WO2022127153A1 - 一种釜式连续化生产甘氨酸的方法 - Google Patents
一种釜式连续化生产甘氨酸的方法 Download PDFInfo
- Publication number
- WO2022127153A1 WO2022127153A1 PCT/CN2021/112637 CN2021112637W WO2022127153A1 WO 2022127153 A1 WO2022127153 A1 WO 2022127153A1 CN 2021112637 W CN2021112637 W CN 2021112637W WO 2022127153 A1 WO2022127153 A1 WO 2022127153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- group
- hydantoin
- kettles
- reaction kettles
- Prior art date
Links
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 58
- 239000004471 Glycine Substances 0.000 title claims abstract description 42
- 238000010924 continuous production Methods 0.000 title claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 151
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229940091173 hydantoin Drugs 0.000 claims abstract description 68
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 65
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000001099 ammonium carbonate Substances 0.000 claims abstract description 47
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- LTYRAPJYLUPLCI-UHFFFAOYSA-N glycolonitrile Chemical compound OCC#N LTYRAPJYLUPLCI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 230000007062 hydrolysis Effects 0.000 claims abstract description 32
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 32
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims abstract description 24
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 24
- 235000012501 ammonium carbonate Nutrition 0.000 claims abstract description 23
- 238000002425 crystallisation Methods 0.000 claims abstract description 12
- 230000008025 crystallization Effects 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 11
- 238000000746 purification Methods 0.000 claims abstract description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 36
- 229910021529 ammonia Inorganic materials 0.000 claims description 25
- 239000002002 slurry Substances 0.000 claims description 25
- 239000001569 carbon dioxide Substances 0.000 claims description 18
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 18
- 230000009615 deamination Effects 0.000 claims description 13
- 238000006481 deamination reaction Methods 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 7
- 239000004202 carbamide Substances 0.000 claims description 7
- 239000012452 mother liquor Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 4
- JMANVNJQNLATNU-UHFFFAOYSA-N glycolonitrile Natural products N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 abstract description 3
- 229960002449 glycine Drugs 0.000 description 38
- 239000000047 product Substances 0.000 description 26
- 239000012295 chemical reaction liquid Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 10
- 238000005119 centrifugation Methods 0.000 description 7
- 238000005265 energy consumption Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 229910001385 heavy metal Inorganic materials 0.000 description 7
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 7
- 239000003245 coal Substances 0.000 description 6
- 238000000921 elemental analysis Methods 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 238000004811 liquid chromatography Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000006837 decompression Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 4
- 229940106681 chloroacetic acid Drugs 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 2
- GFZMFCVDDFHSJK-UHFFFAOYSA-N 2-(methylideneamino)acetonitrile Chemical compound C=NCC#N GFZMFCVDDFHSJK-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- DFNYGALUNNFWKJ-UHFFFAOYSA-N aminoacetonitrile Chemical compound NCC#N DFNYGALUNNFWKJ-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- FDIWRLNJDKKDHB-UHFFFAOYSA-N azanium;2-aminoacetate Chemical compound [NH4+].NCC([O-])=O FDIWRLNJDKKDHB-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-N cyanic acid Chemical compound OC#N XLJMAIOERFSOGZ-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229940014041 hyaluronate Drugs 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 238000007098 aminolysis reaction Methods 0.000 description 1
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- GTGIXCPOLMWQTC-UHFFFAOYSA-N cyanomethylazanium;hydrogen sulfate Chemical compound NCC#N.OS(O)(=O)=O GTGIXCPOLMWQTC-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 filter Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000013905 glycine and its sodium salt Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/24—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from hydantoins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/38—Separation; Purification; Stabilisation; Use of additives
- C07C227/40—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/38—Separation; Purification; Stabilisation; Use of additives
- C07C227/40—Separation; Purification
- C07C227/42—Crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/72—Two oxygen atoms, e.g. hydantoin
- C07D233/74—Two oxygen atoms, e.g. hydantoin with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to other ring members
Definitions
- the invention relates to the field of fine chemicals, in particular to a method for continuously producing glycine in a kettle type.
- Glycine is the most basic amino acid and is widely used in the fields of pesticides, medicine, food, feed, daily chemicals and organic synthesis. my country is the world's largest producer and consumer of glycine, with a market size of more than 350,000 tons of glycine.
- the industrial production technologies of glycine mainly include the improved Streck method, the direct hydantoin method and the chloroacetic acid aminolysis method.
- 1) hydrolysis method take natural proteins such as gelatin or silk as raw materials, and obtain glycine through hydrolysis, separation, purification, filtration and drying.
- Chloroacetic acid method dissolve catalyzer urotropine in ammonia water, add chloroacetic acid dropwise under good stirring, 30 ⁇ 50 °C condition, after feeding is finished, raise the temperature to 72 ⁇ 78 °C and keep warm for 3 hours, then lower the temperature , recrystallized twice with ethanol or methanol to obtain glycine with a purity of about 95%.
- Streck's method the formaldehyde solution, sodium cyanide (or potassium cyanide) and ammonium chloride are mixed and reacted under low temperature conditions, and acetic acid is added after the reaction to precipitate methyleneaminoacetonitrile, and then dissolved in ethanol , and then add sulfuric acid to convert it into aminoacetonitrile sulfate, then add a stoichiometric amount of barium hydroxide to generate barium sulfate and glycine, filter, and concentrate the filtrate to crystallize to obtain glycine.
- Direct hydantoin method Hydroxyacetonitrile is an addition product of hydrocyanic acid and formaldehyde, and its stability is significantly improved compared with hydrocyanic acid and its aqueous solution. Taking hydroxyacetonitrile as the main raw material, ammonia source and carbon source (ammonia and carbon dioxide or ammonium bicarbonate), react and synthesize hydantoin under the conditions of good stirring and certain temperature, and then hydrolyze hydantoin under certain temperature and pressure conditions to obtain glycine. The glycine is obtained through the steps of air stripping, concentration, decolorization, crystallization, separation and drying, and the mother liquor is recycled.
- ammonia source and carbon source ammonia and carbon dioxide or ammonium bicarbonate
- Aminoacetonitrile method hydroxyacetonitrile reacts with ammonia water to obtain aminoacetonitrile, then adds inorganic alkali for alkaline hydrolysis, adds inorganic acid for neutralization to obtain glycine reaction solution, and then obtains glycine through the steps of concentration, decolorization, crystallization, separation, etc., and the mother liquor is recycled.
- Patent Publication No. CN107325015A discloses a method for the continuous preparation of glycine ammonia from hydroxyacetonitrile.
- the method utilizes the direct hydantoin method to prepare glycine and realizes the continuous production of glycine.
- this method also has shortcomings.
- the method adopts a tubular packing reactor and a tank reactor in series as the core reaction device, but the manufacturing cost of the reaction device is high, and the efficiency needs to be improved;
- the treatment method has high energy consumption and low efficiency; the pressure reaction vessel has low safety, and so on.
- One aspect of the present invention is to solve the problems of high device cost, poor efficiency, low safety and the like in the method for continuously preparing glycine ammonia from hydroxyacetonitrile in the prior art, and provides a method for continuous production of glycine in a kettle.
- a method for continuous production of glycine in a kettle type Hydroxyacetonitrile, ammonium carbonate, ammonium bicarbonate and water are subjected to hydantoin synthesis and hydrolysis reactions in a multi-tank series reactor, and then purified, concentrated, crystallized, separated and dried to obtain refined glycine;
- the multi-tank series reactor is composed of a hydantoin synthesis section and a hydantoin hydrolysis section connected in sequence;
- the hydantoin synthesis section includes a first group of reaction kettles with a reaction temperature of 80 to 100° C. and a second group of reaction kettles with a reaction temperature of 100 to 120° C.
- the first group of reaction kettles or the second group of reaction kettles are respectively composed of One or more reactors connected in series are formed;
- the hydantoin hydrolysis section includes a third group of reaction kettles with a reaction temperature of 130 to 150° C. and a fourth group of reaction kettles with a reaction temperature of 160 to 180° C.
- the third group of reaction kettles or the fourth group of reaction kettles are respectively composed of It consists of one or more reactors connected in series.
- the pure-tank type series reactor (multi-tank series reactor) is adopted to further reduce the equipment investment and improve the reaction efficiency while maintaining the advantages of the continuous production of glycine.
- reaction equation of the method for the continuous production of glycine in the kettle is:
- each reactor in the multi-tank series reactor can be connected in series by any suitable connection mode, for example, a pipeline pump, an overflow pipe, and the like.
- each of the above-mentioned reactors is connected by an overflow pipe.
- On or between the above kettles can also be added as required, for example, functional devices such as pressure testing devices, temperature testing devices, flow rate testing devices, etc., are considered to be included in the protection scope of the present invention.
- the reaction kettle can be any suitable commercially available chemical reaction kettle, including but not limited to, carbon steel reaction kettle, stainless steel reaction kettle, steel lined PE reaction kettle, steel lined PTFE reaction kettle, steel lined titanium reaction kettle material reactor, etc.
- the reaction kettle in the hydantoin hydrolysis section adopts urea grade stainless steel as the inner lining of the kettle.
- the inner lining of the urea-grade stainless steel kettle can be arranged in the reactor by any suitable method, or the finished reactor can be purchased.
- reaction kettles can be added to the hydantoin synthesis section and the hydantoin hydrolysis section respectively, so as to meet the production requirements under different reaction temperature, pressure and feed rate conditions. All are deemed to be included in the protection scope of the present invention.
- the first group of reaction kettles with a reaction temperature of 80-100°C and a second group of reaction kettles with a reaction temperature of 100-120°C should be included; in the hydantoin hydrolysis section, at least It includes a third group of reaction kettles with a reaction temperature of 130-150 °C and a fourth group of reaction kettles with a reaction temperature of 160-180 °C, so as to ensure the temperature or energy requirements of different reaction stages.
- each group of reactors may include one or more than two sub-reactors, and any suitable device may be used in series between each of the sub-reactors.
- the sub-reactors are connected through overflow pipes.
- the reaction kettles in the multi-tank series reactor can be set to any size according to the volume of the raw materials, and the effective volumes thereof can be the same or different.
- the effective volumes of the reactors in the multi-tank series reactor are different, and the reactors in the multi-tank series reactor are sequentially connected in order of effective volume from small to large .
- the inventor further adopts the method of feeding hydroxyacetonitrile, ammonium carbonate, ammonium bicarbonate and water in stages, which can further improve the solid content of the reaction liquid and reduce the subsequent Water removal cost. That is, the ammonium carbonate, ammonium bicarbonate and water are mixed in proportion to form a slurry and then enter into the multi-tank series reactor to conduct a synthesis reaction with the hydroxyacetonitrile introduced into the hydantoin synthesis section.
- the above-mentioned ammonium carbonate, ammonium bicarbonate and water are mixed in a slurry mixer to form a slurry in proportion, and then sent to the multi-tank series reactor. More preferably, the ammonium carbonate, ammonium bicarbonate and water are preheated during the process of mixing into a slurry.
- the feeding amount thereof is the sum of the feeding amounts of the respective reaction kettles.
- the substance ratio of hydroxyacetonitrile: ammonium carbonate: ammonium bicarbonate: water is 1:1-2:2-3:20-30.
- the pressure of the first group of reactors is 3-7MPa
- the residence time is 0.5 to 0.8 hours
- the pressure of the second group of reaction kettles is 3 to 7MPa
- the residence time is 1.0 to 1.3 hours
- the pressure of the third group of reaction kettles is 3 to 7MPa
- the residence time is 1.5 to 1.3 hours.
- the pressure of the fourth group of reaction kettles is 3-7MPa
- the residence time is 2.5-3.0 hours.
- the purification includes removing ammonia in the product of the hydantoin hydrolysis section in a deamination tower. Further, the purification may also include removing carbon dioxide from the hydantoin hydrolysis section product in a flash tank.
- any suitable steps can be added to the purification as required, and the purpose can be to further remove impurities in the product, which are all considered to be included in the protection scope of the present invention.
- the carbon dioxide and ammonia produced by the purification, the evaporative condensate produced by the concentration, and the crystallization mother liquor produced by the crystallization are recycled as raw materials.
- the method of the present invention can be:
- Ammonium bicarbonate, ammonium carbonate and water are mixed in the slurry mixer in proportion, and then transported to the multi-tank series reactor through the slurry pump, and mixed with the incoming hydroxyacetonitrile raw material for reaction.
- the substance ratio of hydroxyacetonitrile: ammonium carbonate: ammonium bicarbonate: water is 1:1-2:2-3:20-30.
- the multi-kettle series reactor consists of four reactors connected in order from small to large in effective volume. The first and second reactors form the hydantoin synthesis section, and the third and fourth reactors form the hydantoin hydrolysis section.
- the reaction temperature, pressure, material The average residence time of the liquid is as follows: the temperature of the first reaction kettle is 80-100°C, the pressure is 3-7MPa, and the residence time is 0.5-0.8h; the temperature of the second reaction kettle is 100-120°C, the pressure is 3-7MPa, and the residence time is 1.0-1.3h. , the temperature of the third reactor is 130 ⁇ 150°C, the pressure is 3 ⁇ 7MPa, the residence time is 1.5 ⁇ 2.0h, the temperature of the fourth reactor is 160 ⁇ 180°C, the pressure is 3 ⁇ 7MPa, and the residence time is 2.5 ⁇ 3.0h.
- the feed liquid coming out from the fourth reaction kettle enters the flash tank, removes carbon dioxide by multi-stage flash evaporation, then enters the deamination tower, removes ammonia and part of water, then enters the three-effect evaporator and evaporates and concentrates until a large number of crystals appear ( Slurry), and then through primary crystallization, centrifugation, heating to dissolve, decolorization, filtration, secondary crystallization, centrifugation, and drying to obtain a refined glycine product.
- the carbon dioxide and ammonia removed by the flash tank and the deamination tower are sent to the slurry machine through the batching kettle, and the batching is reused; the three-effect evaporation condensate is sent to the slurry machine for reuse; the crystallization mother liquor I is sent to the hydantoin hydrolysis section for recycling use; crystallization mother liquor II is sent to dissolving kettle for reuse; waste activated carbon is sent to waste heat boiler for incineration.
- the above method realizes a continuous production method for preparing glycine from hydroxyacetonitrile. Its flow chart is shown in Figure 1.
- the method of the invention adopts a pure tank type series reactor, and further reduces the equipment investment under the condition of maintaining the advantages of the continuous production of glycine.
- the ammonium carbonate slurry feeding and the hydroxyacetonitrile staged feeding mode are introduced to reduce the cost of subsequent water removal.
- the reaction kettle in the hydrolysis section is lined with urea grade stainless steel, which prolongs the service life of the device, improves the safety of the pressure vessel, reduces the content of heavy metals in the product, and improves the quality of the product; the deamination tower is used for deamination, which improves the deamination efficiency and effect. , to ensure complete deamination.
- the invention provides a new way for realizing the continuous production of glycine with high efficiency, environmental protection, economy and safety.
- FIG. 1 is a process flow diagram of a method in an embodiment of the present invention.
- the invention discloses a method for continuous production of glycine in a kettle type, and those skilled in the art can learn from the content of this article and appropriately improve process parameters to achieve. It should be specially pointed out that all similar substitutions and modifications are obvious to those skilled in the art, and they are all deemed to be included in the present invention, and those who are related can obviously do so without departing from the content, spirit and scope of the present invention.
- the content described herein can be modified or appropriately changed and combined to realize and apply the technology of the present invention.
- hydroxyacetonitrile also known as glycolonitrile, English Glycolonitrile, chemical formula HOCH 2 CN, molecular weight 57.05, is generally a colorless oily liquid, a derivative of hydrocyanic acid, and the simplest cyanohydrin.
- glycol also known as aminoacetic acid, English Glycine, chemical formula C 2 H 5 NO 2 , molecular weight 75.07, is the amino acid with the simplest structure, and is widely used in the fields of pesticides, medicine, food, feed, daily chemicals and organic synthesis.
- urea grade stainless steel is a special austenitic stainless steel.
- the urea grade stainless steel specially used for urea production is mainly 316UG, 00Cr25Ni22Mo2N (2RE69). Under certain conditions, it is synthesized from carbon dioxide and ammonia. The intermediate product, ammonium carbamate, etc., is highly corrosive to stainless steel. Generally, stainless steel such as 316L cannot meet its corrosion resistance. The special steel bell developed from this is called urea grade stainless steel.
- the raw materials are mixed in a ratio of 1:1:2:20, and input to the multi-tank series reactor.
- the reactor includes a total of four series reactors with the same effective volume. Among them, the first reaction kettle and the second reaction kettle are the hydantoin synthesis section, and the third reaction kettle and the fourth reaction kettle are the hydantoin hydrolysis section.
- the reaction temperature, pressure and average residence time of the feed liquid in the four reactors are as follows: the temperature of the first reactor is 80°C, the pressure is 3MPa, and the residence time is 1.5h; the temperature of the second reactor is 100°C, the pressure is 3MPa, and the residence time is 1.5h; The temperature of the reaction kettle is 130°C, the pressure is 3MPa, and the residence time is 1.5h, and the temperature of the fourth reaction kettle is 160°C, the pressure is 3MPa, and the residence time is 1.5h.
- the reaction liquid output from the hydantoin hydrolysis section enters the flash tank and undergoes two-stage flashing to remove all carbon dioxide and part of ammonia and water, and then enters the deamination tower to remove all ammonia and part of water, and the removed carbon dioxide and ammonia are adjusted by the batching kettle After the proportion, it is transported to the slurry machine for re-batching and reuse, and then the reaction liquid enters the three-effect evaporator for decompression evaporation to remove a large amount of water to obtain a concentrated reaction liquid.
- the refined glycine product was obtained by centrifugation and drying.
- the product was obtained by liquid chromatography (HPLC) and elemental analysis (ICP), and the product content was 99.5% without heavy metal, and the yield was 99.1%.
- the energy consumption of the whole process is 920kg standard coal/ton.
- the multi-tank series reactor includes four series reactors with the same effective volume. Among them, the first reaction kettle and the second reaction kettle are the hydantoin synthesis section, and the third reaction kettle and the fourth reaction kettle are the hydantoin hydrolysis section.
- Ammonium carbonate, ammonium bicarbonate and water are mixed to prepare a slurry according to the mass ratio of 2:3:30, which is transported by the slurry pump to the hydantoin synthesis section of the multi-tank series reactor, and is transported to the first hyaluronate synthesis section according to the mass ratio of 3:1.
- the hydroxyacetonitrile in the reaction kettle and the second reaction kettle carries out the hydantoin synthesis reaction, and the substance ratio of hydroxyacetonitrile: ammonium carbonate: ammonium bicarbonate: water is 1:2:3:30.
- enter the third and fourth reaction kettles of the hydantoin hydrolysis section to carry out the hydantoin hydrolysis reaction.
- the reaction temperature, pressure and average residence time of the feed liquid in the four reactors are as follows: the temperature of the first reactor is 100°C, the pressure is 7MPa, and the residence time is 2.3h; the temperature of the second reactor is 120°C, the pressure is 7MPa, and the residence time is 2.3h; The temperature of the reaction kettle is 150°C, the pressure is 7MPa, and the residence time is 2.3h, and the temperature of the fourth reaction kettle is 180°C, the pressure is 7MPa, and the residence time is 2.3h.
- the reaction liquid output from the hydantoin hydrolysis section enters the flash tank and undergoes two-stage flashing to remove all carbon dioxide and part of ammonia and water, and then enters the deamination tower to remove all ammonia and part of water, and the removed carbon dioxide and ammonia are adjusted by the batching kettle After the proportion, it is transported to the slurry machine for re-batching and reuse, and then the reaction liquid enters the three-effect evaporator for decompression evaporation to remove a large amount of water to obtain a concentrated reaction liquid.
- the refined glycine product was obtained by centrifugation and drying.
- the product is obtained by liquid chromatography (HPLC) and elemental analysis (ICP), and the product content reaches 99.7% without heavy metal, and the yield is 99.5%.
- the energy consumption of the whole process is 950kg standard coal/ton.
- the multi-tank series reactor includes four series reactors with different effective volumes.
- the four reactors are arranged in series in order of effective volume from small to large.
- the first reaction kettle and the second reaction kettle are the hydantoin synthesis section
- the third reaction kettle and the fourth reaction kettle are the hydantoin hydrolysis section.
- Ammonium carbonate, ammonium bicarbonate and water are mixed to prepare a slurry according to the mass ratio of 2:3:30, which is transported by the slurry pump to the hydantoin synthesis section of the multi-tank series reactor, and is transported to the first hyaluronate synthesis section according to the mass ratio of 3:1.
- the hydroxyacetonitrile in the reaction kettle and the second reaction kettle carries out the hydantoin synthesis reaction, and the substance ratio of hydroxyacetonitrile: ammonium carbonate: ammonium bicarbonate: water is 1:2:3:30.
- enter the third and fourth reaction kettles of the hydantoin hydrolysis section to carry out the hydantoin hydrolysis reaction.
- the reaction temperature, pressure and average residence time of the feed liquid in the four reactors are as follows: the temperature of the first reactor is 100°C, the pressure is 7MPa, and the residence time is 0.8h; the temperature of the second reactor is 120°C, the pressure is 7MPa, and the residence time is 1.3h; The temperature of the reaction kettle is 150°C, the pressure is 7MPa, and the residence time is 2.0h. The temperature of the fourth reaction kettle is 180°C, the pressure is 7MPa, and the residence time is 3.0h.
- the reaction liquid output from the hydantoin hydrolysis section enters the flash tank and undergoes two-stage flashing to remove all carbon dioxide and part of ammonia and water, and then enters the deamination tower to remove all ammonia and part of water, and the removed carbon dioxide and ammonia are adjusted by the batching kettle After the proportion, it is transported to the slurry machine for re-batching and reuse, and then the reaction liquid enters the three-effect evaporator for decompression evaporation to remove a large amount of water to obtain a concentrated reaction liquid.
- the refined glycine product was obtained by centrifugation and drying.
- the product was obtained by liquid chromatography (HPLC) and elemental analysis (ICP), and the content of the product was 99.8% without heavy metal, and the yield was 99.7%.
- the energy consumption of the whole process is 940kg standard coal/ton.
- the multi-tank series reactor includes four series reactors with different effective volumes.
- the four reactors are arranged in series in order of effective volume from small to large.
- the first reaction kettle and the second reaction kettle are the hydantoin synthesis section
- the third reaction kettle and the fourth reaction kettle are the hydantoin hydrolysis section.
- Ammonium carbonate, ammonium bicarbonate and water are mixed to prepare a slurry according to the material ratio of 1.5:2.5:25, which is transported by the slurry pump to the hydantoin synthesis section of the multi-tank series reactor, and transported to the first batch of the first reactor with a mass ratio of 5:1.
- the hydroxyacetonitrile of the reaction kettle and the second reaction kettle carries out the hydantoin synthesis reaction, and the substance ratio of hydroxyacetonitrile: ammonium carbonate: ammonium bicarbonate: water is 1:1.5:2.5:25.
- the reaction temperature, pressure and average residence time of the feed liquid in the four reactors are as follows: the temperature of the first reactor is 90°C, the pressure is 5MPa, and the residence time is 0.7h; the temperature of the second reactor is 110°C, the pressure is 6MPa, and the residence time is 1.1h; The temperature of the reaction kettle is 140°C, the pressure is 4MPa, and the residence time is 1.6h. The temperature of the fourth reaction kettle is 170°C, the pressure is 5MPa, and the residence time is 2.8h.
- the reaction liquid output from the hydantoin hydrolysis section enters the flash tank and undergoes two-stage flashing to remove all carbon dioxide and part of ammonia and water, and then enters the deamination tower to remove all ammonia and part of water, and the removed carbon dioxide and ammonia are adjusted by the batching kettle After the proportion, it is transported to the slurry machine for re-batching and reuse, and then the reaction liquid enters the three-effect evaporator for decompression evaporation to remove a large amount of water to obtain a concentrated reaction liquid.
- the refined glycine product was obtained by centrifugation and drying.
- the product was obtained by liquid chromatography (HPLC) and elemental analysis (ICP), and the content of the product was 99.9% without heavy metal, and the yield was 99.8%.
- the energy consumption of the whole process is 930kg standard coal/ton.
- the multi-tank series reactor includes eight series reactors with different effective volumes.
- the eight reactors are arranged in series in order of effective volume from small to large.
- the first group of reaction kettles including the first reaction kettle and the second reaction kettle
- the second group of reaction kettles including the third reaction kettle and the fourth reaction kettle
- the third group of reaction kettles including the third reaction kettle and the fourth reaction kettle
- the fifth reactor and the sixth reactor and the fourth group of reactors are the hydantoin hydrolysis section.
- Ammonium carbonate, ammonium bicarbonate and water are mixed to prepare a slurry according to the mass ratio of 2:3:20, which is transported by the slurry pump to the hydantoin synthesis section of the multi-tank series reactor, and is transported to the first batch of the first reactor according to the mass ratio of 5:1.
- the hydroxyacetonitrile in the first group of reaction kettles and the second group of reaction kettles were subjected to hydantoin synthesis reaction, and the four reaction kettles in the first group of reaction kettles were equally distributed with hydroxyacetonitrile by mass, and the four reaction kettles in the second group of reaction kettles were also distributed according to their mass. Evenly distribute the hydroxyacetonitrile.
- the final mass ratio of hydroxyacetonitrile:ammonium carbonate:ammonium bicarbonate:water was 1:2:3:20.
- the reaction temperature, pressure, and average residence time of the feed liquid in the eight reactors are as follows: the temperature of the first reactor is 90°C, the pressure is 5MPa, and the residence time is 0.7h; the temperature of the second reactor is 90°C, the pressure is 5MPa, and the residence time is 0.6h; The temperature of the reaction kettle is 110°C, the pressure is 6MPa, and the residence time is 1.1h.
- the temperature of the fourth reaction kettle is 110°C, the pressure is 6MPa, and the residence time is 1.0h.
- the fifth reactor temperature was 140°C, the pressure was 4MPa, and the residence time was 1.6h;
- the sixth reactor temperature was 140°C, the pressure was 4MPa, and the residence time was 1.5h;
- the temperature of the reaction kettle was 170°C, the pressure was 5MPa, and the residence time was 2.8h.
- the reaction liquid output from the hydantoin hydrolysis section enters the flash tank and undergoes two-stage flashing to remove all carbon dioxide and part of ammonia and water, and then enters the deamination tower to remove all ammonia and part of water, and the removed carbon dioxide and ammonia are adjusted by the batching kettle After the proportion, it is transported to the slurry machine for re-batching and reuse, and then the reaction liquid enters the three-effect evaporator for decompression evaporation to remove a large amount of water to obtain a concentrated reaction liquid.
- the refined glycine product was obtained by centrifugation and drying.
- the product is obtained by liquid chromatography (HPLC) and elemental analysis (ICP), the content of the product reaches 99.9% and does not contain heavy metals, and the yield is 99.9%.
- the energy consumption of the whole process is 930kg standard coal/ton.
- the raw materials are selected from hydroxyacetonitrile, ammonium bicarbonate and water.
- the three substances are mixed according to the molar ratio of 1:2:50, and are transported to the tubular packing reactor by the metering pump at a certain flow rate for the synthesis of hydantoin and the hydrolysis reaction of hydantoin.
- the temperature of the first stage is 90°C, the pressure is 5MPa, and the residence time is 15min; the temperature of the second stage is 110°C, the pressure is 5MPa, and the residence time is 30min; the temperature of the third stage is 130°C, the pressure is 5MPa, and the residence time is 30min; ,
- the residence time is 1h.
- the feed liquid enters the kettle-type series reactor to continue the hydantoin hydrolysis reaction.
- the temperature of the reactor 1 is 160°C
- the pressure is 5MPa
- the residence time is 2 hours.
- the temperature of the reactor 2 is 170°C
- the pressure is 5MPa
- the residence time is 1h.
- temperature of reaction kettle 4 is 200°C
- pressure 5MPa, residence time 0.5h and then the feed liquid is separated by gas-liquid, vacuum distillation, crystallization refining, drying and dehydration to obtain refined glycine.
- the product was obtained by liquid chromatography (HPLC) and elemental analysis (ICP), and the content of the product was 99.6% without heavy metal, and the yield was 99.3%.
- the energy consumption of the whole process is 1400kg standard coal/ton.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种釜式连续化生产甘氨酸的方法,羟基乙腈与碳酸铵、碳酸氢铵和水在多釜串联反应器中进行海因合成及水解反应,再经纯化、浓缩、结晶、分离、干燥后得到精制的甘氨酸;所述多釜串联反应器由顺序连接的合成海因工段和海因水解工段组成;所述合成海因工段包括反应温度为80~100℃的第一组反应釜和反应温度为100~120℃的第二组反应釜,所述第一组反应釜或第二组反应釜分别由一个或两个以上串联的反应釜组成;所述海因水解工段包括反应温度为130~150℃的第三组反应釜和反应温度为160~180℃的第四组反应釜,所述第三组反应釜或第四组反应釜分别由一个或两个以上串联的反应釜组成。
Description
本申请要求于2020年12月17日提交中国专利局、申请号为202011500112.5,发明名称为“一种釜式连续化生产甘氨酸的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及精细化工领域,特别涉及一种釜式连续化生产甘氨酸的方法。
甘氨酸是最基本的氨基酸,广泛应用于农药、医药、食品、饲料、日化和有机合成等领域。我国是世界上最大的甘氨酸生产和消耗国,甘氨酸市场规模超过35万吨。目前甘氨酸的工业化生产技术主要有改进的施特雷克法、直接海因法和氯乙酸氨解法。其中,1)水解法:以明胶或蚕丝等天然蛋白质为原料,经水解、分离、精制过滤、干燥得甘氨酸。2)氯乙酸法:将催化剂乌洛托品溶解于氨水中,在良好搅拌、30~50℃条件下滴加氯乙酸,投料结束后,升高温度至72~78℃保温3小时,之后降温,用乙醇或甲醇重结晶两次,得纯度约95%的甘氨酸。3)施特雷克法:将甲醛水溶液、氰化钠(或氰化钾)和氯化铵混合后在低温条件下进行反应,反应结束后加入醋酸使亚甲氨基乙腈析出,然后溶于乙醇,再加入硫酸使其转化为氨基乙腈硫酸盐,之后加入化学计量的氢氧化钡,生成硫酸钡和甘氨酸,过滤,滤液浓缩结晶得甘氨酸。4)改进的施特雷克法:为提高甘氨酸质量,降低生产成本和减少环境污染,国外开发了以氢氰酸替代氰化钠或氰化钾的改进的施特雷克法,反应以氢氰酸、甲醛、氨和二氧化碳为原料,反应液在管式反应器中进行。在低温下析出甘氨酸,母液循环使用,通过改变反应体系中副产物的浓度,使平衡向目标产物方向移动,从而达到提高反应收率的目的。5)直接海因法:羟基乙腈是氢氰酸与甲醛的加成产物,其稳定性较氢氰酸及其水溶液有明显提高。以羟基乙腈为主原料与氨源、碳源(氨水与二氧化碳或碳酸氢铵),在良好搅拌、一定温度条件下反应合成海因,之后在一定温度、压力条件下使海因水解得甘氨酸反应液,后经气提、浓缩、脱色、结晶、分离、干燥等步骤得甘氨酸,母液循环使用。6)氨基乙腈法:羟基乙腈 与氨水反应得氨基乙腈,后加入无机碱碱解,加入无机酸中和得甘氨酸反应液,后经浓缩、脱色、结晶、分离等步骤得甘氨酸,母液循环使用。
由于原料易得,技术门槛较低,我国的甘氨酸生产仍沿用国际上普遍淘汰的氯乙酸法,此法相对于改进的施特雷克法和直接海因法,存在着生产成本高、产品质量差、环境污染重等难以克服的缺点。
公开号为CN107325015A的专利中公开了一种羟基乙腈连续化制备甘氨酸氨的方法,该方法利用直接海因法制备甘氨酸,实现了甘氨酸的连续化生产。但是,该方法也存在缺点,例如,该方法采用了管式填料反应器和釜式反应器串联作为核心反应装置,但反应装置的制造成本高,效率也有待提高;海因水解反应所得产物的处理方法能耗高、效率低;压力反应容器安全性低,等等。为了解决上述问题,需要寻找一种新的连续化生产甘氨酸的方法作为替代。
发明内容
本发明的一个方面,是针对现有技术中由羟基乙腈连续化制备甘氨酸氨的方法中,装置成本高、效率差、安全性低等问题,提供了一种釜式连续化生产甘氨酸的方法。
本发明提供的技术方案为:
一种釜式连续化生产甘氨酸的方法,羟基乙腈与碳酸铵、碳酸氢铵和水在多釜串联反应器中进行海因合成及水解反应,再经纯化、浓缩、结晶、分离、干燥后得到精制的甘氨酸;
所述多釜串联反应器由顺序连接的合成海因工段和海因水解工段组成;
所述合成海因工段包括反应温度为80~100℃的第一组反应釜和反应温度为100~120℃的第二组反应釜,所述第一组反应釜或第二组反应釜分别由一个或两个以上串联的反应釜组成;
所述海因水解工段包括反应温度为130~150℃的第三组反应釜和反应温度为160~180℃的第四组反应釜,所述第三组反应釜或第四组反应釜分别由一个或两个以上串联的反应釜组成。
本发明技术方案中采用纯釜式串联反应器(多釜串联反应器)在保持连续化生产甘氨酸工艺优点的情况下,进一步降低了设备投入,并且提高了反应效率。
在本发明中,所述釜式连续化生产甘氨酸的方法的反应方程式为:
在本发明中,所述多釜串联反应器中的各个反应釜之间可以通过任意合适的连接方式串联,例如,管道泵、溢流管等。作为优选,在本发明的一个实施方式中,上述各个反应釜之间通过溢流管进行连接。在上述各个釜之上或之间还可以根据需要增加,例如,压力测试装置、温度测试装置、流速测试装置等功能性装置,其均视为包含在本发明的保护范围之内。
在本发明中,所述反应釜可以为任意合适的市售化工用反应釜,包括但不限于,碳钢反应釜、不锈钢反应釜、钢衬PE反应釜、钢衬PTEF反应釜、钢衬钛材反应釜,等等。作为优选,在本发明的一个实施方式中,所述海因水解工段中的反应釜采用尿素级不锈钢作为釜体内衬。所述尿素级不锈钢釜体内衬可以通过任意合适的方法设置于所述反应釜内,或购买成品反应釜。
在本发明中,根据不同的反应需要,可以分别在所述合成海因工段和海因水解工段中增加多组反应釜,以满足不同反应温度、压力、进料量条件下的生产要求,其均视为包含在本发明的保护范围之内。但在所述合成海因工段中应至少包含反应温度为80~100℃的第一组反应釜和反应温度为100~120℃的第二组反应釜;在所述海因水解工段中应至少包含应温度为130~150℃的第三组反应釜和反应温度为160~180℃的第四组反应釜,从而保证不同反应阶段的温度或能量需求。
在本发明中,每组反应釜可以包含一个或两个以上的子反应釜,各个子反应釜之间可以使用任意合适的装置串联。作为优选,在本发明的一个实施方式中,上述子反应釜之间通过溢流管进行连接。
在本发明中,所述多釜串联反应器中的反应釜可以为根据原料的体积设置为任意大小,其有效容积可以为相同或者不同。作为优选,在本发明的一个实施方式中,所述多釜串联反应器中的反应釜的有效容积不同,所述多釜串联反应器中的反应釜按照有效容积由小到大的顺序依次连接。当上述反应釜按照有效容积由小到大的顺序依次连接时,能够合理分配不同温度段的料液停留时间。
作为优选,在本发明的一个实施方式中,发明人进一步采用了羟基乙腈与 碳酸铵、碳酸氢铵和水分段进料的方式,其作用可以为进一步提高了反应液固含量,降低了后续除水成本。即,所述碳酸铵、碳酸氢铵和水按比例混合为浆料后再进入所述多釜串联反应器,与通入至所述合成海因工段的羟基乙腈进行合成反应。
作为优选,在本发明的一个实施方式中,上述碳酸铵、碳酸氢铵和水在浆料混合机中按比例混合成浆料,然后输送到所述多釜串联反应器。更优选地,所述碳酸铵、碳酸氢铵和水在混合成浆料过程中进行预热处理。
作为优选,在本发明的一个实施方式中,所述羟基乙腈在第一组反应釜和第二组反应釜之间的质量比为第一组反应釜总进料量:第二组反应釜总进料量=3~5:1。当所述第一组反应釜或所述第二组反应釜由多个反应釜组成时,其进料量为各反应釜进料量之和。
作为优选,在本发明的一个实施方式中,所述羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:1~2:2~3:20~30。
当所述多釜串联反应器中的反应釜按照有效容积由小到大的顺序依次连接时,作为优选,在本发明的一个实施方式中,所述第一组反应釜的压力为3~7MPa,停留时间为0.5~0.8小时;所述第二组反应釜的压力为3~7MPa、停留时间为1.0~1.3小时;所述第三组反应釜的压力为3~7MPa、停留时间为1.5~2.0小时;所述第四组反应釜的压力为3~7MPa、停留时间为2.5~3.0小时。
作为优选,在本发明的一个实施方式中,所述纯化包括在脱氨塔中脱除所述海因水解工段产物中的氨。进一步地,所述纯化还可以包括在闪蒸罐中脱除所述海因水解工段产物中的二氧化碳。
在本发明中,所述纯化可以根据需要增加任意合适的步骤,其目的可以是进一步去除产物中的杂质,其均视为包含在本发明的保护范围之内。
作为优选,在本发明的一个实施方式中,所述纯化产生的二氧化碳和氨、所述浓缩产生的蒸发冷凝液和所述结晶产生的结晶母液,作为原料循环使用。
更具体地,在本发明的一个实施方式中,本发明方法可以为:
碳酸氢铵、碳酸铵与水在浆料混合机中按比例混合,之后通过浆料泵输送至多釜串联反应器中,与通入的羟基乙腈原料进行混合反应。羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:1~2:2~3:20~30。多釜串联反应器由四台反应釜按有效容积从小到大依次连接,第一、二台釜组成合成海因工段,第三、四台釜组成海因水解工段,其反应温度、压力、料液平均停留时间依次为:第一反应釜温度80~100℃、压力3~7MPa、停留时间0.5~0.8h,第二反应釜温度 100~120℃、压力3~7MPa、停留时间1.0~1.3h,第三反应釜温度130~150℃、压力3~7MPa、停留时间1.5~2.0h,第四反应釜温度160~180℃、压力3~7MPa、停留时间2.5~3.0h。从第四反应釜出来的料液进入闪蒸罐,通过多级闪蒸脱除二氧化碳,而后进入脱氨塔,脱除氨与部分水,之后进入三效蒸发器蒸发浓缩至有大量晶体出现(浆料),而后经一次结晶、离心、加热溶解、脱色、过滤、二次结晶、离心、干燥得精制甘氨酸产品。其中闪蒸罐与脱氨塔脱除的二氧化碳和氨经配料釜送至浆料机,配料回用;三效蒸发冷凝液送至浆料机回用;结晶母液I送至海因水解段回用;结晶母液II送至溶解釜回用;废活性碳送废热锅炉焚烧。
上述方法实现了由羟基乙腈制备甘氨酸的连续化生产方法。其流程图如图1所示。
本发明的有益效果为:
本发明方法采用纯釜式串联反应器,在保持连续化生产甘氨酸工艺优点的情况下,进一步降低了设备投入。引入了碳酸铵浆料进料和羟基乙腈分段进料方式,降低了后续除水成本。水解工段反应釜采用尿素级不锈钢钢内衬,延长了装置使用寿命,提高了压力容器安全性,降低了产品重金属含量,提高了产品品质;采用脱氨塔脱氨,提高了脱氨效率与效果,保证脱氨完全。本发明为实现甘氨酸高效、环保、节约、安全的连续化生产提供了新的途径。
图1为本发明实施例中方法的工艺流程图。
本发明公开了一种釜式连续化生产甘氨酸的方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。需要特别指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明,并且相关人员明显能在不脱离本发明内容、精神和范围的基础上对本文所述内容进行改动或适当变更与组合,来实现和应用本发明技术。
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。以下对本发明中出现的部分术语加以解释。
术语“羟基乙腈”,又称乙醇腈,英文Glycolonitrile,化学式HOCH
2CN,分子量57.05,一般情况下为无色油状液体,是氢氰酸衍生物,也是最简单的羟腈。
术语“甘氨酸”,又称氨基乙酸,英文Glycine,化学式C
2H
5NO
2,分子量75.07,是结构最简单的氨基酸,广泛用于农药、医药、食品、饲料、日化和有机合成等领域。
术语“尿素级不锈钢”,是一种专用奥氏体不锈钢,专用于尿素生产的尿素级不锈钢主要有316UG,00Cr25Ni22Mo2N(2RE69),尿素生产是在高压(140~250大气压)和温度180~210度条件下,由二氧化碳与氨合成,其中间产物氨基甲酸铵等对不锈钢有强烈腐蚀性,一般不锈钢如316L都不能满足其耐腐蚀性,由此开发的专用钢钟称为尿素级不锈钢。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的详细说明。
实施例1:
按照羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:1:2:20的比例混合原料,输入至多釜串联反应器。反应器共包括四台有效容积相同的串联反应釜。其中,第一反应釜、第二反应釜为合成海因工段,第三反应釜、第四反应釜为海因水解工段。四台釜反应温度、压力、料液平均停留时间依次为:第一反应釜温度80℃、压力3MPa、停留时间1.5h,第二反应釜温度100℃、压力3MPa、停留时间1.5h,第三反应釜温度130℃、压力3MPa、停留时间1.5h,第四反应釜温度160℃、压力3MPa、停留时间1.5h。
从海因水解工段输出的反应液进入闪蒸罐经过两级闪蒸除去全部二氧化碳和部分氨与水,之后进入脱氨塔脱除全部氨与部分水,脱除的二氧化碳与氨经配料釜调节比例后输送至浆料机重新配料回用,而后反应液进入三效蒸发器进行减压蒸发除去大量水得浓缩反应液,后经一次结晶、离心分离、加热溶解、脱色过滤、二次结晶、离心干燥得精制甘氨酸产品。
产物经液相色谱(HPLC)、元素分析(ICP)得到结果,产品含量达99.5%且不含重金属,收率99.1%。整个工艺能耗为920kg标煤/吨。
实施例2:
多釜串联反应器共包括四台有效容积相同的串联反应釜。其中,第一反应釜、第二反应釜为合成海因工段,第三反应釜、第四反应釜为海因水解工段。
碳酸铵、碳酸氢铵与水按照物质的量比2:3:30混合配制浆料,由浆料泵输送至多釜串联反应器海因合成工段,与按质量比3:1分别输送至第一反应釜和第 二反应釜的羟基乙腈进行海因合成反应,羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:2:3:30。之后进入海因水解工段第三、第四反应釜中进行海因水解反应。四台釜反应温度、压力、料液平均停留时间依次为:第一反应釜温度100℃、压力7MPa、停留时间2.3h,第二反应釜温度120℃、压力7MPa、停留时间2.3h,第三反应釜温度150℃、压力7MPa、停留时间2.3h,第四反应釜温度180℃、压力7MPa、停留时间2.3h。从海因水解工段输出的反应液进入闪蒸罐经过两级闪蒸除去全部二氧化碳和部分氨与水,之后进入脱氨塔脱除全部氨与部分水,脱除的二氧化碳与氨经配料釜调节比例后输送至浆料机重新配料回用,而后反应液进入三效蒸发器进行减压蒸发除去大量水得浓缩反应液,后经一次结晶、离心分离、加热溶解、脱色过滤、二次结晶、离心干燥得精制甘氨酸产品。
产物经液相色谱(HPLC)、元素分析(ICP)得到结果,产品含量达99.7%且不含重金属,收率99.5%。整个工艺能耗为950kg标煤/吨。
实施例3:
多釜串联反应器共包括四台有效容积不同的串联反应釜。四台反应釜的按有效容积由小到大依次串联排列。其中,第一反应釜、第二反应釜为合成海因工段,第三反应釜、第四反应釜为海因水解工段。
碳酸铵、碳酸氢铵与水按照物质的量比2:3:30混合配制浆料,由浆料泵输送至多釜串联反应器海因合成工段,与按质量比3:1分别输送至第一反应釜和第二反应釜的羟基乙腈进行海因合成反应,羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:2:3:30。之后进入海因水解工段第三、第四反应釜中进行海因水解反应。四台釜反应温度、压力、料液平均停留时间依次为:第一反应釜温度100℃、压力7MPa、停留时间0.8h,第二反应釜温度120℃、压力7MPa、停留时间1.3h,第三反应釜温度150℃、压力7MPa、停留时间2.0h,第四反应釜温度180℃、压力7MPa、停留时间3.0h。从海因水解工段输出的反应液进入闪蒸罐经过两级闪蒸除去全部二氧化碳和部分氨与水,之后进入脱氨塔脱除全部氨与部分水,脱除的二氧化碳与氨经配料釜调节比例后输送至浆料机重新配料回用,而后反应液进入三效蒸发器进行减压蒸发除去大量水得浓缩反应液,后经一次结晶、离心分离、加热溶解、脱色过滤、二次结晶、离心干燥得精制甘氨酸产品。
产物经液相色谱(HPLC)、元素分析(ICP)得到结果,产品含量达99.8% 且不含重金属,收率99.7%。整个工艺能耗为940kg标煤/吨。
实施例4:
多釜串联反应器共包括四台有效容积不同的串联反应釜。四台反应釜的按有效容积由小到大依次串联排列。其中,第一反应釜、第二反应釜为合成海因工段,第三反应釜、第四反应釜为海因水解工段。
碳酸铵、碳酸氢铵与水按照物质的量比1.5:2.5:25混合配制浆料,由浆料泵输送至多釜串联反应器海因合成工段,与按质量比5:1分别输送至第一反应釜和第二反应釜的羟基乙腈进行海因合成反应,羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:1.5:2.5:25。之后进入海因水解工段第三、第四反应釜中进行海因水解反应。四台釜反应温度、压力、料液平均停留时间依次为:第一反应釜温度90℃、压力5MPa、停留时间0.7h,第二反应釜温度110℃、压力6MPa、停留时间1.1h,第三反应釜温度140℃、压力4MPa、停留时间1.6h,第四反应釜温度170℃、压力5MPa、停留时间2.8h。从海因水解工段输出的反应液进入闪蒸罐经过两级闪蒸除去全部二氧化碳和部分氨与水,之后进入脱氨塔脱除全部氨与部分水,脱除的二氧化碳与氨经配料釜调节比例后输送至浆料机重新配料回用,而后反应液进入三效蒸发器进行减压蒸发除去大量水得浓缩反应液,后经一次结晶、离心分离、加热溶解、脱色过滤、二次结晶、离心干燥得精制甘氨酸产品。
产物经液相色谱(HPLC)、元素分析(ICP)得到结果,产品含量达99.9%且不含重金属,收率99.8%。整个工艺能耗为930kg标煤/吨。
实施例5:
多釜串联反应器共包括八台有效容积不同的串联反应釜。八台反应釜的按有效容积由小到大依次串联排列。其中,第一组反应釜(包括第一反应釜和第二反应釜)、第二组反应釜(包括第三反应釜和第四反应釜)为合成海因工段,第三组反应釜(包括第五反应釜和第六反应釜)、第四组反应釜(包括第七反应釜和第八反应釜)为海因水解工段。
碳酸铵、碳酸氢铵与水按照物质的量比2:3:20混合配制浆料,由浆料泵输送至多釜串联反应器海因合成工段,与按质量比5:1分别输送至第一组反应釜和第二组反应釜的羟基乙腈进行海因合成反应,第一组反应釜中的四台反应釜按质量平均分配羟基乙腈,第二组反应釜中的四台反应釜也按质量平均分配羟基 乙腈。最终羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:2:3:20。之后进入海因水解工段第三、第四组反应釜中进行海因水解反应。八台釜反应温度、压力、料液平均停留时间依次为:第一反应釜温度90℃、压力5MPa、停留时间0.7h,第二反应釜温度90℃、压力5MPa、停留时间0.6h,第三反应釜温度110℃、压力6MPa、停留时间1.1h,第四反应釜温度110℃、压力6MPa、停留时间1.0h。第五反应釜温度140℃、压力4MPa、停留时间1.6h,第六反应釜温度140℃、压力4MPa、停留时间1.5h,第七反应釜温度170℃、压力5MPa、停留时间2.7h,第八反应釜温度170℃、压力5MPa、停留时间2.8h。从海因水解工段输出的反应液进入闪蒸罐经过两级闪蒸除去全部二氧化碳和部分氨与水,之后进入脱氨塔脱除全部氨与部分水,脱除的二氧化碳与氨经配料釜调节比例后输送至浆料机重新配料回用,而后反应液进入三效蒸发器进行减压蒸发除去大量水得浓缩反应液,后经一次结晶、离心分离、加热溶解、脱色过滤、二次结晶、离心干燥得精制甘氨酸产品。
产物经液相色谱(HPLC)、元素分析(ICP)得到结果,产品含量达99.9%且不含重金属,收率99.9%。整个工艺能耗为930kg标煤/吨。
对比例1:
原料选择羟基乙腈、碳酸氢铵和水,将三种物质按照摩尔比例1:2:50混合,由计量泵以一定流量输送至管式填料反应器中进行合成海因和海因水解反应,管式填料反应器一段温度90℃、压力5MPa、停留时间15min,二段温度110℃、压力5MPa、停留时间30min,三段温度130℃、压力5MPa、停留时间30min,四段温度160℃、压力5MPa、停留时间1h。之后料液进入釜式串联反应器中继续进行海因水解反应,反应釜1温度160℃、压力5MPa、停留时间2小时,反应釜2温度170℃、压力5MPa、停留时间1h,反应釜3温度190℃、压力5MPa、停留时间0.5h,反应釜4温度200℃、压力5MPa、停留时间0.5h,而后料液经气液分离、减压蒸馏、结晶精制、干燥脱水得精制甘氨酸。
产物经液相色谱(HPLC)、元素分析(ICP)得到结果,产品含量达99.6%且不含重金属,收率99.3%。整个工艺能耗为1400kg标煤/吨。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种釜式连续化生产甘氨酸的方法,其特征在于,羟基乙腈与碳酸铵、碳酸氢铵和水在多釜串联反应器中进行海因合成及水解反应,再经纯化、浓缩、结晶、分离、干燥后得到精制的甘氨酸;所述多釜串联反应器由顺序连接的合成海因工段和海因水解工段组成;所述合成海因工段包括反应温度为80~100℃的第一组反应釜和反应温度为100~120℃的第二组反应釜,所述第一组反应釜或第二组反应釜分别由一个或两个以上串联的反应釜组成;所述海因水解工段包括反应温度为130~150℃的第三组反应釜和反应温度为160~180℃的第四组反应釜,所述第三组反应釜或第四组反应釜分别由一个或两个以上串联的反应釜组成。
- 根据权利要求1所述的方法,其特征在于,所述多釜串联反应器中的反应釜的有效容积不同,所述多釜串联反应器中的反应釜按照有效容积由小到大的顺序依次连接。
- 根据权利要求1或2所述的方法,其特征在于,所述碳酸铵、碳酸氢铵和水按比例混合为浆料后再进入所述多釜串联反应器,与通入至所述合成海因工段的羟基乙腈进行合成反应。
- 根据权利要求3所述的方法,其特征在于,所述羟基乙腈的进料质量分配比为第一组反应釜总进料量:第二组反应釜总进料量=3~5:1。
- 根据权利要求3所述的方法,其特征在于,所述碳酸铵、碳酸氢铵和水按比例混合为浆料的过程中进行预热处理。
- 根据权利要求1或2所述的方法,其特征在于,所述羟基乙腈:碳酸铵:碳酸氢铵:水的物质的量比为1:1~2:2~3:20~30。
- 根据权利要求2所述的方法,其特征在于,所述第一组反应釜的压力为3~7MPa、停留时间为0.5~0.8小时;所述第二组反应釜的压力为3~7MPa、停留时间为1.0~1.3小时;所述第三组反应釜的压力为3~7MPa、停留时间为1.5~2.0小时;所述第四组反应釜的压力为3~7MPa、停留时间为2.5~3.0小时。
- 根据权利要求1或2所述的方法,其特征在于,所述海因水解工段中的反应釜采用尿素级不锈钢作为釜体内衬。
- 根据权利要求1或2所述的方法,其特征在于,所述纯化包括在脱氨塔中脱除所述海因水解工段产物中的氨。
- 根据权利要求1、2或4中所述的方法,其特征在于,所述纯化产生的二氧化碳和氨、所述浓缩产生的蒸发冷凝液和所述结晶产生的结晶母液,作为原料循环使用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/610,458 US20240010608A1 (en) | 2020-12-17 | 2021-08-14 | Kettle-type continuous production method for glycine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011500112.5A CN112552197B (zh) | 2020-12-17 | 2020-12-17 | 一种釜式连续化生产甘氨酸的方法 |
CN202011500112.5 | 2020-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022127153A1 true WO2022127153A1 (zh) | 2022-06-23 |
Family
ID=75063421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/112637 WO2022127153A1 (zh) | 2020-12-17 | 2021-08-14 | 一种釜式连续化生产甘氨酸的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240010608A1 (zh) |
CN (1) | CN112552197B (zh) |
WO (1) | WO2022127153A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115286525A (zh) * | 2022-09-30 | 2022-11-04 | 山东民基新材料科技有限公司 | 甘氨酸与氯化铵混晶固体的分离方法 |
CN117000144A (zh) * | 2023-07-21 | 2023-11-07 | 湖北泰盛化工有限公司 | 一种水相法生产甘氨酸的工艺及装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112552197B (zh) * | 2020-12-17 | 2023-07-28 | 华阳新材料科技集团有限公司 | 一种釜式连续化生产甘氨酸的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107325015A (zh) * | 2017-08-15 | 2017-11-07 | 阳泉煤业(集团)有限责任公司 | 一种羟基乙腈连续化制备甘氨酸的方法 |
CN207646100U (zh) * | 2017-11-29 | 2018-07-24 | 阳泉煤业(集团)有限责任公司 | 用于连续化制备甘氨酸的列管式反应装置 |
CN109678744A (zh) * | 2017-10-18 | 2019-04-26 | 阳泉煤业(集团)有限责任公司 | 一种连续化制备甘氨酸的方法 |
CN109970658A (zh) * | 2019-05-06 | 2019-07-05 | 阳泉煤业(集团)有限责任公司 | 一种连续化生产甘氨酸联产海因的方法 |
CN110698357A (zh) * | 2019-10-08 | 2020-01-17 | 阳泉煤业(集团)有限责任公司 | 使用微通道反应器由羟基乙腈连续化制备甘氨酸的方法 |
CN112552197A (zh) * | 2020-12-17 | 2021-03-26 | 华阳新材料科技集团有限公司 | 一种釜式连续化生产甘氨酸的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101148417B (zh) * | 2006-09-18 | 2012-02-29 | 李斌 | 连续化合成氨基乙酸清洁生产方法 |
CN104876876A (zh) * | 2014-02-28 | 2015-09-02 | 李宽义 | 连续化合成海因清洁生产方法 |
CN109942448A (zh) * | 2019-04-15 | 2019-06-28 | 阳泉煤业(集团)有限责任公司 | 一种海因法连续化制备甘氨酸的后处理工艺 |
CN111470992A (zh) * | 2020-04-27 | 2020-07-31 | 龙智 | 一种连续化合成甘氨酸的清洁工艺方法 |
CN111606857A (zh) * | 2020-05-14 | 2020-09-01 | 龙智 | 一种连续化合成海因的清洁生产工艺 |
-
2020
- 2020-12-17 CN CN202011500112.5A patent/CN112552197B/zh active Active
-
2021
- 2021-08-14 WO PCT/CN2021/112637 patent/WO2022127153A1/zh active Application Filing
- 2021-08-14 US US17/610,458 patent/US20240010608A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107325015A (zh) * | 2017-08-15 | 2017-11-07 | 阳泉煤业(集团)有限责任公司 | 一种羟基乙腈连续化制备甘氨酸的方法 |
CN109678744A (zh) * | 2017-10-18 | 2019-04-26 | 阳泉煤业(集团)有限责任公司 | 一种连续化制备甘氨酸的方法 |
CN207646100U (zh) * | 2017-11-29 | 2018-07-24 | 阳泉煤业(集团)有限责任公司 | 用于连续化制备甘氨酸的列管式反应装置 |
CN109970658A (zh) * | 2019-05-06 | 2019-07-05 | 阳泉煤业(集团)有限责任公司 | 一种连续化生产甘氨酸联产海因的方法 |
CN110698357A (zh) * | 2019-10-08 | 2020-01-17 | 阳泉煤业(集团)有限责任公司 | 使用微通道反应器由羟基乙腈连续化制备甘氨酸的方法 |
CN112552197A (zh) * | 2020-12-17 | 2021-03-26 | 华阳新材料科技集团有限公司 | 一种釜式连续化生产甘氨酸的方法 |
Non-Patent Citations (1)
Title |
---|
XU, ZEHUI: "Current Status and Developing Trend of Glycin Production", TECHNO-ECONOMICS IN PETROCHEMICALS, vol. 20, no. 5, 31 December 2004 (2004-12-31), pages 41 - 45, XP055943045 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115286525A (zh) * | 2022-09-30 | 2022-11-04 | 山东民基新材料科技有限公司 | 甘氨酸与氯化铵混晶固体的分离方法 |
CN117000144A (zh) * | 2023-07-21 | 2023-11-07 | 湖北泰盛化工有限公司 | 一种水相法生产甘氨酸的工艺及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112552197A (zh) | 2021-03-26 |
CN112552197B (zh) | 2023-07-28 |
US20240010608A1 (en) | 2024-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022127153A1 (zh) | 一种釜式连续化生产甘氨酸的方法 | |
CN104609633B (zh) | 一种含氨,含钠废水资源利用的方法和设备 | |
WO2018000404A1 (zh) | 一种制备牛磺酸的方法 | |
CN108840310B (zh) | 一种从稀盐酸中深解析生产氯化氢的装置及其工艺 | |
CN110698357A (zh) | 使用微通道反应器由羟基乙腈连续化制备甘氨酸的方法 | |
US20140121405A1 (en) | Process for producing taurine | |
CA2023316C (en) | Urea production process with high energy efficiency | |
CN111392746B (zh) | 一种混合盐溶液的资源化处理系统及处理方法 | |
CN107325015B (zh) | 一种羟基乙腈连续化制备甘氨酸的方法 | |
CN105601542A (zh) | 一种混酸结晶n-氨甲酰谷氨酸的方法 | |
CN109678744B (zh) | 一种连续化制备甘氨酸的方法 | |
CN208883750U (zh) | 一种连续化制备甘氨酸的绕管式反应装置 | |
CN112010784B (zh) | 牛磺酸中间体牛磺酸钠的制备方法及牛磺酸的制备方法 | |
CN108569812B (zh) | 一种含低浓度硫酸废水的处理系统及处理方法 | |
CN108585335B (zh) | 一种盐酸苯肼生产废液处理及资源回收方法 | |
CN102659650B (zh) | Dl-甲硫氨酸盐的制备装置及方法 | |
CN109399667A (zh) | 一种铅膏铵法脱硫副产物-硫酸铵溶液深度净化的方法及装备 | |
CN108101791B (zh) | 从发酵溶液分离和纯化1,4-二氨基丁烷的方法 | |
CN106277514A (zh) | 回收处理糖精钠废水的方法 | |
CN112299613A (zh) | 一种用于污水处理中的零排放工艺系统 | |
CN109231168B (zh) | 氯乙酸生产中降低盐酸、乙酸副产中硫酸含量方法和装置 | |
CN208883749U (zh) | 一种羟基乙腈连续化制备甘氨酸的盘管式反应装置 | |
CN104876875A (zh) | 高纯海因的环保清洁工艺生产方法 | |
CN211733872U (zh) | 可溶性锰盐溶液的除杂装置 | |
CN102602994B (zh) | 一种利用含砷水废水制备三氧化二砷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21905086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905086 Country of ref document: EP Kind code of ref document: A1 |