WO2017222048A1 - フロー式リアクター - Google Patents

フロー式リアクター Download PDF

Info

Publication number
WO2017222048A1
WO2017222048A1 PCT/JP2017/023205 JP2017023205W WO2017222048A1 WO 2017222048 A1 WO2017222048 A1 WO 2017222048A1 JP 2017023205 W JP2017023205 W JP 2017023205W WO 2017222048 A1 WO2017222048 A1 WO 2017222048A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
section
fluororesin
flow
conductive filler
Prior art date
Application number
PCT/JP2017/023205
Other languages
English (en)
French (fr)
Inventor
詩織 小笹
倶透 豊田
孝洋 大石
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201780038485.5A priority Critical patent/CN109328107A/zh
Priority to KR1020197001889A priority patent/KR20190022666A/ko
Priority to SG11201811429XA priority patent/SG11201811429XA/en
Priority to JP2018524181A priority patent/JP7058216B2/ja
Priority to EP17815513.1A priority patent/EP3476473A4/en
Publication of WO2017222048A1 publication Critical patent/WO2017222048A1/ja
Priority to US16/222,261 priority patent/US10543474B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/04Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00272Addition of reaction inhibitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00961Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0245Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of synthetic organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0295Synthetic organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1944Details relating to the geometry of the reactor round circular or disk-shaped spiral
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present invention relates to a flow reactor, and more particularly to a flow reactor characterized in that at least a part of the inner wall of the reactor section is made of a fluororesin having a conductive filler. .
  • the microflow reactor is a chemical reaction apparatus that uses a sub-millimeter flow channel as a reaction field.
  • the microflow reactor has a high-speed mixing performance (for example, mixing two liquids in a micro space reduces the material diffusion distance of the two liquids, resulting in a significantly faster mass transfer due to the minute reaction field. ), And has a special effect such as heat removal performance (reaction field is small and thermal efficiency is extremely high and temperature control is easy), reaction control performance, interface control performance, etc., and has attracted attention in recent years.
  • the safety of the entire process is reduced, the equipment cost is greatly reduced, the process is enhanced by incorporating it into the existing process (micro-in-macro), and the existing production system Various effects are expected, such as making it possible to manufacture substances that could not be manufactured.
  • a flow reactor is a chemical reaction device that has an improved operability by increasing the channel diameter to the order of millimeters to centimeters within a range that does not impair the characteristics of the microflow reactor.
  • a flow type reactor is mainly composed of a raw material feeding section, a reaction section, and an operation control section. Generally, these substrates include inorganic substances such as metals, silicon, glass, and ceramics, or organic substances such as resins. Is used.
  • Patent Document 1 discloses a method of continuously producing a polymer by RAFT solution polymerization using a flow reactor, and the flow reactor is preferably made of polymer, metal, glass, or a combination thereof. It is configured.
  • Patent Document 2 discloses a glass, Teflon (registered trademark), metal, which is a microchannel structure and has resistance to highly corrosive liquids such as acid and alkali. Are used for a substrate.
  • Patent Document 3 in an apparatus for handling a fluid containing an easily polymerizable substance (for example, a distillation tower), the surface of a loading part loaded in the apparatus is coated with a fluororesin.
  • Patent Document 4 discloses a reactor having a metal inner wall to which a fluoropolymer coating is fixed.
  • Patent Document 5 discloses a structure for storing and transporting a chemical product such as a corrosive product, and the structure has an inner layer made of radiation-grafted fluoropolymer and directly bonded to the inner layer. And a multilayer structure including an outer layer of the polyolefin.
  • Patent Document 6 discloses a multilayer tube that is preferably used for transportation of gasoline. The multilayer tube includes an inner layer made of radiation-grafted fluoropolymer and an outer layer of polyolefin directly adhered to the inner layer. have.
  • Patent Document 7 discloses a laminated tube comprising at least three layers including a layer made of a fluorine-containing polymer.
  • insulating pipes are used for low conductivity liquids ( ⁇ 50 pS / m) such as gasoline, kerosene, and toluene. Should not be used. For this reason, when an organic solvent having a low dielectric constant is used as a reaction solvent, insulating materials such as glass, plastic, and ceramic as disclosed in Patent Documents 1 and 2 cannot be used in the flow reactor.
  • examples of materials that can be used for a charging substance such as the organic solvent having a low dielectric constant and are excellent in corrosion resistance include metals and alloys such as stainless steel, titanium, hastelloy, and monel. However, since these are generally heavy and hard, large-scale construction is required for assembly.
  • An object of the present invention is to provide a flow reactor that can use a chargeable substance such as an organic solvent having a low dielectric constant and is excellent in corrosion resistance.
  • the present inventors reduced the risk of electrostatic ignition by configuring at least a part of the inner wall of the reactor section with a fluororesin having a conductive filler.
  • the present invention has been completed by finding that a flow type reactor that avoids the charging, can use a charging substance such as an organic solvent having a low dielectric constant, and has excellent corrosion resistance can be obtained.
  • the flow reactor according to the present invention has the gist in the following points.
  • Two or more raw material feeding sections, a mixing section that mixes the raw materials from the raw material feeding section, and a reactor section that circulates the mixed liquid adjusted in the mixing section, and at least an inner wall of the reactor section A flow reactor characterized in that a part thereof is made of a fluorine-based resin having a conductive filler.
  • the flow type reactor of the present invention since at least a part of the inner wall is made of a fluororesin having a conductive filler, even a chargeable substance and a corrosive substance can be used. In addition, by using a flow reactor, the entire process becomes compact. Therefore, it is possible to minimize the amount of highly dangerous substances to be held and to increase safety, and it is possible to construct a process that is greatly reduced in equipment cost and excellent in competitiveness.
  • FIG. 1 is a schematic view showing an example of a flow reactor employed in the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a reactor section in the flow type reactor of the present invention.
  • FIG. 3 is a schematic view showing another example of a flow reactor employed in the present invention.
  • FIG. 4 is a schematic view showing another example of a flow reactor employed in the present invention.
  • FIG. 5 is a schematic view showing another example of a flow reactor employed in the present invention.
  • FIG. 6 is a schematic diagram of an experimental apparatus used in Examples and Comparative Examples.
  • FIG. 7 is a schematic explanatory diagram of the equivalent diameter De of the flow path.
  • FIG. 8 is a schematic explanatory diagram of the outer equivalent diameter De ′.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a flow reactor employed in the present invention, and is the most basic example.
  • the flow type reactor has two or more raw material feeding sections (in the illustrated example, two raw material feeding sections 1a and 1b) and a mixing section 2 for mixing the raw materials from the raw material feeding sections. (T-shaped mixer in the illustrated example) and a reactor unit 3 that circulates the mixed liquid adjusted in the mixing unit 2, and the liquid is fed through the reactor unit 3 (in the illustrated example, a linear reactor unit). The reaction proceeds while being done.
  • the raw material feeding sections 1a and 1b are connected to raw material storage containers 4a and 4b for storing the respective raw materials.
  • liquid feed control units 5a and 5b are installed in the raw material feed units 1a and 1b, respectively, and the liquid mixture is supplied to the reactor unit 3 by the pressure generated by these liquid feed control units 5a and 5b. Has been distributed. Further, the reaction liquid discharged from the reactor unit 3 is temporarily stored in the reaction liquid storage container 6.
  • the present invention is characterized in that at least a part of the inner wall of the reactor section is made of a fluororesin having a conductive filler.
  • the fluororesin has a conductive filler that avoids the risk of electrostatic ignition, enables the use of electrifying substances such as organic solvents with a low dielectric constant, and has excellent corrosion resistance. Is obtained.
  • the fluororesin since the fluororesin is light and soft, it can be bent flexibly at the production site and can be attached manually, which has the advantage of greatly improving workability.
  • alloys such as Hastelloy and Monel, the market price per unit length of the fluorine-based resin is significantly lower, and the replacement work can be simplified.
  • the volume resistivity of the fluororesin itself is usually 1.0 ⁇ 10 16 to 1.0 ⁇ 10 18 ⁇ ⁇ m (JIS K 6911; 50% RH, 23 ° C.) and general thermoplasticity such as polypropylene. Since it is higher than the resin, the fluororesin alone tends to be easily charged. Therefore, in the present invention, the risk of electrostatic ignition is reduced by including a conductive filler in the fluororesin. In addition, by adopting a fluorine-based resin, it becomes possible to provide a process at a lower cost than when a metal having excellent corrosion resistance is used.
  • the conductive filler is only required to be contained in the fluorine-based resin, and for example, it is desirable that the conductive filler is kneaded into the fluorine-based resin.
  • the linear velocity of the reaction liquid flowing through the flow path tends to increase, and there is a concern that the conductive filler may fall off due to friction between the reaction liquid and the inner wall. Therefore, in order to prevent the conductive filler from falling off, the conductive filler is preferably kneaded into the fluorine-based resin.
  • the fluororesin is a homopolymer or copolymer formed from a fluorine atom-containing monomer.
  • the homopolymer generated from the fluorine atom-containing monomer include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF).
  • Copolymers produced from fluorine atom-containing monomers include perfluoroethylene propene copolymer (FEP), perfluoroalkoxyalkane (PFA), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), ethylene-chlorotrifluoro.
  • Ethylene copolymer ECTFE
  • ethylene-tetrafluoroethylene copolymer ETFE
  • CPT tetrafluoroethylene-perfluoro (alkyl vinyl ether) -chlorotrifluoroethylene copolymer
  • EFEP ethylene-tetrafluoroethylene-hexafluoropropene copolymer
  • PTFE, PCTFE, FEP, PFA, ECTFE or ETFE is preferable, and PTFE, FEP or PFA is more preferable.
  • PCTFE, PVF, FEP, PFA, ECTFE or ETFE is preferred.
  • the fluororesin since the fluororesin is used for the inner wall of the reactor part, it is desirable that the fluororesin have both chemical resistance and moldability, and PFA is particularly preferable as the fluororesin.
  • the inside of the reactor may become high temperature, so the higher the melting point of the fluororesin is, for example, preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and further preferably 240 ° C. or higher.
  • the upper limit is not particularly limited, but is usually 350 ° C. or lower.
  • metal or carbon which is a conductor
  • carbon such as carbon black, ketjen black, acetylene black, carbon nanotube, natural graphite, artificial graphite, vapor grown carbon fiber, etc.
  • Metal fillers such as gold, silver, nickel, copper, zinc, aluminum and stainless steel; Metal oxide fillers such as aluminum-doped zinc oxide, antimony-doped tin oxide (IV) and tin-doped indium oxide (III); AgCu , AgSn, CuZn, CuNiZn, CuNi and other metal alloy fillers; and the like. These can be used individually or in mixture of 2 or more types.
  • the reactor part containing a fluororesin is inferior in terms of durability compared to a metal reactor part, the frequency of replacement of the reactor part tends to be higher than when a metal reactor part is used. Therefore, the conductive filler used for the reactor part is easily available, and a carbon-based filler excellent in conductivity and chemical resistance is preferable.
  • the shape of the conductive filler is not particularly limited, and the conductive filler is preferably spherical or acicular.
  • the lower limit of the average particle diameter of the conductive filler is preferably 5 nm or more, more preferably 10 nm or more.
  • an upper limit of the said average particle diameter 500 nm or less is preferable, More preferably, it is 100 nm or less.
  • the average particle size is evaluated based on the average value of the particle size measured using a laser diffraction / scattering method, which is a general method, or a scanning electron micrograph of 100 to 1000 randomly selected fillers. it can.
  • the conductive filler is preferably needle-shaped for easy formation of a conductive path, and the aspect ratio (filler length / diameter) of the needle-shaped conductive filler is set as the lower limit. , Preferably 5 or more, more preferably 10 or more.
  • the upper limit of the aspect ratio is preferably 500 or less, and more preferably 100 or less.
  • the content of the conductive filler is preferably 5 parts by weight or more, more preferably 7 parts by weight or more, in 100% by weight of the fluororesin.
  • the upper limit of the content of the conductive filler is preferably 30 parts by weight or less, and more preferably 20 parts by weight or less.
  • the fluororesin having a conductive filler has excellent antistatic properties, and its volume resistivity (JIS K 6911; 50% RH, 23 ° C.) is preferably 10 6 ⁇ ⁇ m or less, more preferably 10 5 ⁇ . M or less, more preferably 10 4 ⁇ ⁇ m or less.
  • the lower limit of the volume resistivity of the fluororesin having a conductive filler is not particularly limited, but is usually 0 ⁇ ⁇ m or more.
  • the surface resistivity (JIS K 6911; 50% RH, 23 ° C.) of the fluororesin having a conductive filler is preferably 10 6 ⁇ or less, more preferably 10 5 ⁇ or less.
  • the lower limit is not particularly limited, but is usually 0 ⁇ or more.
  • the fact that at least a part of the inner wall is made of a fluororesin having a conductive filler means that the fluororesin having a conductive filler is in contact with the content liquid contained in the reactor part. It is present on at least a part of the inner wall surface.
  • FIGS. 2A to 2D show a preferred embodiment in which at least a part of the inner wall is made of a fluororesin having a conductive filler. 2 (a) to 2 (d), in particular, an example of the cross section of the reactor section when the reactor section has a circular tubular section will be described, but the cross sectional shape of the reactor section is not limited to these.
  • the inner wall of the reactor part is, for example, an embodiment in which the entire inner wall of the reactor part as shown in FIGS. 2 (a) and 2 (b) is made of a fluororesin 70 having a conductive filler, or FIG. 2 (c) and A mode in which a part of the inner wall of the reactor portion as shown in FIG. 2 (d) is made of a fluororesin 70 having a conductive filler and the remaining part of the inner wall is made of a second resin 71.
  • the joint between the fluororesin 70 having a conductive filler and the second resin 71 is small from the viewpoint of preventing the material contained in the reactor from falling off or preventing liquid leakage. Therefore, it is more preferable that the inner wall of the reactor part is formed of a fluororesin 70 having a conductive filler on the entire inner wall of the reactor part (FIGS. 2A and 2B).
  • the reactor part may be composed of a fluororesin 70 having conductivity as shown in FIG. 2 (a), and the fluororesin 70 having conductivity as shown in FIGS. 2 (b) to (d). It may be composed of a resin 70 and a second resin 71.
  • the second resin 71 may cover the outer peripheral surface of the reactor part (FIGS. 2B to 2D), or may constitute a part of the inner wall of the reactor part (FIG. 2C ), FIG. 2 (d)).
  • the second resin 71 covers the outer peripheral surface of the reactor unit, it is necessary to ground the device in the middle of the channel or at an appropriate location such as a connection part in order to release the static electricity generated on the inner wall of the channel to the outside. is there.
  • a part of the outer periphery of the reactor unit is covered with a conductive fluororesin 70, or the reactor unit has a conductive fluororesin 70 or a metal mixing unit and / or It is preferable to discharge static electricity to the outside by connecting a metal discharge portion and grounding the mixing portion and / or the discharge portion.
  • the fluororesin 70 and the second resin 71 Since there are many joints with the resin 71, contents such as reaction raw materials and products contained in the reactor section may leak out of the reactor section through the joint. Therefore, in order to further improve the safety of the reactor part, it is effective to coat the outer peripheral surface of the reactor part with the second resin 71 as shown in FIGS.
  • the second resin (however, excluding the fluorine resin having a conductive filler), for example, a fluorine resin not containing a conductive filler is preferable, and the fluorine resin is the same as described above. Can be used.
  • a fluorine-based resin as the second resin, a reactor portion having excellent chemical resistance is obtained.
  • the fluororesin having a conductive filler is exposed in 50% or more of the inner wall surface, more preferably 70% or more, and still more preferably. Is 90% or more, particularly preferably 100%.
  • the reactor part may have a cross-sectional single-layer structure made of a fluorine-based resin having a conductive filler (FIG. 2A) or a cross-sectional multilayer structure made of a fluorine-based resin having a conductive filler ( 2 (b) to (d)), from the viewpoint of improving the antistatic effect, it is desirable that the reactor portion has a cross-sectional single layer structure made of a fluororesin having a conductive filler.
  • the shape of the reactor part is not particularly limited as long as the reaction liquid can flow therethrough, and is a hollow and cylindrical tubular reactor, or a laminated type having a substrate in which grooves corresponding to flow paths are formed by etching or the like A reactor etc. can be illustrated.
  • the flow path cross section may be any one of a circle, a polygon, and a distorted circle (for example, convex or concave), and more preferably a circle or a polygon.
  • the tubular reactor may be a single tube or a multiple tube in which an inner tube is inserted into an outer tube, such as a double circular tube.
  • the reactor part preferably has a length of 1 cm or more, more preferably 10 cm or more.
  • the upper limit of the length of the reactor part is not particularly limited, but is preferably 500 m or less, more preferably 300 m or less.
  • the length of the tube with respect to the equivalent diameter of the flow path is preferably 2 times or more, more preferably 10 times or more, still more preferably 15 times or more, and the upper limit is not particularly limited, It is 10,000 times or less, More preferably, it is 5000 times or less, More preferably, it is 3000 times or less.
  • the equivalent diameter of the flow path in the reactor section is preferably 50 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less, preferably 0.1 mm or more, more preferably 1. It is 0 mm or more, more preferably 1.5 mm or more.
  • the number of channels in the reactor section is not particularly limited, and the number of channels is one or two or more (preferably ten or less).
  • the reactor section may have a structure in which two or more (preferably two) flow paths merge into one from the upstream to the downstream.
  • One channel may have a structure that branches into two or more (preferably two).
  • Two or more channels are more preferably installed in a tournament type.
  • the inner wall of the reactor part does not necessarily need to be made of a conductive fluororesin in all the flow paths.
  • the product may become conductive or lose corrosiveness as a result of the reaction, depending on the nature of the liquid after the reaction.
  • the inner wall of the reactor part may be made of a material other than conductive fluororesin.
  • the inner wall of the reactor section is preferably made of an inorganic material such as metal, silicon, glass, or ceramics, or an organic material such as resin, depending on the characteristics of the product.
  • the equivalent diameter of the flow path of the reactor unit may be uniform throughout the reactor unit or may be changed in the middle of the reactor unit. If the equivalent diameter of the flow path in the reactor section is uniform, the reaction proceeds uniformly without hindering the flow of the reaction solution. On the other hand, considering various conditions such as mixing performance and heat removal performance, the equivalent diameter of the flow path of the reactor section may be changed in the middle of the reactor section.
  • the change part of the equivalent diameter of the flow path may be arbitrary, and the number of changes of the equivalent diameter of the flow path is not limited, and may be changed once or a plurality of times as necessary. Further, the equivalent diameter of the flow path may be gradually changed, or may be greatly changed at a certain point.
  • the equivalent diameter of the flow path may be thinner or thicker than the equivalent diameter of the upstream flow path, and may be appropriately designed according to the reaction.
  • the design of the flow path is not limited to the following example, but for example, as the equivalent diameter of the flow path of the reactor section becomes smaller, the mixing performance improves, so the equivalent diameter of the flow path of the reactor section immediately after the mixing section is It is also possible to make it thinner and increase the equivalent diameter of the flow path in the reactor section after it has been sufficiently mixed.
  • the tube thickness of the reactor part may be uniform throughout the reactor part, or may be changed in the middle of the reactor part. If the thickness of the reactor tube is reduced, the heat can escape easily and the heat removal performance is improved. Further, if the tube thickness of the reactor section is thin, the cooling effect is enhanced.
  • the outer diameter of the reactor part may be uniform throughout the reactor part, or may be changed in the middle of the reactor part. Since the heat removal performance is improved as the outer diameter of the reactor section becomes thinner, for example, in a place where precise temperature control is necessary, both the equivalent diameter of the flow path of the reactor section and the outer diameter of the reactor section may be reduced. Good. Further, only the equivalent diameter of the flow path is made thick and the outer diameter of the reactor part is made uniform, so that the tube thickness of the reactor part can be made thin so that heat can escape easily.
  • the outer diameter of the reactor portion refers to the equivalent diameter outside the tubular reactor.
  • the ratio (D max / D min ) of the maximum equivalent diameter (D max ) to the minimum equivalent diameter (D min ) in the reactor section Is preferably 1.10 times or less, more preferably 1.05 times or less, still more preferably 1.01 times or less, and preferably 1.0 times or more.
  • the ratio (D max / D min ) of the maximum equivalent diameter (D max ) to the minimum equivalent diameter (D min ) is preferably 1 More than 10 times, more preferably 1.20 times or more, still more preferably 1.30 times or more, and the upper limit of the ratio is preferably 10 times or less, more preferably 5 times or less. Note that, when the equivalent diameter of the flow path in the reactor section is reduced, the pressure loss increases, so that it is necessary to increase the apparatus strength. For this reason, it is desirable to make the equivalent diameter of the flow path of the reactor section as large as possible except for the necessary part so that the safety and cost loads are not excessive.
  • the reactor unit 3 is preferably linear (line-shaped), it does not necessarily have to be linear as shown in FIG. 1.
  • the reactor unit 3 is wound in a spiral shape or a coil shape as shown in FIG. 3.
  • the reactor unit 31 may be used, or the reactor unit 32 bent a plurality of times as shown in FIG. 4 may be used.
  • the reactor part 3 preferably has a shape in which the curvature of the reactor part does not change, such as a linear shape, a spiral shape, and a coil shape. By making the reactor part into a shape that does not change the curvature, non-uniform flow can be prevented.
  • the axial direction of the spiral or coil is not particularly limited, but may be parallel to the gravitational direction or perpendicular to the gravitational direction, but more preferably parallel to the gravitational direction.
  • the reactor section has a reactor inlet for introducing reaction raw materials into the reactor section and a reactor outlet for discharging products generated in the reactor section to the outside of the reactor section.
  • the installation position of the reactor inlet and the reactor outlet is not particularly limited, and the reactor inlet is installed at the same height as the reactor outlet, a position higher than the reactor outlet, or a position lower than the reactor outlet. It may be.
  • the reaction liquid containing a low dielectric constant solvent can contact the inner wall of the reactor section as much as possible. desirable. Therefore, it is desirable that the reactor inlet is installed at a position lower than the reactor outlet.
  • the reactor inlet is installed at a position lower than the reactor outlet, the bubbles contained in the reaction liquid are discharged from the upper part of the reactor part along with the flow of the reaction liquid, so that it is difficult for the bubbles to adhere to the inner wall of the reactor part. As a result, the reaction solution and the inner wall of the reactor can be efficiently contacted.
  • the fluorine-based resin tends to have a lower hermetic content than the other flexible resins, and even if the reactor part has a cross-sectional single-layer structure made of a fluorine-based resin having a conductive filler, There is also a concern that the content liquid oozes out through the fluororesin.
  • reaction solution for example, acrylonitrile, acrolein, sulfurous acid gas, arsine, ammonia, carbon monoxide, chlorine, chloromethine, chlorobrene, arsenic pentafluoride, phosphorus pentafluoride, ethylene oxide, nitrogen trifluoride, Boron trifluoride, phosphorus trifluoride, hydrogen cyanide, diethylamine, disilane, sulfur tetrafluoride, silicon tetrafluoride, diborane, hydrogen selenide, trimethylamine, carbon disulfide, fluorine, bromomethyl, phosgene, phosphine, monogermane, monosilane
  • a toxic substance such as monomethylamine or hydrogen sulfide
  • the outer wall surface of the reactor part may be brought into contact with the quenching agent. If a quenching agent is used, safety can be ensured even if the reaction solution oozes out.
  • water As a quenching agent, water; acidic aqueous solution containing at least one acid selected from hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, etc .; at least one selected from sodium hydroxide, potassium carbonate, sodium bicarbonate
  • acidic aqueous solution containing at least one acid selected from hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, etc .
  • sodium hydroxide, potassium carbonate, sodium bicarbonate Examples include alkaline aqueous solutions containing the above bases; oxidizing aqueous solutions such as aqueous hydrogen peroxide, aqueous sodium hypochlorite, and aqueous sodium chlorite; reducing aqueous solutions such as aqueous sodium thiosulfate and aqueous sodium sulfite;
  • the flow reactor employed in the present invention may be provided with two or more (for example, three) raw material feeding sections depending on the reaction system, and the raw materials supplied from one or both of the raw material feeding sections are shown in FIG. As shown in FIG. 5, it may be a result obtained by mixing other raw materials 14a and 14b in advance in the premixer 12, and then reacting them if necessary.
  • the reaction liquid discharged from the reactor unit 3 may be used as a raw material for the next flow reactor.
  • the reaction raw material (including the pre-reacted material) is supplied into the flow reactor through these raw material feeding sections.
  • the reaction raw material is usually supplied in the form of a liquid (including a solution).
  • the reaction raw material is desirably supplied by a liquid feed control unit such as a diaphragm pump.
  • the number of liquid feeding control units is not particularly limited, and may be the same as or more than the number of raw material feeding units.
  • the liquid feeding control unit is not limited to a pump, and, for example, a pressure-feeding reaction material charging container can be used.
  • the raw material feeding section is preferably a tube, and the inner diameter of the tube is preferably 0.01 mm or more, more preferably 0.1 mm or more, and preferably 50 mm or less.
  • One end of the raw material feeding section is connected to the raw material supply port, and the other end is connected to the mixing section.
  • the mixing unit is a unit for mixing raw materials, and the mixing unit is installed, for example, between the ends of two or more raw material feeding units and the reactor inlet.
  • the liquid mixture obtained in the mixing section is supplied as a reaction liquid into the reactor section through the reactor inlet.
  • the mixing part is preferably a tube, and the inner diameter of the tube is preferably 0.01 mm or more and 50 mm or less.
  • the mixing unit may be equipped with a known mixer in order to sufficiently stir the raw materials.
  • the mixer include a T-shaped mixer, a Y-shaped mixer, a static mixer, and a helix-type mixer. Etc.
  • a discharge unit is connected to the reactor outlet.
  • a discharge part is a part which distribute
  • the discharge part is also preferably a tube, and the inner diameter of the tube is preferably 0.01 mm or more, more preferably 0.1 mm or more, and preferably 50 mm or less. It is desirable that the reaction liquid recovered from the discharge part is appropriately processed thereafter.
  • the raw material feed section, mixing section and discharge section are made of metals such as stainless steel, hastelloy, titanium, copper, nickel and aluminum; inorganic materials such as glass and ceramics; resins such as PEEK resins, silicone resins and fluororesins; It is preferable to be configured, and conductivity may be imparted to the resin. From the viewpoints of corrosion resistance, heat resistance and durability, metals, particularly Hastelloy, are preferred.
  • the raw material feeding part, mixing part and discharging part may have either a single layer structure or a multilayer structure, but from the viewpoint of preventing liquid leakage, part or all of the raw material feeding part, mixing part and discharging part are A multilayer structure is desirable. Since the shape of the mixing part may sometimes be complicated, it is better to use a metal or resin with good workability when precise processing is required.
  • the temperature adjusting unit is preferably capable of adjusting at least one temperature of the raw material feeding unit, the mixing unit, and the reactor unit.
  • at least one of the raw material feeding unit, the mixing unit, and the reactor unit can be temperature-controlled.
  • the flow reactor of the present invention can be used for, for example, a chemical reaction operation, an extraction operation, a separation operation, a purification operation, and the like, which are examples of a fluid chemical reaction operation.
  • reaction solvent examples include aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; diethyl ether Ether solvents such as diisopropyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyltetrahydropyran, methyl-tert-butyl ether, 1,4-dioxane, cyclopentylmethyl ether; methylene chloride, chloroform, 1,1,1,- Halogen solvents such as trichloroethane and chlorobenzene; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ket
  • reaction in the flow reactor is highly closed, for example, acrylonitrile, acrolein, sulfurous acid gas, arsine, ammonia, carbon monoxide, chlorine, chloromethine, chlorobrene, arsenic pentafluoride, phosphorus pentafluoride, ethylene oxide, trifluoride.
  • the present invention is also applicable to reactions using toxic substances such as germane, monosilane, monomethylamine, and hydrogen sulfide.
  • the temperature in the reactor during the reaction is not particularly limited as long as it is not higher than the boiling point of the reaction solvent and not lower than the freezing point, and is preferably ⁇ 80 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and further preferably ⁇ 40 ° C. or higher. Preferably it is 200 degrees C or less, More preferably, it is 180 degrees C or less, More preferably, it is 160 degrees C or less.
  • the flow rate of the reaction solution in the reactor section is preferably 2 m / s or less, more preferably 1 m / s or less, and even more preferably 0.8 m / s or less in order to suppress friction and prevent charging.
  • the reaction time (residence time) is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less.
  • FIG. 6 shows a schematic diagram of the experimental apparatus.
  • a single-layer cross-sectional flow path made of PFA having a carbon-based conductive filler (hereinafter referred to as “conductive Teflon tube”; volume resistivity: 3.0 ⁇ ⁇ m; inner diameter 2.0 mm ⁇ outer diameter 3.0 mm ⁇ length 2.6 m) 41 was wound into a coil shape with a diameter of 80 mm, and one end was connected to a tap.
  • a ground was attached to a position 3 cm inside from the discharge port of the conductive Teflon tube 41.
  • a 2 L disposable cup 42 made of highly insulating polypropylene was placed near the discharge port of the conductive Teflon tube 41.
  • Water was fed into the conductive Teflon tube 41 at a flow rate shown in Table 1, and water flowing out from the conductive Teflon tube 41 was stored in the disposable cup 42.
  • the amount of water in the disposable cup 42 reached the liquid feeding amount shown in Table 1, the water was stopped, and the surface potential of the water stored in the disposable cup 42 was measured by a surface potential measuring device.
  • the results are shown in Table 1. The measurement was performed three times, and the average value was evaluated. As shown in Table 1, it was found that the use of a conductive Teflon tube can prevent the water from being charged due to liquid feeding. This result is similarly reproduced by the antistatic effect of the conductive Teflon tube even when the conductive Teflon tube is used as the reactor part of the flow type reactor.
  • the conductive Teflon tube 41 is referred to as a flow path having a single-layer structure made of only PFA (hereinafter referred to as “a Teflon tube having no conductivity”; volume resistivity> 10 16 ⁇ ⁇ m; inner diameter 2.0 mm ⁇
  • a Teflon tube having no conductivity The surface potential of the water stored in the disposable cup 42 was measured by a surface potential measuring device in the same manner as in Example 1 except that the outer diameter was changed to 3.0 mm ⁇ length 2.6 m). The results are shown in Table 1. The measurement was performed three times, and the average value was evaluated. As shown in Table 1, it was found that the Teflon tube having no conductivity cannot prevent the water from being charged due to the liquid feeding.

Abstract

本発明の課題は、低誘電率の有機溶媒のような帯電性物質も使用でき、耐食性にも優れたフロー式リアクターを提供することである。 本発明に係るフロー式リアクターは、2以上の原料送液部と、この原料送液部からの原料を混合する混合部と、混合部で調整された混合液を流通するリアクター部を備え、前記リアクター部の内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されていることを特徴とする。

Description

フロー式リアクター
 本発明は、フロー式リアクターに関するものであり、更に詳しくは、リアクター部の内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されていることを特徴とするフロー式リアクターに関するものである。
 マイクロフロー式リアクターは、反応場として、一般にサブミリメートルオーダーの微細流路を利用する化学反応装置である。マイクロフロー式リアクターは、その微細な反応場に起因して、高速混合性能(例えば、微小空間で2液を混合すると、2液の物質拡散距離が短くなるため物質移動が格段に高速化される)、除熱性能(反応場が小さいため熱効率が極めて高く温度制御が容易である)、反応制御性能、界面制御性能などの特有の効果を有するため、近年注目が集まっている。またマイクロフロー式リアクター技術によれば、プロセス全体のコンパクト化に伴う安全性の向上や大幅な設備費削減、既存のプロセスへの組み込みによるプロセス強化(マイクロ・イン・マクロ)、既存の生産方式では製造できなかった物質を製造可能にする等、種々の効果が期待される。
 しかしマイクロフロー式リアクターは、一度に処理できる量に限界があることが問題である。そこで、処理量を増大させて実用化にも対応できるよう、フロー式リアクターによるプロセス開発も行われている。フロー式リアクターとは、マイクロフロー式リアクターの特徴を損なわない範囲で流路径をミリ~センチメートルオーダーまで大きくして操作性を高めた化学反応装置である。フロー式リアクターは、主に、原料送液部、反応部、及び運転制御部から構成され、一般に、これらの基材には、金属、シリコン、ガラス、セラミックス等の無機物、または樹脂等の有機物などが使用される。
 特許文献1には、フロー反応器を用いて、ポリマーをRAFT溶液重合によって連続的に生成する方法が開示されており、前記フロー反応器は、好ましくはポリマー、金属、ガラス、またはこれらの組み合わせから構成されている。
 ところで、化学分野においては、反応液に腐食性の高い強酸や強アルカリが含まれるケースも多々存在する。腐食性を考慮した製品としては、例えば、特許文献2には、マイクロチャネル構造体であって、酸・アルカリなどの腐食性の高い液体に対して耐性を有するガラス、テフロン(登録商標)、金属などを基板に使用することが開示されている。
 またプロセス用途では、例えば、特許文献3には、易重合性物質を含む流体を取り扱う装置において(例えば、蒸留塔)、装置内に装填される装填部品が、その表面がフッ素系樹脂でコーティングされていることが開示されており、特許文献4には、フルオロポリマーコーティングを固着させた金属内壁を有する反応器が開示されている。
 また特許文献5には、腐食性のある製品等の化学製品を貯蔵および輸送するための構造物が開示されており、前記構造物は照射グラフト化フルオロポリマーからなる内層と、この内層に直接接着したポリオレフィンの外層とを含む多層構造を有している。特許文献6には、ガソリンの輸送に好ましく使用される多層管が開示されており、前記多層管は、照射グラフト化フルオロポリマーからなる内層と、この内層に直接接着したポリオレフィンの外層を含む多層構造を有している。更に特許文献7には、含フッ素系重合体からなる層を含む、少なくとも3層以上からなることを特徴とする積層チューブが開示されている。
特表2013-543021号公報 特開2007-136292号公報 特開2003-284942号公報 特表2010-509061号公報 特開2005-162330号公報 特開2005-207582号公報 特開2015-054431号公報
 労働安全衛生総合研究所の発行する静電気安全指針2007によると、静電着火のリスクを避けるには、ガソリン、灯油、トルエンなどの低導電率の液体(<50pS/m)には絶縁性の配管を使用してはならないとされている。そのため、低誘電率の有機溶媒を反応溶媒として用いる場合には、フロー式リアクターには、特許文献1~2に示されるようなガラス、プラスチック、セラミックスなどの絶縁材料は使用できなかった。
 また、前記低誘電率の有機溶媒のような帯電性物質に使用できて、耐食性にも優れた材質としては、ステンレス、チタン、ハステロイ、モネルなどの金属や合金等も挙げられる。しかし、これらは一般に重くて硬いため、組み立てには大掛かりな工事が必要であった。
 本発明の課題は、低誘電率の有機溶媒のような帯電性物質も使用でき、耐食性にも優れたフロー式リアクターを提供することである。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、リアクター部の内壁の少なくとも一部を、導電性フィラーを有するフッ素系樹脂で構成することにより、静電着火のリスクを回避し、低誘電率の有機溶媒のような帯電性物質も使用でき、耐食性にも優れたフロー式リアクターが得られることを見出し、本発明を完成した。
 すなわち、本発明に係るフロー式リアクターは、以下の点に要旨を有する。
[1]2以上の原料送液部と、この原料送液部からの原料を混合する混合部と、混合部で調整された混合液を流通するリアクター部を備え、前記リアクター部の内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されていることを特徴とするフロー式リアクター。
[2]前記リアクター部が、導電性フィラーを有するフッ素系樹脂からなる断面単層構造である[1]に記載のフロー式リアクター。
[3]前記リアクター部の外壁表面に、反応液のクエンチ剤が接触している[1]または[2]に記載のフロー式リアクター。
[4]前記フッ素系樹脂は、フッ素原子含有モノマーから生成するホモポリマーまたはコポリマーである[1]~[3]のいずれかに記載のフロー式リアクター。
[5]前記導電性フィラーが、カーボン系フィラー、金属系フィラー、金属酸化物系フィラーおよび金属合金系フィラーから選ばれる少なくとも1種以上である[1]~[4]のいずれかに記載のフロー式リアクター。
[6]JIS K 6911に基づいて、50%RHおよび23℃の条件下で測定される導電性フィラーを有するフッ素系樹脂の体積抵抗率が、106Ω・m以下である[1]~[5]のいずれかに記載のフロー式リアクター。
[7]前記リアクター部の流路の相当直径は、0.1mm以上50mm以下である[1]~[6]のいずれかに記載のフロー式リアクター。
[8]温度調節部を備える[1]~[7]のいずれかに記載のフロー式リアクター。
 本発明のフロー式リアクターによれば、内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されているため、帯電性を有する物質および腐食性を有する物質であっても使用できる。またフロー式リアクターとすることで、プロセス全体がコンパクトなものとなる。それ故、危険性の高い物質の保持量を最小限に抑えることが可能となって安全性が高まる上に、設備費が大幅に削減されて競争力にも優れたプロセスを構築できる。
図1は、本発明で採用するフロー式リアクターの一例を示す概略図である。 図2は、本発明のフロー式リアクターにおけるリアクター部の一例を示す断面図である。 図3は、本発明で採用するフロー式リアクターの他の例を示す概略図である。 図4は、本発明で採用するフロー式リアクターの他の例を示す概略図である。 図5は、本発明で採用するフロー式リアクターの他の例を示す概略図である。 図6は、実施例及び比較例で用いた実験装置の概略図である。 図7は、流路の相当直径Deの概略説明図である。 図8は、外側の相当直径De’の概略説明図である。
 以下、必要に応じて図示例を参照しつつ、本発明をより詳細に説明する。
<フロー式リアクター>
 図1は、本発明で採用するフロー式リアクターの構成の一例を示す概略図であり、最も基本的な一例である。この基本例の様に、フロー式リアクターは、2以上の原料送液部(図示例では、2つの原料送液部1a、1b)と、この原料送液部からの原料を混合する混合部2(図示例では、T字型ミキサー)と、混合部2で調整された混合液を流通するリアクター部3を備えており、リアクター部3(図示例では、直線状リアクター部)を液が送液される間に反応が進行する。
 なお図1の例では、前記原料送液部1a、1bは、それぞれの原料を蓄える原料貯蔵容器4a、4bに接続している。そして、原料送液部1a、1bには、それぞれ送液制御部(好ましくはダイヤフラムポンプ)5a、5bが設置され、混合液は、これら送液制御部5a、5bによって生じた圧力によってリアクター部3を流通するようになっている。またリアクター部3から排出される反応液は、反応液貯蔵容器6に一旦蓄えられるようになっている。
<リアクター部>
 以上の様な本発明で採用し得るフロー式リアクターにおいて、本発明では、リアクター部の内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されている点に特徴を有する。フッ素系樹脂が導電性フィラーを有していることにより、静電着火のリスクを回避し、低誘電率の有機溶媒のような帯電性物質の使用も可能となり、耐食性にも優れたフロー式リアクターが得られる。またフッ素系樹脂は軽くて柔らかいため、生産現場で作業員がフレキシブルに折り曲げ加工をしたり、手作業による取り付けも可能となり、作業性が大幅に改善されるといった利点もある。更には、ハステロイやモネルなどの合金に比較すると、フッ素系樹脂の単位長さ当たりの市場価格は大幅に安く、交換作業も簡便となるといった利点も挙げられる。
 フッ素系樹脂自体の体積抵抗率は、通常、1.0×1016~1.0×1018Ω・m(JIS K 6911;50%RH,23℃)と、ポリプロピレン等の一般的な熱可塑性樹脂に比べて高いため、フッ素系樹脂単体では帯電しやすい傾向にある。そのため、本発明ではフッ素系樹脂に導電性フィラーを含ませることにより、静電着火のリスクを減少させている。また、フッ素系樹脂を採用することで、同じく耐食性に優れた金属を用いる場合に比べ、安価にプロセスを提供することが可能となる。
 導電性フィラーは、フッ素系樹脂に含まれていればよく、例えば、導電性フィラーがフッ素系樹脂に練り込まれていることが望ましい。フロー式リアクターでは、流路を流れる反応液の線速が速くなる傾向にあり、反応液と内壁の摩擦により、導電性フィラーが脱落することが懸念される。そのため、導電性フィラーの脱落を防止するため、導電性フィラーをフッ素系樹脂に練り込んでおくとよい。なお本発明者らが調査したところによると、導電性を付与するために樹脂に導電性フィラーを練り込む技術は、電子写真分野で多く見受けられるものの(例えば、特開2003-246927号公報、特開2015-55740号公報等)、フロー式リアクターの分野には未だ応用されていないことが分かっている。
 フッ素系樹脂は、フッ素原子含有モノマーから生成するホモポリマーまたはコポリマーである。フッ素原子含有モノマーから生成するホモポリマーとしては、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)などが挙げられる。またフッ素原子含有モノマーから生成するコポリマーとしては、パーフルオロエチレンプロペンコポリマー(FEP)、パーフルオロアルコキシアルカン(PFA)、テトラフルオロエチレン-パーフルオロジオキソールコポリマー(TFE/PDD)、エチレン-クロロトリフルオロエチレンコポリマー(ECTFE)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)-クロロトリフルオロエチレンコポリマー(CPT)、エチレン-テトラフルオロエチレン-ヘキサフルオロプロペンコポリマー(EFEP)などが挙げられる。これらは、単独でまたは2種以上を混合して使用することができる。
 耐薬品性の観点からは、PTFE、PCTFE、FEP、PFA、ECTFEまたはETFEが好ましく、より好ましくはPTFE、FEPまたはPFAである。
 また成形性の観点からは、PCTFE、PVF、FEP、PFA、ECTFEまたはETFEが好ましい。
 本発明では、フッ素系樹脂をリアクター部の内壁に使用するため、フッ素系樹脂は耐薬品性と成形性の両方を兼ね備えていることが望ましく、フッ素系樹脂としては、特にPFAが好ましい。
 反応の種類によっては、リアクター内部が高温になる場合もあるため、フッ素系樹脂の融点は高い程好ましく、例えば、好ましくは150℃以上、より好ましくは200℃以上、更に好ましくは240℃以上であり、上限は特に限定されないが、通常は350℃以下である。
 導電性フィラーとしては、もともと導電体である金属やカーボンが使用でき、具体的には、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、天然黒鉛、人造黒鉛、気相成長炭素繊維等のカーボン系フィラー;金、銀、ニッケル、銅、亜鉛、アルミニウム、ステンレスなどの金属系フィラー;アルミニウムドープ酸化亜鉛、アンチモンドープ酸化スズ(IV)、スズドープ酸化インジウム(III)等の金属酸化物系フィラー;AgCu、AgSn、CuZn、CuNiZn、CuNiなどの金属合金系フィラー;等が挙げられる。これらは、単独でまたは2種以上を混合して使用することができる。フッ素系樹脂を含むリアクター部は、金属製のリアクター部に比べて耐久性の点で劣るため、金属製のリアクター部を使用する場合に比べて、リアクター部の交換頻度が高くなる傾向にある。そのため、リアクター部に用いる導電性フィラーは入手が容易で、導電性・耐薬品性に優れたカーボン系フィラーが好ましい。
 導電性フィラーの形状は特に限定されず、導電性フィラーは、球状または針状であることが好ましい。導電性フィラーが球状の場合、導電性フィラーの平均粒子径の下限としては5nm以上が好ましく、より好ましくは10nm以上である。また前記平均粒子径の上限としては500nm以下が好ましく、より好ましくは100nm以下である。なお平均粒子径は、一般的な手法であるレーザー回折・散乱法や、無作為に選定されたフィラー100~1000個について走査型電子顕微鏡写真等を用いて測定される粒子径の平均値によって評価できる。
 また、より高い導電効果を発揮させるには、導電性フィラーは導電パスの形成が容易な針状が好ましく、針状の導電性フィラーのアスペクト比(フィラーの長さ/直径)は、下限としては、好ましくは5以上であり、より好ましくは10以上である。前記アスペクト比の上限としては、好ましくは500以下であり、より好ましくは100以下である。
 導電性フィラーを有するフッ素系樹脂において、導電性フィラーの含有量は、フッ素系樹脂100重量%中、好ましくは5重量部以上であり、より好ましくは7重量部以上である。前記導電性フィラーの含有量の上限としては、好ましくは30重量部以下であり、より好ましく20重量部以下である。
 導電性フィラーを有するフッ素系樹脂は帯電防止性に優れており、その体積抵抗率(JIS K 6911;50%RH,23℃)は、好ましくは106Ω・m以下、より好ましくは105Ω・m以下、更に好ましくは104Ω・m以下である。導電性フィラーを有するフッ素系樹脂の体積抵抗率の下限は特に限定されないが、通常は、0Ω・m以上である。導電性フィラーを有するフッ素系樹脂の体積抵抗率を前記範囲内に調整することにより、リアクター部で低誘電率の溶媒も使用することができる。また導電性フィラーを有するフッ素系樹脂の表面抵抗率(JIS K 6911;50%RH,23℃)は、好ましくは106Ω以下、より好ましくは105Ω以下である。また下限は特に限定されないが、通常は、0Ω以上である。表面抵抗率を前記範囲内に調整することにより、高い帯電防止効果を有するリアクター部となる。
 内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されているとは、具体的には、導電性フィラーを有するフッ素系樹脂が、リアクター部内に含まれる内容液と接触するリアクター部の内壁表面の少なくとも一部に存在していることをいう。図2の(a)~(d)に、内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成される好ましい態様を示す。図2(a)~(d)では特に、リアクター部が断面円形管状のときのリアクター部断面を例にとって説明するが、リアクター部の断面形状はこれらに限られるものではない。リアクター部の内壁は、例えば、図2(a)及び図2(b)に示すようなリアクター部の内壁全面が導電性フィラーを有するフッ素樹脂70で構成されている態様または図2(c)及び図2(d)に示すようなリアクター部の内壁の一部が導電性フィラーを有するフッ素系樹脂70で構成されており、内壁の残りの部分が第2の樹脂71で構成されている態様が好ましい。本発明では、リアクター部内に含まれる材料の脱落防止や液漏防止の観点からは、導電性フィラーを有するフッ素系樹脂70と、第2の樹脂71との継ぎ目は少ない方が好ましい。そのため、リアクター部の内壁は、リアクター部の内壁全面が導電性フィラーを有するフッ素樹脂70で構成されている態様がより好ましい(図2(a)及び図2(b))。
 またリアクター部は、図2(a)のように全体が導電性を有するフッ素系樹脂70で構成されていてもよく、図2(b)~(d)のように、導電性を有するフッ素系樹脂70および第2の樹脂71から構成されていてもよい。
 第2の樹脂71は、リアクター部の外周面を被覆していてもよく(図2(b)~(d))、リアクター部の内壁の一部を構成していてもよい(図2(c)、図2(d))。第2の樹脂71がリアクター部の外周面を被覆している場合には、流路内壁で発生した静電気を外部へ逃がすため、流路途中あるいは接続部等の適切な箇所でアースを取る必要がある。装置を簡略化するには、導電性を有するフッ素系樹脂70でリアクター部の外周の一部を被覆する、或いは、リアクター部に導電性を有するフッ素系樹脂70や金属製の混合部及び/又は金属製の排出部を接続し、前記混合部及び/又は前記排出部にアースを取ることにより静電気を外部へ逃すことが好ましい。
 また、リアクター部の内壁が導電性を有するフッ素系樹脂70及び第2の樹脂71から構成される場合には(図2(c)、図2(d))、フッ素系樹脂70と第2の樹脂71との継ぎ目が多くなるため、リアクター部内に含まれる反応原料や生成物などの内容物が、継ぎ目を通じてリアクター部外へ漏出する可能性もある。よってリアクター部の安全性をより高めるためには、図2(c)、(d)の様に、リアクター部の外周面を第2の樹脂71で被覆することが効果的である。
 第2の樹脂(但し、導電性フィラーを有するフッ素系樹脂を除く)としては、例えば、導電性フィラーを含まないフッ素系樹脂が好ましく、前記フッ素系樹脂としては、前述したものと同様のものが使用できる。第2の樹脂にもフッ素系樹脂を用いることで、耐薬品性に優れたリアクター部となる。なお、リアクター部の帯電防止効果を高めるためには、導電性フィラーを有するフッ素系樹脂が、内壁表面の50%以上において露出していることが好ましく、より好ましくは70%以上であり、更に好ましくは90%以上であり、特に好ましくは100%である。
 前記リアクター部は、導電性フィラーを有するフッ素系樹脂からなる断面単層構造であっても(図2(a))、導電性フィラーを有するフッ素系樹脂からなる断面多層構造であってもよい(図2(b)~(d))が、帯電防止効果を向上させる観点から、リアクター部は、導電性フィラーを有するフッ素系樹脂からなる断面単層構造であることが望ましい。
 リアクター部の形状は、反応液が流通可能な形状であれば特に限定されず、中空かつ円柱状の管状型リアクター、或いは、流路に相当する溝がエッチングなどにより形成された基板を有する積層型リアクターなどが例示できる。管状型リアクターにおいては、流路断面は、円形、多角形、及び歪円形(例えば、凸型または凹型)のいずれであってもよく、より好ましくは円形または多角形である。また管状型リアクターは、一重管であっても、二重円管のように外管内に内管が挿入された多重管であってもよい。
 またリアクター部としては、好ましくは長さが1cm以上であり、より好ましくは10cm以上である。リアクター部の長さの上限としては特に制限されないが、好ましくは500m以下であり、より好ましくは300m以下である。リアクター部の形状をこのように調整することで、リアクター部内の内容物がリアクター部の内壁と接触しやすくなり、低誘電率の溶媒のような帯電しやすい溶媒を使用しても、帯電による問題を防ぐことができる。リアクター部の形状及び長さは、滞留時間などに応じて適宜決定するとよい。
 リアクター部が管状の場合、流路の相当直径に対する管の長さは、好ましくは2倍以上、より好ましくは10倍以上、更に好ましくは15倍以上であり、上限は特に限定されないが、好ましくは10000倍以下、より好ましくは5000倍以下、更に好ましくは3000倍以下である。管のサイズを前記範囲内に調整することで、内容物がリアクター部の内壁と接触しやすくなり、帯電による問題を防ぐことができる。
 リアクター部の流路の相当直径は、好ましくは50mm以下、より好ましくは20mm以下、更に好ましくは15mm以下であり、圧力損失や処理量を鑑みれば、好ましくは0.1mm以上、より好ましくは1.0mm以上、更に好ましくは1.5mm以上である。
 なお本発明において「流路の相当直径」とは、流路の断面と等価とみなした円管に相当する直径のことを指す。すなわち、流路の相当直径Deは、下記式(i)で表される。
   De=4Af/Wp …(i)
(式中、Af:流路断面積、Wp:濡れ縁長さ(断面にある壁面の長さ)である;図7参照)
 リアクター部における流路の数は特に限定されず、流路は1本または2本以上(好ましくは10本以下)である。リアクター部に流路を2本以上設ける場合には、リアクター部は、上流から下流に向かって、2本以上(好ましくは2本)の流路が1本に合流する構造を有していても、1本の流路が2本以上(好ましくは2本)に分岐する構造を有していてもよい。2本以上の流路は、より好ましくはトーナメント型に設置されていることが望ましい。
 リアクター部を複数本有するフロー式リアクターでは、必ずしも全ての流路において、リアクター部の内壁は導電性を有するフッ素系樹脂から構成されている必要はない。例えば多段階で反応が生じる様な場合であって、反応の結果、生成物が、導電性を持つようになる或いは腐食性を失うような場合もあるため、反応後の液の性質に応じて、リアクター部の内壁は導電性を有するフッ素系樹脂以外の他の材質から構成されていてもよい。この様な場合、リアクター部の内壁は、生成物の特性に応じて、例えば、金属、シリコン、ガラス、セラミックス等の無機物、または樹脂等の有機物等から構成されていていることが好ましい。
 リアクター部の流路の相当直径は、リアクター部全体で一様であってもよく、リアクター部の途中で変更されていてもよい。リアクター部の流路の相当直径が一様であれば、反応液の流れが阻害されることなく、反応がムラなく進行する。一方、混合性能や除熱性能などの諸条件を考慮すれば、リアクター部の流路の相当直径は、リアクター部の途中で変更されていてもよい。前記流路の相当直径の変更部位は任意でよく、前記流路の相当直径の変更回数に制限はなく、必要に応じて一回または複数回変更してもよい。また、前記流路の相当直径は徐々に変化してもよいし、ある一点を境に大きく変化させてもよい。前記流路の相当直径は、上流側の流路の相当直径と比較して細くてもよいし、太くてもよく、反応に応じて適宜設計すればよい。流路の設計は以下の例に限定されるものではないが、例えば、リアクター部の流路の相当直径が細くなるほど混合性能は向上するため、混合部直後のリアクター部の流路の相当直径は細くしておき、十分に混合された後にリアクター部の流路の相当直径を太くすることも可能である。
 また、リアクター部の形状が管状の場合、リアクター部の管厚みもリアクター部全体で一様であってもよく、リアクター部の途中で変更されていてもよい。リアクター部の管厚みを薄くすれば熱が逃げやすい構造となり、除熱性能が向上する。また、リアクター部の管厚みが薄ければ、冷却効果も高くなる。
 リアクター部の形状が管状の場合、リアクター部の外径もリアクター部全体で一様であってもよく、リアクター部の途中で変更されていてもよい。前記リアクター部の外径が細くなるほど除熱性能も向上するため、例えば、精密な温度制御が必要な箇所については、リアクター部の流路の相当直径及びリアクター部の外径を共に細くしてもよい。また、前記流路の相当直径のみ太くして、リアクター部の外径は一様とすることで、リアクター部の管厚みを薄くして熱が逃げやすい構造にしても良い。
 なお、本発明におけるリアクター部の外径とは、管状型リアクターの外側の相当直径のことを指す。本発明において「外側の相当直径」とは、管状型リアクターの断面と等価とみなした円管に相当する直径のことを指す。すなわち、外側の相当直径De’は、下記式(ii)で表される。
   De’=4Af’/Wp’ …(ii)
(式中、Af’:管状型リアクターの断面積、Wp’:管状型リアクターの外周である;図8参照)
 また、前記リアクター部の管厚みとは、菅状型リアクターの流路を構成する導電性を有するフッ素系樹脂および又は他の材質の厚みのことを指す。
 リアクター部全体を通して、流路の相当直径を一様にする場合は、例えば、リアクター部において、最小の相当直径(Dmin)に対する最大の相当直径(Dmax)の比率(Dmax/Dmin)を、好ましくは1.10倍以下、より好ましくは1.05倍以下、更に好ましくは1.01倍以下、好ましくは1.0倍以上にするとよい。
 リアクター部の流路の相当直径を途中で変更する場合には、例えば、最小の相当直径(Dmin)に対する最大の相当直径(Dmax)の比率(Dmax/Dmin)を、好ましくは1.10倍超、より好ましくは1.20倍以上、更に好ましくは1.30倍以上であり、前記比率の上限値としては、好ましくは10倍以下、より好ましくは5倍以下にするとよい。
 なおリアクター部の流路の相当直径を細くする場合には、圧力損失が高まるために装置強度を上げる必要が生じる。そのため、安全面やコスト面での負荷が過大にならないよう、必要箇所以外ではリアクター部の流路の相当直径は可能な限り太くしておくことが望ましい。
 リアクター部3は、線状(ライン状)であるのが好ましいものの、必ずしも図1に示すような直線状である必要はなく、例えば、図3に示す様な螺旋状乃至コイル状に巻かれたリアクター部31であってもよく、図4に示す様な複数回曲げ返されたリアクター部32であってもよい。リアクター部を非直線化することで、フロー式リアクターを省スペース化できる。リアクター部3は、好ましくは、直線状、螺旋状、コイル状などのようにリアクター部の曲率に変化がない形状である。リアクター部を曲率の変化のない形状にすることで、フローの不均質化を防止できる。螺旋またはコイルの軸方向は特に限定されないが、重力方向と平行にしてもよく、重力方向と垂直にしてもよいが、より好ましくは重力方向と平行である。
 リアクター部は、リアクター部内に反応原料を投入するリアクター入口及びリアクター部内で生成した生成物をリアクター部外へ排出するためのリアクター出口を有している。これらリアクター入口とリアクター出口の設置位置は特に限定されるものではなく、リアクター入口は、リアクター出口と同じ高さ、リアクター出口よりも高い位置、またはリアクター出口よりも低い位置のいずれの位置に設置されていてもよい。本発明では、リアクター部の内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されているため、低誘電率の溶媒を含む反応液は、可能な限りリアクター部の内壁と接触できることが望ましい。そのため、リアクター入口は、リアクター出口よりも低い位置に設置されていることが望ましい。リアクター入口が、リアクター出口よりも低い位置に設置されていれば、反応液に含まれる気泡は、反応液の流れと共にリアクター部上部から排出されるため、リアクター部の内壁に気泡が付着し難くなり、結果として反応液とリアクター部の内壁とを効率よく接触させることが可能となるためである。
 前述のように、フッ素系樹脂と第2の樹脂との継ぎ目が多くなると、リアクター部内に含まれる内容液が継ぎ目を通じてリアクター部外へ漏出する可能性がある。また、フッ素系樹脂は他の可撓性樹脂に比べて内容物の気密性が低い傾向にあり、リアクター部が導電性フィラーを有するフッ素系樹脂からなる断面単層構造の場合であっても、フッ素系樹脂を通じて内容液が外部へ染み出すことも懸念される。そのため、反応液の種類によっては例えば、アクリニトリル、アクロレイン、亜硫酸ガス、アルシン、アンモニア、一酸化炭素、塩素、クロロメチン、クロロブレン、五フッ化ヒ素、五フッ化リン、酸化エチレン、三フッ化窒素、三フッ化ホウ素、三フッ化リン、シアン化水素、ジエチルアミン、ジシラン、四フッ化硫黄、四フッ化珪素、ジボラン、セレン化水素、トリメチルアミン、二硫化炭素、フッ素、ブロモメチル、ホスゲン、ホスフィン、モノゲルマン、モノシラン、モノメチルアミン、硫化水素などの毒性物質を用いる場合など、リアクター部の外壁表面をクエンチ剤と接触させてもよい。クエンチ剤を用いれば、反応液が染み出してきても、安全性を確保できる。
 クエンチ剤としては、水;塩酸、硫酸、リン酸、酢酸、クエン酸等から選ばれる少なくとも1種以上の酸を含む酸性水溶液;水酸化ナトリウム、炭酸カリウム、炭酸水素ナトリウムから選ばれる少なくとも1種以上の塩基を含むアルカリ性水溶液;過酸化水素水、次亜塩素酸ナトリウム水溶液、亜塩素酸ナトリウム水溶液などの酸化性水溶液;チオ硫酸ナトリウム水溶液、亜硫酸ナトリウム水溶液などの還元性水溶液;などが例示できる。
<原料送液部>
 本発明で採用するフロー式リアクターは、反応の方式によって2以上(例えば、3つ)の原料送液部を備えていてもよく、片方又は両方の原料送液部から供給される原料は、図5に示すように、前もって別の原料14a、14bを予備混合器12で混合させ、必要に応じてその後反応させた結果物であってもよい。また図示しないが、リアクター部3から排出される反応液は、次のフロー式リアクターの原料として用いてよい。反応原料(予備反応物を含む)は、これら原料送液部を通じてフロー式リアクター内に供給される。反応原料は、通常、液体(溶液を含む)の形態で供給される。
 そして反応原料は、上述した様に、ダイヤフラムポンプなどの送液制御部により供給されることが望ましい。送液制御部の数は特に限定されず、原料送液部の数と同じか、或いは、これ以上であっても、これ以下であってもよい。送液制御部はポンプに限定されず、例えば、反応原料の仕込容器を加圧したものも使用できる。
 原料送液部は、好ましくは管であり、前記管の内径は、好ましくは0.01mm以上、より好ましくは0.1mm以上であり、好ましくは50mm以下である。原料送液部の一端は原料供給口に接続し、他端は混合部に接続する。
<混合部>
 混合部とは原料を混合する部であり、混合部は、例えば、2以上の原料送液部の末端とリアクター入口の間に設置される。混合部で得られた混合液は、リアクター入口を通じて、リアクター部内に反応液として供給される。混合部は好ましくは管であり、前記管の内径は、好ましくは0.01mm以上、50mm以下である。
 混合部には、原料を充分に撹拌するために、公知の混合器が備えられていてもよく、前記混合器としては、例えば、T字型ミキサー、Y字型ミキサー、スタティックミキサー、ヘリックス型ミキサーなどが挙げられる。
<排出部>
 リアクター出口には、排出部が接続していることが望ましい。排出部とは、リアクター部内で生成した生成物や未反応原料を流通する部である。排出部も好ましくは管であり、前記管の内径は、好ましくは0.01mm以上、より好ましくは0.1mm以上であり、好ましくは50mm以下である。排出部より回収される反応液は、その後、適切に処理されることが望ましい。
 なお原料送液部、混合部および排出部は、ステンレス鋼、ハステロイ、チタン、銅、ニッケル、アルミニウムなどの金属;ガラス、セラミックスなどの無機材料;PEEK樹脂、シリコーン樹脂、フッ素樹脂等の樹脂;から構成されていることが好ましく、前記樹脂には、導電性が付与されていてもよい。耐食性、耐熱性および耐久性の観点から、金属、特にハステロイが好ましい。原料送液部、混合部および排出部は、単層構造または多層構造のいずれであってもよいが、液漏れ防止の観点から、原料送液部、混合部および排出部の一部または全部が多層構造であることが望ましい。
 混合部の形状は時に複雑になることがあるため、精密な加工が必要なときには、加工性のよい金属や樹脂を用いるとよい。
<温度調節部>
 フロー式リアクターはバッチ式に比べて比表面積が大きく伝熱性能が良いため、迅速に温度を調節することができる。そのためフロー式リアクターには、温度調節部が備えられていることが望ましい。温度調節部は、原料送液部、混合部およびリアクター部の少なくとも1以上の温度を調整できるものが好ましく、例えば、原料送液部、混合部およびリアクター部の少なくとも1以上を温度調節の可能な熱媒の中に沈める態様;原料送液部、混合部およびリアクター部の少なくとも1以上を多層構造にして(例えば、二層管など)、層の内側、外側、またはその両方から温度調節する態様;などが挙げられる。温度調節部の存在により、熱により反応を開始させる系や、温度を下げて副生成物の生成を抑制させる系等において、反応収率や品質を向上させることができる。
<使用方法>
 本発明のフロー式リアクターは、例えば、流体の化学反応操作の一例である、化学反応操作、抽出操作、分離操作、精製操作などに使用できる。
 本発明のフロー式リアクターに使用可能な反応溶媒としては、例えば、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、4-メチルテトラヒドロピラン、メチル-tert-ブチルエーテル、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;塩化メチレン、クロロホルム、1,1,1,-トリクロロエタン、クロロベンゼン等のハロゲン系溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒;などが例示される。これらの反応溶媒は、単独でまたは2種以上を混合して使用してもよい。
 本発明のフロー式リアクターでは、種々の化学反応が実施でき、特に制限はない。フロー式リアクターによる反応は閉鎖性が高いため、例えば、アクリロニトリル、アクロレイン、亜硫酸ガス、アルシン、アンモニア、一酸化炭素、塩素、クロロメチン、クロロブレン、五フッ化ヒ素、五フッ化リン、酸化エチレン、三フッ化窒素、三フッ化ホウ素、三フッ化リン、シアン化水素、ジエチルアミン、ジシラン、四フッ化硫黄、四フッ化珪素、ジボラン、セレン化水素、トリメチルアミン、二硫化炭素、フッ素、ブロモメチル、ホスゲン、ホスフィン、モノゲルマン、モノシラン、モノメチルアミン、硫化水素などの毒性物質を用いた反応にも適用可能である。
 反応時におけるリアクター部内の温度は、反応溶媒の沸点以下で凝固点以上であれば特に制限されず、好ましくは-80℃以上、より好ましくは-60℃以上、更に好ましくは-40℃以上であり、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下である。
 リアクター部における反応液の流速は、摩擦を抑えて帯電を防止するために、好ましくは2m/s以下、より好ましくは1m/s以下、更に好ましくは0.8m/s以下である。
 また反応時間(滞留時間)は、好ましくは60分以下、より好ましくは30分以下、更に好ましくは15分以下である。
 本願は、2016年6月24日に出願された日本国特許出願第2016-125837号に基づく優先権の利益を主張するものである。2016年6月24日に出願された日本国特許出願第2016-125837号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 図6に実験装置の概略図を示す。カーボン系導電性フィラーを有するPFAからなる断面単層構造の流路(以下、「導電性テフロンチューブ」と称する;体積抵抗率3.0Ω・m;内径2.0mm×外径3.0mm×長さ2.6m)41を、直径80mmのコイル形状に巻き、一端を水道の蛇口に連結した。前記チューブ41表面を伝わった静電気を外部へ逃がす目的で、前記導電性テフロンチューブ41の排出口から3cm内側の位置にアースを取り付けた。また前記導電性テフロンチューブ41の排出口付近には、高絶縁性のポリプロピレンからなる2Lのディスポカップ42を置いた。
 前記導電性テフロンチューブ41内部に表1に示す流量で水を送液し、前記導電性テフロンチューブ41から流出する水を前記ディスポカップ42に貯めた。前記ディスポカップ42内の水の量が表1に示す送液量に達した時点で水を止め、表面電位測定器により、前記ディスポカップ42内に貯まった水の表面電位を測定した。結果を表1に示す。なお測定は3回行い、その平均値により評価した。
 表1に示すように、導電性テフロンチューブを使用することにより、送液による水の帯電を防止できることが分かった。本結果は、フロー式リアクターのリアクター部として導電性テフロンチューブを用いた場合でも、該導電性テフロンチューブが有する帯電防止効果により、同様に再現されるものである。
 比較例1
 導電性テフロンチューブ41を、PFAのみからなる断面単層構造の流路(以下、「導電性を有さないテフロンチューブ」と称する;体積抵抗率は>1016Ω・m;内径2.0mm×外径3.0mm×長さ2.6m)に代えたこと以外は、実施例1と同様にして、表面電位測定器により、ディスポカップ42内に貯まった水の表面電位を測定した。結果を表1に示す。なお測定は3回行い、その平均値により評価した。
 表1に示すように、導電性を有さないテフロンチューブでは、送液による水の帯電を防止できないことが分かった。
Figure JPOXMLDOC01-appb-T000001
 1a、1b、11a、11b 原料送液部
 2 混合部
 3 リアクター部
 4a、4b、14a、14b 原料貯蔵容器
 5a、5b、15a、15b 送液制御部
 6 反応液貯蔵容器
 12 予備混合器
 31 螺旋状乃至コイル状に巻かれたリアクター部
 32 複数回曲げ返されたリアクター部
 41 導電性テフロンチューブまたは導電性を有さないテフロンチューブ
 42 ディスポカップ
 70 導電性フィラーを有するフッ素系樹脂
 71 第2の樹脂(但し、導電性フィラーを有するフッ素系樹脂を除く)
 

Claims (8)

  1.  2以上の原料送液部と、この原料送液部からの原料を混合する混合部と、混合部で調整された混合液を流通するリアクター部を備え、前記リアクター部の内壁の少なくとも一部が導電性フィラーを有するフッ素系樹脂で構成されていることを特徴とするフロー式リアクター。
  2.  前記リアクター部が、導電性フィラーを有するフッ素系樹脂からなる断面単層構造である請求項1に記載のフロー式リアクター。
  3.  前記リアクター部の外壁表面に、反応液のクエンチ剤が接触している請求項1または2に記載のフロー式リアクター。
  4.  前記フッ素系樹脂は、フッ素原子含有モノマーから生成するホモポリマーまたはコポリマーである請求項1~3のいずれか1項に記載のフロー式リアクター。
  5.  前記導電性フィラーが、カーボン系フィラー、金属系フィラー、金属酸化物系フィラーおよび金属合金系フィラーから選ばれる少なくとも1種以上である請求項1~4のいずれか1項に記載のフロー式リアクター。
  6.  JIS K 6911に基づいて、50%RHおよび23℃の条件下で測定される導電性フィラーを有するフッ素系樹脂の体積抵抗率が、106Ω・m以下である請求項1~5のいずれか1項に記載のフロー式リアクター。
  7.  前記リアクター部の流路の相当直径は、0.1mm以上50mm以下である請求項1~6のいずれか1項に記載のフロー式リアクター。
  8.  温度調節部を備える請求項1~7のいずれか1項に記載のフロー式リアクター。
PCT/JP2017/023205 2016-06-24 2017-06-23 フロー式リアクター WO2017222048A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780038485.5A CN109328107A (zh) 2016-06-24 2017-06-23 流式反应器
KR1020197001889A KR20190022666A (ko) 2016-06-24 2017-06-23 플로우식 리액터
SG11201811429XA SG11201811429XA (en) 2016-06-24 2017-06-23 Flow reactor
JP2018524181A JP7058216B2 (ja) 2016-06-24 2017-06-23 フロー式リアクター
EP17815513.1A EP3476473A4 (en) 2016-06-24 2017-06-23 FLOW REACTOR
US16/222,261 US10543474B2 (en) 2016-06-24 2018-12-17 Flow reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-125837 2016-06-24
JP2016125837 2016-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/222,261 Continuation US10543474B2 (en) 2016-06-24 2018-12-17 Flow reactor

Publications (1)

Publication Number Publication Date
WO2017222048A1 true WO2017222048A1 (ja) 2017-12-28

Family

ID=60784406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023205 WO2017222048A1 (ja) 2016-06-24 2017-06-23 フロー式リアクター

Country Status (7)

Country Link
US (1) US10543474B2 (ja)
EP (1) EP3476473A4 (ja)
JP (1) JP7058216B2 (ja)
KR (1) KR20190022666A (ja)
CN (1) CN109328107A (ja)
SG (1) SG11201811429XA (ja)
WO (1) WO2017222048A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187497A1 (ja) * 2018-03-27 2019-10-03 株式会社カネカ フロー式リアクター及びこれを有する製造設備
EP3476868A4 (en) * 2016-06-23 2020-02-19 China Petroleum&Chemical Corporation CATALYST PRECONTACT DEVICE AND METHOD FOR CONTINUOUS POLYMERIZATION OF OLEFIN
WO2020189027A1 (ja) 2019-03-20 2020-09-24 株式会社カネカ 反応装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201622024D0 (en) * 2016-11-14 2017-02-08 Inventage Lab Inc Apparatus and method for large scale production of monodisperse, microsheric and biodegradable polymer-based drug delivery
CA3164365A1 (en) * 2019-12-19 2021-06-24 Commonwealth Scientific And Industrial Research Organisation Preparation of halogenated alkoxyethane
CN113791122B (zh) * 2021-09-16 2023-08-25 国网江苏省电力有限公司建设分公司 一种杆塔桩基接地泄流包填料电阻率测量装置及测量方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817543B1 (ja) * 1969-06-12 1973-05-30
US4166536A (en) * 1977-03-16 1979-09-04 The Carborundum Company Corrosive chemical containment system
JPH04177168A (ja) * 1990-11-09 1992-06-24 Mitsubishi Materials Corp 生体液中の金属自動分析装置
JPH04311731A (ja) * 1991-04-10 1992-11-04 Sakae Plant Eng Kk 帯電防止ゴムシート
WO2004009231A1 (ja) * 2002-07-18 2004-01-29 National Institute Of Advanced Industrial Science And Technology マイクロ反応装置の製造方法およびマイクロ反応装置
JP2005049329A (ja) * 2003-07-14 2005-02-24 Toray Ind Inc バイオチップ用基板およびバイオチップ
JP2005525229A (ja) * 2002-05-11 2005-08-25 ユニヴァーシティ・オヴ・ダーラム 流体リアクタ
JP2005279493A (ja) * 2004-03-30 2005-10-13 Nippon Telegr & Teleph Corp <Ntt> マイクロリアクタ及びその製造方法
JP2007502218A (ja) * 2003-05-23 2007-02-08 ユィロス・パテント・アクチボラグ 親水性/疎水性表面
WO2009022400A1 (ja) * 2007-08-10 2009-02-19 Nippon Fusso Co., Ltd フッ素樹脂複合材料及び該フッ素樹脂複合材料から得ることができるライニング被膜並びに該ライニング被膜を有する被膜体
JP2009095800A (ja) * 2007-10-18 2009-05-07 Sato Light Kogyo Kk 微細流路構造体およびその製造方法
JP2015178258A (ja) * 2014-02-27 2015-10-08 ダイキン工業株式会社 積層体及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824115A (en) 1969-06-12 1974-07-16 Kureha Chemical Ind Co Ltd Polyvinylidene fluoride composition and coating thereof
JP2003284942A (ja) 2002-03-28 2003-10-07 Mitsubishi Rayon Co Ltd 易重合性物質取扱装置
ATE382469T1 (de) 2003-12-01 2008-01-15 Arkema France Verwendung eines rohres aus gepfropftem fluorpolymer, hergestellt durch bestrahlung, für den kraftstofftransport
ATE393702T1 (de) 2003-12-02 2008-05-15 Arkema France Verwendung einer struktur auf basis eines gepfropften fluorpolymeren für die aufbewahrung und den transport von chemischen produkten.
US20050118372A1 (en) 2003-12-02 2005-06-02 Anthony Bonnet Use of a structure based on a grafted fluoropolymer for storing and transporting chemicals
US20090142845A1 (en) * 2005-08-11 2009-06-04 Smithkline Beecham Corporation Flow reactor method and apparatus
JP2007136292A (ja) 2005-11-15 2007-06-07 National Institute Of Advanced Industrial & Technology マイクロチャネル構造体の製造方法、マイクロチャネル構造体、およびマイクロリアクタ
FR2908328B1 (fr) 2006-11-14 2008-12-12 Arkema France Reacteurs revetus, leur procede de fabrication et leurs utilisations.
NZ608564A (en) 2010-09-22 2014-09-26 Commw Scient Ind Res Org Continuous flow polymerisation process
JP6255823B2 (ja) 2013-09-11 2018-01-10 宇部興産株式会社 積層チューブ
JP6311572B2 (ja) * 2013-10-30 2018-04-18 日本ポリエチレン株式会社 導電性ポリエチレン樹脂組成物並びにそれを用いた成形品、および積層体

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817543B1 (ja) * 1969-06-12 1973-05-30
US4166536A (en) * 1977-03-16 1979-09-04 The Carborundum Company Corrosive chemical containment system
JPH04177168A (ja) * 1990-11-09 1992-06-24 Mitsubishi Materials Corp 生体液中の金属自動分析装置
JPH04311731A (ja) * 1991-04-10 1992-11-04 Sakae Plant Eng Kk 帯電防止ゴムシート
JP2005525229A (ja) * 2002-05-11 2005-08-25 ユニヴァーシティ・オヴ・ダーラム 流体リアクタ
WO2004009231A1 (ja) * 2002-07-18 2004-01-29 National Institute Of Advanced Industrial Science And Technology マイクロ反応装置の製造方法およびマイクロ反応装置
JP2007502218A (ja) * 2003-05-23 2007-02-08 ユィロス・パテント・アクチボラグ 親水性/疎水性表面
JP2005049329A (ja) * 2003-07-14 2005-02-24 Toray Ind Inc バイオチップ用基板およびバイオチップ
JP2005279493A (ja) * 2004-03-30 2005-10-13 Nippon Telegr & Teleph Corp <Ntt> マイクロリアクタ及びその製造方法
WO2009022400A1 (ja) * 2007-08-10 2009-02-19 Nippon Fusso Co., Ltd フッ素樹脂複合材料及び該フッ素樹脂複合材料から得ることができるライニング被膜並びに該ライニング被膜を有する被膜体
JP2009095800A (ja) * 2007-10-18 2009-05-07 Sato Light Kogyo Kk 微細流路構造体およびその製造方法
JP2015178258A (ja) * 2014-02-27 2015-10-08 ダイキン工業株式会社 積層体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476473A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476868A4 (en) * 2016-06-23 2020-02-19 China Petroleum&Chemical Corporation CATALYST PRECONTACT DEVICE AND METHOD FOR CONTINUOUS POLYMERIZATION OF OLEFIN
US10988553B2 (en) 2016-06-23 2021-04-27 China Petroleum & Chemical Corporation Catalyst pre-contact device for continuous polymerization of olefins and method for catalyst pre-contact
WO2019187497A1 (ja) * 2018-03-27 2019-10-03 株式会社カネカ フロー式リアクター及びこれを有する製造設備
JPWO2019187497A1 (ja) * 2018-03-27 2021-03-18 株式会社カネカ フロー式リアクター及びこれを有する製造設備
EP3778004A4 (en) * 2018-03-27 2021-12-22 Kaneka Corporation FLOW REACTOR AND PRODUCTION PLANT FOR IT
US11235304B2 (en) 2018-03-27 2022-02-01 Kaneka Corporation Flow reactor and manufacturing facility comprising the flow reactor
JP7239559B2 (ja) 2018-03-27 2023-03-14 株式会社カネカ フロー式リアクター及びこれを有する製造設備
WO2020189027A1 (ja) 2019-03-20 2020-09-24 株式会社カネカ 反応装置
US11931716B2 (en) 2019-03-20 2024-03-19 Kaneka Corporation Reaction apparatus

Also Published As

Publication number Publication date
US20190126230A1 (en) 2019-05-02
SG11201811429XA (en) 2019-01-30
EP3476473A4 (en) 2019-12-18
CN109328107A (zh) 2019-02-12
JPWO2017222048A1 (ja) 2019-04-11
EP3476473A1 (en) 2019-05-01
KR20190022666A (ko) 2019-03-06
JP7058216B2 (ja) 2022-04-21
US10543474B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
WO2017222048A1 (ja) フロー式リアクター
US20220307634A1 (en) Fluid circuit with integrated electrostatic discharge mitigation
US20170108149A1 (en) Fluidic device
US11339063B2 (en) Fluid circuit with integrated electrostatic discharge mitigation
JP2018512068A (ja) 体積を削減した海水電解セル及び海水電解セルの製造方法
US11235304B2 (en) Flow reactor and manufacturing facility comprising the flow reactor
EP2251192A1 (en) An improved flexible hose for conveying fluid materials and electric current
JP2012173739A5 (ja)
TWI714283B (zh) 靜電耗散性含氟聚合物複合物及包含彼等之導管段及操作組件
KR20190134797A (ko) 자가-세정 동심 관형 전기 화학 전지를 위한 신규한 흐름 특징
TWI804726B (zh) 靜電減緩過濾器、流體處理系統及減緩流體處理系統中之靜電放電的方法
TWI740509B (zh) 靜電放電緩和管
JP2016121792A (ja) フッ素樹脂チューブ
JP7093365B2 (ja) 同心管型電気化学セルの内部電気接続
US11541573B2 (en) Thermoplastic resin pellet and method for manufacturing electric cable
JP6857036B2 (ja) 流体機器
US20220349488A1 (en) Electrostatic discharge mitigation valve
JP6542561B2 (ja) 洗浄装置及び洗浄方法
CN220313840U (zh) 一种树脂输送管及树脂输送装置
KR102090573B1 (ko) 수지 배관의 권취 구조체, 권취 구조체의 제조 방법, 수지 배관의 부설 방법, 및 수지 배관
JPH0724898A (ja) 帯電防止用樹脂チューブとその製造方法
JP2016121793A (ja) フッ素樹脂チューブ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001889

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017815513

Country of ref document: EP

Effective date: 20190124