WO2017217738A1 - 가소제 조성물, 수지 조성물 및 이들의 제조 방법 - Google Patents

가소제 조성물, 수지 조성물 및 이들의 제조 방법 Download PDF

Info

Publication number
WO2017217738A1
WO2017217738A1 PCT/KR2017/006144 KR2017006144W WO2017217738A1 WO 2017217738 A1 WO2017217738 A1 WO 2017217738A1 KR 2017006144 W KR2017006144 W KR 2017006144W WO 2017217738 A1 WO2017217738 A1 WO 2017217738A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
epoxidized
citrate
alkyl ester
Prior art date
Application number
PCT/KR2017/006144
Other languages
English (en)
French (fr)
Inventor
김현규
이미연
조윤기
문정주
김주호
정석호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170072509A external-priority patent/KR101833175B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/766,708 priority Critical patent/US10717846B2/en
Priority to CN201780003859.XA priority patent/CN108350215B/zh
Priority to ES17813562T priority patent/ES2959271T3/es
Priority to EP17813562.0A priority patent/EP3342810B1/en
Publication of WO2017217738A1 publication Critical patent/WO2017217738A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to a plasticizer composition, a resin composition and a method for producing the same.
  • plasticizers react with alcohols to polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, trimellitate-based, and other polymer-based plastics continue.
  • the plasticizer is appropriately added with various additives such as resins such as polyvinyl chloride (PVC), fillers, stabilizers, pigments, and antifog additives to give a variety of processing properties, such as extrusion, injection molding, calendaring, etc. It is used in a variety of products, from pipes, flooring, wallpaper, sheets, artificial leather, tarpaulins, tapes and food packaging.
  • resins such as polyvinyl chloride (PVC)
  • fillers such as polyvinyl chloride (PVC)
  • stabilizers such as polyvinyl chloride (PVC)
  • the inventors of the present invention have confirmed the plasticizer composition which can improve the physical properties of the vinyl chloride resin composition while continuing to study the plasticizer, and have completed the present invention.
  • an object of the present invention is to provide a plasticizer composition, a method for preparing the same, and a resin composition comprising the same, which can improve physical properties such as hardness, tensile and elongation residual ratio, migration resistance, and heating loss when used as a plasticizer of the resin composition. .
  • an epoxidized alkyl ester composition comprising at least one compound represented by the following formula (1); And a citrate-based material, wherein the weight ratio of the epoxidized alkyl ester composition and the citrate-based material is 90:10 to 10:90, and the citrate-based material includes one or more plasticizer compositions.
  • R 1 is an alkyl group having 8 to 20 carbon atoms containing at least one epoxy group
  • R 2 is an alkyl group having 4 to 10 carbon atoms.
  • the epoxidized alkyl ester compositions can be less than the Iodine 3.5 I 2 / 100g.
  • the epoxidized alkyl ester composition may have an oxirane content (Oxirane Content, O.C.) of at least 3.5%.
  • the epoxidized alkyl ester composition may have an oxirane index (Oxirane Index, O.I.) of 1.0 or more.
  • O.I. oxirane Index
  • the epoxidized alkyl ester composition may include an epoxy alkyl ester composition containing at least one compound represented by Formula 1, and further includes an alkyl ester composition including at least one compound represented by Formula 2 below. can do.
  • R 3 is an alkyl group having 8 to 20 carbon atoms
  • R 4 is an alkyl group having 4 to 10 carbon atoms.
  • R 2 of Formula 1 may be an alkyl group having 4 to 9 carbon atoms.
  • the epoxidized alkyl ester composition may be one containing two or more compounds having different carbon atoms from R 2 in Formula 1.
  • R 2 is a butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, isoheptyl group, octyl group, 2-ethylhexyl group, nonyl group, isononyl group, 6-methyloctyl group, de It may be selected from the group consisting of a real group, isodecyl group and 2-propylheptyl group.
  • the citrate-based material may include any one selected from the group consisting of a hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms and a non- hybrid alkyl substituted citrate-based material having 4 to 10 carbon atoms.
  • the citrate-based material may be an acetyl group is not bonded.
  • the resin may be at least one selected from the group consisting of ethylene vinyl acetate, polyethylene, polypropylene, polyketone, polyvinyl chloride, polystyrene, polyurethane, and thermoplastic elastomer.
  • the plasticizer composition according to an embodiment of the present invention may provide excellent physical properties such as migration resistance and volatility, as well as excellent plasticization efficiency and tensile strength and elongation.
  • Epoxidized Soybean Oil (ESO) with an oxirane content of 6.97% and an iodine value of 1.93 (I 2 / 100g) in a four-necked three-liter reactor equipped with a chiller, condenser, decanter, reflux pump, temperature controller, and stirrer. 1000 g, 500 g of 2-ethylhexyl alcohol (2-EH) and 5.5 g of a metal salt catalyst were added as a catalyst, and it heated up gradually to about 180 degreeC.
  • ESO Epoxidized Soybean Oil
  • An epoxidized 2-ethylhexyl ester composition having an oxirane content of 3.37% was prepared using the same method as Preparation Example 1 except that the oxirane content of epoxidized soybean oil was lower than Preparation Example 1.
  • Epoxidized methyl ester composition was prepared in the same manner as in Preparation Example 1, except that methanol was used instead of 2-ethylhexanol.
  • An epoxidized propyl ester composition was prepared in the same manner as in Preparation Example 1, except that propanol was used instead of 2-ethylhexanol.
  • An epoxidized dodecyl ester composition was prepared in the same manner as in Preparation Example 1, except that dodecanol was used instead of 2-ethylhexanol.
  • Example 1 8 (Production Example 1) 5.21 1.70 TEHC - 9: 1 Example 2 8 (Production Example 1) 5.21 1.70 TEHC - 7: 3 Example 3 8 (Production Example 1) 5.21 1.70 TEHC - 3: 7 Example 4 8 (Production Example 1) 5.21 1.70 TEHC - 1: 9 Example 5 9 (Production Example 2) 5.22 1.71 TBC - 5: 5 Example 6 9 (Production Example 2) 5.22 1.71 TBC - 4: 6 Example 7 4 (Production Example 3) 5.18 1.68 TINC - 3: 7 Example 8 4 (Production Example 3) 5.18 1.68 TINC - 2: 8 Example 9 8 (Example 7) 3.37 3.40 TEHC - 7: 3 Example 10 8 (Production Example 1) 5.21 1.70 TEHC ESO 7: 1: 2 Example 11 8 (Production Example 1) 5.21 1.70 TEHC ESO 4: 1: 5
  • the plasticizers of Examples 1-11 and Comparative Examples 1-5 were used as experimental specimens.
  • the specimen was prepared by referring to ASTM D638, blending 40 parts by weight of plasticizer to 3 parts by weight of plasticizer and 3 parts by weight of stabilizer (LOX 912 NP) with a mixer, and then operating the roll mill at 170 ° C. for 4 minutes.
  • 1T and 3T sheets were produced at 180 ° C. for 2.5 minutes (low pressure) and 2 minutes (high pressure).
  • Each specimen was used to perform the following physical property tests and the results are summarized in Table 2 below.
  • Tensile Strength (kgf / mm2) Load Value (kgf) / Thickness (mm) x Width (mm)
  • Elongation (%) calculated after elongation / initial length x 100.
  • Test specimens having a thickness of 2 mm or more were obtained according to KSM-3156, and a PS plate was attached to both sides of the specimens, and a load of 1 kgf / cm 2 was applied thereto.
  • the test piece was left in a hot air circulation oven (80 ° C.) for 72 hours and then taken out and cooled at room temperature for 4 hours. Then, after removing the PS attached to both sides of the test piece, the weight before and after leaving in the oven was measured and the transfer loss was calculated by the following equation.
  • % Of transfer loss ⁇ (initial weight of test piece at room temperature-weight of test piece after leaving the oven) / initial weight of test piece at room temperature ⁇ x 100
  • Example 1 87.0 216.1 305.9 2.85 1.86
  • Example 2 87.3 225.7 313.5 2.37 1.62
  • Example 3 87.5 227.1 311.9 2.14 1.23
  • Example 4 87.8 230.5 313.5 1.84 0.60
  • Example 5 85.3 220.7 308.5 1.65 2.87
  • Example 6 85.0 221.4 305.7 1.40 2.93
  • Example 7 87.5 235.6 312.2 2.45 1.03
  • Example 9 87.5 220.4 303.7 2.50 1.55
  • Example 10 87.1 237.8 320.5 1.88 1.20
  • Example 11 87.3 248.7 322.4 1.92 0.75
  • Comparative Example 1 82.4 184.6 284.5 3.51 7.80
  • the plasticizer compositions of Examples 1 to 11 can be confirmed that each of the physical properties are shown to be in a good level all without any poor physical properties, while in Comparative Examples 1 to 5, all physical properties It may be confirmed that it is difficult or difficult to apply to the plasticizer composition because it is exhibited at a particularly poor level in any one or two or more physical properties.
  • Comparative Examples 1 and 2 since the carbon number of the epoxidized alkyl ester composition is 1 and 3, the components volatilized during processing are considerable, so that the physical properties are severely deteriorated. It can be confirmed that it appears. However, it is confirmed that Examples 7 and 8 using the carbon number 4 have significantly smaller heating loss and transition loss than Comparative Examples 1 and 2, although the carbon number difference is not relatively large.
  • Example 1 when comparing Example 1 with Examples 10 and 11, it can be confirmed that the effect of the addition of the epoxidized oil, the tensile strength and elongation, and the transfer loss and heating loss are all improved. Through this, it can be seen that when the epoxidation oil is further added to the epoxidized alkyl ester composition and the citrate-based material, physical properties may be improved.
  • the present invention has a technical feature to provide a plasticizer composition that can improve the poor physical properties caused by the structural limitations.
  • an epoxidized alkyl ester composition comprising at least one compound represented by Formula 1; And a citrate-based material, wherein the weight ratio of the epoxidized alkyl ester composition and the citrate-based material is 9: 1 to 1: 9, and the citrate-based material includes one or more plasticizer compositions.
  • R 1 is an alkyl group having 8 to 20 carbon atoms containing at least one epoxy group
  • R 2 is an alkyl group having 4 to 10 carbon atoms.
  • the epoxidized alkyl ester composition may include one or more epoxidized Fatty Acid Alkyl Ester (eFAAE), and specifically, one or more compounds represented by Formula 1 may be included, and epoxidized alkyl 'Alkyl' of the ester compound may be 4 to 10 carbon atoms.
  • eFAAE epoxidized Fatty Acid Alkyl Ester
  • R 2 may have 4 to 10 carbon atoms, preferably 4 to 9 carbon atoms.
  • R 2 may be a butyl group (butyl, abbreviated B) or an isobutyl group ( isobutyl, abbreviation iB), pentyl group (abbreviation P), hexyl group (hexyl, abbreviation Hx), heptyl group (heptyl, abbreviation Hp), isoheptyl (iHp abbreviation), octyl group (octyl, abbreviation nO), 2-ethylhexyl group (2-ethylhexyl, abbreviated EH or O), nonyl group (nonyl, abbreviated nN), isononyl group (isononyl, abbreviated IN), 6-methyljade It may be a methyl group (6-methyloctyl (abbr), pentyl group (abbre
  • the epoxidized alkyl ester composition when a carbon number material having a carbon number of less than 4, for example, a carbon number, such as epoxidized methyl ester, is applied, the transferability may be considerably poor, poor heating loss, Problems such as transparency, tackiness, and elongation may be deteriorated, and when epoxidized alkyl ester having a carbon number of 10 or more is applied, the molecular weight is too large, so that the plasticization efficiency and the compatibility with the resin are poor. There is a concern. Therefore, the epoxidized alkyl ester contained in the epoxidized alkyl ester composition may be preferably limited to 4 to 10 carbon atoms, and preferably, 4, 8 or 9 carbon atoms may be applied.
  • the epoxidized alkyl ester composition represented by Formula 1 includes two or more kinds of compounds, and may form a composition in which two or more kinds of compounds having different carbon atoms of R 2 are mixed, and two or more kinds thereof are included. It has to the number of carbon atoms is 4; and the carbon number is 8. the compound of R 2, mixed, or R when the number of carbon atoms is 5 and the carbon number of the compound 9 the compound of the second mixture may be desirable when the.
  • the epoxidized alkyl ester composition may have an oxirane content (Oxirane Content, OC) of at least 3.5%, at least 4.0%, or at least 4.2%, preferably at least 4.5%.
  • OC oxirane Content
  • the epoxidized alkyl ester composition may have an iodine value of less than 3.5 I 2 / 100g (hereinafter, the unit "I 2 / 100g" is omitted), preferably 3.2 or less, more preferably 3.0 or less.
  • the epoxidized alkyl ester composition may be an important factor when the measured iodine value and oxirane content are applied to the plasticizer composition.
  • the iodine and oxirane content may affect the plasticizer properties.
  • the iodine value is 3.5 or more, there may be a problem that it may be insufficient in the functional evaluation, for example, the color of the plasticizer composition becomes dark, which may be unsuitable for use as a food packaging material. have.
  • the iodine value is less than 3.5, mechanical properties such as tensile strength and elongation may also be improved.
  • the epoxidized alkyl ester composition may preferably have an iodine value of less than 3.5, more preferably 3.2 or less, and more preferably 3.0 or less.
  • the iodine number represents the content of the double bond present in the molecule, and may be derived from a value measured by a titration method through iodization of the double bond.
  • the oxirane content may vary according to the number of epoxy groups contained in the substituent represented by R 1 in Formula 1, the oxirane content may be at least 3.5%, at least 4.0%, or at least 4.2%. And preferably 4.5% or more.
  • the oxirane content may be measured by a titration method, it may be measured by a titration method using a sample and an acid solution.
  • the iodine number may represent the content of the double bond, and the content of the double bond may be the content of the double bond remaining after the epoxidation reaction such as epoxidation of vegetable oil or epoxidation of fatty acid alkyl ester is performed. That is, the oxirane content and the iodine number may be an indicator of how much epoxidation has been performed, and thus may be partially related to each other, and in theory, may be inversely related to each other.
  • the double bonds of vegetable oils or fatty acid alkyl esters may vary from material to material, so the two parameters do not form an exact inverse relationship or trade off relationship, and a higher iodine value between the two materials.
  • the substance may also have a higher oxirane content at the same time. Therefore, it may be preferable to apply to the plasticizer composition used for environmentally friendly food packaging materials that the iodine number and oxirane content of the epoxidized alkyl ester compound satisfy the above-mentioned range.
  • an oxirane index (O.I.) of the epoxidized alkyl ester compound may be 1.0 or more.
  • the relationship between the iodine number and the oxirane content rate is as described above, but at the same time it may be desirable to satisfy that the oxirane index is at least 1.0, optimally at least 2.0.
  • the 'oxirane index' is a ratio of an oxirane content to an iodine number of the epoxidized alkyl ester compound, and may be a ratio of a remaining double bond not reacted with a double bond epoxidized by an epoxidation reaction.
  • the oxirane index may be 1.0 or more as a ratio of the content of oxirane to iodine number. That is, when the value obtained by dividing the oxirane content of the epoxidized alkyl ester by the iodine number is 1.0 or more, a more optimized plasticizer composition can be obtained.
  • the epoxidized alkyl ester composition may include an epoxy alkyl ester composition containing at least one compound represented by Formula 1, and further include an alkyl ester composition containing at least one compound represented by Formula 2 below. Can be.
  • R 3 is an alkyl group having 8 to 20 carbon atoms
  • R 4 is an alkyl group having 4 to 10 carbon atoms.
  • the alkyl ester composition containing at least one compound represented by Formula 2 may not include an epoxy group in R 3 , and may be a fatty acid of an epoxidized oil in the process of preparing an epoxy-based alkyl ester composition using an epoxidized oil and an alcohol.
  • the moiety moiety may vary, and there may be fatty acid moieties to which no epoxy groups are bound, and compounds derived from such fatty acid moieties.
  • Such saturated alkyl esters are included in the plasticizer composition, which does not require separation and purification, which is beneficial for product cost improvement, and also by plasticizing by containing an alkyl ester composition having a short carbon number from 8 to 18 carbon atoms and containing no oxirane. It can help with efficiency and performance.
  • the content of the saturated alkyl ester composition is about 80% by weight or more of the total plasticizer composition including the unsaturated epoxidized alkyl ester composition, since the compatibility with the vinyl chloride resin may be inferior, 70 weight
  • the composition ratio is less than or equal to%, preferably less than or equal to 50% by weight, more preferably less than or equal to 30% by weight, compatibility with the vinyl chloride resin may be excellent.
  • the plasticizer composition comprises a citrate-based material
  • the citrate-based material is a mixed alkyl substituted citrate-based material having 4 to 10 carbon atoms and a non-hybridized alkyl substitution having 4 to 10 carbon atoms It may include one or more compounds selected from the group consisting of citrate-based materials.
  • the citrate-based material may be represented by the following formula (3).
  • R 5 to R 7 are each independently an alkyl group having 4 to 10 carbon atoms, and R 8 is hydrogen.
  • R 5 to R 7 of Formula 3 are each independently a butyl group, isobutyl group, hexyl group, heptyl group, isoheptyl group, 2-ethylhexyl group, isononyl group, and 2-propylhep It may be a methyl group or isodecyl group, and each of R 5 to R 7 may be the same as or different from each other.
  • butyl group, 2-ethylhexyl group, isononyl group, 2-propylheptyl group or isodecyl group is applied It may be desirable.
  • the citrate wherein R 5 to R 7 is an alkyl group having 4 to 10 carbon atoms and the alkyl group is different from each other includes, for example, a citrate having a combination substituent of butyl group and 2-ethylhexyl group, and a combination substituent of butyl group and heptyl group.
  • the citrate wherein R 5 to R 7 is an alkyl group having 4 to 10 carbon atoms and the same alkyl group is, for example, tributyl citrate (TBC), triheptyl citrate (THpC), and tri (2-ethylhexyl) Citrate (TEHC), triisononyl citrate (TiNC), tri (2-propylheptyl) citrate (TPHC) and the like can be applied, in addition to the alkyl group having 4 to 10 carbon atoms can be applied.
  • TBC tributyl citrate
  • TpC triheptyl citrate
  • TEHC tri (2-ethylhexyl) Citrate
  • TiNC triisononyl citrate
  • TPHC tri (2-propylheptyl) citrate
  • the upper limit of the number of carbon atoms of the alkyl group is preferably 10, and when the number of carbon atoms exceeds 10, there is a fear of deterioration of characteristics such as absorption rate and plasticization efficiency due to excessive increase in molecular weight.
  • trialkyl citrate or dinalkyl-malkyl citrate may be applied, such as the hybrid or non-hybrid alkyl substituted citrate compound.
  • R 8 is In the case of an acetyl group, there may be a disadvantage in that the physical properties of the plasticizer, in particular, the workability and gelling properties of the plasticizer are reduced. In addition, there may be a burden in manufacturing in addition to the economic and equipment costs for treating waste acetic acid generated as a by-product.
  • R 8 of Formula 3 is an acetyl group in the citrate-based material
  • the epoxidized alkyl ester composition and the citrate-based material are mixed as described above and used as a plasticizer composition, they can be applied to various uses according to the composition ratio, and from resins for food packaging materials to resins applied to automobile seats. There is an advantage that can be applied quite widely.
  • the epoxidized alkyl ester composition and the citrate-based material in the plasticizer composition may be included in a ratio of 90:10 to 10:90 by weight, and the upper limit of the weight ratio range is 90:10, 85:15 , 80:20, 70:30 or 60:40 may be applied, and the lower limit may be 10:90, 15:85, 20:80, 30:70 or 40:60.
  • the mechanical properties and the mechanical properties of the epoxidized alkyl ester composition may be complementary to each other. This also has the advantage of being able to improve.
  • the plasticizer composition may include an epoxidized alkyl ester composition and a citrate-based material, and may further include an epoxidized oil.
  • the epoxidized oil may further include the epoxidized oil to further supplement physical properties in the mixed plasticizer composition of the epoxidized alkyl ester composition and the citrate-based material.
  • the epoxidized oil for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil, epoxidized palm oil, epoxidized stearate (epoxidized stearate), epoxidized oleate, epoxidized tall oil, epoxidized linoleate or mixtures thereof.
  • epoxidized soybean oil (ESO), or epoxidized linseed oil (ELO) may be applied, but is not limited thereto.
  • the epoxidized oil may include 1 to 100 parts by weight, preferably 1 to 80 parts by weight, based on 100 parts by weight of the mixed weight of the epoxidized alkyl ester composition and the citrate-based material.
  • a plasticizer composition having suitably superior physical properties between mechanical and physical properties and transition properties can be obtained.
  • a blending method can be applied, the blending production method is as follows.
  • the epoxidized alkyl ester composition and the citrate-based material in a ratio of 90:10 to 10:90 by weight
  • the plasticizer composition may be prepared by blending in a mixture, and the citrate-based material may be included in one or more kinds.
  • R 1 is an alkyl group having 8 to 20 carbon atoms including at least one epoxy group
  • R 2 is an alkyl group having 4 to 10 carbon atoms.
  • the method of preparing the plasticizer composition may be to use an esterification reaction.
  • the epoxidized alkyl ester compound may be prepared by reacting an epoxidized oil and an alkyl alcohol having 4 to 10 carbon atoms to prepare an epoxidized alkyl ester compound, and the epoxidized alkyl ester composition may have a iodine value of less than 3.5. Methods of making the compositions can be provided.
  • the reaction of the epoxidized oil with an alkyl alcohol having 4 to 10 carbon atoms may be a transesterification reaction.
  • trans esterification reaction refers to a reaction in which an alcohol and an ester react with each other, as shown in Scheme 1 below, so that R of the ester is interchanged with R 'of the alcohol, as shown in Scheme 1 below:
  • the trans-esterification reaction has the advantage that does not cause a waste water problem compared to the acid-alcohol esterification reaction, and can proceed under a non-catalyst, it can solve the problem when using an acid catalyst.
  • the ester in the trans esterification reaction may be an epoxidized oil
  • the alcohol may be a primary alcohol having an alkyl group having 1 to 10 carbon atoms. Carbon number of the alcohol may be 1 to 10, preferably 4 to 8, the alkyl group of the alcohol may be an alkyl group corresponding to R2 of the formula (1) after the reaction is completed.
  • the epoxidized oil for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil (epoxidized palm oil), Epoxidized stearate, epoxidized oleate, epoxidized tall oil, epoxidized linoleate, or mixtures thereof.
  • epoxidized soybean oil for example, epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, epoxidized palm oil (epoxidized palm oil), Epoxidized stearate, epoxidized oleate, epoxidized tall oil, epoxidized linoleate, or mixtures thereof.
  • Epoxidized stearate Epoxidized stearate
  • epoxidized oleate epoxidized tall oil
  • epoxidized linoleate for example, epoxidized tall oil,
  • the epoxidized oil may be represented by the following Chemical Formula 4, and may include three ester groups in one molecule, and may contain a certain amount of epoxy groups.
  • the epoxidized oil represented by Formula 4 corresponds to one example.
  • the epoxidized oil is there iodine value of 3.5 may be less than (I 2/100 g), the iodine trans-esterification reaction variation for the small and the product of iodine and a large difference in the epoxidized alkyl ester compound is not, Features in this regard may be about the same or somewhat less than the iodine number of the epoxidized alkyl ester composition described above.
  • the color and solid substance content of the product may be improved to a more desirable level.
  • the oxirane content is 6.0% or more (in terms of epoxy content). About 16.2% or more), and the iodine number may be 3.0 or less.
  • the epoxidized alkyl ester composition is prepared by selecting an epoxidized oil having such a value, the color and solid substance content of the product may be improved.
  • the transesterification reaction may be carried out under a reaction temperature of 40 to 230 ° C, preferably 50 to 200 ° C, more preferably 100 to 180 ° C, in a preferred embodiment 100 to control the solid production rate in the final product It is preferable to carry out the reaction at a reaction temperature of 180 ° C.
  • the trans esterification reaction may be preferably performed in 30 minutes to 8 hours, more preferably 1 to 6 hours.
  • the reaction time is applied for more than 8 hours, the oxirane content rate is affected, and the oxirane content rate is reduced, which may adversely affect the quality of the color of the product.
  • reaction time may be calculated from the time point at which the reaction temperature is reached after the reaction temperature is raised.
  • the trans esterification reaction may be carried out under a basic catalyst, an acid catalyst or a metal catalyst, in which case the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid, and the like, and the metal catalyst may be, for example, an alkoxide-based organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or a metal itself containing sodium or potassium. Can be.
  • the metal component may be any one selected from the group consisting of sodium, potassium tin, titanium and zirconium, or a mixture of two or more thereof.
  • polyhydric alcohol and the reaction by-products and the unreacted alcohol produced after the trans-esterification reaction may further comprise the step of separating, washing and distilling the reaction by-products.
  • the purification process may be performed after the trans esterification reaction for a certain period of time, cooling and standing at a temperature of 80 to 100 °C, in which case layer separation occurs, the upper layer includes an epoxidized alkyl ester and alcohol
  • the lower layer may contain glycerin and other byproducts.
  • neutralization and water washing can be induced by adding a catalyst neutralization aqueous solution to neutralize the catalyst.
  • the neutralization and washing process may be performed after first separating the lower layer containing mainly by-products, and may be discharged by dissolving the by-products of the lower layer in water during the neutralization and washing process, and then unreacted after the repeated washing process Alcohol and water can be recovered and removed.
  • 2-ethylhexyl alcohol having 8 carbon atoms when 2-ethylhexyl alcohol having 8 carbon atoms is used, 2-ethylhexyl alcohol has low solubility in water, and there is no problem of waste water generation. Therefore, in this case, the alcohol is removed after neutralization and washing with water. In the case of the removal, the neutralization and washing with water after removing the byproduct layer of the lower layer may be advantageous without proceeding with a fatal problem.
  • the citrate-based material may be mixed blended with the epoxidized alkyl ester compound prepared as described above based on the mixed weight ratio in the above-described range.
  • the mixing ratio or the citrate-based material that can be applied is described above, and thus description thereof is omitted.
  • the citrate-based material like the epoxidized alkyl ester composition, may be prepared through an esterification reaction, a direct esterification reaction in which citric acid and an alcohol react, or a trans ester reaction in which citrate and alcohol react. It may be applied, and when a trans ester reaction is applied, three or more kinds of mixtures may be formed into the product.
  • the method may further include adding an epoxidized oil as necessary.
  • the epoxidized oil may be selected from the range equivalent to that exemplified above, and the amount of the epoxidized oil is 1 to 100 parts by weight, preferably 1 to 100 parts by weight based on 100 parts by weight of the mixed weight of the epoxidized alkyl ester compound and the citrate-based material. 80 parts by weight. Since the related feature has been described above, the description thereof is omitted.
  • the plasticizer composition thus prepared is 5 to 150 parts by weight based on 100 parts by weight of a resin such as ethylene vinyl acetate, polyethylene, polyketone, polypropylene, polyvinyl chloride, polystyrene, polyurethane, or thermoplastic elastomer, or a mixture thereof.
  • a resin such as ethylene vinyl acetate, polyethylene, polyketone, polypropylene, polyvinyl chloride, polystyrene, polyurethane, or thermoplastic elastomer, or a mixture thereof.
  • Part, 40 to 100 parts by weight, or 40 to 50 parts by weight can be included in the range, it can provide a resin composition.
  • the resin composition includes the plasticizer composition as described above, it can be applied to various applications such as flooring, wallpaper, film, hose or electric wire, and also has basic mechanical properties such as tensile strength and elongation, plasticization efficiency and heating loss. It can exhibit physical properties equivalent to or higher than existing plasticizers.
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may be a filler known in the art, it is not particularly limited.
  • it may be at least one mixture selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as stabilizers, if necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
  • Stabilizers that can be used according to one embodiment of the present invention, for example, calcium-zinc-based (Ca-Zn-based) stabilizers such as complex stearic acid salts or barium-zinc (Ba-Zn-based) It may be used, but is not particularly limited thereto.
  • Ca-Zn-based calcium-zinc-based
  • Ba-Zn-based barium-zinc

Abstract

본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것으로, 구조적인 한계로 인해 발생되던 불량한 물성들을 개선함으로써 수지 조성물의 가소제로서 사용시 시트 처방에서 요구되는 가소화 효율, 이행성, 인장강도, 신율, 스트레스 이행성 및 내광성 등의 물성을 개선시킬 수 있는 가소제 및 이들을 포함한 수지 조성물을 제공할 수 있다.

Description

가소제 조성물, 수지 조성물 및 이들의 제조 방법
관련출원과의 상호인용
본 출원은 2016년 06월 15일자 한국 특허 출원 제10-2016-0074501호 및 2017년 06월 09일자 한국 특허 출원 제10-2017-0072509호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 가소제 조성물, 수지 조성물 및 이들의 제조 방법에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 트리멜리테이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
일반적으로 가소제는 폴리염화비닐(PVC)등의 수지와 충진재, 안정제, 안료, 방담제 등 여러가지 첨가제를 적절하게 첨가하여 다양한 가공물성을 부여하여 압출성형, 사출성형, 캘린더링 등의 가공법에 의하여 전선, 파이프, 바닥재, 벽지, 시트, 인조가죽, 타포린, 테이프 및 식품 포장재 업종의 제품에 이르기까지 다양한 제품들의 소재로 사용된다.
현재 가소제 시장 상황은 프탈레이트 가소제에 대한 환경 이슈로 인해 친환경 가소제의 개발이 업계에서 경쟁적으로 진행되고 있으며, 최근에는 친환경 가소제 중에서 범용 제품으로 사용중에 있는 디(2-에틸헥실)테레프탈레이트(DEHTP)의 가소화 효율, 이행성 등의 품질 열세를 극복하기 위한 신규 제품들의 개발이 이루어지고 있다.
이에 상기 디(2-에틸헥실)테레프탈레이트보다 우수한 제품 등의 신규 조성물 제품을 개발함으로써, 염화비닐계 수지에 대한 가소제로서 최적 적용할 수 있는 기술에 대한 연구가 계속 필요한 실정이다.
이에 본 발명자들은 가소제에 대한 연구를 계속하던 중 염화비닐계 수지조성물의 물성을 개선할 수 있는 가소제 조성물을 확인하고 본 발명을 완성하기에 이르렀다.
즉, 본 발명의 목적은 수지 조성물의 가소제로서 사용시 경도, 인장 및 신장 잔율, 내이행성 및 가열감량 등의 물성을 개선시킬 수 있는 가소제 조성물과 이의 제조 방법 및 이를 포함하는 수지 조성물을 제공하고자 하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 화합물을 1 종 이상 포함하는 에폭시화 알킬 에스터 조성물; 및 시트레이트계 물질;을 포함하고, 상기 에폭시화 알킬 에스터 조성물 및 시트레이트계 물질의 중량비는 90:10 내지 10:90이며, 상기 시트레이트계 물질은 1 종 이상이 포함되는 것인 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2017006144-appb-I000001
상기 화학식 1에서, R1은 1 이상의 에폭시기를 함유하는 탄소수 8 내지 20의 알킬기이고, R2는 탄소수 4 내지 10의 알킬기이다.
상기 에폭시화 알킬 에스터 조성물은 요오드가가 3.5 I2/100g 미만일 수 있다.
상기 에폭시화 알킬 에스터 조성물은 옥시란 함유율(Oxirane Content, O.C.)이 3.5% 이상 일 수 있다.
상기 에폭시화 알킬 에스터 조성물은 옥시란 인덱스(Oxirane Index, O.I.)가 1.0 이상 일 수 있다.
상기 에폭시화 알킬 에스터 조성물은, 상기 화학식 1로 표시되는 화합물이 1 종 이상 포함된 에폭시알킬 에스터 조성물을 포함할 수 있고, 하기 화학식 2로 표시되는 화합물이 1 종 이상 포함된 알킬 에스터 조성물을 더 포함할 수 있다.
[화학식 2]
Figure PCTKR2017006144-appb-I000002
상기 화학식 2에서, R3은 탄소수 8 내지 20의 알킬기이고, R4는 탄소수 4 내지 10의 알킬기이다.
상기 화학식 1의 R2는 탄소수 4 내지 9의 알킬기인 것 일 수 있다.
상기 에폭시화 알킬 에스터 조성물은 화학식 1에서 R2의 탄소수가 서로 다른 화합물을 2 종 이상 포함하는 것 일 수 있다.
상기 화학식 1에서 R2는 부틸기, 이소부틸기, 펜틸기, 헥실기, 헵틸기, 이소헵틸기, 옥틸기, 2-에틸헥실기, 노닐기, 이소노닐기, 6-메틸옥틸기, 데실기, 이소데실기 및 2-프로필헵틸기로 이루어진 군에서 선택되는 것 일 수 있다.
상기 시트레이트계 물질은 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질 및 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질로 이루어진 군에서 선택된 어느 하나를 포함하는 것 일 수 있다.
상기 시트레이트계 물질은 아세틸기가 결합되지 않은 것 일 수 있다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물이 제공된다.
상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것 일 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 우수한 가소화 효율 및 인장강도와 신율 뿐만 아니라, 내이행성 및 내휘발성 등의 우수한 물성을 제공할 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
제조예 1: eFAEHE의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 옥시란 함유율이 6.97%, 요오드가가 1.93 (I2/100g)인 에폭시화 대두유(Epoxidized Soybean Oil; ESO) 1000g, 2-에틸헥실 알코올(2-EH) 500g, 촉매로써 금속염 촉매 5.5g을 투입하고, 약 180℃까지 서서히 승온시켰다.
가스 크로마토그래프 분석을 통하여, 원료인 ESO가 완전히 반응하여 소모됨을 확인하고 반응을 종료하였다. 반응 완료 후, 부산물로 글리세린을 제거하는 단계, 미반응 원료를 제거하는 단계 및 제품을 정제하는 단계를 거쳐 최종적으로 옥시란 함유율이 5.21%, 요오드가가 1.70 의 에폭시화 2-에틸헥실 에스터 조성물 1210g을 얻었다.
제조예 2: eFAINE의 제조
2-에틸헥산올을 사용하는 대신 이소노난올을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 아래 표 1에 기재한 것과 같은 옥시란 함유율 및 요오드가를 갖는 에폭시화 이소노닐 에스터 조성물을 제조하였다.
제조예 3: eFABE의 제조
2-에틸헥산올을 사용하는 대신 부탄올을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 아래 표 1에 기재한 것과 같은 옥시란 함유율 및 요오드가를 갖는 에폭시화 부틸 에스터 조성물을 제조하였다.
제조예 4: 트리부틸 시트레이트(TBC)의 제조
반응 원료로서 시트릭산 384 g과 부탄올 580 g을 사용하여, 최종적으로 트리부틸 시트레이트(tributyl citrate) 706 g(수율: 98%)을 얻었다.
제조예 5: 트리(2-에틸헥실) 시트레이트(TEHC)의 제조
반응 원료로서 시트릭산 384 g과 2-에틸헥산올 1014 g을 사용하여, 최종적으로 트리(2-에틸헥실)시트레이트(tri(2-ethylhexyl) citrate) 1029 g(수율: 98%)을 얻었다.
제조예 6: 트리이소노닐 시트레이트(TINC)의 제조
반응 원료로서 시트릭산 384 g과 이소노난올 1123 g을 사용하여, 최종적으로 트리이소노닐 시트레이트(triisobutyl citrate) 1111 g(수율: 98%)을 얻었다.
제조예 7: eFAEHE의 제조
에폭시화 대두유의 옥시란 함유율이 제조예 1 보다 낮은 것을 제외하고는 상기 제조예 1과 동일한 방법을 사용하여 옥시란 함유율 3.37%를 갖는 에폭시화 2-에틸헥실 에스터 조성물을 제조하였다.
비교제조예 1: eFAME의 제조
2-에틸헥산올을 사용하는 대신 메탄올을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 에폭시화 메틸 에스터 조성물을 제조하였다.
비교제조예 2: eFAPE의 제조
2-에틸헥산올을 사용하는 대신 프로판올을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 에폭시화 프로필 에스터 조성물을 제조하였다.
비교제조예 3: eFADDE의 제조
2-에틸헥산올을 사용하는 대신 도데칸올을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 에폭시화 도데실 에스터 조성물을 제조하였다.
실시예
상기 제조예 1 내지 7의 물질 및 비교제조예 1 내지 3의 물질을 이용하여 하기 표 1과 같이 실시예 및 비교예를 같이 구성하였다.
에폭시화 알킬 에스터 조성물 시트레이트계 물질 에폭시화오일 혼합 비율
탄소수 O.C. I.V.
실시예 1 8(제조예1) 5.21 1.70 TEHC - 9:1
실시예 2 8(제조예1) 5.21 1.70 TEHC - 7:3
실시예 3 8(제조예1) 5.21 1.70 TEHC - 3:7
실시예 4 8(제조예1) 5.21 1.70 TEHC - 1:9
실시예 5 9(제조예2) 5.22 1.71 TBC - 5:5
실시예 6 9(제조예2) 5.22 1.71 TBC - 4:6
실시예 7 4(제조예3) 5.18 1.68 TINC - 3:7
실시예 8 4(제조예3) 5.18 1.68 TINC - 2:8
실시예 9 8(제조예7) 3.37 3.40 TEHC - 7:3
실시예 10 8(제조예1) 5.21 1.70 TEHC ESO 7:1:2
실시예 11 8(제조예1) 5.21 1.70 TEHC ESO 4:1:5
비교예 1 1(비교제조예1) 5.13 1.80 TBC - 5:5
비교예 2 3(비교제조예2) 5.20 1.82 TBC - 5:5
비교예 3 12(비교제조예3) 5.33 1.78 TEHC - 5:5
비교예 4 8(제조예1) 5.21 1.70 - - -
비교예 5 - - - TEHC - -
실험예 1: 시편 제작 및 성능 평가
실시예 1 내지 11 및 비교예 1 내지 5의 가소제를 실험용 시편으로 사용하였다. 상기 시편 제작은 ASTM D638을 참조하여, PVC 100 중량부에 가소제 40 중량부, 안정제(LOX 912 NP) 3 중량부를 믹서로 배합한 다음 롤 밀을 170℃에서 4 분간 작업하였고, 프레스(press)를 이용하여 180℃에서 2.5분(저압) 및 2분(고압)으로 작업하여 1T 및 3T 시트를 제작하였다. 각 시편을 사용하여 다음과 같은 물성 시험을 수행하고 결과를 하기 표 2에 정리하였다.
<시험 항목>
상기 실시예들 및 비교예들에 대하여 하기의 시험 항목대로 평가를 수행하였다.
경도(hardness) 측정
ASTM D2240을 이용하여, 25℃에서의 쇼어(shore A)경도, 3T 10s를 측정하였다.
인장강도(tensile strength) 측정
ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/㎟) = 로드 (load)값(kgf) / 두께(㎜) x 폭(㎜)
신율(elongation rate) 측정
ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
이행 손실(migration loss) 측정
KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 시험편 양면에 PS Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 PS를 제거한 후 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
가열 감량(volatile loss) 측정
상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (80℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
경도(Shore A) 인장강도kg/cm2 신율(%) 이행손실(%) 가열감량(%)
실시예 1 87.0 216.1 305.9 2.85 1.86
실시예 2 87.3 225.7 313.5 2.37 1.62
실시예 3 87.5 227.1 311.9 2.14 1.23
실시예 4 87.8 230.5 313.5 1.84 0.60
실시예 5 85.3 220.7 308.5 1.65 2.87
실시예 6 85.0 221.4 305.7 1.40 2.93
실시예 7 87.5 235.6 312.2 2.45 1.03
실시예 8 87.6 238.7 310.8 2.50 1.00
실시예 9 87.5 220.4 303.7 2.50 1.55
실시예 10 87.1 237.8 320.5 1.88 1.20
실시예 11 87.3 248.7 322.4 1.92 0.75
비교예 1 82.4 184.6 284.5 3.51 7.80
비교예 2 85.3 195.6 283.2 3.30 6.58
비교예 3 87.8 220.8 308.2 4.60 2.22
비교예 4 86.8 204.9 308.0 3.36 2.41
비교예 5 89.0 231.0 295.6 5.60 0.42
상기 표 2를 참조하면, 실시예 1 내지 11의 가소제 조성물은 각 물성들이 균형적으로 어느 하나 열악한 물성 없이 모두 우수한 수준으로 나타남을 확인할 수 있는 반면에, 비교예 1 내지 5의 경우, 모든 물성이 열악하거나, 어느 하나 또는 둘 이상의 물성에서 특별히 열악한 수준으로 나타나고 있어서 가소제 조성물로 적용하기 어렵다는 점을 확인할 수 있다.
구체적으로, 비교예 1과 2의 경우, 에폭시화 알킬 에스터 조성물의 탄소수가 1 및 3으로 작기 때문에 가공 중 휘발되는 성분이 상당하여 그에 따른 물성 저하가 심각하며 이는 이행 손실량과 가열 감량이 큰 수치로 나타나는 것으로 확인할 수 있다. 그러나, 탄소수 4인 것을 사용한 실시예 7과 8은 상대적으로 탄소수 차이가 크지 않음에도 불구하고 비교예 1과 2에 비하여 가열 감량과 이행 손실량이 크게 작다는 점이 확인된다.
또한, 비교예 3의 경우 탄소수가 12로 너무 크기 때문에, 오히려 이행손실량이 실시예들에 비하여 약 2 배 가량 상승하여 열악한 수준을 나타내고 있음이 확인된다.
나아가, 혼합 사용하지 않고 각각을 가소제 조성물로 적용한 비교예 4 및 5를 실시예 1 내지 4와 비교하여 보면, 선형으로 물성이 변화하는 것이 아니라, 신율과 이행손실 그리고 가열 감량 특성이 상승 효과를 나타내어 두 물질이 나타내는 물성보다 높은 수준으로 물성 향상이 달성되고 있음을 확인할 수 있다.
또한, 실시예 1과 실시예 10 및 11을 비교하여 보면, 에폭시화 오일을 더 추가함으로써 나타나는 효과를 확인할 수 있는데, 인장강도와 신율, 그리고 이행손실과 가열감량이 모두 개선되고 있음이 확인된다. 이를 통해 에폭시화 알킬 에스터 조성물과 시트레이트계 물질에 추가로 에폭시화 오일을 더 첨가하는 경우에는 물성 개선이 이루어질 수 있음을 확인할 수 있다.
이하, 본 발명에 대하여 상세하게 설명한다.
우선, 본 발명에서는 구조적인 한계로 인해 발생되던 불량한 물성들을 개선할 수 있는 가소제 조성물을 제공하는데 기술적 특징을 갖는다.
본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 화합물을 1 종 이상 포함하는 에폭시화 알킬 에스터 조성물; 및 시트레이트계 물질;을 포함하고, 상기 에폭시화 알킬 에스터 조성물 및 시트레이트계 물질의 중량비는 9:1 내지 1:9이며, 상기 시트레이트계 물질은 1 종 이상이 포함되는 것인 가소제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2017006144-appb-I000003
상기 화학식 1에서, R1은 1 이상의 에폭시기를 함유하는 탄소수 8 내지 20의 알킬기이고, R2는 탄소수 4 내지 10의 알킬기이다.
상기 에폭시화 알킬 에스터 조성물은 에폭시화 지방산 알킬 에스터(epoxidized Fatty Acid Alkyl Ester, eFAAE)를 1 이상 포함하는 것일 수 있고, 구체적으로, 상기 화학식 1로 표시되는 화합물이 1 이상 포함될 수 있으며, 에폭시화 알킬 에스터 화합물의 '알킬'은 탄소수가 4 내지 10인 것일 수 있다.
즉, 상기 화학식 1에서 R2는 탄소수가 4 내지 10일 수 있고, 바람직하게는 4 내지 9일 수 있으며, 나아가, 상기 화학식 1에서 R2는 부틸기(butyl, 약어로 B), 이소부틸기(isobutyl, 약어로 iB), 펜틸기(pentyl, 약어로 P), 헥실기(hexyl, 약어로 Hx), 헵틸기(heptyl, 약어로 Hp), 이소헵틸기(isoheptyl, 약어로 iHp), 옥틸기(octyl, 약어로 nO), 2-에틸헥실기(2-ethylhexyl, 약어로 EH 또는 O), 노닐기(nonyl, 약어로 nN), 이소노닐기(isononyl, 약어로 IN), 6-메틸옥틸기(6-methyloctyl, 약어로 MO), 데실기(decyl, 약어로 D), 이소데실기(isodecyl, 약어로 ID) 또는 2-프로필헵틸기(2-propylheptyl, 약어로 PH)일 수 있다.
상기 화학식 1의 R2의 탄소수가 4 내지 10인 경우에는 투명도(Haze)와 가열 감량이 우수할 수 있다. 상기 투명도는 식품 포장재용 수지에 적용되는 가소제에 있어서, 중요한 물성으로서, 투명도가 좋지 못한 경우에는 상품성이 없어 적용조차 할 수 없고, 상기 가열 감량 특성이 좋지 못하면, 가공 중 열을 가하였을 때 쉽게 휘발되어 가공성 및 작업성이 열악해지는 문제가 발생하여, 식품 포장재용 수지에 적용되기가 곤란할 수 있다. 이에, 상기 화학식 1로 표시되는 에폭시화 알킬 에스터 화합물에서 R2의 탄소수를 4 내지 10으로 조절하는 것이 바람직할 수 있다.
상기 에폭시화 알킬 에스터 조성물의 경우, 탄소수가 4 보다 작은 것, 예컨대 탄소수가 1 인 것으로서 에폭시화 메틸 에스터 등의 탄소수가 작은 물질을 적용하는 경우에는 이행성이 상당히 열악할 수 있고, 열악한 가열감량, 투명성, 점착성 및 신율 저하 등의 문제가 발생할 우려가 있으며, 탄소수가 10 보다 큰 에폭시화 알킬 에스터를 적용하는 경우에는 분자량이 너무 크기 때문에 가소화 효율이나 수지와의 상용성 저하에 따른 이행성이 문제될 우려가 있다. 따라서, 에폭시화 알킬 에스터 조성물에 포함되는 에폭시화 알킬 에스터는 탄소수가 4 내지 10으로 제한되는 것이 바람직할 수 있고, 바람직하게는 탄소수가 4, 8 또는 9인 것이 적용될 수 있다.
또한, 상기 화학식 1로 표시되는 에폭시화 알킬 에스터 조성물은 2 종 이상의 화합물이 포함되며, R2의 탄소수가 서로 다른 화합물이 2 종 이상인 화합물들이 혼합된 조성물을 형성할 수 있고, 2 종 이상이 포함되는 경우에는 R2의 탄소수가 4인 화합물과 탄소수가 8인 화합물이 혼합된 것, 또는 R2의 탄소수가 5인 화합물과 탄소수가 9인 화합물이 혼합된 경우가 바람직할 수 있다.
상기 에폭시화 알킬 에스터 조성물은 옥시란 함유율(Oxirane Content, O.C.)이 3.5% 이상일 수 있으며, 4.0% 이상, 또는 4.2% 이상일 수 있고, 바람직하게는 4.5% 이상일 수 있다. 또한, 상기 에폭시화 알킬 에스터 조성물은 상기 요오드가가 3.5 I2/100g (이하, 단위 "I2/100g" 생략) 미만일 수 있지만, 바람직하게는 3.2 이하, 더욱 바람직하게는 3.0 이하일 수 있다.
상기 에폭시화 알킬 에스터 조성물은 측정되는 요오드가와 옥시란 함유율이 가소제 조성물에 적용될 경우 중요한 요소가 될 수 있다. 특히, 친환경 특성이 필수적인 식품용 포장재 등에 포함되는 가소제 조성물인 경우, 요오드가와 옥시란 함유율이 가소제 특성에 영향을 줄 수 있다.
요오드가의 수치가 3.5 이상이 나오는 경우, 관능성 평가에서 수준 미달이 될 수 있고, 예를 들어 가소제 조성물의 색상이 어두워져, 식품용 포장재로 사용되기에 부적합할 수 있는 등의 문제가 발생할 우려가 있다. 또한, 부수적으로는 요오드가가 3.5 미만인 경우 인장 강도와 신율 등의 기계적 물성도 함께 개선될 수 있다.
따라서, 상기 에폭시화 알킬 에스터 조성물은 요오드가가 3.5 미만인 것이 바람직할 수 있고, 더 바람직하게는 3.2 이하, 더욱 바람직하게는 3.0 이하인 것일 수 있다. 상기 요오드가는 분자 내 존재하는 이중 결합의 함유량을 나타내는 것으로서, 상기 이중 결합의 요오드화를 통하여 적정법으로 측정되는 값으로부터 도출되는 것일 수 있다.
또한, 상기 옥시란 함유율은 상기 화학식 1에서 R1으로 표시되는 치환기가 함유하고 있는 에폭시기의 수에 따라 변화될 수 있으며, 옥시란 함유율은 3.5% 이상일 수 있으며, 4.0% 이상, 또는 4.2% 이상일 수 있고, 바람직하게는 4.5% 이상일 수 있다. 상기 옥시란 함유율은 적정법에 의하여 측정될 수 있고, 시료와 산 용액을 이용한 적정 방법에 의하여 측정되는 것일 수 있다.
상기 요오드가는 이중 결합의 함유량을 나타낼 수 있고, 상기 이중 결합의 함유량은 식물성 오일의 에폭시화 또는 지방산 알킬 에스테르의 에폭시화 등 에폭시화 반응이 수행된 후 잔존하고 있는 이중 결합의 함유량일 수 있다. 즉, 옥시란 함유율과 요오드가는 에폭시화가 어느 정도 수행되었는지에 대한 지표일 수 있어서, 서로 일정 부분 연관될 수 있으며, 이론적으로는 서로 반비례하는 관계가 될 수 있다.
그러나, 실질적으로 식물성 오일이나 지방산 알킬 에스테르의 이중 결합은 물질마다 다양할 수 있으므로 상기 두 파라미터는 정확하게 반비례 관계 또는 트레이드 오프(trade off) 관계를 형성하는 것은 아니며, 두 물질 사이에서 요오드가가 더 높은 물질이 옥시란 함유율도 동시에 더 높을 수도 있다. 따라서, 친환경적인 식품용 포장재에 사용되는 가소제 조성물에는 에폭시화 알킬 에스터 화합물의 요오드가 및 옥시란 함유율이 전술한 범위를 만족하는 것을 적용하는 것이 바람직할 수 있다.
한편, 상기 에폭시화 알킬 에스터 화합물의 옥시란 인덱스(Oxirane Index, O.I.)는 1.0 이상인 것일 수 있다.
전술한 바와 같이, 요오드가 및 옥시란 함유율의 관계가 상기와 같으나, 그와 동시에 옥시란 인덱스가 1.0 이상, 최적으로는 2.0 이상인 것을 만족하는 것이 바람직할 수 있다. 상기 '옥시란 인덱스'는 상기 에폭시화 알킬 에스터 화합물의 요오드가에 대한 옥시란 함유율의 비율로서, 에폭시화 반응으로 에폭시화 된 이중 결합과 반응하지 않은 잔존 이중 결합의 비율일 수 있다.
구체적으로, 상기 옥시란 인덱스는 요오드가에 대한 옥시란 함유율의 비율로서 1.0 이상인 것일 수 있다. 즉, 에폭시화 알킬 에스터의 옥시란 함유율을 요오드가로 나눈 값이 1.0 이상인 경우에는 보다 최적화된 가소제 조성물을 얻을 수 있다.
상기 에폭시화 알킬 에스터 조성물은, 상기 화학식 1로 표시되는 화합물이 1 종 이상 포함된 에폭시알킬 에스터 조성물을 포함하며, 또한 하기 화학식 2로 표시되는 화합물이 1 종 이상 포함된 알킬 에스터 조성물을 더 포함할 수 있다.
[화학식 2]
Figure PCTKR2017006144-appb-I000004
상기 화학식 2에서,
R3은 탄소수 8 내지 20의 알킬기이고, R4는 탄소수 4 내지 10의 알킬기이다.
상기 화학식 2로 표시되는 화합물이 1 종 이상 포함된 알킬 에스터 조성물은 R3에 에폭시기가 포함되지 않은 것일 수 있으며, 에폭시화 오일과 알코올을 이용한 에폭시계 알킬 에스터 조성물의 제조 과정에서 에폭시화 오일의 지방산 모이어티 부분이 다양할 수 있고, 개중에는 에폭시기가 결합되지 않은 지방산 모이어티가 있을 수 있으며, 이러한 지방산 모이어티에서 기인하는 화합물일 수 있다.
이러한 포화된 알킬 에스터가 가소제 조성물에 포함됨으로써, 분리 정제가 필요하지 않아 제품 원가개선에 유익하며, 또한 탄소수 8 내지 18까지 짧은 탄소수를 갖고, 옥시란을 포함하지 않는 알킬 에스터 조성물을 함유함으로써 가소화 효율 및 이행성에 도움을 줄 수 있다. 하지만, 이러한 포화된 알킬 에스터 조성물의 함량이 불포화된 에폭시화 알킬 에스터 조성물을 포함한 전체 가소제 조성물 중 약 80 중량% 이상을 차지하는 경우, 염화비닐 수지와의 상용성이 떨어지는 현상이 있을 수 있기에, 70 중량% 이하, 바람직하게는 50 중량% 이하, 더욱 바람직하게는 30 중량% 이하의 조성비를 가질 때, 염화비닐 수지와의 상용성이 우수해질 수 있다.
또한 본 발명의 일 실시예에 따르면, 상기 가소제 조성물은 시트레이트계 물질을 포함하고, 상기 시트레이트계 물질은 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질 및 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질로 이루어진 군에서 선택된 1 이상의 화합물을 포함할 수 있다.
상기 시트레이트계 물질은 하기 화학식 3으로 표시되는 것일 수 있다.
[화학식 3]
Figure PCTKR2017006144-appb-I000005
상기 화학식 3에서, R5 내지 R7은 각각 독립적으로, 탄소수가 4 내지 10인 알킬기이고, R8는 수소이다.
상기 시트레이트계 물질은 화학식 3의 R5 내지 R7이 각각 독립적으로, 부틸기, 이소부틸기, 헥실기, 헵틸기, 이소헵틸기, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기일 수 있으며, 상기 R5 내지 R7 각각은 서로 동일할 수 있고, 서로 상이할 수도 있다.
다만, 바람직하게는 탄소수가 4 이상인 것이 적용될 수 있고, 10개는 초과하지 않는 편이 바람직할 수 있으므로, 부틸기, 2-에틸헥실기, 이소노닐기, 2-프로필헵틸기 또는 이소데실기가 적용되는 것이 바람직할 수 있다.
상기 R5 내지 R7이 탄소수 4 내지 10의 알킬기이면서, 서로 알킬기가 상이한 시트레이트는, 예를 들면, 부틸기와 2-에틸헥실기의 조합 치환기를 갖는 시트레이트, 부틸기와 헵틸기의 조합 치환기를 갖는 시트레이트, 이소노닐기와 2-프로필헵틸기의 조합 치환기를 갖는 시트레이트, 2-에틸헥실기와 2-프로필헵틸기의 조합 치환기를 갖는 시트레이트, 이소데실기와 2-에틸헥실기의 조합 치환기를 갖는 시트레이트 등이 있을 수 있고, 이 외에도 탄소수 4 내지 10 사이에서 선택되고, 탄소수가 서로 다른 두 알킬기의 조합 치환기를 갖는 시트레이트 등이 적용될 수 있으며, 상기 알킬기는 직쇄 또는 분지쇄일 수 있다.
상기 R5 내지 R7이 탄소수 4 내지 10의 알킬기이면서, 서로 알킬기가 동일한 시트레이트는, 예를 들면, 트리부틸 시트레이트(TBC), 트리헵틸 시트레이트(THpC), 트리(2-에틸헥실) 시트레이트(TEHC), 트리이소노닐 시트레이트(TiNC), 트리(2-프로필헵틸)시트레이트(TPHC) 등이 적용될 수 있으며, 이 외에도 탄소수 4 내지 10의 알킬기라면 적용될 수 있다.
알킬기의 탄소수 상한으로는 바람직하게는 10개인 것을 적용할 수 있으며, 탄소수가 10개를 초과하게 되면, 분자량의 과도한 증가로 인하여 흡수속도, 가소화 효율 저하 등의 특성 열화의 우려가 있다.
한편, 상기 혼성 또는 비혼성 알킬 치환 시트레이트 화합물과 같이 트리 알킬 시트레이트, 혹은 디n알킬-m알킬 시트레이트 등이 적용될 수 있는데, 시트레이트계 물질에 아세틸기가 존재하는 경우, 즉, R8이 아세틸기인 경우에는 가소제의 물성, 특히 가소화 효율의 저하에 따른 가공성, 겔링성이 다소 저하되는 단점이 있을 수 있다. 또한, 제조함에 있어 부산물로 발생되는 폐초산을 처리하기 위한 경제적, 설비적 비용이 추가되어야 부담도 존재할 수 있다.
다시 말해서, 시트레이트계 물질에서 상기 화학식 3의 R8가 아세틸기인 경우에는 수소인 경우에 비하여, 가소화 효율의 저하, 이를 극복하기 위한 가소제의 증량 투입 및 이를 통한 제품 가격 상승 등의 문제가 동반될 수 있고, R8이 아세틸기인 시트레이트계 물질을 적용하는 경우에는, 시장성, 경제성 및 물성 등 다양한 측면에서의 고려가 필요하다.
상기와 같이 에폭시화 알킬 에스터 조성물과 시트레이트계 물질을 혼합하여 가소제 조성물로써 사용할 경우, 그 조성 비율에 따라서 다양한 용도에 적용할 수 있으며, 식품 포장재용 수지에서부터 자동차의 시트에 적용되는 수지에 이르기까지 상당히 범용적으로 적용할 수 있는 이점이 있다.
여기서, 상기 가소제 조성물 내에 에폭시화 알킬 에스터 조성물과 시트레이트계 물질은 중량비로 90:10 내지 10:90의 비율로 포함되는 것일 수 있고, 상기 중량비 범위의 상한으로는, 90:10, 85:15, 80:20, 70:30 또는 60:40이 적용될 수 있고, 하한으로는 10:90, 15:85, 20:80, 30:70 또는 40:60이 적용될 수 있다.
상기와 같은 범위로 에폭시화 알킬 에스터 조성물 및 시트레이트계 물질이 포함되는 경우에는 에폭시화 알킬 에스터 조성물의 이행 특성 열위와 시트레이트계 물질의 내열성 열위에 대한 부분을 상호 보완해 줄 수 있으면서 동시에 기계적 물성의 향상도 도모할 수 있다는 장점이 있다.
상기 가소제 조성물은 에폭시화 알킬 에스터 조성물과 시트레이트계 물질을 포함하며, 또한 에폭시화 오일을 더 포함할 수 있다.
상기 에폭시화 알킬 에스터 조성물과 시트레이트계 물질의 혼합 가소제 조성물에 물리적 특성을 추가적으로 보완하기 위하여 상기 에폭시화 오일을 더 포함할 수 있다.
상기 에폭시화 오일은, 예컨대, 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아레이트(epoxidized stearate), 에폭시화 올레에이트(epoxidized oleate), 에폭시화 톨유(epoxidized tall oil), 에폭시화 리놀레이트(epoxidized linoleate) 또는 이들의 혼합물일 수 있다. 바람직하게는, 에폭시화 대두유(ESO), 또는 에폭시화 아마인유(ELO)가 적용될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 에폭시화 오일은 에폭시화 알킬 에스터 조성물과 시트레이트계 물질의 혼합 중량 100 중량부 대비, 1 내지 100 중량부가 포함될 수 있고, 바람직하게는 1 내지 80 중량부가 포함될 수 있다. 상기 범위 내에서 포함시키는 경우에 기계적 물성과 물리적 특성, 그리고 이행 특성 사이에서 적절히 우수한 물성을 갖는 가소제 조성물을 얻을 수 있다.
본 발명에서 상기 가소제 조성물을 제조하는 방식은, 블렌딩 방식을 적용할 수 있는 것으로, 상기 블렌딩 제조 방식은 일례로 다음과 같다.
하기 화학식 1로 표시되는 화합물을 1 이상 포함하는 에폭시화 알킬 에스터 조성물과 시트레이트계 물질을 준비하고, 상기 에폭시화 알킬 에스터 조성물과 시트레이트계 물질을 중량비로서, 90:10 내지 10:90의 비율로 블렌딩하여 상기 가소제 조성물을 제조할 수 있으며, 상기 시트레이트계 물질은 1 종 이상 포함되는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2017006144-appb-I000006
상기 화학식 1에서, R1은 1 이상의 에폭시기를 포함하는 탄소수 8 내지 20의 알킬기이고, R2는 탄소수 4 내지 10의 알킬기이다.
본 발명에서 상기 가소제 조성물을 제조하는 방식은, 에스테르화 반응을 이용하는 것일 수 있다.
먼저, 상기 에폭시화 알킬 에스터 화합물은 에폭시화 오일 및 탄소수 4 내지 10인 알킬 알코올을 반응시켜 에폭시화 알킬 에스터 화합물을 제조하는 것일 수 있으며, 상기 에폭시화 알킬 에스터 조성물은 요오드가가 3.5 미만인 것인 가소제 조성물의 제조방법이 제공될 수 있다.
상기 에폭시화 알킬 에스터 조성물의 요오드가와 옥시란 함유율 등의 기본적인 특징은 전술하였으므로, 그 기재를 생략한다.
상기 에폭시화 오일과 탄소수 4 내지 10인 알킬 알코올의 반응은 트랜스에스테르화 반응일 수 있다.
상기 "트랜스 에스테르화 반응"은 하기 반응식 1과 같이 알코올과 에스테르가 반응하여 이하 반응식 1에서 나타나듯이 에스테르의 R"가 알코올의 R'와 상호 교환되는 반응을 의미한다:
[반응식 1]
Figure PCTKR2017006144-appb-I000007
상기 트랜스 에스테르화 반응이 이루어지면 알코올의 알콕사이드가 에스테르계 화합물에 존재하는 두 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 에스테르계 화합물에 존재하는 한 개의 에스테르(RCOOR")기의 탄소를 공격할 경우; 반응이 이루어지지 않은 미반응인 경우;와 같이, 세 가지의 경우에 수에 의해서 3 종의 에스테르 조성물이 생성될 수 있다.
또한, 상기 트랜스-에스테르화 반응은 산-알코올간 에스테르화 반응과 비교하여 폐수 문제가 야기되지 않는 장점이 있으며, 무촉매하에서 진행될 수 있으므로, 산촉매 사용시의 문제점을 해결할 수 있다.
본 발명에 따르면, 상기 트랜스 에스테르화 반응에서의 에스테르는 에폭시화 오일일 수 있고, 알코올은 탄소수가 1 내지 10인 알킬기를 갖는 1차 알코올일 수 있다. 상기 알코올의 탄소수는 1 내지 10일 수 있으나, 바람직하게는 4 내지 8일 수 있으며, 상기 알코올의 알킬기는 반응 완료 후 상기 화학식 1의 R2에 해당되는 알킬기일 수 있다.
또한, 상기 에폭시화 오일은, 예를 들면, 에폭시화 대두유(epoxidized soybean oil), 에폭시화 피마자유(epoxidized castor oil), 에폭시화 아마인유(epoxidized linseed oil), 에폭시화 팜유(epoxidized palm oil), 에폭시화 스테아레이트(epoxidized stearate), 에폭시화 올레에이트(epoxidized oleate), 에폭시화 톨유(epoxidized tall oil), 에폭시화 리놀레이트(epoxidized linoleate), 또는 이들의 혼합물일 수 있으며, 식물성 오일을 에폭시화 반응을 통하여, 일정량의 에폭시기를 도입한 화합물일 수 있다.
상기 에폭시화 오일은 예를 들면, 하기 화학식 4로 표시될 수 있으며, 한 분자 내 3 개의 에스테르기가 포함되어 있을 수 있고, 일정량의 에폭시기가 함유되어 있을 수 있다.
[화학식 4]
Figure PCTKR2017006144-appb-I000008
상기 화학식 4로 표시되는 에폭시화 오일은 하나의 예시에 해당되는 것이다.
또한, 상기 에폭시화 오일은 요오드가가 3.5 (I2/100 g) 미만일 수 있는데, 이 요오드가는 트랜스 에스터화 반응 동안 변동폭은 작으며 생성물인 에폭시화 알킬 에스터 화합물의 요오드가와 큰 차이는 없으며, 이에 관한 특징은 전술한 에폭시화 알킬 에스터 조성물의 요오드가와 거의 동일하거나 다소 작을수 있다.
이에 제한되는 것은 아니지만, 상기 에폭시화 오일을 선별하여 적용하는경우에는 생성물의 색상과 고체 물질 함량 개선이 보다 바람직한 수준으로 제어될 수 있으며, 바람직하게 옥시란 함유율이 6.0% 이상(에폭시 함유율로 환산시 약 16.2% 이상)일 수 있고, 요오드가는 3.0 이하일 수 있다. 이와 같은 값을 갖는 에폭시화 오일을 선택하여 에폭시화 알킬 에스터 조성물을 제조하는 경우에는 생성물의 색상과 고체 물질 함량 개선 효과가 우수할 수 있다.
상기 에폭시화 오일과 탄소수 4 내지 10인 알킬 알코올이 트랜스 에스테르화 반응을 하게 되면, 상기 3 개의 에스테르기가 모두 분리될 수 있으며, 그에 따라 알코올의 알킬기가 새로이 결합된 3 종 이상의 에폭시계 에스테르 화합물이 형성될 수 있다.
상기 트랜스 에스터화 반응은 40 내지 230℃, 바람직하게는 50 내지 200℃, 더욱 바람직하게는 100 내지 180℃의 반응 온도 하에서 수행될 수 있으며, 바람직한 실시예에서 최종 제품 내의 고체 생성률을 제어하기 위해서는 100 내지 180℃의 반응온도에서 반응을 수행하는 것이 좋다.
또한, 상기 트랜스 에스터화 반응은 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것일 수 있다. 또한, 최종 제품의 품질을 고려하는 경우에는 적어도 3 시간 반응을 수행하는 것이 바람직할 수 있고, 적어도 4 시간의 반응 시간을 확보하는 것이 더욱 바람직하다. 6 시간까지 반응을 수행하는 것이 바람직할 수 있으나, 반응이 적어도 4 시간 수행되는 경우 생성물의 점도나 고체 함량에 있어서는 의도된 수준까지 개선될 수 있다. 다만, 반응 시간을 8 시간을 초과하여 적용하는 경우에는 옥시란 함유율에 영향을 미치게 되고, 옥시란 함유율이 감소하게 되어 생성물의 색상 등의 품질에 악영향을 줄 수 있다.
상기 온도 및 시간 범위 내에서 원하는 에폭시화 알킬 에스터 조성물을 효과적으로 얻을 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스 에스테르화 반응은 염기성 촉매, 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 나트륨 또는 칼륨 등을 함유하는 알콕사이드계 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 나트륨, 칼륨 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스-에스테르화 반응 후 생성된 다가 알코올과 반응 부산물 및 미반응 알코올을 반응 부산물을 분리, 수세 및 증류시켜 제거하는 단계를 더 포함할 수 있다.
상기 정제 과정은 구체적으로, 상기 트랜스 에스테르화 반응 이후 80 내지 100℃의 온도로 일정시간 냉각 및 정치하는 단계를 수행할 수 있고, 이 경우 층 분리가 일어나는데, 상층에는 에폭시화 알킬 에스터 및 알코올이 포함될 수 있으며, 하층에는 글리세린과 기타 부산물들이 포함될 수 있다. 다음으로, 촉매를 중화하기 위하여 촉매 중화용 수용액을 투입함으로써 중화 및 수세를 유도할 수 있다.
상기 중화 및 수세 과정은 부산물이 주로 포함된 하층을 먼저 분리한 후 수행할 수 있고, 중화 및 수세 과정에서 하층의 부산물들을 물에 용해시켜 배출할 수도 있으며, 이후 반복적인 수세 과정을 거친 후에 미반응 알코올과 수분을 회수 및 제거할 수 있다.
다만, 상기 트랜스 에스테르화 반응에 사용하는 알코올의 탄소수에 따라서 상기 중화 및 수세 과정을 달리하여야 할 필요성이 발생할 수 있다.
예를 들어, 탄소수가 4인 부탄올을 사용하는 경우 중화 및 수세 과정을 바로 수행하게 되면 폐수 발생 문제가 있어서 부탄올을 증류하여 선 제거하는 것이 바람직할 수 있다. 그러나, 이 경우에는 촉매의 활성이 남아 있기 때문에 부산물인 글리세롤과 생성물인 에폭시화 알킬 에스터가 역반응하여 다시 디글리세라이드 또는 트리글리세라이드 등의 에폭시화 오일 유사 물질을 생성할 수 있는 이중적인 문제점도 내포할 수 있기 때문에, 공정의 설계를 유의할 필요가 있다.
또한, 다른 예로, 탄소수가 8개인 2-에틸헥실 알코올을 사용하는 경우에는 2-에틸헥실 알코올이 물에 대한 용해도가 낮아서, 폐수의 발생 문제가 없으며, 따라서, 이 경우에는 중화 및 수세 후에 알코올을 제거하는 경우, 하층의 부산물 층을 제거한 후 중화 및 수세하는 경우 모두 치명적인 문제 없이 진행할 수 있다는 장점이 있을 수 있다.
상기와 같이 제조된 에폭시화 알킬 에스터 화합물에 전술한 범위의 혼합 중량비에 의거하여 시트레이트계 물질을 혼합 블렌딩할 수 있다. 이 때 혼합 비율이나 적용될 수 있는 시트레이트계 물질은 전술한 바 있으므로, 그 기재를 생략한다.
한편, 시트레이트계 물질도, 상기 에폭시화 알킬 에스터 조성물과 같이, 에스테르화 반응을 통하여 제조될 수 있으며, 시트르산과 알코올이 반응하는 직접 에스테르화 반응이나, 시트레이트와 알코올이 반응하는 트랜스 에스테르 반응이 적용될 수 있으며, 트랜스 에스테르 반응이 적용될 경우에는 3 종 이상의 혼합물이 생성물로 형성될 수 있다.
상기 시트레이트계 물질을 블렌딩한 이후에는 필요에 따라 에폭시화 오일을 더 투입하는 단계를 포함할 수도 있다. 이 경우 에폭시화 오일은 앞서 예시한 것과 동등한 범위에서 선택되는 것일 수 있고, 그 첨가량은 에폭시화 알킬 에스터 화합물과 시트레이트계 물질의 혼합 중량 100 중량부 대비, 1 내지 100 중량부, 바람직하게 1 내지 80 중량부일 수 있다. 이에 관한 특징은 전술한 바 있으므로, 그 기재를 생략한다.
이와 같이 제조된 가소제 조성물은, 에틸렌 초산 비닐, 폴리에틸렌, 폴리케톤, 폴리프로필렌, 폴리염화비닐, 폴리스타이렌, 폴리우레탄, 또는 열가소성 엘라스토머, 또는 이들의 혼합물 등의 수지 100 중량부에 대하여, 5 내지 150 중량부, 40 내지 100 중량부, 혹은 40 내지 50 중량부 범위 내로 포함할 수 있으며, 수지 조성물을 제공할 수 있다.
상기 수지 조성물은 전술한 바와 같은 가소제 조성물을 포함함으로써, 바닥재, 벽지, 필름, 호스 또는 전선 등의 다양한 용도에 적용될 수 있고, 인장강도와 신율, 그리고 가소화 효율 및 가열 감량과 같은 기본적인 기계적 물성 또한 기존의 가소제와 동등 수준 이상의 물성을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물은 충진제를 더 포함할 수 있다.
상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
본 발명의 일 실시예에 따르면, 상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다.
상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
본 발명의 일 실시예에 따라 사용될 수 있는 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제 혹은 바륨-아연계(Ba-Zn계)를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물을 1 종 이상 포함하는 에폭시화 알킬 에스터 조성물; 및 시트레이트계 물질;을 포함하고,
    상기 에폭시화 알킬 에스터 조성물 및 시트레이트계 물질의 중량비는 90:10 내지 10:90이며, 상기 시트레이트계 물질은 1 종 이상이 포함되는 것인 가소제 조성물:
    [화학식 1]
    Figure PCTKR2017006144-appb-I000009
    상기 화학식 1에서,
    R1은 1 이상의 에폭시기를 함유하는 탄소수 8 내지 20의 알킬기이고, R2는 탄소수 4 내지 10의 알킬기이다.
  2. 제1항에 있어서,
    상기 에폭시화 알킬 에스터 조성물은 요오드가가 3.5 I2/100 g미만인 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 에폭시화 알킬 에스터 조성물은 옥시란 함유율(Oxirane Content, O.C.)이 3.5% 이상인 것인 가소제 조성물.
  4. 제1항에 있어서,
    상기 에폭시화 알킬 에스터 조성물은 옥시란 인덱스(Oxirane Index, O.I.)가 1.0 이상인 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 에폭시화 알킬 에스터 조성물은, 상기 화학식 1로 표시되는 화합물이 1 종 이상 포함된 에폭시알킬 에스터 조성물을 포함하고,
    하기 화학식 2로 표시되는 화합물이 1 종 이상 포함된 알킬 에스터 조성물을 더 포함하는 것인 가소제 조성물:
    [화학식 2]
    Figure PCTKR2017006144-appb-I000010
    상기 화학식 2에서,
    R3은 탄소수 8 내지 20의 알킬기이고, R4는 탄소수 4 내지 10의 알킬기이다.
  6. 제1항에 있어서,
    상기 화학식 1의 R2는 탄소수 4 내지 9의 알킬기인 것인 가소제 조성물.
  7. 제1항에 있어서,
    상기 에폭시화 알킬 에스터 조성물은 화학식 1에서 R2의 탄소수가 서로 다른 화합물을 2 종 이상 포함하는 것인 가소제 조성물.
  8. 제1항에 있어서,
    상기 화학식 1에서 R2는 부틸기, 이소부틸기, 펜틸기, 헥실기, 헵틸기, 이소헵틸기, 옥틸기, 2-에틸헥실기, 노닐기, 이소노닐기, 6-메틸옥틸기, 데실기, 이소데실기 및 2-프로필헵틸기로 이루어진 군에서 선택되는 것인 가소제 조성물.
  9. 제1항에 있어서,
    상기 시트레이트계 물질은 탄소수 4 내지 10의 혼성 알킬 치환 시트레이트계 물질 및 탄소수 4 내지 10의 비혼성 알킬 치환 시트레이트계 물질로 이루어진 군에서 선택된 어느 하나를 포함하는 것인 가소제 조성물.
  10. 제1항에 있어서,
    상기 시트레이트계 물질은 아세틸기가 결합되지 않은 것인 가소제 조성물.
  11. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  12. 제11항에 있어서,
    상기 수지는 에틸렌 초산 비닐, 폴리에틸렌, 폴리프로필렌, 폴리케톤, 폴리염화비닐, 폴리스타이렌, 폴리우레탄 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2017/006144 2016-06-15 2017-06-13 가소제 조성물, 수지 조성물 및 이들의 제조 방법 WO2017217738A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/766,708 US10717846B2 (en) 2016-06-15 2017-06-13 Plasticizer composition, resin composition and method of preparing the same
CN201780003859.XA CN108350215B (zh) 2016-06-15 2017-06-13 增塑剂组合物、树脂组合物及其制备方法
ES17813562T ES2959271T3 (es) 2016-06-15 2017-06-13 Composición plastificante, composición de resina y procedimiento de preparación de las mismas
EP17813562.0A EP3342810B1 (en) 2016-06-15 2017-06-13 Plasticizer composition, resin composition and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160074501 2016-06-15
KR10-2016-0074501 2016-06-15
KR1020170072509A KR101833175B1 (ko) 2016-06-15 2017-06-09 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR10-2017-0072509 2017-06-09

Publications (1)

Publication Number Publication Date
WO2017217738A1 true WO2017217738A1 (ko) 2017-12-21

Family

ID=60664562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006144 WO2017217738A1 (ko) 2016-06-15 2017-06-13 가소제 조성물, 수지 조성물 및 이들의 제조 방법

Country Status (2)

Country Link
ES (1) ES2959271T3 (ko)
WO (1) WO2017217738A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200354544A1 (en) * 2017-10-13 2020-11-12 Lg Chem, Ltd. Plasticizer composition and resin composition including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072289A (ja) * 2001-08-31 2003-03-12 Seed:Kk 字消し
KR20110026507A (ko) * 2005-12-08 2011-03-15 요트. 에스. 슈테틀러 게엠베하 운트 콤파니 카게 모형 제작용 컴파운드 및 그의 용도
KR20140116371A (ko) * 2011-10-14 2014-10-02 갈라타 케미컬스, 엘엘씨 재생가능한 원료로부터 유도된 가소제
KR101570386B1 (ko) * 2012-10-25 2015-11-19 애경유화주식회사 에폭시계 에스테르 화합물을 포함한 복합 가소제 조성물 및 이를 이용한 고분자 수지 조성물
US20150368431A1 (en) * 2013-03-15 2015-12-24 Dow Global Technologies Llc Epoxidized-fatty-acid-alkyl-ester plasticizers from natural-oil soap stock and methods for making such epoxidized-fatty-acid-alkyl-ester plasticizers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072289A (ja) * 2001-08-31 2003-03-12 Seed:Kk 字消し
KR20110026507A (ko) * 2005-12-08 2011-03-15 요트. 에스. 슈테틀러 게엠베하 운트 콤파니 카게 모형 제작용 컴파운드 및 그의 용도
KR20140116371A (ko) * 2011-10-14 2014-10-02 갈라타 케미컬스, 엘엘씨 재생가능한 원료로부터 유도된 가소제
KR101570386B1 (ko) * 2012-10-25 2015-11-19 애경유화주식회사 에폭시계 에스테르 화합물을 포함한 복합 가소제 조성물 및 이를 이용한 고분자 수지 조성물
US20150368431A1 (en) * 2013-03-15 2015-12-24 Dow Global Technologies Llc Epoxidized-fatty-acid-alkyl-ester plasticizers from natural-oil soap stock and methods for making such epoxidized-fatty-acid-alkyl-ester plasticizers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200354544A1 (en) * 2017-10-13 2020-11-12 Lg Chem, Ltd. Plasticizer composition and resin composition including the same
US11702529B2 (en) * 2017-10-13 2023-07-18 Lg Chem, Ltd. Plasticizer composition and resin composition including the same

Also Published As

Publication number Publication date
ES2959271T3 (es) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2019240405A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019074300A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017018741A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017217738A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021137375A1 (ko) 에스테르계 화합물 및 이의 용도
WO2019240418A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017813562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15766708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE