020118805U RU 2020118805 U RU2020118805 U RU 2020118805U RU 200617 U1 RU200617 U1 RU 200617U1
Authority
RU
Russia
Prior art keywords
autocollimator
optical
optical axis
curvature
pnd
Prior art date
Application number
RU2020118805U
Other languages
English (en)
Inventor
Анатолий Васильевич Лукин
Андрей Николаевич Мельников
Виктор Иванович Курт
Айнур Исламутдинович Садрутдинов
Original Assignee
Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") filed Critical Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority to RU2020118805U priority Critical patent/RU200617U1/ru
Application granted granted Critical
Publication of RU200617U1 publication Critical patent/RU200617U1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Полезная модель может быть использована в оптико-электронном приборостроении для измерения радиусов кривизны сферических поверхностей оптических деталей, в том числе основных пробных стекол. Голографическое устройство для измерения радиусов кривизны сферических поверхностей содержит контрольный прибор с монохроматическим точечным источником света, автоколлиматор, установленный с возможностью перемещения вдоль оптической оси, образцовый оптический элемент, установленный по ходу лучей и выполненный в виде осевой отражательной синтезированной голограммы, причем образцовый оптический элемент размещен соосно с автоколлиматором в объектодержателе, который установлен с возможностью перемещения вдоль оптической оси автоколлиматора и механически связан с измерителем линейных перемещений, и чувствительный щуп. Устройство дополнительно содержит узел настройки положения плоскости наилучшей установки (ПНУ) образцового оптического элемента и контролируемой оптической детали, установленный на объектодержателе, при этом чувствительный щуп установлен с возможностью его вывода за пределы светового диаметра автоколлиматора, а геометрическая ось узла настройки положения ПНУ совпадает с геометрической осью чувствительного щупа и оптической осью автоколлиматора. Использование полезной модели позволяет сократить время измерения радиуса кривизны сферической поверхности контролируемой оптической детали за счет исключения периодической регистрации и расшифровки интерференционных картин в целях определения величины и направления перемещения контролируемой оптической детали для достижения положения ПНУ. 4 з. п. ф-лы, 8 ил.

Description

Полезная модель относится к измерительной технике и может быть использована в оптико-электронном приборостроении для измерения радиусов кривизны сферических поверхностей оптических деталей, в том числе основных пробных стекол.
Известно устройство для измерения радиусов кривизны выпуклых и вогнутых сферических поверхностей бесконтактным способом (прибор ГИП-2), содержащее лазер, отклоняющие зеркала, малогабаритный и крупногабаритный расширители, светоделитель, образцовый оптический элемент, установленный по ходу лучей и выполненный в виде осевой пропускающей синтезированной голограммы, зеркало, объектив, видеорегистратор и отсчетную шкалу [Справочник технолога-оптика / М.А. Окатов, Э.А. Антонов, А. Байгожин и др.; Под ред. М.А. Окатова. - СПб.: Политехника, 2004. - С. 144-145, рис. 3.10].
Прототипом является устройство, реализующее способ измерения радиуса кривизны сферических поверхностей [Казанкова В.В., Ларионов Н.П., Лукин А.В., Мустафин К.С., Рафиков Р.А. Способ контроля радиуса кривизны сферических поверхностей / Авторское свидетельство № SU 557621. Дата публикации 05.03.1978 г.]. Данное устройство содержит контрольный прибор, формирующий монохроматический точечный источник света, автоколлиматор, выполненный с возможностью формирования сходящегося или расходящегося гомоцентрического пучка лучей, образцовый оптический элемент в виде осевой отражательной синтезированной голограммы, чувствительный щуп с отчетным устройством.
При этом одна осевая синтезированная голограмма, используемая в +1 и -1-ом рабочих порядках дифракции, эквивалентна паре сферических поверхностей (вогнутой и выпуклой) с идентичным радиусом кривизны.
Особенность измерения радиуса кривизны сферической поверхности с помощью осевой синтезированной голограммы состоит в том, что непосредственно измеряют не сам радиус, а его отклонение от номинального значения, воспроизводимого этой голограммой в качестве образцового оптического элемента.
Основным общим недостатком аналога и прототипа является необходимость выполнения операций периодической регистрации и расшифровки как минимум двух интерференционных картин с получением количественных данных в целях определения знака («плюс» - «минус») и величины перемещения контролируемой оптической детали в положение плоскости наилучшей установки (ПНУ), обеспечивающее получение автоколлимационного изображения монохроматического точечного источника света, что приводит к существенному увеличению времени измерения радиуса кривизны сферической поверхности контролируемой оптической детали.
Техническим результатом полезной модели является сокращение времени измерений радиуса кривизны сферической поверхности контролируемой оптической детали за счет исключения периодической регистрации и расшифровки интерференционных картин в целях определения величины и направления перемещения контролируемой оптической детали для достижения положения ПНУ.
Технический результат достигается за счет того, что голографическое устройство для измерения радиусов кривизны сферических поверхностей, содержащее контрольный прибор с монохроматическим точечным источником света, автоколлиматор, установленный с возможностью перемещения вдоль оптической оси, образцовый оптический элемент, установленный по ходу лучей и выполненный в виде осевой отражательной синтезированной голограммы, причем образцовый оптический элемент размещен соосно с автоколлиматором в объектодержателе, который установлен с возможностью перемещения вдоль оптической оси автоколлиматора и механически связан с измерителем линейных перемещений, и чувствительный щуп, согласно настоящей полезной модели, дополнительно содержит узел настройки положения плоскости наилучшей установки (ПНУ) образцового оптического элемента и контролируемой оптической детали, установленный на объектодержателе, при этом чувствительный щуп установлен с возможностью его вывода за пределы светового диаметра автоколлиматора, а геометрическая ось узла настройки положения ПНУ совпадает с геометрической осью чувствительного щупа и оптической осью автоколлиматора.
Узел настройки положения ПНУ выполнен с возможностью обеспечения индикации положения на оптической оси автоколлиматора оптического центра образцового оптического элемента и индикации расчетного положения на оптической оси автоколлиматора геометрического центра измеряемой сферической поверхности при помощи чувствительного щупа.
Узел настройки положения ПНУ содержит первую и вторую сменные диафрагмы с центральным отверстием, и выполнен с возможностью обеспечения их поочередного размещения на объектодержателе со стороны рабочей поверхности образцового оптического элемента.
Первая сменная диафрагма выполнена в виде непрозрачного экрана, имеющего два одинаковых отверстия, расположенных осесимметрично относительно геометрической оси центрального отверстия, которая совпадает с оптической осью автоколлиматора.
Вторая сменная диафрагма выполнена в виде непрозрачного экрана, имеющего одно кольцевое отверстие, расположенное коаксиально относительно геометрической оси центрального отверстия, которая совпадает с оптической осью автоколлиматора.
Сущность полезной модели поясняется чертежами (фиг. 1 - фиг. 8).
На фиг. 1 изображена функциональная схема предлагаемого голографического устройства для измерения радиусов кривизны сферических поверхностей.
Фиг. 2 - фиг. 4 иллюстрируют работу предлагаемого устройства при реализации основных этапов измерения радиусов кривизны сферических поверхностей.
На фиг. 5 и фиг. 6 соответственно представлены первая и вторая сменные диафрагмы, использованные в примере конкретного выполнения предлагаемого устройства.
На фиг. 7 приведены для сравнения фотоснимки кружков Эри, полученные экспериментально с помощью известной классической диафрагмы, имеющей круглое отверстие без центрального экранирования (фиг. 7a), и с помощью предлагаемой кольцевой диафрагмы, имеющей круглое отверстие с центральным экранированием (фиг. 7б).
На фиг. 8 приведены в качестве примера фотоснимки кружков рассеяния, полученных экспериментально при использовании в предлагаемом устройстве первой сменной диафрагмы с двумя одинаковыми круглыми отверстиями.
Голографическое устройство для измерения радиусов кривизны сферических поверхностей (см. фиг. 1) содержит контрольный прибор 1 с монохроматическим точечным источником света 2, автоколлиматор 3, установленный с возможностью перемещения вдоль оптической оси, образцовый оптический элемент 4, установленный по ходу лучей и выполненный в виде осевой отражательной синтезированной голограммы, причем образцовый оптический элемент 4 размещен соосно с автоколлиматором 3 в объектодержателе 5, который установлен с возможностью перемещения вдоль оптической оси автоколлиматора 3 и механически связан с измерителем 6 линейных перемещений, и чувствительный щуп 7.
Отличием предлагаемого голографического устройства является то, что оно дополнительно содержит узел 8 настройки положения ПНУ образцового оптического элемента и ПНУ контролируемой оптической детали, установленный на объектодержателе 5, при этом чувствительный щуп 7 установлен с возможностью его вывода за пределы светового диаметра автоколлиматора 3, а геометрическая ось узла 8 настройки положения ПНУ совпадает с геометрической осью чувствительного щупа 7 и оптической осью автоколлиматора 3.
Узел 8 настройки положения ПНУ выполнен с возможностью обеспечения (при помощи чувствительного щупа 7) индикации положения на оптической оси автоколлиматора 3 оптического центра О образцового оптического элемента 4, представляющего собой точку пересечения оптической оси автоколлиматора 3 с рабочей поверхностью образцового оптического элемента 4, и индикации расчетного положения на оптической оси автоколлиматора 3 геометрического центра измеряемой сферической поверхности, представляющего собой точку пересечения оптической оси автоколлиматора 3 с измеряемой сферической поверхностью, причем центр кривизны этой поверхности выведен на оптическую ось автоколлиматора 3 (O1 - геометрический центр измеряемой вогнутой сферической поверхности оптической детали 9, O2 - геометрический центр измеряемой выпуклой сферической поверхности оптической детали 10.
Узел 8 настройки положения ПНУ содержит первую и вторую сменные диафрагмы, соответственно 11 и 12, и выполнен с возможностью обеспечения их поочередного размещения на объектодержателе 5 со стороны рабочей поверхности образцового оптического элемента 4.
Первая сменная диафрагма 11 выполнена в виде непрозрачного экрана, имеющего центральное отверстие 13 для размещения чувствительного щупа 7 и два одинаковых отверстия, соответственно 14 и 15, расположенных осесимметрично относительно геометрической оси центрального отверстия 11, которая совпадает с оптической осью автоколлиматора 3.
Вторая сменная диафрагма 12 выполнена в виде непрозрачного экрана, имеющего центральное отверстие 16 для размещения чувствительного щупа 7 и одно кольцевое отверстие 17, расположенное коаксиально относительно геометрической оси центрального отверстия 16, которая совпадает с оптической осью автоколлиматора 3.
Контрольный прибор 1 с монохроматическим точечным источником света 2 выполнен в виде двухлучевого лазерного интерферометра с вертикальной ориентацией измерительной ветви.
Ниже приводится пример конкретного выполнения предлагаемого голографического устройства.
Голографическое устройство содержит контрольный прибор 1 в виде двухлучевого лазерного интерферометра с вертикальной ориентацией измерительной ветви, имеющего монохроматический точечный источник света 2 с длиной волны 632,8 нм и регистрирующее устройство (на чертежах не показано), автоколлиматор 3, выполненный с возможностью формирования сходящегося или расходящегося гомоцентрического пучка лучей, световой диаметр которого равен 150 мм, образцовый оптический элемент 4.
Преимуществом вертикальной ориентации измерительной ветви интерферометра является пониженная чувствительность к влиянию внешних воздействий (воздушные и тепловые потоки, механические и акустические вибрации, гравитационные деформации оптических элементов измерительной ветви), а также существенно меньшая производственная площадь, необходимая для размещения голографического устройства.
Образцовый оптический элемент 4 размещен по ходу лучей соосно с автоколлиматором 3 в объектодержателе 5 и представляет собой осевую отражательную синтезированную голограмму, рассчитанную, изготовленную и паспортизованную в соответствии с ОСТ 3-4730-80 - ОСТ 3-4732-80. Сборник отраслевых стандартов «Детали оптические с асферическими поверхностями. Метод контроля с использованием синтезированных голограмм». Осевая отражательная синтезированная голограмма выполнена на подложке из кварцевого оптического стекла марки КУ-1 [ГОСТ 15130-86 «Стекло кварцевое оптическое. Общие технические условия»] диаметром 140 мм, толщиной по оптической оси 25 мм, имеющей максимальную пространственную частоту 20 мм-1.
Объектодержатель 5 установлен с возможностью перемещения вдоль оптической оси автоколлиматора 3 и механически связан с измерителем 6 линейных перемещений, который представляет собой датчик линейных перемещений модели RELA А-9766-1030.
Чувствительный щуп 7 снабжен цифровым индикатором.
В узле 8 настройки положения ПНУ образцового оптического элемента и контролируемой оптической детали, установленного на объектодержателе 5, размещают сначала образцовый оптический элемент 4, а затем - контролируемую оптическую деталь 9 с измеряемой вогнутой или выпуклой сферической поверхностью.
Первая сменная диафрагма 11 (см. фиг. 5) представляет собой непрозрачный экран из алюминиевого сплава АМг6 размерами 150×150 мм2 и толщиной 2 мм с двумя одинаковыми круглыми отверстиями 14 и 15 (диаметр этих отверстий d1=61 мм), осесимметричных относительно геометрической оси центрального отверстия 13.
Вторая сменная диафрагма 12 (см. фиг. 6) представляет собой непрозрачный экран из алюминиевого сплава АМг6 размерами 150×150 мм2 и толщиной 2 мм с одним кольцевым отверстием 17 (внешний диаметр кольцевого отверстия 17 d2=126 мм, ширина кольца t=3 мм), соосным с геометрической осью центрального отверстия 16. Центральные отверстия 13, 16 диаметром а12=10 мм диафрагм 11, 12 используются для функционирования чувствительного щупа 7.
Вторая сменная диафрагма 12 выполняет две функции - уменьшение остаточной сферической аберрации автоколлиматора 3 до приемлемого уровня в пределах светового диаметра кольцевой диафрагмы 12 и уменьшение диаметра центрального ядра кружка Эри [Оптический производственный контроль / Под ред. Д. Малакары; Пер с англ. - М.: Машиностроение, 1985. - С. 283.]. Фиг. 7 иллюстрирует этот эффект центрального экранирования, который повышает чувствительность измерений. Фиг. 7в соответствует круглой диафрагме без центрального экранирования (фиг. 7а), фиг. 7г - кольцевой диафрагме со значительным центральным экранированием (фиг. 7б).
При этом обе диафрагмы (фиг. 7а и фиг. 7б) имеют одинаковый внешний диаметр. Видно, что диаметр ядра кружка Эри в случае применения кольцевой диафрагмы приблизительно в два раза меньше.
С помощью данного голографического устройства выполнено измерение радиуса кривизны вогнутой сферической поверхности контролируемой оптической детали 9 - основного пробного стекла (диаметр 130 мм, номинальное значение радиуса кривизны вогнутой сферической поверхности 10000 мм [ГОСТ 2786-82 «Стекла пробные для проверки радиусов и формы сферических оптических поверхностей», ГОСТ 1807-75 «Радиусы сферических поверхностей оптических деталей. Ряды числовых значений»]) путем измерения отклонения от номинального значения радиуса кривизны, равного 10000 мм, воспроизводимого образцовым оптическим элементом 4 (осевой отражательной синтезированной голограммой).
Суммарная абсолютная погрешность измерения (3σ) получена 8,7 мм, следовательно, измеренный радиус кривизны вогнутой сферической поверхности основного пробного стекла 9 равен (10000±8,7) мм, что в 2,3 раза меньше, чем предусмотрено ГОСТ 2786-82 для измерения радиусов кривизны основных пробных стекол 1-го класса точности.
Голографическое устройство для измерения радиусов кривизны сферических поверхностей работает следующим образом (см. фиг. 1 - фиг. 6, фиг. 8)
Исходное положение узлов и элементов предложенного голографического устройства соответствует фиг. 1. Контрольный прибор 1 с монохроматическим точечным источником света 2 выполнен в виде двухлучевого лазерного интерферометра с вертикальной ориентацией измерительной ветви. Чувствительный щуп 7 размещен на геометрической оси узла 8 настройки положения ПНУ, совпадающей с оптической осью автоколлиматора 3, с возможностью его вывода за пределы светового диаметра автоколлиматора 3.
Для выполнения последующих этапов измерения радиуса кривизны сферической поверхности чувствительный щуп 7 выводят с оптической оси автоколлиматора 3, удаляя его за пределы светового диаметра.
На фиг. 2 показан процесс получения автоколлимации от образцового оптического элемента 4, выполненного в виде осевой отражательной синтезированной голограммы. Гомоцентрический пучок лучей монохроматического точечного источника света 2, формируемого контрольным прибором 1, падает на автоколлиматор 3, формирующий расходящийся гомоцентрический пучок лучей, проходит через первую сменную диафрагму 11 (см. фиг. 5), входящую в состав узла 8 настройки положения ПНУ, падает на образцовый оптический элемент 4, установленный по ходу лучей в объектодержателе 5 (см. фиг. 2а).
Первая сменная диафрагма 11 разделяет гомоцентрический пучок лучей на два идентичных световых потока, что позволяет оперативно, в режиме реального времени, формировать в обратном ходе лучей два автоколлимационных изображения монохроматического точечного источника света 2 и образовывать в плоскости этого точечного источника света (в области совмещения полученных двух автоколлимационных изображений) микроинтерференционную картину. При этом автоколлиматор 3 перемещают вдоль его оптической оси, а объектодержатель 5 с образцовым оптическим элементом 4 и первой сменной диафрагмой 11 остается неподвижным. По виду этой микроинтерференционной картины на регистрирующем устройстве (на чертеже не показано) контрольного прибора 1 устанавливают факт достижения автоколлимационного хода лучей. На фиг. 8 продемонстрированы в качестве иллюстрации три фазы достижения автоколлимационного изображения при использовании первой сменной диафрагмы 11.
При этом формируются два кружка рассеяния, соответствующие двум световым потокам, формируемым идентичными круглыми отверстиями первой сменной диафрагмы 11.
На фиг. 8а показаны два отдельных кружка рассеяния, сформированных отверстиями 14, 15 первой сменной диафрагмы 11, в исходном положении контролируемого оптического элемента 9 при значительном его удалении от положения ПНУ.
На фиг. 8б показаны два отдельных кружка рассеяния, сформированных отверстиями 14, 15 первой сменной диафрагмы 11, на приблизительно вдвое меньшем расстоянии от положения ПНУ.
На фиг. 8в показана фаза автоколлимационного изображения при полном совмещении двух идентичных наименьших кружков рассеяния от круглых отверстий первой сменной диафрагмы 11, что соответствует положению ПНУ.
Для более точного получения автоколлимационного изображения монохроматического точечного источника света 2 (в целях достижения образцовым оптическим элементом 4 положения ПНУ) первую сменную диафрагму 11 заменяют на вторую сменную диафрагму 12 (см. фиг. 2б, фиг. 6), а автоколлиматор 3 перемещают вдоль его оптической оси, при этом объектодержатель 5 с образцовым оптическим элементом 4 и второй сменной диафрагмой 12 остается неподвижным. После получения автоколлимационного изображения положение автоколлиматора 3 жестко фиксируется, а чувствительный щуп 7 возвращается на оптическую ось автоколлиматора 3 и прикасается к оптическому центру О образцового оптического элемента 4, при этом обеспечивается индикация положения оптического центра О образцового оптического элемента 4 при помощи чувствительного щупа 7 для осуществления первого отсчета с измерителя 6 линейных перемещений, соответствующего номинальному значению радиуса кривизны сферической поверхности контролируемой оптической детали 9.
На фиг. 3 показан процесс получения автоколлимации от контролируемой оптической детали 9 с измеряемой вогнутой сферической поверхностью.
Для измерения радиуса кривизны вогнутой сферической поверхности контролируемой оптической детали 9 выполняют этапы измерений, которые аналогичны описанным в соответствии с фиг. 2.
Для этого в объектодержателе 5 заменяют образцовый оптический элемент 4 на контролируемую оптическую деталь 9, а вторую сменную диафрагму 12 - на первую сменную диафрагму 11 (см. фиг. 3а).
При обеспечении фиксации положения чувствительного щупа 7 перемещением объектодержателя 5 с контролируемой оптической деталью 9 вдоль оптической оси автоколлиматора 3 достигается расчетное положение на оптической оси автоколлиматора 3 геометрического центра O1 измеряемой сферической поверхности, совпадающего с положением оптического центра О образцового оптического элемента 4.
При этом автоколлиматор 3 зафиксирован в положении, полученном на этапе работы с образцовым оптическим элементом 4 (см. фиг. 2б). Затем снимают первый отсчет с измерителя 6 линейных перемещений, с которым механически связан объектодержатель 5.
Далее чувствительный щуп 7 выводят с оптической оси автоколлиматора 3, удаляя его за пределы светового диаметра (см. фиг. 3б).
Гомоцентрический пучок лучей монохроматического точечного источника света 2, прошедший через автоколлиматор 3 и первую сменную диафрагму 11, входящую в состав узла 8 настройки положения ПНУ, падает на контролируемую оптическую деталь 9 с измеряемой вогнутой сферической поверхностью.
Первая сменная диафрагма 11 разделяет гомоцентрический пучок лучей на два идентичных световых потока, что позволяет оперативно формировать в обратном ходе лучей два автоколлимационных изображения монохроматического точечного источника света 2 и образовывать в плоскости этого точечного источника света (в области совмещения полученных двух автоколлимационных изображений) микроинтерференционную картину. При этом автоколлиматор 3 неподвижен, а объектодержатель 5 с контролируемой оптической деталью 9 и первой сменной диафрагмой 11 перемещают вдоль оптической оси автоколлиматора 3 до достижения положения ПНУ, обеспечивая получение автоколлимационного изображения монохроматического точечного источника света 2. По виду этой микроинтерференционной картины устанавливают факт достижения автоколлимационного хода лучей. Фазы достижения автоколлимационного изображения в этом случае аналогичны фазам, показанным на фиг. 8.
Для более точного получения автоколлимационного изображения монохроматического точечного источника света 2 первую сменную диафрагму 11 заменяют на вторую сменную диафрагму 12 (см. фиг. 3в). При этом автоколлиматор 3 неподвижен, а объектодержатель 5 с контролируемой оптической деталью 9 и второй сменной диафрагмой 12 перемещают вдоль оптической оси автоколлиматора 3 до достижения положения ПНУ. После получения автоколлимационного изображения снимают второй отсчет с измерителя 6 линейных перемещений. Разность первого и второго отчетов с измерителя 6 линейных перемещений дает величину и знак («плюс» - «минус») отклонения радиуса кривизны измеряемой вогнутой сферической поверхности контролируемой оптической детали 9 от его расчетного значения.
На фиг. 4 показан процесс получения автоколлимации от контролируемой оптической детали 10 с измеряемой выпуклой сферической поверхностью.
Для измерения радиуса кривизны измеряемой выпуклой сферической поверхности контролируемой оптической детали 10 выполняют этапы измерений, которые аналогичны описанным в соответствии с фиг. 2. и фиг. 3. При этом автоколлиматор 3 формирует сходящийся гомоцентрический пучок лучей.
Полученная разность первого и второго отчетов с измерителя 6 линейных перемещений дает величину и знак («плюс» - «минус») отклонения радиуса кривизны измеряемой выпуклой сферической поверхности контролируемой оптической детали 10 от его расчетного значения.
Таким образом, использование предлагаемой полезной модели, благодаря наличию в конструкции голографического устройства для измерения радиусов кривизны сферических поверхностей узла настройки положения ПНУ образцового оптического элемента и контролируемой оптической детали, установленного на объектодержателе, позволяет сократить время измерения радиуса кривизны сферической поверхности контролируемой оптической детали за счет исключения периодической регистрации и расшифровки интерференционных картин в целях определения величины и направления перемещения контролируемой оптической детали для достижения положения ПНУ.

Claims (5)

1. Голографическое устройство для измерения радиусов кривизны сферических поверхностей, содержащее контрольный прибор с монохроматическим точечным источником света, автоколлиматор, установленный с возможностью перемещения вдоль оптической оси, образцовый оптический элемент, установленный по ходу лучей и выполненный в виде осевой отражательной синтезированной голограммы, причем образцовый оптический элемент размещен соосно с автоколлиматором в объектодержателе, который установлен с возможностью перемещения вдоль оптической оси автоколлиматора и механически связан с измерителем линейных перемещений, и чувствительный щуп, отличающееся тем, что дополнительно содержит узел настройки положения плоскости наилучшей установки (ПНУ) образцового оптического элемента и контролируемой оптической детали, установленный на объектодержателе, при этом чувствительный щуп установлен с возможностью его вывода за пределы светового диаметра автоколлиматора, а геометрическая ось узла настройки положения ПНУ совпадает с геометрической осью чувствительного щупа и оптической осью автоколлиматора.
2. Голографическое устройство по п. 1, отличающееся тем, что узел настройки положения ПНУ выполнен с возможностью обеспечения индикации положения на оптической оси автоколлиматора оптического центра образцового оптического элемента и индикации расчетного положения на оптической оси автоколлиматора геометрического центра измеряемой сферической поверхности при помощи чувствительного щупа.
3. Голографическое устройство по п. 1, отличающееся тем, что узел настройки положения ПНУ содержит первую и вторую сменные диафрагмы с центральным отверстием и выполнен с возможностью обеспечения их поочередного размещения на объектодержателе со стороны рабочей поверхности образцового оптического элемента.
4. Голографическое устройство по п. 3, отличающееся тем, что первая сменная диафрагма выполнена в виде непрозрачного экрана, имеющего два одинаковых отверстия, расположенных осесимметрично относительно геометрической оси центрального отверстия, которая совпадает с оптической осью автоколлиматора.
5. Голографическое устройство по п. 3, отличающееся тем, что вторая сменная диафрагма выполнена в виде непрозрачного экрана, имеющего одно кольцевое отверстие, расположенное коаксиально относительно геометрической оси центрального отверстия, которая совпадает с оптической осью автоколлиматора.
RU2020118805U 2020-05-29 2020-05-29 Голографическое устройство для измерения радиусов кривизны сферических поверхностей RU200617U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020118805U RU200617U1 (ru) 2020-05-29 2020-05-29 Голографическое устройство для измерения радиусов кривизны сферических поверхностей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020118805U RU200617U1 (ru) 2020-05-29 2020-05-29 Голографическое устройство для измерения радиусов кривизны сферических поверхностей

Publications (1)

Publication Number Publication Date
RU200617U1 true RU200617U1 (ru) 2020-11-02

Family

ID=73399052

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020118805U RU200617U1 (ru) 2020-05-29 2020-05-29 Голографическое устройство для измерения радиусов кривизны сферических поверхностей

Country Status (1)

Country Link
RU (1) RU200617U1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU205459U1 (ru) * 2021-02-25 2021-07-15 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для контроля формы крупногабаритных вогнутых асферических оптических поверхностей
RU2766851C1 (ru) * 2021-02-25 2022-03-16 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для контроля формы крупногабаритных вогнутых асферических оптических поверхностей

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU557621A1 (ru) * 1975-10-07 1978-03-05 Предприятие П/Я Г-4671 Способ контрол радиуса кривизны сферических поверхностей
SU1747881A1 (ru) * 1990-03-11 1992-07-15 Производственное Объединение "Завод Арсенал" Способ контрол радиуса кривизны оптических сферических поверхностей
US5245402A (en) * 1992-06-15 1993-09-14 The United States Of America As Represented By The Secretary Of The Army General aspherical surface optical testing device
CN108895972A (zh) * 2018-06-27 2018-11-27 中国科学院光电技术研究所 一种基于计算全息的光学元件顶点半径测量的方法和装置
CN109945803A (zh) * 2019-04-19 2019-06-28 北京理工大学 横向相减激光差动共焦柱面曲率半径测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU557621A1 (ru) * 1975-10-07 1978-03-05 Предприятие П/Я Г-4671 Способ контрол радиуса кривизны сферических поверхностей
SU1747881A1 (ru) * 1990-03-11 1992-07-15 Производственное Объединение "Завод Арсенал" Способ контрол радиуса кривизны оптических сферических поверхностей
US5245402A (en) * 1992-06-15 1993-09-14 The United States Of America As Represented By The Secretary Of The Army General aspherical surface optical testing device
CN108895972A (zh) * 2018-06-27 2018-11-27 中国科学院光电技术研究所 一种基于计算全息的光学元件顶点半径测量的方法和装置
CN109945803A (zh) * 2019-04-19 2019-06-28 北京理工大学 横向相减激光差动共焦柱面曲率半径测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU205459U1 (ru) * 2021-02-25 2021-07-15 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для контроля формы крупногабаритных вогнутых асферических оптических поверхностей
RU2766851C1 (ru) * 2021-02-25 2022-03-16 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Голографическое устройство для контроля формы крупногабаритных вогнутых асферических оптических поверхностей

Similar Documents

Publication Publication Date Title
JP4302512B2 (ja) 非球面表面および波面に対する干渉計スキャニング
JP4312602B2 (ja) 非球面表面および波面の走査干渉計
US20130010286A1 (en) Method and device of differential confocal and interference measurement for multiple parameters of an element
JP6000577B2 (ja) 非球面計測方法、非球面計測装置、光学素子加工装置および光学素子の製造方法
US8947676B2 (en) Aspheric surface measuring method, aspheric surface measuring apparatus, optical element producing apparatus and optical element
RU200617U1 (ru) Голографическое устройство для измерения радиусов кривизны сферических поверхностей
US4818108A (en) Phase modulated ronchi testing of aspheric surfaces
CN101762240B (zh) 差动共焦镜组轴向间隙测量方法
JP2008135745A (ja) 波面収差測定機及び投影露光装置
US7545511B1 (en) Transmitted wavefront metrology of optics with high aberrations
KR20110065365A (ko) 비구면체 측정 방법 및 장치
RU2746940C1 (ru) Голографическое устройство для измерения радиусов кривизны сферических поверхностей
Takacs et al. Surface topography measurements over the 1 meter to 10 micrometer spatial period bandwidth
US8018602B1 (en) Metrology of optics with high aberrations
US8743373B1 (en) Metrology of optics with high aberrations
JP2011226935A (ja) 軸外透過波面測定装置
EP0137976A2 (en) Interferometric metrology of surface figures
SU1770738A1 (en) Device for measuring surfaces
RU2803879C1 (ru) Способ измерения формы внеосевой асферической оптической детали
JPH116784A (ja) 非球面形状測定装置および測定方法
CN101782373A (zh) 共焦镜组轴向间隙测量方法与装置
Callender et al. A swing arm profilometer for large telescope mirror element metrology
JP6821407B2 (ja) 計測方法、計測装置、光学機器の製造方法および光学機器の製造装置
JPS6151241B2 (ru)
JPH10260024A (ja) 非球面形状測定装置及び方法

Legal Events

Date Code Title Description
MG9K Termination of a utility model due to grant of a patent for identical subject

Ref document number: 2746940

Country of ref document: RU

Effective date: 20210422