WO2018000404A1 - 一种制备牛磺酸的方法 - Google Patents

一种制备牛磺酸的方法 Download PDF

Info

Publication number
WO2018000404A1
WO2018000404A1 PCT/CN2016/088077 CN2016088077W WO2018000404A1 WO 2018000404 A1 WO2018000404 A1 WO 2018000404A1 CN 2016088077 W CN2016088077 W CN 2016088077W WO 2018000404 A1 WO2018000404 A1 WO 2018000404A1
Authority
WO
WIPO (PCT)
Prior art keywords
taurine
solution
taurate
liquid phase
isethionate
Prior art date
Application number
PCT/CN2016/088077
Other languages
English (en)
French (fr)
Inventor
陈勇
方锡权
李少波
蒋小军
Original Assignee
潜江永安药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潜江永安药业股份有限公司 filed Critical 潜江永安药业股份有限公司
Priority to US15/315,596 priority Critical patent/US20180208553A1/en
Priority to JP2016564627A priority patent/JP6931284B2/ja
Priority to EP16820142.4A priority patent/EP3287439A4/en
Publication of WO2018000404A1 publication Critical patent/WO2018000404A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/08Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/13Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/14Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton

Definitions

  • the present application relates to a method for preparing taurine, and belongs to the field of pharmaceutical synthesis.
  • Taurine is a non-protein amino acid. It has anti-inflammatory, antipyretic, analgesic, anticonvulsant and blood pressure lowering effects. It has a good effect on infant brain development, nerve conduction, visual function improvement and calcium absorption. . Taurine has a series of unique functions on the cardiovascular system, which can enhance physical fitness and relieve fatigue. Therefore, taurine is widely used in medical, food and health fields.
  • Taurine is prepared by biological extraction and chemical synthesis.
  • the former is rarely used due to raw materials and cost; currently used in industrial production mainly includes ethanolamine esterification method and ethylene oxide method.
  • ethylene oxide method has low cost and good product quality.
  • the environmental pollution is small, can be continuous and so on, is a process with obvious competitive advantages.
  • the ethylene oxide process is an emerging development process route whose reaction principle is as follows:
  • the ethylene oxide process has some drawbacks: 1 A large amount of sulfuric acid and liquid alkali are used in the reaction. Sulfuric acid and alkali will eventually be converted into sodium sulfate. With the accumulation of sodium for a long time, sodium sulfate will take away some of the taurine, causing material loss. At the same time, sodium sulfate will always be present in the mother liquor, which makes the crude product of the crude taurine centrifuged. In the residual sulfate, it is easy to cause the product sulfate to exceed the standard, and the mother liquor contains sulfate, which makes it easy to block the cooler, heater, synthesis tower and high pressure pipeline under the high temperature and high pressure synthesis conditions, resulting in the production not working properly.
  • the purpose of the application is to provide a method for preparing taurine, wherein the pH of the taurate solution is adjusted by using isethionic acid sulfonic acid, thereby avoiding the problem of adjusting the pH by using sulfuric acid in the conventional process, by recycling the sulphur
  • the cationic group in the acid salt does not introduce new raw materials or reagents, which greatly simplifies the production process, improves the utilization rate of raw materials and product yield, and greatly reduces the production cost while reducing the use of hazardous chemicals.
  • the method for preparing taurine comprising the steps of:
  • the taurinate is at least one selected from the group consisting of an ammonium salt of taurine, an alkali metal salt of taurine, and an alkaline earth metal salt of taurine.
  • the type of the isethionate in the step (b) corresponds to the taurate salt, and is an ammonium salt of isethionic acid, an alkali metal salt of isethionic acid, and an alkaline earth metal of isethionate. At least one of the salts.
  • the taurate is sodium taurate and the isethionate is sodium isethionate.
  • the taurate solution in step (a) is derived from the recycling of the taurate salt dissolved in water and/or the taurate solution obtained in step (b).
  • the mass percentage concentration of the taurate solution in step (a) is from 35% to 60%. Further preferably, the mass percentage concentration of the taurate solution in the step (a) is from 40% to 50%.
  • step (a) is the mixing of the isethionate and the taurate solution to a value in the pH of the system of 5.5 to 9.0.
  • the lower limit of the pH range in step (a) is selected from the group consisting of 5.5, 6.0, 6.5, 7.0, 7.5 or 7.8, and the upper limit is selected from 9.0, 8.5 or 8.0.
  • step (a) A person skilled in the art can select the temperature at which the isethionate and the taurate solution are mixed in the step (a) in the range of 20 to 80 ° C according to actual needs. In general, the mixing of the isethionate and the taurate solution in step (a) is carried out at room temperature.
  • the temperature of the system is from 0 to 50 °C. Further preferably, when the liquid phase and the solid phase in the system are separated in the step (b), the temperature of the system is 10 to 20 °C.
  • the mass percentage of taurine in the crude taurine in step (b) is ⁇ 80%.
  • the step (c) is to add ammonia water to the liquid phase obtained in the step (b) at a temperature of 200 ° C to 280 ° C, The reaction was carried out for 0.5 to 2 hours under the conditions of a pressure of 10 MPa to 21 MPa to obtain a taurate solution. More preferably, the reaction temperature in the step (c) is from 250 ° C to 260 ° C.
  • the reaction pressure in the step c) is from 10 MPa to 15 MPa.
  • reaction pressure in the step c) is from 15 MPa to 21 MPa.
  • the volume percentage of the ammonia water is 18 to 30%.
  • the method for preparing taurine is a batch type.
  • the separation in step (b) is by suction filtration, filtration or intermittent centrifugation.
  • the method of preparing taurine is continuous.
  • the separation mode in the step (b) is continuous liquid solid phase separation, including but not limited to continuous sedimentation separation, hydrocyclone separation, continuous filtration separation, and continuous centrifugal separation.
  • the method for preparing taurine provided by the present application does not introduce new raw materials or reagents, conforms to the chemical atomic economy, and at the same time solves some processes, quality and environmental protection problems in the original process, and greatly reduces production.
  • the cost provides a strong support for the further development of the company.
  • the method for preparing taurine greatly simplifies the production process, avoids the environmental pollution problem caused by the discharge of the taurine mother liquor, which is not well utilized and is not well utilized, and reduces The steam required for the mother liquor to be concentrated multiple times improves the raw material utilization rate and product yield.
  • the method for preparing taurine provided by the present application can adopt a continuous production mode, which is advantageous for large-scale industrial production.
  • FIG. 1 is a schematic diagram of a process flow of an embodiment of the production of taurine in the present application.
  • FIG. 2 is a schematic view showing the process flow of still another embodiment of the production of taurine in the present application.
  • taurine was measured on a LC10AT type high performance liquid chromatography (HPLC) manufactured by Shimadzu Corporation; sodium isethionate was determined on an ICS900 type ion chromatograph produced by Dai An.
  • HPLC high performance liquid chromatography
  • FIG. 1 is a schematic diagram of a process flow of an embodiment of the production of taurine in the present application, which is a process for continuously producing taurine.
  • Both reactor 1 and reactor 2 are continuous stirred reactors (abbreviated as CSTR).
  • CSTR continuous stirred reactors
  • the raw material isethionate and taurate solution is added to the reactor 1, and the pH of the two raw materials is added to a value between 5.0 and 9.5.
  • the solid-liquid phase material at the outlet of the reactor 1 enters the filter, and the solid phase obtained by filtration is crude taurine, which enters the reactor 2 through the liquid phase of the filter (hydroxyethyl sulfonate solution).
  • the reactor 2 is a pressurized reactor, and the reaction is carried out in the reactor 2 through a solution of the isethionate of the filter and ammonia water, and the obtained taurate solution is recycled back to the reactor 1.
  • Reactor 1 and Reactor 2 are continuous stirred reactors or batched reactors.
  • the raw material isethionate and taurate solution is added to the reactor 1, and the pH of the two raw materials is added to a value between 5.0 and 9.5.
  • the reactor 1 is a continuously stirred reactor, the reactor 1 is continuously fed and continuously discharged into the filter for continuous filtration; when the reactor 1 is a batch reactor, after the reaction is completed, the solid in the reactor 1
  • the liquid phase materials were all taken out and filtered intermittently using a filter.
  • the solid phase obtained by filtration was crude taurine which was passed through the liquid phase of the filter (hydroxyethyl sulfonate solution) into the reactor 2.
  • the reactor 2 is a pressurized reactor, and a taurate solution obtained by reacting the isethionate solution of the filter with ammonia water in the reactor 2.
  • the obtained taurate solution can be used as a product or can be reacted again as a raw material of the reactor 1.
  • Example 2 Take 500 mL of the sodium taurate solution obtained in Example 1 in a reaction flask, slowly add isohydroxyethyl sulfonic acid to pH 7.5 with stirring at room temperature, and cool the system temperature to 15 ° C to obtain 229 g of crude taurine and filtrate. Transfer into the reaction flask, and then add 1700g of ammonia water with a concentration of 25.8% to the filtrate, heat it to 253 ° C in a high pressure reactor, pressure 10.5MPa, react for 1 hour, cool down the discharge, evaporate ammonia, and obtain 615g taurine Sodium solution.
  • the content of taurine was determined by HPLC, and the content of sodium isethionate was determined by ion chromatography; the results are shown in Table 2, and the percentages in the table are all by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请提供一种制备牛磺酸的方法,其特征在于,包括以下步骤:(a)将羟乙基磺酸与牛磺酸盐溶液混合至体系pH值达到5.0~9.5中的某一值;(b)分离体系中的液相和固相;其中,所得固相为牛磺酸粗品,所得液相为羟乙基磺酸盐溶液;(c)将步骤(b)所得液相加氨水反应,得到含有牛磺酸盐溶液。所述制备牛磺酸的方法避免了传统工艺中采用硫酸调节pH带来的问题,通过循环利用牛磺酸盐中的阳离子基,不引入新的原料或试剂,在减少危险化学品原料使用的同时,大大简化了生产工艺,提高了原料利用率和产品收率,大幅降低了生产成本。

Description

一种制备牛磺酸的方法 技术领域
本申请涉及一种制备牛磺酸的方法,属于药物合成领域。
背景技术
牛磺酸是一种非蛋白质氨基酸,作为药物它具有消炎、解热、镇痛、抗惊厥和降低血压等作用,对婴幼儿大脑发育、神经传导、视觉机能的完善以及钙的吸收有良好作用。牛磺酸对心血管系统有一系列独特功能,能增强体质、解除疲劳,因此牛磺酸逐渐在医疗、食品保健等领域被广泛使用。
牛磺酸制备有生物提取法和化学合成法。前者受原料和成本影响,已很少采用;目前用于工业生产的主要有乙醇胺酯化法和环氧乙烷法,环氧乙烷法与乙醇胺酯化法相比,具有成本低,产品质量好,环境污染小,可连续化等优点,是竞争优势明显的工艺。
环氧乙烷法是一种新兴开发的工艺路线,其反应原理如下:
NaOH+SO2→NaHSO3
NaHSO3+CH2CH2O→HOCH2CH2SO3Na
HOCH2CH2SO3Na+NH3→H2NCH2CH2SO3Na+H2O
2H2NCH2CH2SO3Na+H2SO4→2H2NCH2CH2SO3H+Na2SO4
环氧乙烷法存在一些弊端:①反应中大量使用硫酸与液碱。硫酸和碱最终会转化成硫酸钠,随着长时间的积累,硫酸钠会带走部分牛磺酸,造成物料损失;同时硫酸钠始终会存在于母液中,使得离心分离牛磺酸粗品时 粗品中残余硫酸盐,最终很容易造成产品硫酸盐超标,而且母液中因含硫酸盐使得在高温高压的合成条件下,极易堵塞冷却器、加热器、合成塔和高压管道,造成生产无法正常进行;与此同时大量的硫酸盐固废增加劳动强度,且不易处理。②因中和后存在硫酸钠,使得一次提取率有限制,从而在后续提取过程中,牛磺酸(H2NCH2CH2SO3H)要经多次提取,会产生大量废母液,不仅造成原料浪费,收率低下,而且对环境造成污染,同时母液浓缩需消耗大量蒸汽,使得能耗较高。③大量固废硫酸钠产生,对环保造成很大压力。
因此,急需寻求一个有效的方法解决目前牛磺酸生成工艺中存在的问题。
发明内容
本申请的目的在于提供一种制备牛磺酸的方法,采用羟乙基磺酸调节牛磺酸盐溶液的pH值,避免了传统工艺中采用硫酸调节pH带来的问题,通过循环利用牛磺酸盐中的阳离子基,不引入新的原料或试剂,在减少危险化学品原料使用的同时,大大简化了生产工艺,提高了原料利用率和产品收率,大幅降低了生产成本。
所述制备牛磺酸的方法,其特征在于,包括以下步骤:
(a)将羟乙基磺酸与牛磺酸盐溶液混合至体系pH值达到5.0~9.5中的某一值;
(b)分离体系中的液相和固相;其中,所得固相为牛磺酸粗品,所得液相为羟乙基磺酸盐溶液;
(c)将步骤(b)所得液相加氨水反应,得到牛磺酸盐溶液。
优选地,所述牛磺酸盐选自牛磺酸的铵盐、牛磺酸的碱金属盐、牛磺酸的碱土金属盐中的至少一种。步骤(b)中所述羟乙基磺酸盐的类型与牛磺酸盐对应,是羟乙基磺酸的铵盐、羟乙基磺酸的碱金属盐、羟乙基磺酸的碱土金属盐中的至少一种。进一步优选地,所述牛磺酸盐是牛磺酸钠,所述羟乙基磺酸盐是羟乙基磺酸钠。
优选地,步骤(a)中所述牛磺酸盐溶液来自牛磺酸盐溶解于水和/或步骤(b)所得牛磺酸盐溶液的循环使用。
优选地,步骤(a)中牛磺酸盐溶液的质量百分比浓度为35%~60%。进一步优选地,步骤(a)中牛磺酸盐溶液的质量百分比浓度为40%~50%。
优选地,步骤(a)是将羟乙基磺酸与牛磺酸盐溶液混合至体系pH值达到5.5~9.0中的某一值。进一步优选地,步骤(a)中pH值范围下限选自5.5、6.0、6.5、7.0、7.5或7.8,上限选自9.0、8.5或8.0。
本领域技术人员可根据实际需要,在20~80℃的范围内选择步骤(a)中羟乙基磺酸与牛磺酸盐溶液混合的温度。一般情况下,步骤(a)中羟乙基磺酸与牛磺酸盐溶液混合在室温下进行。
优选地,步骤(b)分离体系中的液相和固相时,体系的温度为0~50℃。进一步优选地,步骤(b)分离体系中的液相和固相时,体系的温度为10~20℃。
步骤(b)中牛磺酸粗品中牛磺酸的质量百分比≥80%。
本领域技术人员可以根据实际需要,选择步骤(b)中的分离方式。
优选地,步骤(c)是向步骤(b)所得液相加入氨水,在温度200℃~280℃、 压力10MPa~21MPa的条件下反应0.5~2小时,得到牛磺酸盐溶液。更优选地,步骤(c)中反应温度为250℃~260℃。
作为一种实施方式,步骤c)中的反应压力为10MPa~15MPa。
作为一种实施方式,步骤c)中的反应压力为15MPa~21MPa。
优选地,向步骤(b)所得液相加入氨水所得混合液中,氨水所占的体积百分比为18~30%。
作为本申请的一种实施方式,所述制备牛磺酸的方法为间歇式。步骤(b)中的分离方式为抽滤、过滤或间歇离心分离。
作为本申请的一种实施方式,所述制备牛磺酸的方法为连续式。步骤(b)中的分离方式为连续液固相分离,包括但不限于连续沉降分离、水力旋流器分离、连续过滤分离、连续离心分离。
本申请的有益效果包括但不限于:
(1)本申请所提供的制备牛磺酸的方法,采用羟乙基磺酸调节牛磺酸盐溶液的pH值,避免了传统工艺中采用硫酸调节pH带来的问题,在减少危险化学品原料使用的同时,避免了大量固废盐硫酸钠的产生,彻底解决了传统工艺中牛磺酸产品质量中硫酸盐超标问题。
(2)本申请所提供的制备牛磺酸的方法,不引入新的原料或试剂,符合化工原子经济,同时又解决了原有工艺中的一些工艺、质量及环保问题,并大幅降低了生产成本,对企业的进一步发展提供了强有力的支撑。
(3)本申请所提供的制备牛磺酸的方法,大大简化了生产工艺,避免了牛磺酸母液多次浓缩不能很好利用而排放带来的环境污染问题,减少了 母液多次浓缩所需要的蒸汽,提高了原料利用率和产品收率。
(4)本申请所提供的制备牛磺酸的方法,可以采用连续生产方式,有利于大规模的工业化生产。
附图说明
图1是本申请生产牛磺酸的一种实施方式的工艺流程示意图。
图2是本申请生产牛磺酸的又一种实施方式的工艺流程示意图。
具体实施方式
下面结合实施例和附图详述本申请,但本申请并不局限于这些实施例。
实施例中,如无特别说明,原料均来自商业购买。
实施例中,牛磺酸在岛津公司生产的LC10AT型高效液相色谱(HPLC)上测定;羟乙基磺酸钠在戴安公司生产的ICS900型离子色谱上测定。
图1是本申请生产牛磺酸的一种实施方式的工艺流程示意图,为连续生产牛磺酸的工艺流程。反应器1和反应器2均为连续搅拌反应器(简写为CSTR)。原料羟乙基磺酸和牛磺酸盐溶液加入到反应器1中,通过两种原料的加入量条件pH值在5.0~9.5之间的某一值。反应器1出口的固液相物料进入过滤器,过滤得到的固相为牛磺酸粗品,通过过滤器的液相(羟乙基磺酸盐溶液)进入反应器2。反应器2为加压反应器,通过过滤器的羟乙基磺酸盐溶液和氨水在反应器2中进行反应,得到的牛磺酸盐溶液循环回反应器1。
图2是本申请生产牛磺酸的又一种实施方式的工艺流程示意图,为连续或间歇生产牛磺酸的工艺流程。反应器1和反应器2为连续搅拌反应器或间歇釜式反应器。原料羟乙基磺酸和牛磺酸盐溶液加入到反应器1中,通过两种原料的加入量条件pH值在5.0~9.5之间的某一值。当反应器1是连续搅拌反应器时,反应器1连续进料并连续出料物料进入过滤器连续过滤;当反应器1是间歇釜式反应器时,反应完全后,反应器1中的固液相物料全部取出,采用过滤器间歇过滤。过滤得到的固相为牛磺酸粗品,通过过滤器的液相(羟乙基磺酸盐溶液)进入反应器2。反应器2为加压反应器,通过过滤器的羟乙基磺酸盐溶液和氨水在反应器2中进行反应,得到的牛磺酸盐溶液。所得的牛磺酸盐溶液可以作为产品,也可以作为反应器1的原料再次进行反应。
实施例1
取500mL、质量百分比为46%的牛磺酸钠水溶液于反应瓶中,室温搅拌下缓慢加入羟乙基磺酸至pH5.5停止,将体系温度降至15℃过滤,得到216g牛磺酸粗品,滤液移入反应瓶中,然后将此滤液补加1710g浓度为26.5%的氨水,在高压反应釜中加热至250℃,压力10MPa,反应1小时,降温出料,蒸发赶氨,得697g牛磺酸钠溶液。牛磺酸含量由HPLC测定,羟乙基磺酸钠含量由离子色谱测定;结果如表1所示,表中百分含量均为质量百分比。
表1
Figure PCTCN2016088077-appb-000001
实施例2
取500mL、实施例1所得牛磺酸钠溶液于反应瓶中,室温搅拌下缓慢加入羟乙基磺酸至pH7.5停止,将体系温度降至15℃过滤,得到229g牛磺酸粗品,滤液移入反应瓶中,然后将此滤液补加1700g浓度为25.8%的氨水,在高压反应釜中加热至253℃,压力10.5MPa,反应1小时,降温出料,蒸发赶氨,得615g牛磺酸钠溶液。牛磺酸含量由HPLC测定,羟乙基磺酸钠含量由离子色谱测定;结果如表2所示,表中百分含量均为质量百分比。
表2
Figure PCTCN2016088077-appb-000002
实施例3
取500mL、质量百分比为46%牛磺酸钠溶液于反应瓶中,室温搅拌下缓 慢加入羟乙基磺酸至pH8.5停止,将体系温度降至15℃过滤,得到223g牛磺酸粗品,滤液移入反应瓶中,然后将此滤液补加1690g浓度为26.0%的氨水,在高压反应釜中加热至256℃,压力10.5MPa,反应1小时,降温出料,蒸发赶氨,得580g牛磺酸钠溶液。牛磺酸含量由HPLC测定,羟乙基磺酸钠含量由离子色谱测定;结果如表3所示,表中百分含量均为质量百分比。
表3
Figure PCTCN2016088077-appb-000003
实施例4
取500ml、质量百分比为46%牛磺酸钠溶液于反应瓶中,室温搅拌下缓慢加入羟乙基磺酸至pH9.0停止,降至15℃过滤,得到201g牛磺酸粗品,滤液移入反应瓶中,然后将此滤液补加1680g浓度为25.9%的氨水,在高压反应釜中加热至258℃,压力11MPa,反应1小时,降温出料,蒸发赶氨,得585g牛磺酸钠溶液。牛磺酸含量由HPLC测定,羟乙基磺酸钠含量由离子色谱测定;结果如表4所示,表中百分含量均为质量百分比。
表4
Figure PCTCN2016088077-appb-000004
Figure PCTCN2016088077-appb-000005
实施例5
取实例2中的600g、质量百分比为46.35%牛磺酸钠溶液于反应瓶中,室温搅拌下缓慢加入羟乙基磺酸至pH7.8停止,降至15℃过滤,得到221g牛磺酸粗品,滤液移入反应瓶中,然后将此滤液补加1700g浓度为25.9%的氨水,在高压反应釜中加热至258℃,压力11MPa,反应1.5小时,降温出料,蒸发赶氨,得605g牛磺酸钠溶液。牛磺酸含量由HPLC测定,羟乙基磺酸钠含量由离子色谱测定;结果如表5所示,表中百分含量均为质量百分比。
表5
Figure PCTCN2016088077-appb-000006
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的 技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种制备牛磺酸的方法,其特征在于,包括以下步骤:
    (a)将羟乙基磺酸与牛磺酸盐溶液混合至体系pH值达到5.0~9.5中的某一值;
    (b)分离体系中的液相和固相;其中,所得固相为牛磺酸粗品,所得液相为羟乙基磺酸盐溶液;
    (c)将步骤(b)所得液相加氨水反应,得到牛磺酸盐溶液。
  2. 根据权利要求1所述的方法,其特征在于,所述牛磺酸盐选自牛磺酸的铵盐、牛磺酸的碱金属盐、牛磺酸的碱土金属盐中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤(a)中所述牛磺酸盐溶液来自牛磺酸盐溶解于水和/或步骤(b)所得牛磺酸盐溶液的循环使用。
  4. 根据权利要求1所述的方法,其特征在于,步骤(a)中牛磺酸盐溶液的质量百分比浓度为35%~60%。
  5. 根据权利要求1所述的方法,其特征在于,步骤(a)中牛磺酸盐溶液的质量百分比浓度为40%~50%。
  6. 根据权利要求1所述的方法,其特征在于,步骤(a)是将羟乙基磺酸与牛磺酸盐溶液混合至体系pH值达到5.5~9.0中的某一值。
  7. 根据权利要求1所述的方法,其特征在于,步骤(b)分离体系中的液相和固相时,体系的温度为0~50℃。
  8. 根据权利要求1所述的方法,其特征在于,步骤(b)分离体系中的 液相和固相时,体系的温度为10~20℃。
  9. 根据权利要求1所述的方法,其特征在于,所述制备牛磺酸的方法为间歇式。
  10. 根据权利要求1所述的方法,其特征在于,所述制备牛磺酸的方法为连续式。
PCT/CN2016/088077 2016-06-28 2016-07-01 一种制备牛磺酸的方法 WO2018000404A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/315,596 US20180208553A1 (en) 2016-06-28 2016-07-01 A process for producing taurine
JP2016564627A JP6931284B2 (ja) 2016-06-28 2016-07-01 タウリンの製造方法
EP16820142.4A EP3287439A4 (en) 2016-06-28 2016-07-01 Method for preparing taurine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610489140.9 2016-06-28
CN201610489140.9A CN106008280B (zh) 2016-06-28 2016-06-28 一种制备牛磺酸的方法

Publications (1)

Publication Number Publication Date
WO2018000404A1 true WO2018000404A1 (zh) 2018-01-04

Family

ID=57085430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088077 WO2018000404A1 (zh) 2016-06-28 2016-07-01 一种制备牛磺酸的方法

Country Status (5)

Country Link
US (1) US20180208553A1 (zh)
EP (1) EP3287439A4 (zh)
JP (1) JP6931284B2 (zh)
CN (1) CN106008280B (zh)
WO (1) WO2018000404A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145359B2 (en) 2013-12-30 2015-09-29 Songzhou Hu Cyclic process for the production of taurine from monoethanolamine
USRE48369E1 (en) 2014-04-18 2020-12-29 Vitaworks Ip, Llc Process for producing taurine
US9428450B2 (en) 2014-04-18 2016-08-30 Songzhou Hu Process for producing taurine from alkali taurinates
US9573890B2 (en) 2014-04-18 2017-02-21 Vitaworks Ip, Llc Process for producing taurine
US20210179551A1 (en) 2014-04-18 2021-06-17 Vitaworks Ip, Llc Process for producing alkali taurinate
USRE48392E1 (en) 2014-04-18 2021-01-12 Vitaworks Ip, Llc Cyclic process for the production of taurine from alkali isethionate
CN106008280B (zh) * 2016-06-28 2018-01-09 潜江永安药业股份有限公司 一种制备牛磺酸的方法
US10112894B2 (en) 2016-09-16 2018-10-30 Vitaworks Ip, Llc Cyclic process for producing taurine
US9745258B1 (en) 2016-09-16 2017-08-29 Vitaworks Ip, Llc Cyclic process for producing taurine
US9815778B1 (en) 2016-09-16 2017-11-14 Vitaworks Ip, Llc Cyclic process for producing taurine
US10683264B2 (en) 2016-09-16 2020-06-16 Vitaworks Ip, Llc Process for producing taurine
US11578036B2 (en) 2020-09-09 2023-02-14 Vitaworks Ip, Llc Cyclic process for producing taurine from monoethanolamine
US11254639B1 (en) 2020-09-09 2022-02-22 Vitaworks Ip, Llc Cyclic process for producing taurine from monoethanolamine
US11161808B1 (en) 2020-09-09 2021-11-02 Vitaworks Ip, Llc Cyclic process for producing taurine from monoethanolamine
CN113087645B (zh) * 2021-03-25 2022-10-28 湖北远大生命科学与技术有限责任公司 制备牛磺酸的系统和方法
CN114011367B (zh) * 2021-11-26 2023-07-11 王代龙 一种2-氨基乙磺酸高效合成反应设备及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382170A (zh) * 2012-10-25 2013-11-06 潜江永安药业股份有限公司 一种牛磺酸的制备方法
CN104803890A (zh) * 2014-01-29 2015-07-29 胡松洲 乙醇制备牛磺酸的生产过程
US20150299113A1 (en) * 2014-04-18 2015-10-22 Songzhou Hu Cyclic process for the production of taurine from alkali isethionate and alkali vinyl sulfonate
CN106008280A (zh) * 2016-06-28 2016-10-12 潜江永安药业股份有限公司 一种制备牛磺酸的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508659A (zh) * 2008-02-14 2009-08-19 王代龙 一种制备牛磺酸的方法
US8609890B1 (en) * 2011-09-06 2013-12-17 Songzhou Hu Cyclic process for the production of taurine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382170A (zh) * 2012-10-25 2013-11-06 潜江永安药业股份有限公司 一种牛磺酸的制备方法
CN104803890A (zh) * 2014-01-29 2015-07-29 胡松洲 乙醇制备牛磺酸的生产过程
US20150299113A1 (en) * 2014-04-18 2015-10-22 Songzhou Hu Cyclic process for the production of taurine from alkali isethionate and alkali vinyl sulfonate
CN106008280A (zh) * 2016-06-28 2016-10-12 潜江永安药业股份有限公司 一种制备牛磺酸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287439A4 *

Also Published As

Publication number Publication date
JP2019513688A (ja) 2019-05-30
EP3287439A1 (en) 2018-02-28
CN106008280A (zh) 2016-10-12
JP6931284B2 (ja) 2021-09-01
US20180208553A1 (en) 2018-07-26
EP3287439A4 (en) 2018-03-07
CN106008280B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2018000404A1 (zh) 一种制备牛磺酸的方法
JP5850550B2 (ja) タウリンの製造方法
JP2019513688A5 (zh)
CN105693559B (zh) 一种制备牛磺酸及联产碳酸氢盐的方法
CN108314633A (zh) 由羟乙基磺酸碱金属盐和乙烯基磺酸碱金属盐循环制备牛磺酸的方法
CN110452136A (zh) 一种制备牛磺酸的方法
CN104803890A (zh) 乙醇制备牛磺酸的生产过程
CN101492399B (zh) 一种甲基丙烯磺酸钠的制备方法
CN1990460B (zh) 甘氨酸结晶母液的综合处理
CN105294907A (zh) 一种强酸性苯乙烯系大孔阳离子交换树脂的制备方法
CN102442888B (zh) 1,5 二羟基萘生产方法
CN104119243B (zh) 一种亚氨基二乙酸的节能清洁生产方法
CN111004126A (zh) 一种对硝基苯酚钠盐的制备方法
CN102101683A (zh) 碘化钾的制备方法
WO2022127153A1 (zh) 一种釜式连续化生产甘氨酸的方法
CN104628609A (zh) 一种牛磺酸的分离提取方法
CN102964270B (zh) 一种亚硫酸钠还原重氮盐合成肼的方法
CN102633771A (zh) 一种制备1,3-丙磺酸内酯的方法
CN104262208B (zh) 一种联产邻磺酸钠苯甲醛和邻氯苯甲酸的方法
CN109534369A (zh) 一种膜集成制备氯化锂设备及其方法
CN205616574U (zh) 一种以焦化脱硫废液提盐萃取滤渣为原料提纯硫代硫酸钠的装置
CN104860852B (zh) 一种制备1-氨基-8-萘酚-4,6-二磺酸的系统
CN105175294B (zh) 一种以氯苯为原料合成对氨基苯磺酰胺的方法
CN108084086B (zh) 吡啶光氯化母液的后处理方法
CN209583655U (zh) 一种膜集成制备氯化锂设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016564627

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315596

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016820142

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE