WO2018000579A1 - 多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用 - Google Patents

多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用 Download PDF

Info

Publication number
WO2018000579A1
WO2018000579A1 PCT/CN2016/098379 CN2016098379W WO2018000579A1 WO 2018000579 A1 WO2018000579 A1 WO 2018000579A1 CN 2016098379 W CN2016098379 W CN 2016098379W WO 2018000579 A1 WO2018000579 A1 WO 2018000579A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
binder
polymer
monomer
Prior art date
Application number
PCT/CN2016/098379
Other languages
English (en)
French (fr)
Inventor
张灵志
何嘉荣
汪靖伦
苏静
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US16/313,474 priority Critical patent/US10882990B2/en
Publication of WO2018000579A1 publication Critical patent/WO2018000579A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J103/00Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09J103/04Starch derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/02Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to polysaccharides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/08Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
    • C08F255/10Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms on to butene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/285Ammonium nitrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a polymer lithium ion battery binder, in particular to a multi-functionalized modified polymer lithium ion battery binder and application in an electrochemical energy storage device.
  • the binder adheres the electrode active material and the conductive agent to the current collector, and its performance directly affects the electrochemical performance of the battery.
  • the binder should have sufficient elasticity to prevent the active material particles from swelling due to their expansion and contraction during charging and discharging of the battery. Shedding, and facilitating the conduction of electrons and ions during charge and discharge, reducing the impedance between the current collector and the electrode material.
  • PVDF polyvinylidene fluoride
  • NMP organic solvent N-methylpyrrolidone
  • Styrene-butadiene rubber SBR
  • CMC sodium carboxymethyl cellulose
  • PVA as an emulsifier, styrene monomer and acrylate monomer copolymerization (CN105261759A) can be used to prepare aqueous binders for lithium ion batteries, but the disadvantages of polystyrene are brittleness, low impact strength, and easy stress.
  • Modified marine polysaccharide polymer (CN105576247A), such as chitosan copolymerized with acrylic acid and its ester monomers, can be used to prepare aqueous binders for lithium ion batteries, but its intrinsic bond strength and elasticity are insufficient. Uniformity and flatness need to be further improved. Therefore, research and development of a new multi-functional lithium-ion battery water-based binder to improve its bonding performance, further improve battery performance, reduce production costs, especially for the development of the corresponding aqueous binder for the positive electrode is the current hot spot.
  • Biopolymers such as sodium carboxymethyl cellulose and gum arabic are used as aqueous binders for lithium ion batteries.
  • the object of the present invention is directed to the deficiencies of the prior art, and provides a multi-functionalized modified polymer lithium ion battery binder, which has good elasticity and cohesive force, can be applied in water/organic solvent, and has a multi-branched structure.
  • the three-dimensional network body can provide more active sites in contact with the electrode active material, and is applied to the positive and negative electrodes of the lithium ion battery, can improve the uniformity and flatness of the electrode slurry film formation, and can enhance the electrode active material,
  • the bonding strength between the conductive agent and the current collector greatly increases the ion transport rate in the electrolyte, facilitates the conduction of electrons/ions during charge and discharge, reduces the electrochemical interface impedance of the pole piece, and greatly improves the lithium battery.
  • the high-rate performance and cycle stability of the positive and negative materials can not cause the capacity to drop, which can effectively extend the battery life, and the synthetic raw materials are widely available, rich in resources, can significantly reduce costs, and have a broad market. prospect.
  • the multi-functionalized modified polymer lithium ion battery binder provided by the invention can controllably introduce functional monomers into a polymer substrate through a Michael addition reaction, thereby improving the quality of the prepared binder product. Stable and uniform, and good overall performance.
  • a multi-functionalized modified lithium ion battery polymer binder wherein the binder uses a biomass polymer or a synthetic polymer as a substrate, and a hydrophilic monomer and a lipophilic monomer are used as functionalized modifying monomers. It is prepared by radical graft copolymerization or Michael addition reaction.
  • the binder has a molecular weight of 10,000 to 1,500,000, a solid content of 1 to 50 wt%, a viscosity of 1 to 50000 mPa ⁇ s, and the biomass polymer.
  • the synthetic polymer is selected from the group consisting of polyethyleneimine and poly One or more of ethylene glycol and polyhydroxy polybutadiene;
  • the mass ratio of the biomass polymer or synthetic polymer, the hydrophilic monomer and the lipophilic monomer is 1:0.01-20:0.01-20.
  • the free radical graft copolymerization reaction means that one or more of the biomass polymer or the synthetic polymer and the hydrophilic monomer and the lipophilic monomer are subjected to radical polymerization or copolymerization grafting reaction by an initiator;
  • the agent is selected from the group consisting of (NH 4 ) 2 S 2 O 8 , Na 2 S 2 O 8 , K 2 S 2 O 8 , (NH 4 ) 2 S 2 O 8 /NaHSO 3 , (NH 4 ) 2 S 2 O 8 / Na 2 SO 3 , Na 2 S 2 O 8 /NaHSO 3 , Na 2 S 2 O 8 /Na 2 SO 3 , K 2 S 2 O 8 /NaHSO 3 , K 2 S 2 O 8 /Na 2 SO 3 ,Ce (NH 4 ) 2 (NO 3 ) 6 , one of azobisisobutylphosphonium hydrochloride; the initiator is used in an amount of 0.01 to 5% by weight based
  • the Michael addition reaction refers to a Michael addition reaction of a biomass polymer or a synthetic polymer with one or more of a hydrophilic monomer and a lipophilic monomer through a basic catalyst.
  • the basic catalyst is selected from one or more of LiOH, NaOH, LiOH/urea, NaOH/urea; and the basic catalyst is used in an amount of 0.01 to 5% by weight based on the total mass of the monomers.
  • the functional monomer can be controlled to be introduced into the polymer substrate, so that the prepared binder product has stable and uniform quality and good comprehensive performance.
  • the cellulose derivative is one or more selected from the group consisting of sodium carboxymethylcellulose, sodium hydroxyethylcellulose, and hydroxypropylmethylcellulose.
  • the invention also provides a preparation method of the multi-functionalized modified polymer lithium ion battery binder, comprising the following steps:
  • the biomass polymer or synthetic polymer is dissolved in deionized water, and stirred under a protective atmosphere for 0.5 to 2.5 hours to drive off oxygen to obtain a uniform and dispersible solution; the stirring speed is 100-500 rpm. Minute;
  • the protective gas of step 1) is nitrogen and/or argon; the stirring speed is preferably 200-450 rpm;
  • step (2) the stirring reaction temperature is preferably 55 ° C;
  • the step (2); the stirring reaction time is preferably 2.5 hours.
  • the mass ratio of the biomass polymer or synthetic polymer, the hydrophilic monomer and the lipophilic monomer is 1:0.01-20:0.01-20.
  • the invention also protects the multi-functionalized modified polymer lithium ion battery binder in a positive or negative electrode of a lithium ion battery Application in .
  • the multi-functionalized modified polymer lithium ion battery binder is used in a positive electrode sheet of a lithium ion battery, and the positive electrode sheet of the lithium ion battery comprises a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the positive electrode slurry of the lithium ion battery includes a positive electrode active material, a conductive agent, the multi-functionalized modified polymer lithium ion battery binder and a solvent; the positive electrode active material, the conductive agent and the multifunctional functional modification
  • the solvent is water or an organic solvent (such as N-methylpyrrolidone); and the cathode active material is selected from phosphoric acid.
  • One or more of iron lithium, lithium cobaltate, lithium manganate or a ternary material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC);
  • the conductive agent is acetylene black;
  • the fluid is an aluminum foil;
  • the lithium ion battery positive electrode slurry has a solid content of 30 to 75 wt%, and the lithium ion battery positive electrode slurry has a viscosity of 3000 to 8000 mPa ⁇ s.
  • the multi-functionalized modified polymer lithium ion battery binder is used in a lithium ion battery negative electrode sheet, and the lithium ion battery negative electrode sheet comprises a current collector and a lithium ion battery negative electrode slurry supported on the current collector;
  • the lithium ion battery negative electrode slurry includes a negative electrode active material, a conductive agent, the multi-functionalized modified polymer lithium ion battery binder, and a solvent; the negative electrode active material, the conductive agent, and the multi-functionalized modification
  • the mass ratio of the binder of the polymer lithium ion battery is 70 to 95:1 to 20:2.5 to 10, the solvent is water or an organic solvent (such as N-methylpyrrolidone); and the anode active material is selected from a silicon group.
  • the binder is applied to other electrochemical energy storage devices such as other secondary batteries, supercapacitors, or solar cells.
  • the invention also provides a lithium ion battery comprising a battery case, a pole core and an electrolyte, the pole core and the electrolyte being sealed in the battery case, the pole core comprising the plurality of An electrode of a functionally modified polymeric lithium ion battery binder and a separator positioned between the electrodes.
  • the multi-functionalized modified polymer lithium ion battery binder provided by the invention has good elasticity, cohesiveness and flexibility, can be applied in water/organic solvent, and has a multi-branched three-dimensional network body. It can provide more active sites in contact with the electrode active material, greatly increase the ion transport rate in the electrolyte, facilitate the conduction of electrons/ions during charge and discharge, and reduce the electrochemical interface impedance;
  • the multi-functionalized modified polymer lithium ion battery binder provided by the invention is applied to the positive and negative electrodes of the lithium ion battery, can improve the uniformity and flatness of the electrode slurry film formation, and enhance the active material and the conductive agent pair.
  • the peeling strength of the metal substrate greatly enhances the bonding strength between the electrode active material, the conductive agent and the current collector, does not drop the material, does not cause a decrease in capacity, and greatly improves the high magnification of the positive and negative materials of the lithium ion battery. Performance and cycle stability to extend battery life.
  • the multi-functionalized modified polymer lithium ion battery binder provided by the invention can controllably introduce functional monomers into a polymer substrate through a Michael addition reaction, thereby improving the quality of the prepared binder product. Stable and uniform, and good overall performance.
  • the preparation method of the multifunctional functional modified polymer lithium ion battery binder provided by the invention is simple, environmentally friendly, and the raw materials for synthesis are widely sourced, rich in resources, can significantly reduce the cost, and have broad market prospect;
  • the type and proportion of the monomer, the multi-functionalized modified polymer binder obtained has good elasticity and cohesive force, can be applied in water/organic solvent, and has a multi-branched three-dimensional network body.
  • the binder is applied to other electrochemical energy storage devices such as other secondary batteries, supercapacitors, or solar cells.
  • Example 1 is an infrared contrast spectrum of a multi-functionalized modified polymer lithium ion battery binder obtained by using sodium carboxymethyl cellulose in different reaction systems according to Example 1-2 of the present invention.
  • Example 2 is an infrared contrast spectrum of a multi-functionalized modified polymer lithium ion battery binder obtained by using sodium carboxymethyl cellulose in different reaction systems according to Example 3 of the present invention.
  • 3 is an infrared contrast spectrum of a multi-functionalized modified polymer lithium ion battery binder obtained by reacting gum arabic in different reaction systems according to Examples 10 and 13 of the present invention.
  • Example 6 is an infrared contrast spectrum of a multi-functionalized modified polymer lithium ion battery binder obtained by using gum arabic under a basic catalyst according to Example 15 of the present invention.
  • Figure 7 is an infrared contrast spectrum of the multi-functionalized modification of Examples 9, 21 of the present invention under a basic catalyst.
  • Figure 8 is a graph showing the peel strength of the multi-functionalized modified polymer lithium ion battery binder modified by Examples 6, 10, and 13 on the aluminum foil.
  • Figure 9 is a graph showing the peel strength of different electrode materials (positive electrode: LFP; negative electrode: Si, Graphite) according to Examples 6, 7, and 10 of the present invention.
  • the thickness parameter when coating the film: the positive electrode-LFP is 100 ⁇ m
  • the negative electrode-Si is 80 ⁇ m.
  • Figure 10 is a graph showing the voltage-to-specific capacity comparison of the first charge and discharge of lithium iron phosphate and a comparative electrode according to Example 22 of the present invention.
  • Figure 11 is a graph showing electrochemical impedance contrast curves of lithium iron phosphate and a comparative electrode according to Example 23 of the present invention.
  • Figure 12 is a comparison of cyclic voltammetry of a ternary material and a comparative electrode according to Example 24 of the present invention at a scan rate of 0.2 mV/s.
  • Figure 13 is a graph showing charge and discharge curves of a ternary material and a comparative electrode according to Example 25 of the present invention at different magnifications.
  • Figure 14 is a graph showing charge and discharge curves of a graphite negative electrode material at a rate of 0.2 C according to Example 26 of the present invention.
  • Figure 15 is a comparison diagram of charge and discharge of a Si-based material and a comparative electrode at a current density of 400 mA/g according to Example 27 of the present invention.
  • Figure 16 is a comparative diagram of the flatness of the coating film when Examples 6, 7, 10 and Comparative Example 1 were applied to different electrode materials (positive electrode: LFP; negative electrode: Si, Graphite).
  • the thickness parameter at the time of coating was 100 ⁇ m for the positive electrode-LFP, 80 ⁇ m for the negative electrode-Si, and 50 ⁇ m for the Graphite-50 ⁇ m.
  • CMC Sodium carboxymethyl cellulose
  • gum arabic is labeled as Acacia
  • xanthan gum is abbreviated as XG
  • pectin is labeled as Pectin
  • gelatin is classified as Gelatin
  • polyethyleneimine is abbreviated as PEI
  • cyclodextrin is classified as Cyclodextrin.
  • CMC Sodium carboxymethyl cellulose
  • gum arabic is labeled as Acacia
  • xanthan gum is abbreviated as XG
  • pectin is labeled as Pectin
  • gelatin is classified as Gelatin
  • polyethyleneimine is abbreviated as PEI
  • cyclodextrin is classified as Cyclodextrin.
  • Acrylic acid is abbreviated as AA
  • acrylonitrile is abbreviated as AN
  • AM methyl methacrylate
  • MMA styrene is abbreviated as St.
  • the electrode sheet containing the active material is prepared: different electrode materials, conductive agents and binders are mixed according to a certain ratio, and the slurry is coated on the Al foil (positive electrode) or the Cu foil (negative electrode); wherein, the nano silicon
  • the thickness of the powder is 80 ⁇ m (copper foil substrate), the thickness of graphite is 50 ⁇ m (copper foil substrate), the thickness of lithium iron phosphate is 100 ⁇ m (aluminum foil substrate); the production of pure binder electrode sheet: directly coating 2 wt% of the binder It was coated on an Al foil and coated to a thickness of 200 ⁇ m.
  • Peel strength test method A piece of electrode piece with a width of 15 mm was cut out, and then tested by a peeling test instrument (Shenzhen, Kay Strong 180° peeling tester) (peeling speed was 20 mm/min), and finally summarized into a table.
  • Reference Example 1 was carried out except that the monomer added was 2.5 g of acrylic acid and 0.84 g of acrylonitrile.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 to obtain a light white transparent emulsion, which was a binder of a multi-functionalized modified polymer lithium ion battery, and the solid content was 8 wt%.
  • the viscosity is 432.1 mPa.s, see Table 1, and the infrared spectrum is shown in Figure 1.
  • Reference Example 1 was carried out except that the monomer added was 2.5 g of acrylic acid, 0.84 g of acrylonitrile and 1 g of acrylamide.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 , and the reaction temperature was 60 ° C to obtain a transparent slightly white emulsion, which was a binder of a multifunctional functional modified polymer lithium ion battery.
  • the solid content is 9.6 wt%, the viscosity is 1377.4 mPa.s, see Table 1, and the infrared spectrum thereof is shown in Fig. 2.
  • Example 1 Reference was made to Example 1, except that the monomer mixture added was 2.5 g of acrylic acid and 2.49 g of acrylamide.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 to obtain a transparent latex emulsion, which was a binder of a multi-functionalized modified polymer lithium ion battery, and the solid content was 10.7 wt%.
  • the viscosity was 1481.3 mPa.s, see Table 1.
  • Reference Example 1 was carried out except that the monomer mixture added was 2.5 g of acrylic acid and 3.47 g of methyl methacrylate.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 to obtain a bright white emulsion, which was a binder of a multi-functionalized modified polymer lithium ion battery, and the solid content was 12.3 wt%.
  • the viscosity was 215.8 mPa.s, see Table 1.
  • Reference Example 1 was carried out except that the monomer mixture added was 7.2 g of acrylic acid and 0.53 g of acrylonitrile.
  • the initiator used was 0.1g(NH 4 ) 2 S 2 O 8 /0.03g NaHSO 3 to obtain a transparent slightly white viscous liquid, which is a binder of a multi-functionalized modified polymer lithium ion battery with a solid content of 14.9. Wt%, viscosity was 10381 mPa.s, see Table 1, and the peel strength of the aluminum foil is shown in Fig. 8.
  • Reference Example 1 was carried out except that the monomer mixture added was 7.2 g of acrylic acid, 0.53 g of acrylonitrile and 0.71 g of acrylamide.
  • the initiator used was 0.1g(NH 4 ) 2 S 2 O 8 /0.03g NaHSO 3 to obtain a transparent white viscous liquid, which is a binder of multi-functionalized modified polymer lithium ion battery with a solid content of 15.9. Wt%, viscosity is 12531 mPa.s, see Table 1.
  • Reference Example 1 was carried out except that the monomer mixture added was 3.6 g of acrylic acid and 3 g of styrene.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 to obtain a transparent solution, which was a binder of a multi-functionalized modified polymer lithium ion battery, and had a solid content of 13.2% by weight.
  • 44.2 mPa.s see Table 1.
  • Example 1 except that the monomer to be added is 6.63 g of acrylonitrile, and the catalyst is used instead of the initiator.
  • the catalyst used is 1 ml of 20 wt.% NaOH to obtain a white uniform emulsion, which is a multi-functionalized modified polymer lithium.
  • the binder of the ion battery had a solid content of 13.2% by weight and a viscosity of 2536.5 mPa ⁇ s, see Table 1, and the infrared spectrum thereof is shown in Fig. 7.
  • Example 9 is a product obtained by a Michael addition reaction of CMC under a basic catalyst.
  • the average peel strength in Table 1 was measured by first preparing a pure binder electrode sheet: 2 wt% of the binder was directly coated on the Al foil, the coating thickness was 200 ⁇ m, and then the peel strength was tested.
  • the test method was: A piece of electrode having a width of 15 mm was cut out, and then tested by a peeling tester (Shenzhen, Kay Strong 180° peeling tester) (peeling speed was 20 mm/min), and finally summarized into a table.
  • the multi-functionalized modified CMC-based polymer binder obtained in the present application has good water solubility (Example 1-7) or oil solubility (Example 8), To a large extent, the peel strength between the current collector and the current collector is enhanced, and the overall performance of the adhesive is improved; the multi-functionalized modification obtained in Example 6, Example 8, and Example 9 is compared with that of the unmodified CMC.
  • the bonding property of the CMC-based polymer binder is greatly improved; in addition, the binder of the polymer lithium ion battery modified with the acrylic monomer combines the good water solubility of the polyacrylic acid or its salt, and the viscosity Lower (Example 1); binder of polymer lithium ion battery modified with acrylic acid and acrylonitrile monomer, taking into account the good water solubility of polyacrylic acid or its salts, good bonding of polyacrylonitrile Properties, enhanced the peel strength of the pole piece (Example 2, Example 6); the binder of the polymer lithium ion battery modified with acrylic acid, acrylonitrile and acrylamide monomers, balance and balance the water solubility, viscosity The combination of knot and flexibility improves the overall performance of the adhesive (Example 3) Example 7); a binder of a polymer lithium ion battery modified with acrylic acid and styrene monomer, which can adjust the water solubility and oil solubility of the product by adjusting the ratio between
  • Example 1 the difference is that: a gum substitute is used instead of sodium carboxymethyl cellulose, and 5 g of acrylic monomer is used instead of 2.5 acrylic monomer to obtain a transparent uniform glue, which is a multi-functionalized modified polymer lithium ion battery.
  • the modified polymer lithium ion battery binder has a solid content of 7.7% by weight and a viscosity of 13.2 mPa.s, see Table 2.
  • the functionalized modified polymer lithium ion battery binder has a solid content of 9.5 wt% and a viscosity of 21.5 mPa ⁇ s, see Table 2.
  • the multi-functionalized modified polymer lithium ion battery binder has a solid content of 10.7 wt% and a viscosity of 4.8 mPa.s, see Table 2.
  • the difference is that the monomer to be added is 6.63 g of acrylonitrile, and the catalyst used for replacing the initiator with the catalyst is 1 ml of 20 wt.% NaOH to obtain a white uniform emulsion, which is a multi-functionalized modified polymer lithium ion.
  • the binder of the battery had a solid content of 13.2% by weight and a viscosity of 5.6 mPa ⁇ s, see Table 2, and its infrared spectrum is shown in Fig. 6.
  • Example 10* is an Acacia-PAA-COOLi binder obtained by neutralizing LiOH with a glue solution of Example 10.
  • Example 15** is a product obtained by a Michael addition reaction of Acacia under a basic catalyst.
  • the average peel strength in Table 2 was measured by first preparing a pure binder electrode sheet: directly coating 2 wt% of the binder on the Al foil, coating a thickness of 200 ⁇ m, and then testing the peel strength, the test method: intercepting A piece of electrode having a width of 15 mm was tested by a peeling tester (Shenzhen, Kay Strong 180° peeling tester) (peeling speed was 20 mm/min), and finally summarized into a table.
  • the multi-functionalized modified polymer binder obtained by the present application has good water solubility, greatly enhances the peeling strength with the current collector, and improves the overall performance of the binder.
  • the other multi-functionalized modified polymeric binders of Examples 11-16 exhibited greater bond strength than current commercial PVDF systems.
  • the prepared grafted polyacrylic acid neutralized Acacia-PAA-COOLi binder has better solubility and lower viscosity, but its peel strength is lowered (Example 10, Examples) 10*).
  • Figure 8 is a graph showing the peel strength of the multi-functionalized modified polymer lithium ion battery binder modified by Examples 6, 10, and 13 on the aluminum foil.
  • the binary modified CMC (Example 6) has a peel strength of 70 mN/mm for the aluminum foil and a peel strength of 2 mN/mm before the CMC modification; a mono-modification (Example 10) or
  • the peel strength of PVDF to aluminum foil was measured by a parallel experiment to be 36 mN/mm. It can be seen from the above test that the present invention functionalizes the polymer by modifying it. It can significantly improve the peel strength of the aluminum foil substrate. Therefore, it shows a good application prospect in the lithium ion battery binder.
  • Reference Example 1 was carried out except that the polymer substrate used was pectin, and the monomer to be added was 3.6 g of acrylic acid and 0.53 g of acrylonitrile.
  • the initiator used was 0.1g(NH 4 ) 2 S 2 O 8 /0.03g NaHSO 3 to obtain a white uniform viscous liquid, which is a binder of multi-functionalized modified polymer lithium ion battery with a solid content of 9.3wt. %, viscosity is 215.1 mPa.s, see Table 3, and its infrared spectrum is shown in Figure 4.
  • Reference Example 1 was carried out except that the polymer substrate used was gelatin, and the monomer to be added was 3.6 g of acrylic acid and 0.53 g of acrylonitrile.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 , and finally a layered product was obtained, which was a binder of a multi-functionalized modified polymer lithium ion battery, and the solid content was 9.3 wt%.
  • the viscosity is 250.6 mPa.s, and the infrared spectrum thereof is shown in Fig. 4.
  • Example 2 Reference was made to Example 1, except that the polymer substrate used was polyethyleneimine PEI, and the monomer added was 3.6 g of acrylic acid and 0.53 g of acrylonitrile.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 to obtain a yellow homogeneous solution, which was a binder of a multi-functionalized modified polymer lithium ion battery, and the solid content was 9.3 wt%.
  • the viscosity is 2.43 mPa.s, see Table 3, and the infrared spectrum is shown in Figure 5.
  • Reference Example 1 was carried out except that the polymer substrate used was a cyclodextrin, and the monomer to be added was 3.6 g of acrylic acid and 0.53 g of acrylonitrile.
  • the initiator used was 0.1 g (NH 4 ) 2 S 2 O 8 /0.03 g NaHSO 3 to obtain a transparent uniform solution, which was a binder of a multi-functionalized modified polymer lithium ion battery, and the solid content was 9.3 wt%.
  • the viscosity was 219.4 mPa.s, see Table 3, and the infrared spectrum is shown in Figure 5.
  • Reference Example 1 differs in that the polymer substrate used is xanthan gum, the monomer mixture added is 6.63 g of acrylonitrile, and the catalyst used is 1 ml of 20 wt.% NaOH to obtain a white emulsion for multi-functional modification.
  • Polymer lithium The binder of the subcell had a solid content of 13.2% by weight and a viscosity of 5613.8 mPa ⁇ s, see Table 3, and an infrared spectrum thereof is shown in Fig. 7.
  • *XG is a product obtained by subjecting the xanthan gum of Example 21 to a Michael addition reaction under a basic catalyst.
  • the average peel strength of Table 3 was measured by first preparing a pure binder electrode sheet: directly coating 2 wt% of the binder on the Al foil, coating a thickness of 200 ⁇ m, and then testing the peel strength. Test method: intercepting a section The electrode sheets having a width of 15 mm were then tested by a peeling tester (Shenzhen, Kay Strong 180° peeling tester) (peeling speed was 20 mm/min), and finally summarized into a table.
  • the multi-functionalized modified polymer binder obtained by the present application has good water solubility and cohesive force, greatly enhances the peeling strength with the current collector, and improves the overall binder. Performance, can be used as a new binder in lithium-ion batteries.
  • the transparent slightly white viscous liquid synthesized in Example 6 was used as an aqueous binder of a multi-functionalized modified polymer lithium ion battery (it was selected for performance test because of its maximum peel strength).
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the lithium ion battery positive electrode slurry includes a positive electrode active material, a conductive agent, a transparent slightly white viscous liquid synthesized in Example 6 as an aqueous binder and a solvent of a multi-functionalized modified polymer lithium ion battery; and the positive electrode active material, a conductive agent and a binder
  • the mass ratio is 90:5:5 and the solvent is water.
  • the positive active material is lithium iron phosphate (LiFePO 4 , LFP); the conductive agent is acetylene black; the current collector is aluminum foil current collector; the solid content of the lithium ion battery positive electrode slurry is 45 wt%, lithium ion The viscosity of the battery positive electrode slurry was 3000 mPa ⁇ s.
  • the LFP and the conductive agent are mixed and stirred until uniformly dispersed; the transparent slightly white viscous liquid synthesized in Example 6 is added as an aqueous binder to the above system and stirred uniformly, and an appropriate amount of deionized water is added to adjust the viscosity to obtain an LFP electrode slurry.
  • the obtained slurry was uniformly coated on an Al foil and dried under vacuum at 90 ° C to obtain an LFP positive electrode sheet.
  • a comparative electrode was prepared in the same manner using PVDF, modified marine polysaccharide polymer CTS-PAA-PAN of Comparative Example 1 as a binder.
  • Electrochemical testing was performed on the charge and discharge performance of the test electrode and the comparative electrode.
  • the LFP battery prepared by multi-functionalized modified polymer lithium ion battery binder CMC-PAA-PAN has more than PVDF and modified marine polysaccharide binder CTS-PAA-PAN system.
  • Wide discharge platform which means that it undergoes a smaller polarization process during discharge, which proves that the multi-functionalized modified polymer lithium ion battery binder improves the conductivity of the electrode system and improves the overall electrochemical performance of the battery. performance.
  • Example 6 or 13 Using lithium iron phosphate as a positive electrode material, the product synthesized in Example 6 or 13 was used as an aqueous binder of a multi-functionalized modified polymer lithium ion battery (because its peel strength is the largest, it was selected for performance test).
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the lithium ion battery positive electrode slurry includes a positive electrode active material, a conductive agent, a product synthesized in Example 6 or 13 as an aqueous binder and a solvent of a multi-functionalized modified polymer lithium ion battery; and a mass ratio of the positive electrode active material, the conductive agent and the binder At 90:5:5, the solvent is water.
  • the positive active material is lithium iron phosphate (LiFePO 4 , LFP); the conductive agent is acetylene black; the current collector is aluminum foil current collector; the solid content of the lithium ion battery positive electrode slurry is 45 wt%, lithium ion The viscosity of the battery positive electrode slurry was 3000 mPa ⁇ s.
  • the LFP and the conductive agent are mixed and stirred until uniformly dispersed; the transparent slightly white viscous liquid synthesized in Example 6 or 13 is added as an aqueous binder to the above system and stirred uniformly, and an appropriate amount of deionized water is added to adjust the viscosity to obtain LFP.
  • Electrode slurry; the obtained slurry was uniformly coated on an Al foil, and dried under vacuum at 90 ° C to obtain an LFP positive electrode sheet.
  • a comparative electrode was prepared in the same manner using PVDF, modified marine polysaccharide polymer CTS-PAA-PAN of Comparative Example 1 as a binder.
  • the electrochemical impedance of the test electrode and the comparison electrode was tested.
  • Figure 11 is an electrochemical impedance curve of the test electrode and the comparative electrode under the 5 mv perturbation of the present embodiment. It can be seen from the figure that LFP batteries prepared by using polymer multi-functionalized modified binder (CMC-PAA-PAN or Acacia-PAA-PAN) have smaller than PVDF and CTS-PAA-PAN systems. Electrochemical impedance. This means that it undergoes a smaller polarization process during charge and discharge, demonstrating the multi-functionalized modified polymer lithium-ion battery binder (CMC-PAA-PAN or Acacia-PAA-PAN) for battery system electrons/ions The improvement of the conduction performance is beneficial to high rate charge and discharge and improves the overall electrochemical performance of the battery.
  • Example 6 Using a ternary material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC) as a positive electrode material, the transparent slightly white viscous liquid synthesized in Example 6 was used as a multi-functionalized modified polymer lithium ion.
  • the battery is an aqueous binder (selected for performance testing because it has the highest peel strength).
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the lithium ion battery positive electrode slurry includes a positive electrode active material, a conductive agent, and a transparent slightly white viscous liquid synthesized in Example 6 as a binder and a solvent of a multi-functionalized modified polymer lithium ion battery; and the positive electrode active material, a conductive agent, and a binder
  • the mass ratio of the agent was 85:9:6, and the solvent was water.
  • the positive active material is a ternary material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC); the conductive agent is acetylene black; the current collector is an aluminum foil current collector; and the lithium ion battery
  • the solid content of the positive electrode slurry was 45 wt%, and the viscosity of the positive electrode slurry of the lithium ion battery was 3000 mPa ⁇ s.
  • NMC and the conductive agent are mixed and stirred until uniformly dispersed; the transparent slightly white viscous liquid synthesized in Example 6 is added as an aqueous binder to the above system and stirred uniformly, and an appropriate amount of deionized water is added to adjust the viscosity to obtain an NMC electrode slurry.
  • the obtained slurry was uniformly coated on an Al foil and dried under vacuum at 90 ° C to obtain an NMC positive electrode sheet.
  • a modified marine polysaccharide polymer CTS-PAA-PAN synthesized as a binder of PVDF and Comparative Example 1 was used as a binder, and a comparative electrode was prepared in the same manner.
  • Electrochemical testing was performed on the charge and discharge performance of the test electrode and the comparative electrode.
  • Figure 12 is a cyclic voltammetry curve of the test electrode and the comparative electrode at a scanning speed of 0.2 mv/s in the present embodiment. It can be seen from the figure that the cyclic voltammetry curve of the NMC electrode prepared by using the polymer multi-functionalized modified binder CMC-PAA-PAN is basically the same as that of the PVDF system, and the voltage interval between the redox peaks is equivalent, and the ratio is The voltage interval of the CTS-PAA-PAN system is small. This indicates that the NMC electrode prepared by CMC-PAA-PAN as a binder has less polarization and excellent electrochemical performance. This also means that the multi-functionalized modified polymer lithium ion battery binder has excellent electrochemical stability at the working voltage.
  • the ternary material LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC was used as the positive electrode material, and the transparent solution synthesized in Example 7 was used as the water for the multi-functionalized modified polymer lithium ion battery. Binder.
  • the positive electrode tab of the lithium ion battery includes a current collector and a lithium ion battery positive electrode slurry supported on the current collector;
  • the lithium ion battery positive electrode slurry includes a positive electrode active material, a conductive agent, and a transparent solution synthesized in Example 7 as a binder and a solvent of the multi-functionalized modified polymer lithium ion battery; and a mass ratio of the positive electrode active material, the conductive agent, and the binder At 85:9:6, the solvent is water.
  • the positive active material is a ternary material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , NMC); the conductive agent is acetylene black; the current collector is an aluminum foil current collector; and the lithium ion battery
  • the solid content of the positive electrode slurry was 45 wt%, and the viscosity of the positive electrode slurry of the lithium ion battery was 3000 mPa ⁇ s.
  • the rate performance of the test electrode was electrochemically tested.
  • Figure 13 is a graph showing the charge and discharge curves of the test electrodes at different magnifications (0.1C-0.2C-0.5C-1C-2C-5C-0.2C). It can be seen from the figure that the NMC electrode prepared by using the polymer multi-functionalized modified binder CMC-PAA-PAA-PAM has excellent rate performance, and the specific discharge capacity is 80.8 mAh/g at 5C rate. And after a large rate (5C) charge and discharge and then back to 0.2C, the capacity does not have much attenuation, almost the same. This indicates that the NMC electrode prepared by CMC-PAA-PAN-PAM as a binder has less polarization and excellent high rate performance.
  • Example 10 Using graphite as a negative electrode material, the white emulsion synthesized in Example 10 was used as an aqueous binder.
  • the lithium ion battery negative electrode sheet comprises a current collector and a lithium ion battery negative electrode slurry supported on the current collector;
  • the lithium ion battery negative electrode slurry comprises a negative electrode active material, a conductive agent, a white emulsion synthesized in Example 10 as a binder and a solvent; and a mass ratio of the negative electrode active material, the conductive agent and the binder of 90:5:5, the solvent is water .
  • the negative active material is graphite; the conductive agent is acetylene black; the current collector is a copper foil current collector; the lithium ion battery negative electrode slurry has a solid content of 45 wt%, and the lithium ion battery negative electrode slurry has a viscosity of 3000mPa ⁇ s.
  • the graphite and the conductive agent are mixed and stirred until uniformly dispersed; the white emulsion synthesized in Example 10 is added to the above system as an aqueous binder, stirred uniformly, and an appropriate amount of deionized water is added to adjust the viscosity to obtain a graphite electrode slurry; The obtained slurry was uniformly coated on a Cu foil and dried under vacuum at 60 ° C to obtain a graphite negative electrode sheet.
  • Electrochemical performance test of constant current charge and discharge on the test electrode
  • Fig. 14 is a graph showing the cycle performance test of the test electrode at a rate of 0.2 C in the present embodiment.
  • Graphite anode prepared by multi-functionalized modified Acacia-PAA polymer lithium ion battery binder has excellent cycle performance, and the first coulombic efficiency is 99.18%, compared with polyvinyl alcohol as emulsifier and polyphenylene.
  • a binder system for ethylene (CN 105261759A) with a higher first coulombic efficiency. After 24 charge and discharge cycles, the charge specific capacity was still 326 mAh/g, and the Coulomb efficiency was 97.93%, showing excellent cycle performance and electrochemical stability.
  • the white emulsion synthesized in Example 10 was used as an aqueous binder using a Si group as a negative electrode material.
  • the lithium ion battery negative electrode sheet comprises a current collector and a lithium ion battery negative electrode slurry supported on the current collector;
  • the lithium ion battery negative electrode slurry comprises a negative electrode active material, a conductive agent, a white emulsion synthesized in Example 10 as a binder and a solvent; and a mass ratio of the negative electrode active material, the conductive agent and the binder of 70:20:10, the solvent is water .
  • the negative active material is a Si-based material; the conductive agent is acetylene black; the current collector is a copper foil current collector; the lithium ion battery negative electrode slurry has a solid content of 45 wt%, and the lithium ion battery negative electrode slurry The viscosity was 3000 mPa ⁇ s.
  • the Si and the conductive agent are mixed and stirred until uniformly dispersed; the white emulsion synthesized in Example 10 is added to the above system as an aqueous binder, stirred uniformly, and an appropriate amount of deionized water is added to adjust the viscosity to obtain a Si electrode slurry; The obtained slurry was uniformly coated on a Cu foil and dried under vacuum at 60 ° C to obtain a Si-based negative electrode sheet.
  • a modified marine polysaccharide polymer CTS-PAA-PAN synthesized as a binder of CMC and Comparative Example 1 was used as a binder, and a comparative electrode was prepared in the same manner.
  • Table 15 is a cycle performance test curve of the test electrode and the comparison electrode at a charge and discharge current density of 400 mA/g in the present embodiment
  • Table 4 is a comparison of the coulombic efficiency after the first and the 33rd cycles. It can be seen from the table that the Si-based anode prepared by using the multi-functionalized modified Acacia-PAA polymer lithium ion battery binder as a binder has a higher first charge than the CMC and CTS-PAA-PAN systems. The discharge efficiency and charge specific capacity reached 83.2% and 4195 mAh/g, showing excellent electrochemical performance.
  • Electrode sheet was prepared as an aqueous binder, and the peel strength to different electrode sheets was tested.
  • Example 26 the formulation of the graphite electrode was identical to it.
  • the Si-based electrode was formulated to be completely identical thereto.
  • the formulation of the LFP based electrode was identical to it.
  • Comparative electrodes were prepared in the same manner using CMC, PVDF and CTS-PAA-PAN as binders.
  • Table 5 (Fig. 9) is a comparison curve of the peeling strength of the electrode sheets of the different test electrodes and the comparative electrodes (PVDF, CMC and CTS-PAA-PAN are binders) prepared by using the binders of Examples 6, 7, and 10 as binders. It can be seen from the table that the lithium iron phosphate positive electrode sheet prepared by multi-functionalized modified CMC-PAA-PAN polymer lithium ion battery binder has higher peel strength than CMC and CTS-PAA-PAN systems. (about 33 times higher), and comparable to the PVDF system, has broad application prospects and development potential.
  • the graphite negative electrode sheet prepared by multi-functionalized modified Acacia-PAA polymer lithium ion battery binder has strong peeling strength, compared with the binder system containing polyvinyl alcohol as emulsifier and polystyrene. (CN105261759A), its peel strength is enhanced by about twenty times.
  • the base negative electrode has a large peel strength and a bonding force to ensure that the powder does not fall during the charging and discharging process, thereby improving the cycle stability of the battery.
  • the multi-functionalized modified polymer binder obtained in the present application has good water solubility, greatly enhances the peeling strength between the electrode active material, the conductive agent and the current collector, and improves the overall performance of the binder.
  • the peel strength is tested by first preparing an electrode sheet containing an active material: different electrode materials, a conductive agent, and a binder are mixed in a certain ratio, and the slurry is coated on an Al foil (positive electrode) or Cu. On the foil (negative electrode); wherein the thickness of the nano silicon powder is 80 ⁇ m (copper foil substrate), the thickness of the graphite is 50 ⁇ m (copper foil substrate), and the thickness of lithium iron phosphate is 100 ⁇ m (aluminum foil substrate); then the peel strength is tested, Test method: A piece of electrode piece with a width of 15 mm was cut out, and then tested by a peeling test instrument (Shenzhen, Kay Strong 180° peeling tester) (peeling speed was 20 mm/min), and finally summarized into a table.
  • a peeling test instrument Shenzhen, Kay Strong 180° peeling tester
  • An electrode sheet was prepared as a binder, and the marine polysaccharide polymer CTS-PAA-PAN of Comparative Example 1 was used as a comparative electrode sheet, and the flatness of the pole piece was compared.
  • Example 26 The formulation of the graphite electrode is referred to in Example 26.
  • the preparation of the Si-based electrode is as in Reference Example 27.
  • Example 22 The formulation of the LFP base electrode is referred to in Example 22.
  • Example 24 The formulation of the NCM electrode is referred to in Example 24.
  • test electrode sheets The flatness of the test electrode sheets was observed and compared.
  • Fig. 16 is a comparison diagram of the flatness of the pole pieces of the different test electrode sheets of the present embodiment. It can be seen from the figure that graphite, Si negative electrode sheets prepared by multi-functionalized modified Acacia-PAA polymer lithium ion battery binder, and multi-functionalized modified CMC-PAA-PAN polymer lithium ion battery are used. Lithium iron phosphate and ternary material positive electrode sheets prepared by the preparation have uniform and excellent flatness, which are beneficial to improve the cycle stability of the battery, and have broad application prospects and development potential.
  • the lithium iron phosphate electrode sheet prepared by CMC-PAA-PAN has better uniformity and flatness than the CTS-PAA-PAN system, and there is no graininess or discontinuity, which is beneficial to improve the electrochemical process during the long cycle of the battery. Stability, which increases battery life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种多元功能化改性锂离子电池高分子粘结剂,该粘结剂以生物质高分子或合成高分子为底物,以亲水单体和亲油单体作为功能化改性单体,经自由基接枝共聚反应或迈克尔加成反应改性制备,具有多分支结构的三维空间网络体,能提供更多与电极活性材料接触的活性位点,能提高电极浆料成膜时的均匀性和平整性;增强了活性物质、导电剂对金属基底的剥离强度,具有优良的弹性和粘结力,能在水/有机溶剂中应用,可以应用于锂离子电池正负极,有利于电子/离子在充放电过程中的传导,降低极片的电化学界面阻抗,较大改善锂电池正负极材料的高倍率性能以及循环稳定性能,而且合成的原料来源广泛,能显著降低成本,具有广阔的市场前景。

Description

[根据细则37.2由ISA制定的发明名称] 多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用 技术领域:
本发明涉及高分子锂离子电池粘结剂,具体涉及一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用。
背景技术:
在电池制造过程中,均需使用粘结剂将粉体电极活性物质粘结加工。粘结剂作为锂离子电池的重要非活性成分,将电极活性物质和导电剂粘附在集流体上,其性能的优劣直接影响电池的电化学性能。除了在电极活性物质、导电剂和集流体之间起到粘结的作用外,粘结剂应具有足够的弹性,避免活性物质颗粒因自身在电池充、放电过程中的膨胀与收缩而松胀脱落,并有利于电子、离子在充放电过程中的传导,减小集流体与电极材料之间的阻抗。长期以来,在锂离子电池工业的规模化生产中,主要采用聚偏氟乙烯(PVDF)作粘结剂、有机溶剂N-甲基吡咯烷酮(NMP)等作分散剂。但由于PVDF存在自身的缺点,如电子和离子导电性差,在电解液中有一定的溶胀,且与金属锂、LixC6在较高温度下发生放热反应,存在较大的安全隐患。此外,PVDF的杨氏模量相对较高,极片的柔韧性不够好,吸水后分子量下降,粘性变差,因此,其对环境的湿度要求比较高,能耗大,生产成本高。因此,寻找可以替代PVDF的新型绿色粘结剂(分散性好、足够的粘结强度和有利于电子/离子的传导)具有深远的意义,已逐渐成为锂离子电池粘结剂的重要发展方向,以满足现代社会对于绿色节能生产的需求。目前,由于水性粘结剂的粘结强度远远不如商业PVDF有机体系,提高水性粘结剂的粘结强度是当前需突破的技术难点之一。
开发水性粘结剂和提高其粘结强度,是锂离子电池粘结剂发展的一个重要方向。丁苯橡胶(SBR)/羧甲基纤维素钠(CMC)、聚丙烯酸酯类水性粘结剂已经有大规模市场应用,但其粘结力、极片的平整性和抑制极片膨胀的效果均有限,故其使用范围受到一定的限制。PVA作为乳化剂、苯乙烯单体与丙烯酸酯类单体共聚(CN105261759A)可制备水性粘结剂应用于锂离子电池,但聚苯乙烯的不足之处在于性脆、冲击强度低、易出现应力开裂、耐热性差等。改性海洋多糖高分子(CN105576247A),如壳聚糖与丙烯酸及其酯类单体共聚等可制备水性粘结剂应用于锂离子电池,但其本征粘结强度和弹性不足,对极片的均匀性和平整性还需进一步改善。因此,研究开发新型的多元功能化锂离子电池水性粘结剂来提高其粘结性能,进一步改善电池性能,降低生产成本,尤其是针对正极开发相应的水性粘结剂更是当前的热点。羧甲基纤维素钠、阿拉伯胶等生物质高分子用作锂离子电池水性粘结剂展现出 了潜在的优势,然而,其粘结力、分散性、粘稠性、弹性、及其电化学性能还有待进一步的提高和优化,因此,通过对其进行功能化改性以改善其应用于锂离子电池电极片的粘结性能将具有十分重要的意义。
发明内容:
本发明的目的针对现有技术的不足,提供一种多元功能化改性高分子锂离子电池粘结剂,具有良好的弹性和粘结力,能在水/有机溶剂中应用,具有多分支结构的三维空间网络体,能提供更多与电极活性材料接触的活性位点,应用于锂离子电池正负极,能提高电极浆料成膜时的均匀性和平整性,能增强电极活性物质、导电剂和集流体之间的粘结强度,大大地提高电解液中离子的传输速率,有利于电子/离子在充放电过程中的传导,降低极片的电化学界面阻抗,较大改善锂电池正负极材料的高倍率性能以及循环稳定性能、不掉料,不会造成容量下降,从而可以有效延长电池使用寿命,而且合成的原料来源广泛,资源丰富,能显著降低成本,具有广阔的市场前景。此外,本发明提供的多元功能化改性高分子锂离子电池粘结剂,其通过迈克尔加成反应能可控地将功能单体引入高分子底物中,从而使制备的粘结剂产品质量稳定均一,综合性能较好。
本发明是通过以下技术方案予以实现的:
一种多元功能化改性锂离子电池高分子粘结剂,该粘结剂以生物质高分子或合成高分子为底物,以亲水单体和亲油单体作为功能化改性单体,经自由基接枝共聚反应或迈克尔加成反应改性制备,所述粘结剂的分子量为10000~1500000,固含量为1~50wt%,粘度为1~50000mPa·s,所述生物质高分子选自阿拉伯胶、环糊精、纤维素衍生物、黄原胶、果胶、明胶、淀粉、田菁胶中的一种或两种以上;所述合成高分子选自聚乙烯亚胺、聚乙二醇、多羟基聚丁二烯中的一种或两种以上;所述亲水单体为具有如下结构单体中的至少一种:CH2=CR1R2;其中,R1选自-H、-CH3、-CH2CH3;R2选自-COOH、-COOM(M=Li,Na,K等碱金属元素)、-CONH2;所述亲油单体为具有如下结构的单体中的至少一种:CH2=CR3R4;其中,R3选自-H、-CH3、-CH2CH3,R4选自-CN、-OCOCH3、-CONHCH3、-CON(CH3)2、-CH=CH2、-Ph-R5(R5为H或除H以外的任意取代基团)和-COOR6中的至少一种(其中R6为C1~C8烷基中的至少一种);所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0~100:0~100。
优选地,所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0.01-20:0.01-20。
所述自由基接枝共聚反应指生物质高分子或合成高分子与亲水性单体和亲油性单体的 一种或多种通过引发剂引发发生自由基聚合或共聚接枝反应;所述引发剂选自(NH4)2S2O8、Na2S2O8、K2S2O8、(NH4)2S2O8/NaHSO3、(NH4)2S2O8/Na2SO3、Na2S2O8/NaHSO3、Na2S2O8/Na2SO3、K2S2O8/NaHSO3、K2S2O8/Na2SO3、Ce(NH4)2(NO3)6、偶氮二异丁基脒盐酸盐中的一种;所述引发剂的用量为单体总质量的0.01~5wt%。
所述迈克尔加成反应指生物质高分子或合成高分子与亲水性单体和亲油性单体的一种或多种通过碱性催化剂发生迈克尔加成反应。
优选地,所述碱性催化剂选自LiOH、NaOH、LiOH/尿素、NaOH/尿素中的一种或两种以上;所述碱性催化剂的用量为单体总质量的0.01~5wt%。
通过迈克尔加成反应能可控地将功能单体引入高分子底物中,从而使制备的粘结剂产品质量稳定均一,综合性能较好。
所述纤维素衍生物选自羧甲基纤维素钠、羟乙基纤维素钠、羟丙基甲基纤维素中的一种或以上。
本发明还提供所述多元功能化改性高分子锂离子电池粘结剂的制备方法,包括以下步骤:
1)首先将生物质高分子或合成高分子溶解于去离子水中,并在保护性气气氛下充分搅拌0.5~2.5小时驱除氧得到均一、分散性好的溶液;搅拌速度为100~500转/分;
2)将引发剂或碱性催化剂加到步骤1)得到的溶液中,充分搅拌得到混合溶液;再加入亲水单体和亲油单体40~90℃搅拌反应1-4小时制得多元功能化改性的高分子锂离子电池粘结剂;通过调节亲水/亲油单体的质量比来调控粘结剂的水溶性和油溶性;所述引发剂/碱性催化剂的用量为单体总质量的0.01~5wt%;所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0~100:0~100,所述引发剂选自(NH4)2S2O8、Na2S2O8、K2S2O8、(NH4)2S2O8/NaHSO3、(NH4)2S2O8/Na2SO3、Na2S2O8/NaHSO3、Na2S2O8/Na2SO3、K2S2O8/NaHSO3、K2S2O8/Na2SO3、Ce(NH4)2(NO3)6、偶氮二异丁基脒盐酸盐中的一种;所述碱性催化剂选自LiOH、NaOH、LiOH/尿素、NaOH/尿素中的一种或两种以上。
优选地,步骤1)所述保护性气为氮气和/或氩气;所述搅拌速度优选为200~450转/分;
优选地,步骤(2);所述搅拌反应温度优选为55℃;
优选地,步骤(2);所述搅拌反应时间优选为2.5小时。
优选地,所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0.01-20:0.01-20。
本发明还保护所述多元功能化改性高分子锂离子电池粘结剂在锂离子电池正或负极片 中的应用。
所述多元功能化改性高分子锂离子电池粘结剂在锂离子电池正极片中的应用,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、所述多元功能化改性高分子锂离子电池粘结剂和溶剂;所述正极活性材料、导电剂和所述多元功能化改性高分子锂离子电池粘结剂的质量比为=70~95:1~20:2.5~10,所述溶剂为水或有机溶剂(如N-甲基吡咯烷酮);所述正极活性材料选自磷酸铁锂、钴酸锂、锰酸锂或三元材料(LiNi1/3Mn1/3Co1/3O2,NMC)的一种或多种;所述导电剂为乙炔黑;所述集流体为铝箔;所述锂离子电池正极浆料的固体含量为30~75wt%,锂离子电池正极浆料的粘度为3000~8000mPa·s。
所述多元功能化改性高分子锂离子电池粘结剂在锂离子电池负极片中的应用,所述锂离子电池负极电极片包括集流体和负载在集流体上的锂离子电池负极浆料;所述锂离子电池负极浆料包括负极活性材料、导电剂、所述多元功能化改性高分子锂离子电池粘结剂和溶剂;所述负极活性材料、导电剂和所述多元功能化改性高分子锂离子电池粘结剂的质量比为70~95:1~20:2.5~10,所述溶剂为水或有机溶剂(如N-甲基吡咯烷酮);所述负极活性材料选自硅基材料、钛酸锂或石墨的一种或两种以上;所述导电剂为乙炔黑;所述集流体为铜箔。
所述粘结剂应用于其它电化学储能器件,如其它二次电池、超级电容器、或太阳能电池。
本发明还提供了一种锂离子电池,所述锂离子电池包括电池壳、极芯和电解液,所述的极芯和电解液密封于电池壳内,所述的极芯包括含所述多元功能化改性高分子锂离子电池粘结剂的电极和位于电极之间的隔膜。
本发明具有如下有益效果:
1)本发明提供的多元功能化改性高分子锂离子电池粘结剂,具有良好的弹性、粘结力和柔顺性,能在水/有机溶剂中应用,具有多分支结构的三维空间网络体,能提供更多与电极活性材料接触的活性位点,大大地提高电解液中离子的传输速率,有利于电子/离子在充放电过程中的传导,能降低电化学界面阻抗;
2)本发明提供的多元功能化改性高分子锂离子电池粘结剂应用于锂离子电池正负极,能提高电极浆料成膜时的均匀性和平整性,增强活性物质、导电剂对金属基底的剥离强度,同时大大地增强电极活性物质、导电剂和集流体之间的粘结强度,不掉料,不会造成容量下降,较大改善了锂离子电池正负极材料的高倍率性能以及循环稳定性能、从而有效延长电池使用寿命。
3)本发明提供的多元功能化改性高分子锂离子电池粘结剂,其通过迈克尔加成反应能可控地将功能单体引入高分子底物中,从而使制备的粘结剂产品质量稳定均一,综合性能较好。
4)本发明提供的多元功能化改性的高分子锂离子电池粘结剂的制备方法简便,环保,合成的原料来源广泛,资源丰富,能显著降低成本,具有广阔的市场前景;通过调节聚合单体的种类和比例,得到的多元功能化改性的高分子粘结剂,有良好的弹性和粘结力,能在水/有机溶剂中应用,具有多分支结构的三维空间网络体,能提供更多与电极活性材料接触的活性位点,大大地提高电解液中离子的传输速率,有利于电子/离子在充放电过程中的传导,可应用锂离子电池的正极或负极,能推动锂离子电池产业的技术进步,乃至推动电动汽车等战略新兴产业的发展具有重要意义。
5)所述粘结剂应用于其它电化学储能器件,如其它二次电池、超级电容器、或太阳能电池。
附图说明:
图1是本发明实施例1-2的羧甲基纤维素钠在不同反应体系下得到的多元功能化改性高分子锂离子电池粘结剂的红外对比谱图。
图2是本发明实施例3的羧甲基纤维素钠在不同反应体系下得到的多元功能化改性高分子锂离子电池粘结剂的红外对比谱图。
图3为本发明实施例10、13的阿拉伯胶在不同反应体系下得到的多元功能化改性高分子锂离子电池粘结剂的红外对比谱图。
图4为本发明实施例16-18不同高分子底物在不同反应体系下得到的多元功能化改性高分子锂离子电池粘结剂的红外对比谱图。
图5为本发明实施例19-20不同高分子底物在不同反应体系下得到的多元功能化改性高分子锂离子电池粘结剂的红外对比谱图。
图6为本发明实施例15阿拉伯胶在碱性催化剂下得到的多元功能化改性高分子锂离子电池粘结剂的红外对比谱图。
图7为本发明实施例9、21在碱性催化剂下多元功能化改性的红外对比谱图。
图8为本发明实施例6、10、13改性得到的多元功能化改性高分子锂离子电池粘结剂对铝箔的剥离强度对比图。
图9为本发明实施例6、7、10对不同电极材料(正极:LFP;负极:Si,Graphite)的剥离强度对比图。其中,涂膜时的厚度参数:正极-LFP为100μm,负极-Si为80μm, Graphite-50μm。
图10为本发明实施例22磷酸铁锂及对比电极首次充放电的电压-比容量对比曲线。
图11为本发明实施例23磷酸铁锂及对比电极的电化学阻抗对比曲线。
图12为本发明实施例24三元材料及对比电极在0.2mV/s扫描速率下的循环伏安对比图。
图13为本发明实施例25三元材料及对比电极在不同倍率下的充放电曲线图。
图14为本发明实施例26石墨负极材料在0.2C倍率下的充放电曲线图。
图15为本发明实施例27Si基材料及对比电极在400mA/g电流密度下的充放电对比图。
图16为本发明实施例6、7、10和对比例1应用于不同电极材料(正极:LFP;负极:Si,Graphite)时涂膜平整性的对比图。
其中,涂膜时的厚度参数:正极-LFP为100μm,负极-Si为80μm,Graphite-50μm。
羧甲基纤维素钠简写为CMC,阿拉伯胶记为Acacia;黄原胶简写为XG,果胶记为Pectin,明胶记为Gelatin,聚乙烯亚胺简写为PEI,环糊精记为Cyclodextrin。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
羧甲基纤维素钠简写为CMC,阿拉伯胶记为Acacia;黄原胶简写为XG,果胶记为Pectin,明胶记为Gelatin,聚乙烯亚胺简写为PEI,环糊精记为Cyclodextrin。丙烯酸简写为AA,丙烯腈简写为AN,丙烯酰胺简写为AM,甲基丙烯酸甲酯简写为MMA,苯乙烯简写为St。
其中,含活性物质的电极片制作:不同的电极材料、导电剂和粘结剂按照一定的比例混合,研磨制浆涂覆在Al箔(正极)或Cu箔(负极)上;其中,纳米硅粉的厚度为80μm(铜箔基底),石墨的厚度为50μm(铜箔基底),磷酸铁锂的厚度为100μm(铝箔基底);纯粘结剂电极片制作:直接将2wt%粘结剂涂覆在Al箔上,涂覆厚度为200μm。剥离强度的测试方法:截取一段宽度为15mm的电极片,然后采用剥离测试仪器(深圳,凯强力180°剥离测试仪)对其进行测试(剥离速度为20mm/min),最后汇总成表。
实施例1:
(1)首先将1g克羧甲基纤维素钠预先溶解于50ml去离子水(DI-Water)中,并在氩气气氛下充分搅拌0.5~2.5小时驱除氧得到均一、分散性好的溶液;搅拌速度为100~500转/分;
(2)称取0.1g(NH4)2S2O8引发剂加到步骤(1)得到的溶液中,充分搅拌得到混合溶 液;再加入2.5g丙烯酸单体,调节反应温度至55℃,一直保持搅拌状态,恒温反应2.5h,得到透明均一胶液,为多元功能化改性高分子锂离子电池粘结剂;固含量为6.5wt%,粘度为164.5mPa.s,参见表1,其红外谱图参见图1。
实施例2:
参考实施例1,不同之处在于:加入的单体为2.5g丙烯酸和0.84g丙烯腈。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到浅白稍透明乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为8wt%,粘度为432.1mPa.s,参见表1,其红外谱图参见图1。
实施例3:
参考实施例1,不同之处在于:加入的单体为2.5g丙烯酸、0.84g丙烯腈和1g丙烯酰胺。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,反应的温度为60℃,得到透明稍白乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为9.6wt%,粘度为1377.4mPa.s,参见表1,其红外谱图参见图2。
实施例4:
参考实施例1,不同之处在于:加入的单体混合物为2.5g丙烯酸和2.49g丙烯酰胺。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到透明胶乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为10.7wt%,粘度为1481.3mPa.s,参见表1。
实施例5:
参考实施例1,不同之处在于:加入的单体混合物为2.5g丙烯酸和3.47g甲基丙烯酸甲酯。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到亮白乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为12.3wt%,粘度为215.8mPa.s,参见表1。
实施例6:
参考实施例1,不同之处在于:加入的单体混合物为7.2g丙烯酸和0.53g丙烯腈。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到透明稍白粘稠液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为14.9wt%,粘度为10381mPa.s,参见表1,其对铝箔的剥离强度参见图8。
实施例7:
参考实施例1,不同之处在于:加入的单体混合物为7.2g丙烯酸、0.53g丙烯腈和0.71g丙烯酰胺。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到透明稍白粘稠液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为15.9wt%,粘度为12531mPa.s,参见表1。
实施例8:
参考实施例1,不同之处在于:加入的单体混合物为3.6g丙烯酸和3g苯乙烯。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到透明溶液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为13.2wt%,粘度为44.2mPa.s,参见表1。
实施例9:
参考实施例1,不同之处在于:加入的单体为6.63g丙烯腈,用催化剂代替引发剂,所用的催化剂为1ml 20wt.%NaOH,得到白色均一乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为13.2wt%,粘度为2536.5mPa·s,参见表1,其红外谱图参见图7。
对比例1:
参考实施例2,不同之处在于:所用高分子底物为海洋多糖高分子壳聚糖,得到白色乳液,固含量为8.0wt%,粘度为6.47mPa·s,参见表1。
对实施例1-9、对比例1得到的粘结剂进行性能表征,其数据参见表1和图1-2。
表1
Figure PCTCN2016098379-appb-000001
Figure PCTCN2016098379-appb-000002
*实施例9是CMC在碱性催化剂下发生迈克尔加成反应而得到的产物。
表1中平均剥离强度是这样测的,先制作纯粘结剂电极片:直接将2wt%粘结剂涂覆在Al箔上,涂覆厚度为200μm,然后测试其剥离强度,测试方法为:截取一段宽度为15mm的电极片,然后采用剥离测试仪器(深圳,凯强力180°剥离测试仪)对其进行测试(剥离速度为20mm/min),最后汇总成表。
由表1和图1-2可知:本申请得到的多元功能化改性的CMC基高分子粘结剂,具有良好的水溶性(实施例1-7)或油溶性(实施例8),能较大程度上增强与集流体之间的剥离强度,提高粘结剂的整体性能;相比较于未改性的CMC,实施例6、实施例8、实施例9得到的多元功能化改性的CMC基高分子粘结剂的粘结性能均有大幅提高;此外,用丙烯酸单体改性后的高分子锂离子电池的粘结剂,结合了聚丙烯酸或其盐类的良好水溶性,黏度更低(实施例1);用丙烯酸和丙烯腈单体改性后的高分子锂离子电池的粘结剂,同时兼顾了聚丙烯酸或其盐类的良好水溶性,聚丙烯腈的良好粘结性,增强了极片剥离强度(实施例2、实施例6);用丙烯酸、丙烯腈和丙烯酰胺单体改性后的高分子锂离子电池的粘结剂,兼顾和平衡了水溶性、粘结性和柔顺性三者,提高了粘结剂的整体性能(实施例3,实施例7);丙烯酸和苯乙烯单体改性后的高分子锂离子电池的粘结剂,能通过调节亲水、亲油性单体之间的比例来调控产物的水溶性和油溶性,让其在有机溶剂中得到应用(实施例8)。值得提出的是,相比较于改性海洋多糖高分子(CN105576247A,如CTS-PAA-PAN),在同等的反应条件下,其剥离强度增强1倍(实施例2与对比例1比较)。
实施例10:
参考实施例1,不同之处在于:用阿拉伯胶代替羧甲基纤维素钠,且用5g丙烯酸单体代替2.5丙烯酸单体得到透明均一胶液,为多元功能化改性高分子锂离子电池粘结剂;固含量为10.7wt%,粘度为23159mPa·s,参见表2,其红外谱图参见图3,其对铝箔的剥离强度参见图8。
实施例10*
将实施例10反应后得到的透明均一胶液,用LiOH中和至pH=6-7,得到多元功能化改性高分子锂离子电池粘结剂;固含量为11.5wt%,粘度为24581mPa·s,参见表2。
实施例11:
参考实施例10,不同之处在于:加入的单体为3.18g丙烯腈,所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到白色乳液,为多元功能化改性高分子锂离子电池粘结剂,固含量为wt 7.7%,粘度为13.2mPa.s,参见表2。
实施例12:
参考实施例10,不同之处在于:加入的单体为4.26g丙烯酰胺,所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到透明微白溶液,为多元功能化改性高分子锂离子电池粘结剂,固含量为9.5wt%,粘度为21.5mPa·s,参见表2。
实施例13:
参考实施例10,不同之处在于:加入的单体混合物为2.5g丙烯酸和0.84g丙烯腈,所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,反应的温度为60℃,得到白色乳液,为多元功能化改性高分子锂离子电池粘结剂,固含量为8wt%,粘度为1.86mPa.s,参见表2,其红外谱图参见图3,其对铝箔的剥离强度参见图8。
实施例14:
参考实施例10,不同之处在于:加入的单体混合物为4g丙烯酸和1g丙烯腈,所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到白色乳液,为多元功能化改性高分子锂离子电池粘结剂,固含量为10.7wt%,粘度为4.8mPa.s,参见表2。
实施例15:
参考实施例10,不同之处在于:加入的单体为6.63g丙烯腈,用催化剂代替引发剂所用的催化剂为1ml 20wt.%NaOH,得到白色均一乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为13.2wt%,粘度为5.6mPa·s,参见表2,其红外谱图参见图6。
对实施例10-15得到的粘结剂进行性能表征,其数据参见表2和图3。
表2
Figure PCTCN2016098379-appb-000003
实施例10*是实施例10制得胶液用LiOH中和后的Acacia-PAA-COOLi粘结剂。
实施例15**是Acacia在碱性催化剂下发生迈克尔加成反应而得到的产物。
表2中平均剥离强度是这样测的,先制作纯粘结剂电极片:直接将2wt%粘结剂涂覆在Al箔上,涂覆厚度为200μm,然后测试其剥离强度,测试方法:截取一段宽度为15mm的电极片,然后采用剥离测试仪器(深圳,凯强力180°剥离测试仪)对其进行测试(剥离速度为20mm/min),最后汇总成表。
由表2和图3可知:本申请得到的多元功能化改性的高分子粘结剂,具有良好水溶性,极大地增强了与集流体之间的剥离强度,提高了粘结剂的整体性能。除实施例12外,实施例11-16的其它多元功能化改性的高分子粘结剂的粘结强度均比目前商业化PVDF体系大。值得提出的是,将制备的接枝的聚丙烯酸中和的Acacia-PAA-COOLi粘结剂虽然有更好的溶解性,低的粘度,但是其剥离强度有所降低(实施例10,实施例10*)。图8为本发明实施例6、10、13改性得到的多元功能化改性高分子锂离子电池粘结剂对铝箔的剥离强度对比图。从图中可以看出,二元改性后的CMC(实施例6)对铝箔的剥离强度为70mN/mm,CMC改性之前的剥离强度为2mN/mm;一元改性(实施例10)或二元改性(实施例13)后的阿拉伯胶对铝箔的剥离强度分别为60mN/mm或80mN/mm。平行实验测得PVDF对铝箔的剥离强度为36mN/mm。从上述测试可以看出,本发明通过对高分子进行功能化改性, 能显著提高其对铝箔基底的剥离强度。因此,在锂离子电池粘结剂中展现出了良好的应用前景。
实施例16:
参考实施例1,不同之处在于所用高分子底物为黄原胶,加入的单体为3.6g丙烯酸和0.53g丙烯腈,所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到白色乳液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为9.3wt%,粘度为3621.4mPa.s,参见表3,其红外谱图参见图4。
实施例17:
参考实施例1,不同之处在于:所用高分子底物为果胶,加入的单体为3.6g丙烯酸和0.53g丙烯腈。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到白色均一粘稠液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为9.3wt%,粘度为215.1mPa.s,参见表3,其红外谱图参见图4。
实施例18:
参考实施例1,不同之处在于:所用高分子底物为明胶,加入的单体为3.6g丙烯酸和0.53g丙烯腈。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,最后得到分层产品,为多元功能化改性高分子锂离子电池的粘结剂,固含量为9.3wt%,粘度为250.6mPa.s,其红外谱图参见图4。
实施例19:
参考实施例1,不同之处在于所用高分子底物为聚乙烯亚胺PEI,加入的单体为3.6g丙烯酸和0.53g丙烯腈。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到黄色均一溶液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为9.3wt%,粘度为2.43mPa.s,参见表3,其红外谱图参见图5。
实施例20:
参考实施例1,不同之处在于:所用高分子底物为环糊精,加入的单体为3.6g丙烯酸和0.53g丙烯腈。所用的引发剂为0.1g(NH4)2S2O8/0.03g NaHSO3,得到透明均一溶液,为多元功能化改性高分子锂离子电池的粘结剂,固含量为9.3wt%,粘度为219.4mPa.s,参见表3,其红外谱图参见图5。
实施例21:
参考实施例1不同之处在于:所用高分子底物为黄原胶,加入的单体混合物为6.63g丙烯腈,所用的催化剂为1ml 20wt.%NaOH,得到白色乳液,为多元功能化改性高分子锂离 子电池的粘结剂,固含量为13.2wt%,粘度为5613.8mPa·s,参见表3,其红外谱图参见图7。
对实施例16-21得到的粘结剂进行性能表征,其数据参见表3和图4、5和7。
表3
Figure PCTCN2016098379-appb-000004
*XG是实施例21黄原胶在碱性催化剂下发生迈克尔加成反应而得到的产物。
表3平均剥离强度是这样测的,先制作纯粘结剂电极片:直接将2wt%粘结剂涂覆在Al箔上,涂覆厚度为200μm,然后测试其剥离强度,测试方法:截取一段宽度为15mm的电极片,然后采用剥离测试仪器(深圳,凯强力180°剥离测试仪)对其进行测试(剥离速度为20mm/min),最后汇总成表。
由表3可知:本申请得到的多元功能化改性的高分子粘结剂,具有良好水溶性和粘结力,极大地增强了与集流体之间的剥离强度,提高了粘结剂的整体性能,可作为新型粘结剂应用于锂离子电池。
实施例22:
以磷酸铁锂为正极材料,利用实施例6合成的透明稍白粘稠液作为多元功能化改性高分子锂离子电池的水性粘结剂(因为其剥离强度最大,所以选用于性能测试)。
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材 料、导电剂、实施例6合成的透明稍白粘稠液作为多元功能化改性高分子锂离子电池的水性粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为90:5:5,所述溶剂为水。所述正极活性材料为磷酸铁锂(LiFePO4,LFP);所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固体含量为45wt%,锂离子电池正极浆料的粘度为3000mPa·s。
将LFP和导电剂混合搅拌至均匀分散;再将实施例6中所合成的透明稍白粘稠液作为水性粘结剂加入上述体系中搅拌均匀,加适量去离子水调节粘度,得到LFP电极浆料;将制得的浆料均匀涂覆于Al箔上,90℃真空干燥,即得LFP正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
采用PVDF、对比例1的改性海洋多糖高分子CTS-PAA-PAN作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电性能进行电化学测试。
四、结果分析:
图10为本实施例测试电极及对比电极在0.2C充放电电流密度下的电压-比容量曲线。从图中可以看出,采用多元功能化改性高分子锂离子电池粘结剂CMC-PAA-PAN制备的LFP电池,其比PVDF、改性海洋多糖粘结剂CTS-PAA-PAN体系拥有更宽的放电平台,这意味着其在放电时经历更小的极化过程,证明了多元功能化改性高分子锂离子电池粘结剂对于电极体系传导性能的改善,提高了电池的整体电化学性能。
实施例23:
以磷酸铁锂为正极材料,分别利用实施例6或13合成的产物作为多元功能化改性高分子锂离子电池的水性粘结剂(因为其剥离强度最大,所以选用于性能测试)。
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、实施例6或13合成的产物作为多元功能化改性高分子锂离子电池的水性粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为90:5:5,所述溶剂为水。所述正极活性材料为磷酸铁锂(LiFePO4,LFP);所述导电剂为乙炔黑;所述集流体为铝箔集流 体;所述锂离子电池正极浆料的固体含量为45wt%,锂离子电池正极浆料的粘度为3000mPa·s。
将LFP和导电剂混合搅拌至均匀分散;再将实施例6或13中所合成的透明稍白粘稠液作为水性粘结剂加入上述体系中搅拌均匀,加适量去离子水调节粘度,得到LFP电极浆料;将制得的浆料均匀涂覆于Al箔上,90℃真空干燥,即得LFP正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行电化学性能测试。
二、对比电极的配制:
采用PVDF、对比例1的改性海洋多糖高分子CTS-PAA-PAN作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的电化学阻抗进行测试。
四、结果分析:
图11为本实施例测试电极及对比电极在5mv微扰下的电化学阻抗曲线。从图中可以看出,采用高分子多元功能化改性粘结剂(CMC-PAA-PAN或Acacia-PAA-PAN)制备的LFP电池,都拥有比PVDF、CTS-PAA-PAN体系更小的电化学阻抗。这意味着其在充放电时经历更小的极化过程,证明了多元功能化改性高分子锂离子电池粘结剂(CMC-PAA-PAN或Acacia-PAA-PAN)对于电池体系电子/离子传导性能的改善,有利于高倍率充放电,提高电池整体的电化学性能。
实施例24:
以三元材料(LiNi1/3Mn1/3Co1/3O2,NMC)为正极材料,利用实施例6中所合成的透明稍白粘稠液作为多元功能化改性高分子锂离子电池的为水性粘结剂(因为其剥离强度最大,所以选用于性能测试)。
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、实施例6中所合成的透明稍白粘稠液作为多元功能化改性高分子锂离子电池的粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为85:9:6,所述溶剂为水。所述正极活性材料为三元材料(LiNi1/3Mn1/3Co1/3O2,NMC);所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固体含量为45wt%,锂离子电池正极浆料 的粘度为3000mPa·s。
将NMC和导电剂混合搅拌至均匀分散;再将实施例6中所合成的透明稍白粘稠液作为水性粘结剂加入上述体系中搅拌均匀,加适量去离子水调节粘度,得到NMC电极浆料;将制得的浆料均匀涂覆于Al箔上,90℃真空干燥,即得NMC正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行电化学性能测试。
二、对比电极的配制:
采用PVDF、对比例1合成产物的改性海洋多糖高分子CTS-PAA-PAN作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电性能进行电化学测试。
四、结果分析:
图12为本实施例测试电极及对比电极在0.2mv/s扫描速度下的循环伏安曲线。从图中可以看出,采用高分子多元功能化改性粘结剂CMC-PAA-PAN制备的NMC电极,其循环伏安曲线与PVDF体系基本一致,氧化还原峰之间的电压间隔相当,且比CTS-PAA-PAN体系的电压间隔小。这表明CMC-PAA-PAN为粘结剂制备的NMC电极有着较小的极化和优良的电化学性能。这也意味着多元功能化改性高分子锂离子电池粘结剂在该工作电压下具有优良的电化学稳定性。
实施例25:
以三元材料(LiNi1/3Mn1/3Co1/3O2,NMC)为正极材料,利用实施例7中所合成的透明溶液作为多元功能化改性高分子锂离子电池的为水性粘结剂。
一、测试电极的配制:
本发明所述锂离子电池正极电极片的一种实施例,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、实施例7中所合成的透明溶液作为多元功能化改性高分子锂离子电池的粘结剂和溶剂;且所述正极活性材料、导电剂和粘结剂的质量比为85:9:6,所述溶剂为水。所述正极活性材料为三元材料(LiNi1/3Mn1/3Co1/3O2,NMC);所述导电剂为乙炔黑;所述集流体为铝箔集流体;所述锂离子电池正极浆料的固体含量为45wt%,锂离子电池正极浆料的粘度为3000mPa·s。
将NMC和导电剂混合搅拌至均匀分散;再将实施例7中所合成的透明溶液作为水性粘 结剂加入上述体系中搅拌均匀,加适量去离子水调节粘度,得到NMC电极浆料;将制得的浆料均匀涂覆于Al箔上,90℃真空干燥,即得NMC正极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行电化学性能测试。
二、电化学测试:
对测试电极的倍率性能进行电化学测试。
三、结果分析:
图13为本实施例测试电极在不同倍率下(0.1C-0.2C-0.5C-1C-2C-5C-0.2C)的充放电曲线。从图中可以看出,采用高分子多元功能化改性粘结剂CMC-PAA-PAA-PAM制备的NMC电极,其拥有优良的倍率性能,在5C倍率下仍有放电比容量80.8mAh/g,且经过大倍率(5C)充放电后再回到0.2C,容量没有太大的衰减,几乎保持一样。这表明CMC-PAA-PAN-PAM为粘结剂制备的NMC电极有着较小的极化和优良的高倍率性能。
实施例26:
以石墨为负极材料,利用实施例10中所合成的白色乳液为水性粘结剂。
一、测试电极的配制:
本发明所述锂离子电池负极电极片的一种实施例,所述锂离子电池负极电极片包括集流体和负载在集流体上的锂离子电池负极浆料;所述锂离子电池负极浆料包括负极活性材料、导电剂、实施例10中所合成的白色乳液作为粘结剂和溶剂;且所述负极活性材料、导电剂和粘结剂的质量比90:5:5,所述溶剂为水。所述负极活性材料为石墨;所述导电剂为乙炔黑;所述集流体为铜箔集流体;所述锂离子电池负极浆料的固体含量为45wt%,锂离子电池负极浆料的粘度为3000mPa·s。
将石墨和导电剂混合搅拌至均匀分散;再将实施例10中所合成的白色乳液作为为水性粘结剂加入上述体系中搅拌均匀,加适量去离子水调节粘度,得到石墨电极浆料;将制得的浆料均匀涂覆于Cu箔上,60℃真空干燥,即得石墨负极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、电化学测试:
对测试电极进行恒电流充放电的电化学性能测试。
四、结果分析:
图14为本实施例测试电极在0.2C倍率下的循环性能测试曲线。从图中可以看出,采 用多元功能化改性Acacia-PAA高分子锂离子电池粘结剂制备的石墨负极,其拥有优良的循环性能,首次库伦效率达到99.18%,相比较于以聚乙烯醇为乳化剂、含聚苯乙烯的粘结剂体系(CN 105261759A),其拥有更高的首次库伦效率。经过24次充放电循环后,其充电比容量仍有326mAh/g,库伦效率为97.93%,显示出优良的循环性能和电化学稳定性。
实施例27:
以Si基为负极材料,利用实施例10中所合成的白色乳液为水性粘结剂。
一、测试电极的配制:
本发明所述锂离子电池负极电极片的一种实施例,所述锂离子电池负极电极片包括集流体和负载在集流体上的锂离子电池负极浆料;所述锂离子电池负极浆料包括负极活性材料、导电剂、实施例10中所合成的白色乳液作为粘结剂和溶剂;且所述负极活性材料、导电剂和粘结剂的质量比70:20:10,所述溶剂为水。所述负极活性材料为Si基材料;所述导电剂为乙炔黑;所述集流体为铜箔集流体;所述锂离子电池负极浆料的固体含量为45wt%,锂离子电池负极浆料的粘度为3000mPa·s。
将Si和导电剂混合搅拌至均匀分散;再将实施例10中所合成的白色乳液作为为水性粘结剂加入上述体系中搅拌均匀,加适量去离子水调节粘度,得到Si电极浆料;将制得的浆料均匀涂覆于Cu箔上,60℃真空干燥,即得Si基负极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
采用CMC、对比例1合成产物的改性海洋多糖高分子CTS-PAA-PAN作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性进行电化学测试。
四、结果分析:
图15为本实施例测试电极及对比电极在400mA/g充放电电流密度下的循环性能测试曲线,表4为其相应的首次和第33次循环后库伦效率对比。从表中可以看出,采用多元功能化改性Acacia-PAA高分子锂离子电池粘结剂作为粘结剂制备的Si基负极,其比CMC、CTS-PAA-PAN体系拥有更高的首次充放电效率和充电比容量,达到83.2%和4195mAh/g,显示出优良的电化学性能。经过33次充放电循环后,其充电比容量远远高于CMC、CTS-PAA-PAN体系(约1.7倍),且库伦效率仍比CMC、CTS-PAA-PAN体系高,显示出优 良的电化学性能。这意味着Acacia-PAA不仅能增强电极活性物质、导电剂和集流体之间的粘结强度,而且大大地提高了Si基材料的循环稳定性和离子的传导性,从而有效延长电池使用寿命。
采用不同粘结剂制备Si负极材料在400mA/g电流密度下库伦效率对比参见表4。
表4
粘结剂 首次库伦效率(%) 33th库伦效率(%)
实施例10 83.2 98.1
CMC 81.3 98.0
对比例1 80.4 97.9
实施例28:
以石墨、Si基为负极材料,以磷酸铁锂为正极材料,分别利用实施例6、7和10中所合成的胶液(CMC-PAA-PAN、CMC-PAA-PAN-PAM和Acacia-PAA)为水性粘结剂来制作电极片,并测试对不同电极片的剥离强度。
一、测试电极的配制:
参考实施例26,石墨电极的配制与其完全一致。参考实施例27,Si基电极的配制与其完全一致。参考实施例22,LFP基电极的配制与其完全一致。
二、对比电极的配制:
采用CMC、PVDF和CTS-PAA-PAN作为粘结剂,按同样的方法配制对比电极。
三、剥离强度测试:
对测试电极、对比电极的不同电极片的剥离强度进行测试。
四、结果分析:
表5(图9)为本实施例6、7和10为粘结剂制备的不同测试电极及对比电极(PVDF、CMC和CTS-PAA-PAN为粘结剂)的电极片剥离强度对比曲线。从表中可以看出,采用多元功能化改性CMC-PAA-PAN高分子锂离子电池粘结剂制备的磷酸铁锂正极片,其比CMC、CTS-PAA-PAN体系拥有更高的剥离强度(提高约33倍),并媲美PVDF体系,拥有广阔的应用前景和发展潜力。采用多元功能化改性Acacia-PAA高分子锂离子电池粘结剂制备的石墨负极片,具有较强的剥离强度,相比较于以聚乙烯醇为乳化剂、含聚苯乙烯的粘结剂体系(CN105261759A),其剥离强度增强了二十倍左右。此外,分别采用多元功能化改性CMC-PAA-PAN、CMC-PAA-PAN-PAM和Acacia-PAA高分子锂离子电池粘结剂制备的Si 基负极片,均拥有较大的剥离强度与粘结力,保证充放电过程中不掉粉,从而提高电池的循环稳定性。本申请得到的多元功能化改性的高分子粘结剂,具有良好水溶性,极大地增强了电极活性物质、导电剂与集流体之间的剥离强度,提高了粘结剂的整体性能。
表5
电极片 粘结剂 平均剥离强度(mN/mm)
纳米硅粉 CMC-PAA-PAN 39
纳米硅粉 CMC-PAA-PAN-PAM 52
纳米硅粉 Acacia-PAA 35
石墨 Acacia-PAA 141
磷酸铁锂 CMC-PAA-PAN 66
磷酸铁锂 CMC 2
磷酸铁锂 PVDF 75
磷酸铁锂 CTS-PAA-PAN 2
表5中,剥离强度是这样测试的,先制作含活性物质的电极片:不同的电极材料、导电剂和粘结剂按照一定的比例混合,研磨制浆涂覆在Al箔(正极)或Cu箔(负极)上;其中,纳米硅粉的厚度为80μm(铜箔基底),石墨的厚度为50μm(铜箔基底),磷酸铁锂的厚度为100μm(铝箔基底);然后测试其剥离强度,测试方法:截取一段宽度为15mm的电极片,然后采用剥离测试仪器(深圳,凯强力180°剥离测试仪)对其进行测试(剥离速度为20mm/min),最后汇总成表。
实施例29:
以石墨、Si基为负极材料,以磷酸铁锂、三元材料为正极材料,分别利用实施例6或实施例10所合成的CMC-PAA-PAN或Acacia-PAA高分子锂离子电池粘结剂为粘结剂来制作电极片,并利用对比例1的海洋多糖高分子CTS-PAA-PAN作为对比电极片,分别比较极片的平整性。
一、测试电极的配制:
石墨电极的配制参考实施例26。
Si基电极的配制参考实施例27。
LFP基电极的配制参考实施例22。
NCM电极的配制参考实施例24。
二、极片平整性测试:
对测试电极片的平整性进行观察、对比。
四、结果分析:
图16为本实施例不同测试电极片的极片平整性对比图。从图中可以看出,采用多元功能化改性Acacia-PAA高分子锂离子电池粘结剂制备的石墨、Si负极片,以及采用多元功能化改性CMC-PAA-PAN高分子锂离子电池粘结剂制备的磷酸铁锂、三元材料正极片,均拥有均一、优良的平整性,有利于提高电池的循环稳定性,拥有广阔的应用前景和发展潜力。此外,CMC-PAA-PAN制备的磷酸铁锂电极片比CTS-PAA-PAN体系拥有更好的均匀性和平整性,没有出现颗粒感或间断点,有利于提高电池长循环过程中的电化学稳定性,从而提高电池的使用寿命。

Claims (10)

  1. 一种多元功能化改性锂离子电池高分子粘结剂,其特征在于,该粘结剂以生物质高分子或合成高分子为底物,以亲水单体和亲油单体作为功能化改性单体,经自由基接枝共聚反应或迈克尔加成反应改性制备,所述粘结剂的分子量为10000~1500000,固含量为1~50wt%,粘度为1~50000mPa·s,所述生物质高分子选自阿拉伯胶、环糊精、纤维素衍生物、黄原胶、果胶、明胶、淀粉、田菁胶中的一种或两种以上;所述合成高分子选自聚乙烯亚胺、聚乙二醇、多羟基聚丁二烯中的一种或两种以上;所述亲水单体为具有如下结构单体中的至少一种:CH2=CR1R2;其中,R1选自-H、-CH3、-CH2CH3;R2选自-COOH、-COOM、-CONH2,其中M选自Li或Na或K;所述亲油单体为具有如下结构的单体中的至少一种:CH2=CR3R4;其中,R3选自-H、-CH3、-CH2CH3,R4选自-CN、-OCOCH3、-CONHCH3、-CON(CH3)2、-CH=CH2、-Ph-R5和-COOR6中的至少一种;其中,R5为H或除H以外的任意取代基团,R6为C1~C8烷基中的至少一种;所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0~100:0~100。
  2. 根据权利要求1所述多元功能化改性锂离子电池高分子粘结剂,其特征在于,所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0.01-20:0.01-20。
  3. 根据权利要求1或2所述多元功能化改性锂离子电池高分子粘结剂,其特征在于所述自由基接枝共聚反应指生物质高分子或合成高分子与亲水性单体和亲油性单体的一种或多种通过引发剂引发发生自由基聚合或共聚接枝反应;所述引发剂选自(NH4)2S2O8、Na2S2O8、K2S2O8、(NH4)2S2O8/NaHSO3、(NH4)2S2O8/Na2SO3、Na2S2O8/NaHSO3、Na2S2O8/Na2SO3、K2S2O8/NaHSO3、K2S2O8/Na2SO3、Ce(NH4)2(NO3)6、偶氮二异丁基脒盐酸盐中的一种;所述引发剂的用量为单体总质量的0.01~5wt%。
  4. 根据权利要求1或2所述多元功能化改性锂离子电池高分子粘结剂,其特征在于,所述迈克尔加成反应指生物质高分子或合成高分子与亲水性单体和亲油性单体的一种或多种通过碱性催化剂发生迈克尔加成反应;所述碱性催化剂的用量为单体总质量的0.01~5wt%。
  5. 根据权利要求1或2所述多元功能化改性锂离子电池高分子粘结剂,其特征在于,所述纤维素衍生物选自羧甲基纤维素钠、羟乙基纤维素钠、羟丙基甲基纤维素中的一种或以上。
  6. 权利要求1所述多元功能化改性高分子锂离子电池粘结剂的制备方法,其特征在于,包括以下步骤:
    1)首先将生物质高分子或合成高分子溶解于去离子水中,并在保护性气气氛下充分搅拌0.5~2.5小时驱除氧得到均一、分散性好的溶液;搅拌速度为100~500转/分;
    2)将引发剂或碱性催化剂加到步骤1)得到的溶液中,充分搅拌得到混合溶液;再加入亲水单体和亲油单体40~90℃搅拌反应1-4小时制得多元功能化改性的高分子锂离子电池粘结剂;通过调节亲水/亲油单体的质量比来调控粘结剂的水溶性和油溶性;所述引发剂/碱性催化剂的用量为单体总质量的0.01~5wt%;所述生物质高分子或合成高分子、亲水性单体和亲油性单体的质量比为1:0~100:0~100,所述引发剂选自(NH4)2S2O8、Na2S2O8、K2S2O8、(NH4)2S2O8/NaHSO3、(NH4)2S2O8/Na2SO3、Na2S2O8/NaHSO3、Na2S2O8/Na2SO3、K2S2O8/NaHSO3、K2S2O8/Na2SO3、Ce(NH4)2(NO3)6、偶氮二异丁基脒盐酸盐中的一种;所述碱性催化剂选自LiOH、NaOH、LiOH/尿素、NaOH/尿素中的一种或两种以上。
  7. 权利要求1所述多元功能化改性高分子锂离子电池粘结剂在锂离子电池正极片中的应用,其特征在于,所述锂离子电池正极电极片包括集流体和负载在集流体上的锂离子电池正极浆料;所述锂离子电池正极浆料包括正极活性材料、导电剂、权利要求1所述多元功能化改性高分子锂离子电池粘结剂和溶剂;所述正极活性材料、导电剂和所述多元功能化改性高分子锂离子电池粘结剂的质量比为70~95:1~20:2.5~10,所述溶剂为水或有机溶剂;所述正极活性材料选自磷酸铁锂、钴酸锂、锰酸锂或三元材料的一种或多种;所述导电剂为乙炔黑;所述集流体为铝箔;所述锂离子电池正极浆料的固体含量为30~75wt%,锂离子电池正极浆料的粘度为3000~8000mPa·s。
  8. 权利要求1所述多元功能化改性高分子锂离子电池粘结剂在锂离子电池负极片中的应用,其特征在于,所述锂离子电池负极电极片包括集流体和负载在集流体上的锂离子电池负极浆料;所述锂离子电池负极浆料包括负极活性材料、导电剂、权利要求1所述多元功能化改性高分子锂离子电池粘结剂和溶剂;所述负极活性材料、导电剂和所述多元功能化改性高分子锂离子电池粘结剂的质量比为70~95:1~20:2.5~10,所述溶剂为水或有机溶剂;所述负极活性材料选自硅基材料、钛酸锂或石墨的一种或两种以上;所述导电剂为乙炔黑;所述集流体为铜箔。
  9. 权利要求1所述多元功能化改性高分子锂离子电池粘结剂应用于电化学储能器件,其特征在于,所述电化学储能器件为超级电容器或太阳能电池。
  10. 一种锂离子电池,所述锂离子电池包括电池壳、极芯和电解液,所述的极芯和电解液密封于电池壳内,其特征在于,所述的极芯包含所述多元功能化改性高分子锂离子电池粘结剂的电极和位于电极之间的隔膜。
PCT/CN2016/098379 2016-06-28 2016-09-08 多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用 WO2018000579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/313,474 US10882990B2 (en) 2016-06-28 2016-09-08 Multi-functionally modified polymer binder for lithium ion batteries and use thereof in electrochemical energy storage devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610508351.2A CN105914377B (zh) 2016-06-28 2016-06-28 一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用
CN201610508351.2 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018000579A1 true WO2018000579A1 (zh) 2018-01-04

Family

ID=56754734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098379 WO2018000579A1 (zh) 2016-06-28 2016-09-08 多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用

Country Status (3)

Country Link
US (1) US10882990B2 (zh)
CN (1) CN105914377B (zh)
WO (1) WO2018000579A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469789A (zh) * 2018-07-24 2021-03-09 韩国沃思可福有限公司 涂料组合物、其制备方法及包括其的隔离膜

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914377B (zh) 2016-06-28 2019-05-17 中国科学院广州能源研究所 一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用
CN106532055A (zh) * 2016-12-02 2017-03-22 宁波富理电池材料科技有限公司 一种锂离子电池粘结剂以及一种锂离子电池
CN106784842A (zh) * 2016-12-25 2017-05-31 常州市鼎日环保科技有限公司 一种锂电池水性环保粘结剂的制备方法
CN106866846B (zh) * 2017-03-09 2020-09-08 宣城研一新能源科技有限公司 一种锂离子电池用水性粘结剂及其制备方法和锂离子电池极片
CN106887594B (zh) * 2017-04-01 2019-12-03 陕西科技大学 疏水改性天然植物多糖水系粘结剂及其在锂离子电池负极中的应用
CN108987751A (zh) * 2017-05-31 2018-12-11 宁德时代新能源科技股份有限公司 一种粘结剂及其二次电池
CN107793967B (zh) * 2017-09-30 2019-09-06 中国科学院广州能源研究所 一种锂离子电池交联型水性粘结剂的制备方法
CN107828009B (zh) * 2017-10-29 2020-06-09 山东森久生物材料有限公司 一种含正极材料的导电树脂的制备方法
CN107987759A (zh) * 2017-12-08 2018-05-04 苏州爱康薄膜新材料有限公司 一种锂电池封装铝塑膜用耐腐蚀型胶黏剂
CN109935830B (zh) * 2017-12-15 2021-08-20 浙江中科立德新材料有限公司 一种基于改性明胶粘结剂的锂离子电池硅碳负极极片的制备方法
CN110061239B (zh) * 2018-03-20 2022-07-05 南方科技大学 木质素基粘结剂及其制备方法和锂离子电池
EP3544099A1 (en) * 2018-03-21 2019-09-25 Borregaard AS Dispersant and binder for lithium ion batteries based on modified lignin and carboxymethyl cellulose
CN108550772B (zh) * 2018-06-06 2021-10-22 天津东皋膜技术有限公司 聚合物锂盐粘合剂及锂离子电池隔膜涂层和制备方法应用
EP3937277A4 (en) * 2019-03-04 2023-01-04 Osaka University BINDER FOR ELECTROCHEMICAL DEVICE, ELECTRODE MIX, ELECTRODE, ELECTROCHEMICAL DEVICE AND SECONDARY BATTERY
CN111326738A (zh) * 2019-12-30 2020-06-23 江苏载驰科技股份有限公司 一种硅基负极材料用粘结剂及其制备方法
CN112467133B (zh) * 2020-03-30 2022-03-18 万向一二三股份公司 一种锂离子电池负极浆料及其制备方法
CN111554930B (zh) * 2020-05-08 2021-08-27 珠海冠宇电池股份有限公司 一种粘结剂及含有该粘结剂的锂离子电池
CN111668487B (zh) * 2020-06-08 2021-05-04 广州市乐基智能科技有限公司 一种改性黄原胶水性粘结剂及制备方法
US20220140346A1 (en) * 2020-10-30 2022-05-05 Electronics And Telecommunications Research Institute Cellulose derivative composition for secondary battery binder and method of preparing composition for secondary battery electrode comprising the same
CN113571709B (zh) * 2021-07-28 2022-07-19 苏州清陶新能源科技有限公司 一种粘结剂及其制备方法和应用
CN114085320B (zh) * 2021-12-06 2023-05-12 宁波大学 一种改性丁苯橡胶的制备方法
CN114335883A (zh) * 2021-12-06 2022-04-12 河北金力新能源科技股份有限公司 高热交换稳定性的锂离子电池隔膜及其制备方法
CN114447523B (zh) * 2021-12-23 2024-03-22 山东华夏神舟新材料有限公司 锂离子二次电池隔膜用聚偏二氟乙烯乳液及其制备方法
CN114539948B (zh) * 2022-02-21 2023-12-05 远景动力技术(江苏)有限公司 水性粘结剂及其应用
CN114243023B (zh) * 2022-02-25 2022-07-01 宁德时代新能源科技股份有限公司 正极浆料、制备正极极片的方法及正极极片、二次电池、电池模块、电池包和用电装置
CN114300687B (zh) * 2022-03-07 2022-05-06 北京壹金新能源科技有限公司 一种水系复合粘结剂、制备及应用
CN114976011B (zh) * 2022-06-21 2024-03-15 东莞市众尚源科技有限公司 一种锂离子电池负极浆料及负极片的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882057A (en) * 1972-09-14 1975-05-06 Mo Och Domsjoe Ab Adhesive composition containing as a binder a graft polymer on a water-soluble cellulose ether of an unsaturated carboxylic acid, alkyl acrylate and vinyl acetate; and process for preparing the same
US4322472A (en) * 1979-12-14 1982-03-30 Alco Standard Corporation Adhesive based on a starch and acrylamide graft copolymer
CN102031078A (zh) * 2010-12-01 2011-04-27 江南大学 一种淀粉基木材胶粘剂及其制备方法和应用
CN103788905A (zh) * 2014-03-03 2014-05-14 贵州蓝图新材料有限公司 环保型木材用淀粉胶黏剂及其制备方法
CN105131875A (zh) * 2015-08-26 2015-12-09 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂、制备方法及其用途
CN105504169A (zh) * 2016-01-07 2016-04-20 上海交通大学 一种用于锂离子电池的粘结剂
CN105914377A (zh) * 2016-06-28 2016-08-31 中国科学院广州能源研究所 一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101260282B (zh) * 2008-03-18 2010-08-11 成都中科来方能源科技有限公司 锂离子电池用水性粘合剂、制备方法及锂离子电池正极片
CN101457131B (zh) * 2009-01-12 2010-07-28 成都茵地乐电源科技有限公司 一种锂离子电池电极材料用水性粘合剂及其制备方法
CN104017520B (zh) * 2014-05-27 2016-06-01 中国科学院广州能源研究所 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
CN104448158B (zh) * 2014-12-05 2017-08-04 北京蓝海黑石科技有限公司 一种锂电池用水性粘合剂的制备方法
CN105261759A (zh) 2015-09-22 2016-01-20 深圳市贝特瑞新能源材料股份有限公司 一种锂电池用水性粘结剂及其制备方法、锂电池极片
CN105576247A (zh) 2015-12-14 2016-05-11 浙江中科立德新材料有限公司 改性的海洋多糖高分子锂离子电池粘结剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882057A (en) * 1972-09-14 1975-05-06 Mo Och Domsjoe Ab Adhesive composition containing as a binder a graft polymer on a water-soluble cellulose ether of an unsaturated carboxylic acid, alkyl acrylate and vinyl acetate; and process for preparing the same
US4322472A (en) * 1979-12-14 1982-03-30 Alco Standard Corporation Adhesive based on a starch and acrylamide graft copolymer
CN102031078A (zh) * 2010-12-01 2011-04-27 江南大学 一种淀粉基木材胶粘剂及其制备方法和应用
CN103788905A (zh) * 2014-03-03 2014-05-14 贵州蓝图新材料有限公司 环保型木材用淀粉胶黏剂及其制备方法
CN105131875A (zh) * 2015-08-26 2015-12-09 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂、制备方法及其用途
CN105504169A (zh) * 2016-01-07 2016-04-20 上海交通大学 一种用于锂离子电池的粘结剂
CN105914377A (zh) * 2016-06-28 2016-08-31 中国科学院广州能源研究所 一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469789A (zh) * 2018-07-24 2021-03-09 韩国沃思可福有限公司 涂料组合物、其制备方法及包括其的隔离膜
EP3812432A4 (en) * 2018-07-24 2022-05-18 W-Scope Korea Co., Ltd. COATING COMPOSITION, PROCESS FOR THEIR PREPARATION AND SEPARATOR CONTAINING THEM

Also Published As

Publication number Publication date
US10882990B2 (en) 2021-01-05
US20190225792A1 (en) 2019-07-25
CN105914377A (zh) 2016-08-31
CN105914377B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2018000579A1 (zh) 多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用
CN111139002B (zh) 锂离子电池水溶型粘接剂及其制备方法、电极极片及电池
WO2019061675A1 (zh) 结合涂布烘干工艺的锂离子电池交联型水性粘结剂的制备方法
WO2018000578A1 (zh) 多元功能化改性聚乙烯醇基锂离子电池水性粘结剂及在电化学储能器件中的应用
WO2019120140A1 (zh) 一种水性粘结剂及二次电池
WO2018161822A1 (zh) 一种锂离子电池用水性粘结剂及其制备方法和锂离子电池极片
WO2019242318A1 (zh) 一种水性粘结剂及其制备方法和用途
WO2023083148A1 (zh) 一种锂离子电池
CN107710470B (zh) 锂离子二次电池的负极用粘合剂、负极用浆料组合物及负极以及锂离子二次电池
JP2020017504A (ja) リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
CN112279982B (zh) 一种硅基负极用粘结剂及含有该粘结剂的锂离子电池
JP2016042408A (ja) リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー
WO2023072106A1 (zh) 一种粘结剂及含有该粘结剂的锂离子电池
CN113659145A (zh) 一种正极浆料及其制备方法、锂离子电池及其制备方法
JP2018006333A (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池
WO2023005520A1 (zh) 一种粘结剂及其制备方法和应用
KR20140095804A (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차 전지
CN109728303B (zh) 一种适用于锂离子电池硅基负极材料的水性导电粘结剂及其制备方法
CN113812026A (zh) 全固体二次电池用粘结剂、全固体二次电池用粘结剂组合物、全固体二次电池用浆料、全固体二次电池用固体电解质片材及其制造方法、以及全固体二次电池及其制造方法
JP7031278B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
CN110492101B (zh) 一种锂离子电池负极粘结剂及其制备方法和应用
CN114316119B (zh) 一种粘结剂及包括该粘结剂的电池
CN111916740B (zh) 一种聚不饱和羧酸基可控交联型粘结剂及含有该粘结剂的锂离子电池
CN112349907B (zh) 一种复合粘结剂材料及其制备方法和用途
CN114284497A (zh) 一种水性自愈合型粘合剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906976

Country of ref document: EP

Kind code of ref document: A1