WO2017217406A1 - 液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法 - Google Patents

液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法 Download PDF

Info

Publication number
WO2017217406A1
WO2017217406A1 PCT/JP2017/021801 JP2017021801W WO2017217406A1 WO 2017217406 A1 WO2017217406 A1 WO 2017217406A1 JP 2017021801 W JP2017021801 W JP 2017021801W WO 2017217406 A1 WO2017217406 A1 WO 2017217406A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid sample
substance
membrane carrier
detected
region
Prior art date
Application number
PCT/JP2017/021801
Other languages
English (en)
French (fr)
Inventor
雄斗 秋山
門田 健次
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2018523928A priority Critical patent/JP6849678B2/ja
Priority to US16/309,877 priority patent/US10994271B2/en
Priority to KR1020197000999A priority patent/KR102394394B1/ko
Priority to EP17813302.1A priority patent/EP3470842B1/en
Priority to CN201780036987.4A priority patent/CN109313187B/zh
Priority to ES17813302T priority patent/ES2877797T3/es
Publication of WO2017217406A1 publication Critical patent/WO2017217406A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance

Definitions

  • the present invention relates to a membrane support for a liquid sample inspection kit accompanied by a change in flow rate during inspection, a liquid sample inspection kit using the same, and a method for manufacturing the same.
  • the Point of Care Test (POCT) reagent which measures the morbidity, pregnancy, blood glucose level, etc. of an infectious disease by using an antigen-antibody reaction or the like, has attracted attention.
  • the POCT reagent is characterized in that the result can be discriminated in a short time, the method of use is simple and inexpensive. Because of these characteristics, the POCT reagent is frequently used for examinations and regular examinations at a mild stage of symptoms, and is an important diagnostic tool in home medical care that is expected to increase in the future.
  • determination is performed by introducing a liquid sample such as blood into a test kit and detecting a specific substance to be detected contained therein.
  • An immunochromatography method is often used as a method for detecting a specific substance to be detected from a liquid sample.
  • the immunochromatography method is a substance in which the liquid to be dropped on the membrane carrier of the test kit moves on the membrane carrier, the substance to be detected binds to the label, and these are immobilized in the test kit.
  • This is a technique of specifically binding to (hereinafter referred to as a detection substance) and detecting a change in color or weight resulting therefrom.
  • the detection substance may be rephrased as a reagent.
  • a well-known method for detecting a substance to be detected is to detect a color change caused by using colored latex particles, fluorescent latex particles, metal colloid particles, etc. as a label through an optical measuring instrument such as an absorbance meter. It has been.
  • a lateral flow type kit using a nitrocellulose membrane is often used (Patent Document 1).
  • the nitrocellulose membrane has many fine holes with a diameter of about several ⁇ m, and the liquid sample moves through the holes by capillary force.
  • the nitrocellulose membrane is derived from a natural product and the pore diameter and the way in which the pores are connected are not uniform, there is a difference in the flow rate of the liquid sample in each membrane. If there is a difference in flow rate, the time taken to detect the substance to be detected also changes, and as a result, the substance to be detected may be erroneously determined as non-detected before binding occurs.
  • Patent Documents 2 to 6 a technique of artificially creating a fine channel has been devised.
  • a film carrier having a uniform structure can be produced, so that the possibility of erroneous detection as non-detection before the detected substance is bound can be reduced.
  • JP 2014-0662820 A Japanese Patent No. 4597664 Special table 2012-524894 gazette Japanese Patent No. 5609648 JP 2016-011943 A JP 2013-113633 A US Patent Application Publication No. 2011/0284110
  • Patent Document 7 there is a report that the flow rate of the liquid sample changes depending on the flow channel structure, but there is no description about the effect of the change of the flow rate.
  • an object of the present invention is to provide a test kit capable of highly sensitive determination in a short time in an immunochromatography method capable of confirming that a target substance has been detected by an optical method.
  • a membrane carrier for a test kit for detecting a substance to be detected in a liquid sample Comprising at least one flow path capable of transporting a liquid sample;
  • the bottom of the channel is provided with a fine structure that creates a capillary action for transporting the liquid sample
  • a membrane carrier for a liquid sample test kit wherein the fine structure is provided so as to change along the transport direction of the liquid sample.
  • the bottom area of the microstructure is 75 [mu] m 2 or more 250000Myuemu 2 or less in the flow path, (1) to (5) a liquid sample test kit membrane carrier according to any one of.
  • a liquid sample test kit membrane carrier according to any one of.
  • a liquid sample inspection kit for detecting a substance to be detected in a liquid sample (1) to (8) comprising a membrane carrier for a liquid sample inspection kit described in any one of The membrane carrier has a detection zone for detecting a substance to be detected in the liquid sample, A liquid sample inspection kit in which when a substance to be detected is detected in a detection zone, a color change that can be confirmed by an optical technique occurs.
  • a label having an antibody or antigen-binding fragment thereof that specifically reacts with the substance to be detected in the liquid sample is provided in at least a part of the liquid sample test kit so that it can react with the substance to be detected.
  • the liquid sample inspection kit according to (9), wherein the color change is caused by a label bonded to a substance to be detected.
  • test kit capable of highly sensitive determination in a short time in an immunochromatography method capable of confirming that a substance to be detected has been detected by an optical technique.
  • (A) is an example of embodiment by this invention, is an overhead view (top view) of a fine structure
  • (b) is a perspective view of the convex part which comprises the fine structure shown to (a).
  • (A) is an example of embodiment by this invention, is an overhead view (top view) of a fine structure
  • (b) is a perspective view of the convex part which comprises the fine structure shown to (a).
  • (A) is an example of embodiment by this invention, is an overhead view (top view) of a fine structure
  • (b) is a perspective view of the convex part which comprises the fine structure shown to (a).
  • (A) is an example of embodiment by this invention, is an overhead view (top view) of a fine structure
  • (b) is a perspective view of the convex part which comprises the fine structure shown to (a).
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has a microstructure.
  • membrane carrier which has
  • the membrane carrier for a liquid sample inspection kit refers to a membrane carrier for a liquid sample inspection kit that detects a substance to be detected in the liquid sample, for example.
  • the substance to be detected is not limited in any way, and may be any substance capable of antigen-antibody reaction with an antibody such as various pathogens and various clinical markers.
  • Specific examples of substances to be detected include virus antigens such as influenza virus, norovirus, adenovirus, RS virus, HAV, HBs and HIV, MRSA, group A streptococcus, group B streptococci, legionella bacteria and the like, bacteria, etc.
  • the liquid sample test kit and membrane of the present embodiment are particularly suitable when the substance to be detected is an urgent matter for detection and treatment such as influenza virus, norovirus, C-reactive protein, myoglobin, and cardiac troponin.
  • the usefulness of the carrier is particularly great.
  • the substance to be detected may be an antigen capable of inducing an immune reaction by itself, and may be a hapten capable of inducing an immune reaction when bound to an antibody by an antigen-antibody reaction.
  • the substance to be detected is usually suspended or dissolved in the liquid sample.
  • the liquid sample may be, for example, a sample in which the substance to be detected is suspended or dissolved in a buffer solution.
  • the liquid sample inspection kit (hereinafter also simply referred to as “inspection kit”) detects a substance to be detected in the liquid sample.
  • FIG. 1 is a schematic top view of an inspection kit.
  • the test kit 18 includes a membrane carrier 3 and a casing 18 a that houses the membrane carrier 3.
  • the film carrier 3 has, on its surface, a dropping zone 3x where a liquid sample is dropped and a detection zone 3y for detecting a substance to be detected in the liquid sample.
  • the dripping zone 3x is exposed at the first opening 18b of the housing 18a.
  • the detection zone 3y is exposed at the second opening 18c of the housing 18a.
  • FIG. 2 is a schematic top view of the membrane carrier 3.
  • the membrane carrier 3 includes at least one flow path 2 for transporting a liquid sample.
  • a fine structure is provided on the bottom surface of the flow path 2 (not shown, details will be described later).
  • the fine structure is located at least between the dropping zone 3x and the detection zone 3y.
  • a fine structure may be provided over the entire surface of the membrane carrier 3.
  • the entire surface of the membrane carrier 3 may be the liquid sample flow path 2.
  • the microstructure causes capillary action. Due to the capillary action of the microstructure, the liquid sample is transported from the dropping zone 3x to the detection zone 3y (along the transport direction d) via the microstructure. When the substance to be detected in the liquid sample is detected in the detection zone 3y, the color of the detection zone 3y changes.
  • the overall shape of the membrane carrier 3 is not particularly limited, but may be, for example, a polygon such as a quadrangle, a circle, or an ellipse.
  • the longitudinal width (length in the short direction) L1 of the membrane carrier 3 may be, for example, 2 mm or more and 100 mm or less
  • the lateral width (length in the longitudinal direction) L2 of the membrane carrier 3 May be, for example, 2 mm or more and 100 mm or less.
  • the thickness of the membrane carrier excluding the height of the fine structure may be, for example, 0.1 mm or more and 10 mm or less.
  • the fine structure is provided so as to change along the transport direction d of the liquid sample.
  • the membrane carrier 3 has a plurality of regions (first region A, second region B, and third region C in this order from the dropping zone side) provided along the transport direction d of the liquid sample. Adjacent regions (first region A and second region B, second region B and third region C) have different microstructures.
  • FIGS. 3 to 6 each show an example of the fine structure provided on the bottom surface of the flow path and the convex portions constituting the fine structure in the present embodiment.
  • (a) is an overhead view (top view) of the fine structure
  • (b) is a perspective view of convex portions constituting the fine structure shown in (a).
  • the fine structure 7 is the total of the convex portions 8. That is, the membrane carrier 3 includes a flat portion 9 corresponding to the bottom surface of the liquid sample channel 2 and a plurality of convex portions 8 protruding from the flat portion 9.
  • the space between the plurality of convex portions 8 functions as a flow path 2 for transporting the liquid sample along the surface of the membrane carrier 3.
  • the gap in the fine structure 7 functions as the flow path 2 for transporting the liquid sample along the surface of the membrane carrier 3 by capillary action.
  • the plurality of convex portions 8 may be arranged on the surface of the membrane carrier 3 regularly or translationally symmetrically.
  • the shape of the plurality of convex portions 8 constituting the fine structure 7 can be freely selected.
  • Examples of the shape of the convex portion 8 include a cone, a polygonal pyramid, a truncated cone, a polygonal frustum, a cylinder, a polygonal column, a hemisphere, and a semi-ellipsoid.
  • the shape of the convex portion 8a may be a cone.
  • the shape of the convex portion 8b may be a quadrangular pyramid.
  • the shape of the convex portion 8c may be a hexagonal pyramid.
  • the shape of the convex portion 8 d may be a horizontally placed triangular prism (a triangular prism placed so that one side surface (rectangular surface) of the triangular prism is in contact with the flat portion 9).
  • a triangular prism placed so that one side surface (rectangular surface) of the triangular prism is in contact with the flat portion 9.
  • the entire surface of the membrane carrier 3 can be visually recognized when the microstructure 7 is viewed from above (as viewed from above), and the color change when the detection target substance is detected can be easily confirmed by an optical method.
  • a cone structure such as a cone or a polygonal pyramid is suitable as the shape of the convex portion 8.
  • the shape of the convex portion 8 constituting the fine structure 7 does not need to be a geometrically accurate shape, and may be a shape with rounded corners or a shape with fine irregularities on the surface. Good.
  • the diameter 4 of the bottom surface 10 of the convex portion 8 constituting the fine structure 7 may be 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 15 ⁇ m or more and 1000 ⁇ m or less.
  • the diameter 4 of the bottom surface 10 of the convex portion 8 may vary in this range between the plurality of convex portions 8 (may be different from each other).
  • the diameter 4 of the bottom surface 10 of the convex portion 8 is 10 ⁇ m or more, the micro-processing cost of the mold for forming the fine structure 7 is reduced, and the infinite number of fine structures 7 are uniformly formed on the surface of the film carrier 3 having a large area. Easy to make.
  • a fine structure constituted by the convex portions 8 having a diameter 4 of the bottom surface 10 of 10 ⁇ m or more is more practical.
  • the diameter of the bottom surface 10 of the convex portion 8 is 10 ⁇ m or more, the capillary force necessary to move the liquid sample tends to increase.
  • the diameter 4 of the bottom surface 10 of the convex portion 8 is 1000 ⁇ m or less, the volume of the metal scraped from the metal member at the time of producing the mold can be reduced, and the production cost of the mold and the film carrier 3 can be suppressed.
  • the diameter of the bottom surface 10 of the convex portion 8 is 1000 ⁇ m or less, the area of the flow path 2 in the membrane carrier 3 can be reduced, so that the liquid sample inspection kit 18 can be downsized and the liquid sample inspection kit 18 itself. This is advantageous for transportation.
  • the diameter 4 of the bottom surface 10 of the convex portion 8 is defined as the representative length of the bottom surface 10 of the convex portion 8.
  • the representative length of the bottom surface 10 is the diameter when the shape of the bottom surface 10 is a circle, the length of the shortest side when it is a triangle or a quadrangle, the length of the longest diagonal line when it is a pentagon or more polygon, In the case of a shape, the maximum length at the bottom surface 10 is used.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of the membrane carrier 3a having the microstructure 7a shown in FIG.
  • the diameter 4a of the bottom surface 10a of the convex portion 8a is the diameter of the bottom surface (circle) of the cone.
  • the diameter 4b of the bottom surface 10b of the convex portion 8b is the length of the side of the bottom surface (regular square) 10b.
  • the diameter 4c of the bottom surface 10c of the convex portion 8c is the length of the diagonal line passing through the center of the bottom surface (regular hexagonal shape) 10c (the length of the longest diagonal line). That is).
  • the diameter 4d of the bottom surface 10d of the convex portion 8d is the length of the shortest side of the bottom surface (rectangular) 10d (in FIG. (Length in the direction perpendicular to the transport direction d of the sample).
  • the height 6 of the convex portion 8 constituting the fine structure 7 is preferably 10 ⁇ m or more and 500 ⁇ m or less, and more preferably 15 ⁇ m or more and 500 ⁇ m.
  • the height 6 of the convex portion 8 may vary within this range between the plurality of convex portions 8 (may be different from each other).
  • the height 6 of the convex portion 8 is 10 ⁇ m or more, the volume of the flow path 2 is increased, and the liquid sample can be developed in a shorter time.
  • the height 6 of the convex portion 8 is 500 ⁇ m or less, the time and cost for producing the fine structure 7 can be reduced, and the fine structure 7 can be produced more easily.
  • the height 6 of the convex portion 8 is defined as the maximum length of the convex portion 8 in the direction orthogonal to the flat portion 9. As shown in FIGS. 3 and 7, when the shape of the convex portion 8a is a cone, the height 6a of the convex portion 8a is the maximum length of the convex portion 8a in the direction orthogonal to the flat portion 9 (the height of the cone). ). As shown in FIG. 4, when the shape of the convex portion 8b is a quadrangular pyramid, the height 6b of the convex portion 8b is the maximum length of the convex portion 8b in the direction orthogonal to the flat portion 9 (height of the quadrangular pyramid). It is. As shown in FIG.
  • the height 6c of the convex portion 8c is the maximum length of the convex portion 8c in the direction orthogonal to the flat portion 9 (the height of the hexagonal pyramid). It is. As shown in FIG. 6, when the shape of the convex portion 8d is a horizontal triangular prism, the height 6d of the convex portion 8d is the maximum length of the convex portion 8d in the direction orthogonal to the flat portion 9 (horizontal triangular prism). Of height).
  • Bottom area of the projections 8 which constitute the microstructure 7 (the area of the bottom surface 10 per one convex portion 8) is preferably 75 [mu] m 2 or more 250000Myuemu 2 or less.
  • the bottom area of the convex portion 8 may vary within this range among the plurality of convex portions 8 (may be different from each other).
  • the bottom area of the convex portion 8 is 78 ⁇ m 2 or more, microfabrication is facilitated, and the cost for manufacturing the fine structure is further reduced.
  • the bottom area of the convex portion 8 is 250,000 ⁇ m 2 or less, the number of the convex portions 8 constituting the microstructure 7 in one inspection kit is increased, and the development of the liquid sample becomes easier.
  • the closest distance 5 between the convex portions 8 constituting the fine structure 7 is preferably 500 ⁇ m or less, more preferably 2 ⁇ m or more and 100 ⁇ m or less.
  • the closest distance 5 between the convex portions 8 may be changed in this range between the plurality of convex portions 8 (may be different from each other).
  • the closest distance 5 between the convex portions 8 cannot be smaller than 0 ⁇ m, and when it is 500 ⁇ m or less, the contact area between the liquid sample and the flow path 2 increases, thereby increasing the capillary force, thereby increasing the liquid sample. It becomes easier to move.
  • “the closest distance between the convex portions 8” is the closest distance between a pair of adjacent convex portions 8 in the same region.
  • the aspect ratio of the convex portion 8 constituting the fine structure 7 is preferably 0.1 or more and 2.0 or less.
  • the aspect ratio here is a value (Lh / Lv) obtained by dividing the height 6 (Lh) of the convex portion 8 by the representative length (diameter 4) (Lv) of the bottom surface 10 of the convex portion 8.
  • the aspect ratio is 0.1 or more, the contact area between the liquid sample and the flow path 2 is increased, which increases the capillary force, so that it is easier to move the liquid sample.
  • the aspect ratio is 2.0 or less, it becomes easier to produce a fine structure.
  • the fine structure 7 may be composed of the same convex portions 8 in the same region.
  • the fine structure 7 may be composed of different convex portions 8 in the same region.
  • the different convex portions 8 may be arranged according to a certain rule along the transport direction d of the liquid sample in the same region. That is, the convex portion 8 has, for example, the diameter 4 of the bottom surface 10 of the convex portion 8, the height 6 of the convex portion 8, the closest distance 5 between the convex portions 8, and the aspect ratio ( At least one of Lh / Lv) may be arranged to change (increase or decrease) according to a certain rule along the transport direction d of the liquid sample.
  • FIG. 8 shows a part (a first region A and a second region B (or second region having different microstructures) in which the microstructure 7 changes along the transport direction of the liquid sample in the membrane carrier 3 shown in FIG.
  • An example of an overhead view (top view) in which the vicinity of the boundary between the region B and the third region C) is enlarged) is shown.
  • the first region A (second region B) and the second region B (third region C) have different microstructures 7A (7B) and 7B (7C). is doing.
  • the convex portion 8A (8B) , 8B (8C) have a conical shape as shown in FIG. 3, but the diameters 4A (4B) and 4B (4C) of the bottom surface of the protrusion 8 are different from each other, and the protrusions in the same region
  • the closest distances 5A (5B) and 5B (5C) between the portions 8 are also different from each other.
  • the shape of the convex portion 8, the diameter 4 of the bottom surface 10 of the convex portion 8, the bottom area of the convex portion 8, the height 6 of the convex portion 8, the closest distance 5 between the convex portions 8 in the same region, and the convex At least one of the aspect ratios (Lh / Lv) of the portion 8 may be different from each other.
  • Adjacent areas are arranged with a predetermined interval between the areas.
  • the closest distance 5D also referred to as a buffer distance
  • the buffer distance 5D may be 1 ⁇ m or more.
  • the flow rate of the liquid sample flowing in the liquid sample inspection kit 18 changes along the transport direction d of the liquid sample.
  • the flow rate in the liquid sample inspection kit 18 has an average flow rate in the regions (first region A, second region B, and third region C) in which the fine structure 7 is uniformly formed. evaluate.
  • the region where the fine structure 7 is uniformly formed means a region where the same fine structure 7 is arranged or a region where the fine structure 7 continues to change uniformly according to a certain rule.
  • the average flow velocity is the distance (shortest distance) from the start point to the end point in the liquid sample traveling direction (transport direction d) in the region where the fine structure 7 is uniformly produced (transportation from the start point to the end point (transport). It is the value divided by the time it took.
  • the flow rate (average flow rate in each region) in the liquid sample inspection kit 18 can be measured by the method described in Examples described later.
  • FIG. 9 is a top view of a membrane carrier in another embodiment.
  • the detection zone 3 y is provided in the third region C, but in the membrane carrier 13 shown in FIG. 9, the detection zone 13 y is provided in the second region B.
  • the dropping zone 13 x and the detection zone 13 y may be formed over substantially the entire short side direction of the membrane carrier 13.
  • the flow velocity in the second region B having the detection zone 13y is preferably slower than the flow velocity in the first region A having the dropping zone 13x.
  • the membrane carrier 13 uses the transport direction d of the second region B.
  • the length in is shorter than the length in the transport direction d of the first region A (and further the third region C).
  • the flow velocity in the third region C is faster than the flow velocity in the second region B having the detection zone 13y.
  • the time taken for the liquid sample to travel (transport) from the start point to the end point becomes shorter, leading to a reduction in the determination time, and in addition, detection from the third region C (downstream region). It becomes possible to suppress the backflow of the liquid sample to the second region B having the zone 13y.
  • the ratio of the largest flow rate to the smallest flow rate is preferably 1 or more and 10 or less.
  • the ratio of the largest flow rate to the smallest flow rate is more preferably more than 1.0 and 10 or less, and still more preferably 1.2 or more and 10 or less.
  • the ratio when the largest flow rate is divided by the smallest flow rate is never smaller than 1.
  • the “smallest flow rate” and “largest flow rate” are average flow rates measured for a plurality of regions (first region A, second region B, and third region C) provided in the membrane carrier 3. Of these, the smallest average flow velocity and the largest average flow velocity are meant.
  • Both the smallest flow velocity and the largest flow velocity in the liquid sample inspection kit 18 are preferably 0.30 mm / s or more and 5.0 mm / s or less.
  • the smallest flow velocity is 0.30 mm / s or more, problems due to manufacturing variations when the test kit is manufactured (for example, the development of the liquid sample is stopped) are further suppressed.
  • the largest flow velocity is 5.0 mm / s or less, it becomes easier to control the flow of the liquid sample in the flow path 2, and the liquid sample can be prevented from overflowing out of the flow path 2.
  • the microstructure 7 and the membrane carrier 3 of the liquid sample inspection kit 18 of the present embodiment may be made of a thermoplastic plastic.
  • the film carrier 3 having the fine structure 7 can be produced by processing a film-like substrate made of thermoplastic plastic.
  • the processing method include thermal imprint, UV imprint, injection molding, etching, photolithography, mechanical cutting, laser processing, and the like. Of these, thermal imprinting on thermoplastics is suitable as a method for performing precise processing at low cost.
  • thermoplastic plastics include polyester resins, polyolefin resins, polystyrene resins, polycarbonate resins, fluorine resins, and acrylic resins.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PVDF polyvinylidene fluoride
  • PMMA polymethyl methacrylate
  • the upper part of the cone is thinner than the bottom surface, so the volume cut out when making the mold is smaller than the column body on the bottom surface.
  • the mold can be manufactured at a low cost. In this case, it becomes possible to detect the detection target substance in the liquid sample at a lower cost.
  • the membrane carrier 3 is the membrane carrier 3 for the liquid sample inspection kit 18 that detects the substance to be detected in the liquid sample, and transports the liquid sample provided on one surface of the membrane carrier 3.
  • a plurality of regions A, B, and C having the microstructure 7 and the flow path 2 are provided, and the adjacent regions A and B (B and C) have the microstructures 7 different from each other.
  • a color change occurs when a substance to be detected is detected in the detection zone 3y of the membrane carrier 3.
  • the color change may be a color change that can be confirmed by an optical method.
  • the optical method there are mainly two methods: a visual determination and a method of measuring fluorescence intensity.
  • a visual determination when measuring color after detection and before detection by color system CIE1976L * a * b * color space, the color difference between two color stimuli (JIS Z8781-4: according to 2013 It is preferable that a color change occurs such that ⁇ E) is 0.5 or more. When this color difference is 0.5 or more, it becomes easy to visually confirm the color difference.
  • the detection substance is immobilized on at least a part of the flow path 2. That is, a detection substance that detects a substance to be detected is fixed in the detection zone 3y. The color change in the detection zone 3y occurs when the detection target substance is held in the detection zone 3y by the detection substance (reacts with the detection substance).
  • the method of manufacturing the liquid sample inspection kit 18 includes a step of fixing a detection substance that causes a color change by holding the detection target substance in the detection zone 3y in the detection zone 3y.
  • a surface treatment may be performed in advance on the portion of the membrane carrier 3 where the detection zone 3y is provided.
  • the surface treatment method is not limited in any way.
  • various methods such as UV irradiation, UV / ozone treatment, various plasma treatments, surface modification with 3-aminopropylene silane, and Glutaraldehyde can be used.
  • examples of the detection substance include antibodies.
  • the antibody is an antibody that undergoes an antigen-antibody reaction with a test substance, and may be a polyclonal antibody or a monoclonal antibody.
  • the color change in the detection zone 3y may be caused by a label having an antibody or an antigen-binding fragment thereof that specifically reacts with the substance to be detected in the liquid sample.
  • the color change is caused, for example, when the label is colored by being held in the detection zone 3y (reacted (bound) with the detection substance) by the detection substance.
  • the labeled body may be, for example, one obtained by binding the antibody or antigen-binding fragment thereof to particles such as colloid particles or latex particles.
  • An antigen-binding fragment refers to a fragment that can specifically bind to a substance to be detected, for example, an antigen-binding fragment of an antibody.
  • the label can be bound to the substance to be detected via an antibody or an antigen-binding fragment thereof.
  • the particles may be magnetic or fluorescent. Examples of the colloid particles include gold colloid particles and metal colloid particles such as platinum colloid particles.
  • the particles are preferably latex particles in terms of particle size control, dispersion stability, and ease of bonding.
  • the material for the latex particles is not particularly limited, but polystyrene is preferred.
  • the particles are preferably colored particles or fluorescent particles, and more preferably colored particles, from the viewpoint of visibility.
  • the colored particles may be any particles that can detect the color with the naked eye.
  • the fluorescent particles may contain a fluorescent substance.
  • the particles may be colored latex particles or fluorescent latex particles. When the particles are colored latex particles, the color change described above is suitably determined visually. Further, when the particles are fluorescent latex particles, the above-described color change is suitably determined by measuring the fluorescence intensity.
  • the labeling body as described above is provided on at least a part of the test kit 18 so that it can react with the substance to be detected in the dropped liquid sample.
  • the labeling body may be provided, for example, on a member in the test kit 18 or may be provided on at least a part of the flow path 2 of the membrane carrier 3 (upstream from the detection zone 3y).
  • the labeled body that has reacted (bound) with the substance to be detected is held in the detection zone 3y by the detection substance (by the detection substance reacting (binding) with the substance to be detected). Thereby, a color change (coloration by a marker) in the detection zone 3y occurs.
  • the liquid sample inspection method according to one aspect of the present embodiment is an inspection method using the inspection kit 18.
  • a liquid sample and a label that specifically binds to a substance to be detected in the liquid sample are mixed to prepare a mixed liquid sample (mixed liquid sample),
  • the step of binding the substance to be detected and the labeling body, the step of dropping the mixed liquid sample into the dropping zone 3x provided on the membrane carrier 3, and the microstructure 7 allow the mixed liquid sample to be detected from the dropping zone 3x to the detection zone 3y.
  • a step of detecting a color change (coloration of the marker) in the detection zone 3y is detecting a color change (coloration of the marker) in the detection zone 3y.
  • the step of dropping a liquid sample onto the dropping zone 3x of the surface of the film carrier 3 and the fine structure 7 (plural protrusions 8) formed on the surface of the film carrier 3 are provided.
  • the substance to be detected is combined with a reagent that is fixed to the detection zone 3y to detect a color change in the detection zone 3y (the presence or absence of a color change is optically determined). And a process.
  • the method of mixing the liquid sample and the label is not particularly limited in the step of binding the target substance and the label to each other.
  • a method of adding a liquid sample to a container containing a labeled body may be used, or a liquid containing a labeled body and a liquid sample may be mixed, for example.
  • a filter may be sandwiched between the dropping port of a container in which a liquid sample is placed, and a labeling body may be immobilized in the filter.
  • FIG. 10 shows a mold 20 for creating a fine structure.
  • the mold 20 shown in FIG. 10 has a plurality of regions (first region A, second region B, and third region C), and the surface has a fine structure (convex portion) shown in FIG. Corresponding recesses are formed (not shown).
  • the mold 20 is made of aluminum alloy A5052.
  • the center of this mold (mold) is finely processed in a range of 30 mm ⁇ 30 mm.
  • 8 has a conical recess with a diameter of 10 ⁇ m and a depth (sometimes referred to as a height in the table) of 10 ⁇ m, and the closest distance (5A, 5C) between the microstructures is 5 ⁇ m, as shown in FIG. Are lined up.
  • a conical concave portion having a diameter of 10 ⁇ m and a depth of 10 ⁇ m is illustrated with the closest distance between microstructures (5B) of the microstructure in the region B being 5 ⁇ m. They are arranged in a triangular array form (staggered) like 8.
  • the buffer distance 5D between the regions A and B and the boundary between the regions B and C is 5 ⁇ m.
  • a release treatment was applied to the uneven surface of the mold in order to easily and reliably peel off the mold and the thermoplastic when transferred.
  • the mold release treatment was performed by immersing in OPTOOL HD-2100TH manufactured by Daikin Industries, Ltd. for about 1 minute, drying, and allowing to stand overnight.
  • thermoplastic plastic polystyrene (Denka styrene sheet manufactured by Denka Co., Ltd., film thickness: 300 ⁇ m) was used. Thermal imprinting was used as a processing method, and an X-300 manufactured by SCIVAX was used as the apparatus.
  • the molding temperature was 120 ° C.
  • the applied pressure was 5.5 MPa
  • transfer was performed for 10 minutes.
  • the thermoplastic resin and the mold were cooled to 80 ° C. while applying pressure, and then the pressure was removed to prepare a film carrier having regions A, B, and C in order from one end side.
  • Example 2 A membrane carrier was produced under the same conditions as in Experimental Example 1, except that the microstructures of regions A, B, and C in Experimental Example 1 were conical concave portions having a diameter of 100 ⁇ m and a depth of 100 ⁇ m.
  • a membrane carrier was produced under the same conditions as in Experimental Example 1 except that the microstructures of regions A, B, and C in Experimental Example 1 were conical recesses having a diameter of 500 ⁇ m and a depth of 500 ⁇ m.
  • Example 4 Except that the microstructures of regions A and C in Experimental Example 1 are conical recesses with a diameter of 100 ⁇ m and a depth of 100 ⁇ m, and the microstructures of region B are conical recesses with a diameter of 30 ⁇ m and a depth of 30 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1.
  • Example 5 Except that the microstructures of regions A and C in Experimental Example 4 are conical recesses with a diameter of 250 ⁇ m and a depth of 250 ⁇ m, and the microstructures of region B are conical recesses with a diameter of 30 ⁇ m and a depth of 30 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1.
  • Example 6 Except that the microstructure of regions A and C in Experimental Example 4 is a conical recess having a diameter of 250 ⁇ m and a depth of 250 ⁇ m, and the microstructure of region B is a conical recess having a diameter of 10 ⁇ m and a depth of 10 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1.
  • Example 7 Except that the microstructure of regions A and C in Experimental Example 4 is a conical recess having a diameter of 100 ⁇ m and a depth of 100 ⁇ m, and the microstructure of region B is a conical recess having a diameter of 10 ⁇ m and a depth of 10 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1.
  • Example 9 The fine structure of region A in Experimental Example 4 is divided into 16 sections each having a width of 1 mm in the direction perpendicular to the transport direction, and as the region B is approached, the diameter and depth of the conical recess for each section are 100 ⁇ m to 4.7 ⁇ m. It is assumed that it decreases (that is, decreases by 100 ⁇ m to 4.7 ⁇ m along the transport direction), and the fine structure of the region C is further divided into 11 sections each having a width of 1 mm in the direction perpendicular to the transport direction. Except that the diameter and depth of the conical recess for each section decrease from 100 ⁇ m to 7 ⁇ m as it approaches B (that is, increase from 100 ⁇ m to 7 ⁇ m along the transport direction). A membrane carrier was prepared under the same conditions as in Experimental Example 1.
  • Example 10 The fine structure of region A in Experimental Example 4 is divided into 16 sections each having a width of 1 mm in the direction perpendicular to the transport direction. As the region B is approached, the diameter and depth of the conical recess for each section are 250 ⁇ m to 14.7 ⁇ m. Further, the fine structure of the region C is further divided into 11 sections each having a width of 1 mm in the direction perpendicular to the transport direction. As the region B is approached, the diameter and depth of the conical concave portion for each section start from 250 ⁇ m. A membrane carrier was produced under the same conditions as in Experimental Example 1 except that the thickness decreased by 22 ⁇ m.
  • Example 11 A membrane carrier was produced under the same conditions as in Experimental Example 1 except that the diameter of the microstructure in regions A and C in Experimental Example 4 was 50 ⁇ m and the diameter of the microstructure in Region B was 15 ⁇ m.
  • a membrane carrier was produced under the same conditions as in Experimental Example 1 except that the diameter of the microstructure in regions A and C in Experimental Example 4 was 50 ⁇ m and the diameter of the microstructure in Region B was 300 ⁇ m.
  • Example 13 A membrane carrier was produced under the same conditions as in Experimental Example 1 except that the diameter of the microstructure in regions A and C in Experimental Example 4 was 500 ⁇ m and the diameter of the microstructure in Region B was 300 ⁇ m.
  • Example 14 A membrane carrier was produced under the same conditions as in Experimental Example 1, except that the microstructure of region B in Experimental Example 4 was a conical recess having a diameter of 200 ⁇ m and a depth of 100 ⁇ m.
  • Example 15 A membrane carrier was produced under the same conditions as in Experimental Example 1 except that the microstructure of region B in Experimental Example 4 was a conical recess having a diameter of 500 ⁇ m and a depth of 100 ⁇ m.
  • Example 16 The fine structure of region A in Experimental Example 4 is divided into 16 sections with a width of 1 mm in the direction perpendicular to the transport direction, and as the area B is approached, the diameter of the conical recess in each section increases from 100 ⁇ m to 10 ⁇ m. Furthermore, the fine structure of the region C is divided into 11 sections each having a width of 1 mm in the direction perpendicular to the transport direction, and the diameter of the conical recess for each section increases from 100 ⁇ m to 15 ⁇ m as the region B is approached.
  • a membrane carrier was produced under the same conditions as in Experimental Example 1 except that the diameter of the conical recess in region B was 250 ⁇ m and the depth was 100 ⁇ m.
  • Example 17 The fine structure of region A in Experimental Example 4 was divided into 16 sections with a width of 1 mm in the direction perpendicular to the transport direction, and as the region B was approached, the diameter of the conical concave portion for each section increased from 100 ⁇ m to 26.7 ⁇ m. Further, the fine structure of the region C is further divided into 11 sections each having a width of 1 mm, and the depth of the conical recess for each section increases from 100 ⁇ m to 40 ⁇ m as the region B is approached. A membrane carrier was produced under the same conditions as in Experimental Example 1 except that the diameter of the conical recess was 500 ⁇ m and the depth was 100 ⁇ m.
  • Example 19 The membrane carrier under the same conditions as in Experimental Example 1 except that the fine structure in region B in Experimental Example 4 is a conical recess having a diameter of 100 ⁇ m and a depth of 100 ⁇ m, and the closest distance between the fine structures is 100 ⁇ m. Was made.
  • the microstructure of regions A and C in Experimental Example 4 is a conical recess having a diameter of 500 ⁇ m and a depth of 500 ⁇ m
  • the microstructure of region B is a conical recess having a diameter of 500 ⁇ m and a depth of 500 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1 except that the closest distance was set to 100 ⁇ m.
  • the microstructure of regions A and C in Experimental Example 4 is a conical recess having a diameter of 500 ⁇ m and a depth of 500 ⁇ m
  • the microstructure of region B is a conical recess having a diameter of 500 ⁇ m and a depth of 500 ⁇ m.
  • a membrane carrier was produced under the same conditions as in Experimental Example 1 except that the closest distance was set to 500 ⁇ m.
  • the microstructure in regions A and C in Experimental Example 4 is a conical recess having a diameter of 250 ⁇ m and a depth of 250 ⁇ m
  • the microstructure in region B is a conical recess having a diameter of 250 ⁇ m and a depth of 250 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1 except that the closest distance was set to 100 ⁇ m.
  • the microstructure in regions A and C in Experimental Example 4 is a conical recess having a diameter of 250 ⁇ m and a depth of 250 ⁇ m
  • the microstructure in region B is a conical recess having a diameter of 250 ⁇ m and a depth of 250 ⁇ m.
  • a membrane carrier was prepared under the same conditions as in Experimental Example 1 except that the closest distance was 250 ⁇ m.
  • Example 24 The fine structure of region A in Experimental Example 4 is divided into 16 sections with a width of 1 mm in the direction perpendicular to the transport direction, and as the region B is approached, the closest distance between the microstructures in each section increases by 5 ⁇ m to 1.7 ⁇ m. Further, the fine structure in the region C is divided into 11 sections each having a width of 1 mm in the direction perpendicular to the transport direction, and as the region B is approached, the closest distance between the fine structures in each section is from 5 ⁇ m to 2.
  • the conditions are the same as in Experimental Example 1 except that the area B increases in increments of 5 ⁇ m, the fine structure in the region B is 100 ⁇ m in diameter, a conical recess having a depth of 100 ⁇ m, and the closest distance between the fine structures is 30 ⁇ m.
  • a membrane carrier was prepared.
  • a purified anti-influenza A virus NP antibody (an antibody different from the above) and a purified anti-influenza B virus NP antibody (an antibody different from the above) were used.
  • Blue latex particles (CM / BL Ceradine) having a particle size of 0.394 ⁇ m are covalently labeled to the anti-influenza A virus NP antibody, and the concentration of latex particles is 0 in Tris buffer containing sugar, surfactant and protein.
  • An anti-A-type labeling body was prepared by suspending it at 0.025 w / v% and performing sonication to sufficiently disperse and float it.
  • an anti-B-type labeled body obtained by labeling blue latex particles on an anti-type B influenza virus NP antibody was prepared.
  • Anti-A-type labeling substance and anti-B-type labeling substance are mixed, and the amount of 50 ⁇ L per square centimeter is applied to 3 cm ⁇ 1 cm glass fiber (33GLASS NO.10539766, manufactured by Schleicher & Schuell) and dried well under warm air Thus, a marker pad was prepared. Thereafter, a marker pad was overlapped only at the end 2 mm of the region A of the membrane carrier prepared as in Experimental Examples 1 to 24, and cut into a strip with a width of 5 mm with a cutter to produce an integrated liquid sample inspection kit. .
  • the liquid sample was prepared by diluting the influenza A virus A / Beijing / 32/92 (H3N2) 4 ⁇ 10 4 times using the specimen suspension attached to DENKA SEIKEN Quick Navi-Flu as a diluting solution. And two types of influenza virus B / Shangdong / 7/97 diluted 4 ⁇ 10 3 times.
  • the movement of the liquid sample after dropping was recorded with a digital camera from directly above. From this moving image, the flow velocity of the liquid sample in each of the areas A to C was evaluated.
  • the flow rate ratio is a ratio obtained by dividing the largest flow rate by the smallest flow rate. The results are shown in Tables 1 to 3.
  • Determination of detection was performed by visually observing the presence or absence of a colored line in the detection zone (type A influenza virus detection unit and type B influenza virus detection unit) after 15 minutes.
  • Tables 1 to 3 also show the results of comprehensive evaluation based on the following criteria for each experimental example.
  • A determination time 4 minutes within an A-type 5 ⁇ 10 4 or more, capable judged by B-type at least 5 ⁇ 10 3 dilutions, or, in type A within 6 minutes determination time 7 ⁇ 10 4 or more
  • a type B that can be determined at a dilution ratio of 7 ⁇ 10 3 or more.
  • B Comprehensive evaluation does not apply to either A or C.
  • C The determination time is 7 minutes or more, or the dilution ratio that can be determined is 4 ⁇ 10 4 or less for the A type, or 4 ⁇ 10 3 or less for the B type.
  • the membrane carriers are manufactured so that the regions A to C have the closest distance between the microstructures (projections), the diameter of the projections, and the height of the projections as shown in Table 4. Except for this, the same procedure as in Experimental Example 1 was performed. Next, the particles to be used are changed from colored latex particles to fluorescent latex particles (micromer-F fluorescent latex particle material polystyrene core front), and an immunochromatographic reader (C11787, Hamamatsu Photonics) is used for the presence or absence of a colored line 4 minutes after the start of the test.
  • fluorescent latex particles micromer-F fluorescent latex particle material polystyrene core front
  • an immunochromatographic reader C11787, Hamamatsu Photonics
  • the detection zone was prepared, the labeled body was set, and the detection evaluation was performed in the same manner as in Experimental Examples 1 to 24 except that the magnification (fluorescence determination limit magnification) that could not be read was obtained.
  • the results are shown in Tables 4-5.
  • Tables 4 to 5 also show the results of comprehensive evaluation based on the following criteria for each experimental example.
  • A The limit magnification at which fluorescence can be determined 4 minutes after the start of the test is 3 ⁇ 10 6 or more for the A type and 3 ⁇ 10 5 or more for the B type.
  • B Comprehensive evaluation does not apply to either A or C.
  • C The limit magnification at which fluorescence can be determined 4 minutes after the start of the test is less than 2 ⁇ 10 6 for the A type and less than 2 ⁇ 10 5 for the B type.
  • the liquid sample inspection kit according to the present embodiment can adjust the flow velocity by changing the height, bottom area, closest distance, and aspect ratio of the fine structure in the flow path. It was. As a result, it was shown that this embodiment can adjust the time until the sensitivity and coloration of the liquid sample inspection kit are stabilized, and can perform high-sensitivity and short-time inspection. Further, from the results of Tables 4 to 5, it was confirmed that the liquid sample inspection kit can perform highly sensitive inspection even when the particles are fluorescent latex particles.
  • the liquid sample test kit of the present embodiment is useful for a disposable POCT reagent because a highly sensitive test can be performed in a short time at a low cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本発明は、液体試料中の被検出物質を検出する検査キット用の膜担体3であって、液体試料を輸送できる少なくとも一つの流路2を備え、流路2の底面に、液体試料を輸送するための毛細管作用を生じせしめる微細構造が設けられ、微細構造が、液体試料の輸送方向dに沿って変化するように設けられている、液体試料検査キット用膜担体3を提供する。

Description

液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法
 本発明は、検査中の流速変化を伴う液体試料検査キット用膜担体、それを用いた液体試料検査キット及びその製造方法に関する。
 近年、抗原抗体反応等を用いることで、感染症への罹患や妊娠、血糖値等を測定する、Point of Care Test(POCT)試薬が注目を集めている。POCT試薬は、短時間で結果の判別が可能、使用方法が簡便、安価であるといった特徴をもっている。POCT試薬は、これらの特徴から、症状が軽度の段階での診察や定期診察等に多く使用されており、今後増加することが予想される在宅医療においても重要な診察ツールとなっている。
 多くのPOCT試薬では、血液等の液体試料を検査キットに導入し、その中に含まれる特定の被検出物質を検出することで判定を行っている。液体試料から特定の被検出物質を検出する方法としてイムノクロマトグラフィ法がよく用いられている。イムノクロマトグラフィ法とは、検査キットの膜担体上に滴下された液体が膜担体上を移動する中で、被検出物質と標識体とが結合し、更にこれらが検査キット中に固定化された物質(以下、検出物質という)と特異的に結合し、その結果生じた色や重量の変化等を検出するという手法である。検出物質は、試薬(reagent)と言い換えてもよい。
 被検出物質を検出する手法として、標識体として着色ラテックス粒子、蛍光ラテックス粒子、金属コロイド粒子等を用いることで生じる色変化を、吸光度測定器等の光学測定機器を介して検知するものがよく知られている。
 上記の色変化を光学的に判定するPOCT試薬として、ニトロセルロース膜を用いたラテラルフロー型のキットがよく用いられている(特許文献1)。ニトロセルロース膜は、直径が数μm程度の微細な孔を多数有しており、その孔の中を液体試料が毛細管力によって移動する。
 しかし、ニトロセルロース膜は天然物由来であり、孔径や孔同士のつながり方が一様ではないため、それぞれの膜で液体サンプルの流れる流速に差異が生じてしまう。流速に差異が生じると、被検出物質を検出するためにかかる時間も変化してしまい、その結果、被検出物質が結合を生じる前に非検出として誤って判断してしまう可能性がある。
 上記の課題を解決するため、微細流路を人工的に作製するという手法が考案されている(特許文献2~6)。この手法を用いると、均一な構造を有する膜担体を作製することができるため、被検出物質が結合を生じる前に非検出として誤って判断してしまう可能性を低減することができる。
特開2014-062820号公報 特許第4597664号 特表2012-524894号公報 特許第5609648号 特開2016-011943号公報 特開2013-113633号公報 米国特許出願公開第2011/0284110号明細書
 しかし、上記の特許文献に記載の手法では、系内での流路構造が均一であるため、流路内各部分での役割(例えば、液体をよく混合したい部分や、液体を速やかに展開したい部分)に適合した構造が作製されておらず、最大公約数的な構造が作製されていた。その結果、系の性能が十分に発揮されていなかった。具体的に言えば、液体試料の流速が遅いほうが、検査キットの感度(どれだけ少ない量の被検出物質を検出できるか)は高くなるが、その場合判定時間(被検出物質を検出した際の変化が安定するまでの時間)は長くなってしまうため、二つの特性を両立する構造は作製できていなかった。
 特にラテラルフロー型のイムノクロマトグラフィ法では、検出系がシンプルな分だけ、流路構造の影響が検査結果に反映されやすい。特許文献7では、流路構造によって液体試料の流速が変化する報告がなされているが、流速が変化することによる影響については記載がない。
 本発明は、上記問題を鑑みて、例えば、被検出物質が検出されたことを光学的手法で確認可能なイムノクロマトグラフィ法において、高感度かつ短時間での判定が可能な検査キットの提供を課題とする。
 すなわち、本発明は、以下の通りである。
(1)液体試料中の被検出物質を検出する検査キット用の膜担体であって、
 液体試料を輸送できる少なくとも一つの流路を備え、
 流路の底面に、液体試料を輸送するための毛細管作用を生じせしめる微細構造が設けられ、
 微細構造が、液体試料の輸送方向に沿って変化するように設けられている、液体試料検査キット用膜担体。
(2)微細構造は、流路内における液体試料の流速が流路内で変化するように設けられている、(1)に記載の液体試料検査キット用膜担体。
(3)微細構造は、流路内における液体試料の、最も小さい流速と最も大きい流速との比が1以上10以下となるように設けられている、(1)又は(2)に記載の液体試料検査キット用膜担体。
(4)微細構造は、流路内における液体試料の最も小さい流速と最も大きい流速とが、いずれも0.30mm/s以上5.0mm/s以下となるように設けられている、(1)~(3)の何れかに記載の液体試料検査キット用膜担体。
(5)微細構造の高さが、流路内で10μm以上500μm以下である、(1)~(4)の何れかに記載の液体試料検査キット用膜担体。
(6)微細構造の底面積が、流路内で75μm以上250000μm以下である、(1)~(5)の何れかに記載の液体試料検査キット用膜担体。
(7)微細構造同士の最近接距離が、流路内で500μm以下である、(1)~(6)の何れかに記載の液体試料検査キット用膜担体。
(8)微細構造のアスペクト比が、0.1以上2.0以下である(1)~(7)の何れかに記載の液体試料検査キット用膜担体。
(9)液体試料中の被検出物質を検出する液体試料検査キットであって、
 (1)~(8)の何れかに記載された液体試料検査キット用膜担体を備え、
 膜担体は、液体試料中の被検出物質を検出するための検知ゾーンを有し、
 検知ゾーンにおいて被検出物質が検出された際に、検出されたことが光学的手法で確認可能な色変化が生じる、液体試料検査キット。
(10)液体試料中の記被検出物質と特異的に反応する抗体又はその抗原結合性断片を有する標識体が、被検出物質と反応し得るように液体試料検査キットの少なくとも一部に設けられており、
 上記色変化は、被検出物質と結合した標識体によって生じる、(9)に記載の液体試料検査キット。
(11)上記標識体が、着色ラテックス粒子又は蛍光ラテックス粒子に前記抗体又は前記抗原結合性断片が結合した粒子である、(10)に記載の液体試料検査キット。
(12)検知ゾーンには、被検出物質を検出する検出物質が固定されており、
 上記色変化は、標識体が前記検出物質により検知ゾーンに保持されて呈色することによって生じる、(10)又は(11)に記載の液体試料検査キット。
(13)(9)~(12)の何れかに記載された液体試料検査キットの製造方法であって、
 検知ゾーンに、被検出物質を検知ゾーンに保持することによって上記色変化を生じせしめる検出物質を固定する工程を備える、液体試料検査キットの製造方法。
(14)(9)~(12)の何れかに記載された液体試料検査キットを用いる、液体試料の検査方法であって、
 前記液体試料と、前記液体試料中の被検出物質と特異的に結合する標識体とを混合して混合液体試料を調製し、前記被検出物質と前記標識体とを互いに結合させる工程と、
 前記混合液体試料を前記膜担体に設けられた滴下ゾーンに滴下する工程と、
 前記微細構造により、前記混合液体試料を前記滴下ゾーンから前記検知ゾーンへ輸送する工程と、
 前記検知ゾーンにおける色変化を検知する工程と、を備える、液体試料の検査方法。
 本発明によれば、被検出物質が検出されたことを光学的手法で確認可能なイムノクロマトグラフィ法において、高感度かつ短時間での判定が可能な検査キットの提供が可能となる。
本発明による実施形態の一例であり、検査キットの模式的な上面図である。 本発明による実施形態の一例であり、膜担体の模式的な上面図である。 (a)は、本発明による実施形態の一例であり、微細構造の俯瞰図(上面図)であり、(b)は、(a)に示す微細構造を構成する凸部の斜視図である。 (a)は、本発明による実施形態の一例であり、微細構造の俯瞰図(上面図)であり、(b)は、(a)に示す微細構造を構成する凸部の斜視図である。 (a)は、本発明による実施形態の一例であり、微細構造の俯瞰図(上面図)であり、(b)は、(a)に示す微細構造を構成する凸部の斜視図である。 (a)は、本発明による実施形態の一例であり、微細構造の俯瞰図(上面図)であり、(b)は、(a)に示す微細構造を構成する凸部の斜視図である。 本発明による実施形態の一例であり、微細構造を有する膜担体の断面図である。 本発明による実施形態の一例であり、微細構造が液体試料の輸送方向に沿って変化する箇所を拡大した俯瞰図(上面図)である。 本発明による実施形態の一例であり、膜担体の模式的な上面図である。 本発明による実施形態の一例であり、微細構造を形成するためのモールドの概略図である。
 以下、本発明の実施形態について説明する。
 本実施形態の液体試料検査キット用膜担体とは、例えば、液体試料中の被検出物質を検出する液体試料検査キット用の膜担体をいう。
 ここで、被検出物質は、何ら限定されるものではなく、各種病原体、各種臨床マーカー等、抗体と抗原抗体反応することが可能ないかなる物質であってもよい。被検出物質の具体例として、インフルエンザウイルス、ノロウイルス、アデノウイルス、RSウイルス、HAV、HBs、HIV等のウイルス抗原、MRSA、A群溶連菌、B群溶連菌、レジオネラ属菌等の細菌抗原、細菌等が産生する毒素、マイコプラズマ、クラミジア・トラコマティス、ヒト絨毛性ゴナドトロピン等のホルモン、C反応性タンパク質、ミオグロビン、心筋トロポニン、各種腫瘍マーカー、農薬、及び環境ホルモン等を例示できるが、これらに限定されるものではない。被検出物質が、特に、インフルエンザウイルス、ノロウイルス、C反応性タンパク質、ミオグロビン、及び心筋トロポニンのような検出と治療措置に急を要するものである場合には、本実施形態の液体試料検査キット及び膜担体の有用性が特に大きい。被検出物質は、単独で免疫反応を誘起できる抗原であってもよく、単独では免疫反応を誘起できないが、抗体と抗原抗体反応により結合した場合に免疫反応を誘起できるハプテンであってもよい。被検出物質は、通常、液体試料中で浮遊又は溶解した状態にある。液体試料は、例えば、上記被検出物質を緩衝液に浮遊又は溶解させた試料であってよい。
 本実施形態に係る液体試料検査キット(以下、単に「検査キット」ともいう)は、液体試料中の被検出物質を検出する。図1は、検査キットの模式的な上面図である。例えば、図1に示すように、検査キット18は、膜担体3と、膜担体3を収容する筐体18aと、を備える。膜担体3は、その表面に、液体試料が滴下される滴下ゾーン3xと、液体試料中の被検出物質を検出するための検知ゾーン3yと、を有している。滴下ゾーン3xは、筐体18aの第一開口部18bにおいて露出している。検知ゾーン3yは、筐体18aの第二開口部18cにおいて露出している。
 図2は、膜担体3の模式的な上面図である。図2に示すように、膜担体3は、液体試料を輸送する少なくとも一つの流路2を備えている。流路2の底面には、微細構造が設けられている(図示せず、詳細は後述)。微細構造は、少なくとも滴下ゾーン3xと検知ゾーン3yとの間に位置する。膜担体3の表面全体にわたり、微細構造が設けられていてもよい。膜担体3の表面全体が、液体試料の流路2であってよい。微細構造は、毛細管作用を生じせしめる。微細構造の毛細管作用により、液体試料は、微細構造を介して、滴下ゾーン3xから検知ゾーン3yへ(輸送方向dに沿って)輸送される。液体試料中の被検出物質が検知ゾーン3yにおいて検出されると、検知ゾーン3yの色が変化する。
 膜担体3の全体の形状は、特に限定されないが、例えば、四角形等の多角形、円形、又は楕円形であってよい。膜担体3が四角形である場合、膜担体3の縦幅(短手方向の長さ)L1は、例えば、2mm以上100mm以下であってよく、膜担体3の横幅(長手方向の長さ)L2は、例えば、2mm以上100mm以下であってよい。微細構造の高さを除く膜担体の厚みは、例えば、0.1mm以上10mm以下であってよい。
 例えば、微細構造は、液体試料の輸送方向dに沿って変化するように設けられている。換言すると、膜担体3は、液体試料の輸送方向dに沿って設けられた複数の領域(滴下ゾーン側から順に、第一の領域A、第二の領域B及び第三の領域C)を有し、隣接する領域(第一の領域A及び第二の領域B、第二の領域B及び第三の領域C)が互いに異なる微細構造を有する。
 図3~6は、それぞれ、本実施形態における、流路の底面に設けられた微細構造及びそれを構成する凸部の一例を示す。図3~6中、(a)は、それぞれ微細構造の俯瞰図(上面図)であり、(b)は、それぞれ(a)に示す微細構造を構成する凸部の斜視図である。図3~6に示すように、微細構造7は、凸部8の総体である。つまり、膜担体3は、液体試料の流路2の底面に相当する平坦部9と、平坦部9から突出する複数の凸部8と、を備える。毛細管作用により、複数の凸部8の間の空間が、液体試料を膜担体3の表面に沿って輸送する流路2として機能する。換言すれば、毛細管作用により、微細構造7における空隙が、液体試料を膜担体3の表面に沿って輸送する流路2として機能する。複数の凸部8は、規則的に、又は、並進対称的に、膜担体3の表面上に並んでいてよい。
 上記の微細構造7を構成する複数の凸部8の形状は、自由に選択することができる。凸部8の形状としては、例えば、円錐、多角錐、円錐台、多角錐台、円柱、多角柱、半球、半楕円体等が挙げられる。例えば、図3に示すように、凸部8aの形状は、円錐であってよい。例えば、図4に示すように、凸部8bの形状は、四角錐であってもよい。例えば、図5に示すように、凸部8cの形状は、六角錐であってもよい。例えば、図6に示すように、凸部8dの形状は、横置きの三角柱(三角柱における一側面(四角形の面)が平坦部9に接するように置かれた三角柱)であってもよい。微細構造7を俯瞰した(上面から見た)際に膜担体3の全表面を視認でき、被検出物質が検出された際の色変化を光学的手法で確認しやすい点で、これらの中では、円錐や多角錐等の錐体構造が凸部8の形状として適している。
 微細構造7を構成する凸部8の形状は、幾何学的に正確な形状である必要はなく、角部が丸みを帯びている形状や表面に微細な凹凸が存在する形状等であってもよい。
 上記微細構造7を構成する凸部8の底面10の径4は、10μm以上1000μm以下であってよく、より好ましくは15μm以上1000μm以下である。凸部8の底面10の径4は、複数の凸部8間においてこの範囲で変化していてもよい(互いに異なっていてもよい)。凸部8の底面10の径4が10μm以上である場合、微細構造7を形成するためのモールドの微細加工費が安くなり、面積の大きい膜担体3の表面に無数の微細構造7を均一に作製しやすい。従って、底面10の径4が10μm以上の凸部8で構成される微細構造は、より実用的である。凸部8の底面10の径が10μm以上である場合、液体試料を移動させるのに必要な毛細管力がより強まる傾向がある。凸部8の底面10の径4が1000μm以下である場合、モールドの作製時に金属部材から削りだす金属の体積を低減でき、モールド及び膜担体3の作製費用を抑制できる。凸部8の底面10の径が1000μm以下である場合、膜担体3における流路2の面積を小さくすることができるため、液体試料検査キット18の小型化が図られ、液体試料検査キット18自体の輸送に有利となる。
 凸部8の底面10の径4は、凸部8の底面10における代表長さとして定義される。底面10における代表長さは、底面10の形状が円の場合は直径、三角形又は四角形の場合は最も短い一辺の長さ、五角形以上の多角形の場合は最も長い対角線の長さ、それ以外の形状の場合は底面10における最大の長さとする。
 図7は、図3に示す微細構造7aを有する膜担体3aのVII-VII線に沿った矢視断面図である。図3及び図7に示すように、凸部8aの形状が円錐である場合、凸部8aの底面10aの径4aは、円錐の底面(円)の直径である。図4に示すように、凸部8bの形状が正四角錐である場合、凸部8bの底面10bの径4bは、底面(正四角形)10bの辺の長さである。図5に示すように、凸部8cの形状が正六角錐である場合、凸部8cの底面10cの径4cは、底面(正六角形)10cの中心を通る対角線の長さ(最も長い対角線の長さ)である。図6に示すように、凸部8dの形状が横置きの三角柱である場合、凸部8dの底面10dの径4dは、底面(長方形)10dの最も短い一辺の長さ(図6では、液体試料の輸送方向dと直交する方向の長さ)である。
 上記微細構造7を構成する凸部8の高さ6は、好ましくは10μm以上500μm以下であり、より好ましくは15μm以上500μmである。凸部8の高さ6は、複数の凸部8間においてこの範囲で変化していてもよい(互いに異なっていてもよい)。凸部8の高さ6が10μm以上である場合、流路2の体積が大きくなり、液体試料がより短時間で展開可能となる。凸部8の高さ6が500μm以下である場合、微細構造7を作製する時間とコストを低減でき、微細構造7の作製がより容易となる。
 凸部8の高さ6は、平坦部9に直交する方向における凸部8の最大長さとして定義される。図3及び図7に示すように、凸部8aの形状が円錐である場合、凸部8aの高さ6aは、平坦部9に直交する方向における凸部8aの最大長さ(円錐の高さ)である。図4に示すように、凸部8bの形状が四角錐である場合、凸部8bの高さ6bは、平坦部9に直交する方向における凸部8bの最大長さ(四角錐の高さ)である。図5に示すように、凸部8cの形状が六角錐である場合、凸部8cの高さ6cは、平坦部9に直交する方向における凸部8cの最大長さ(六角錐の高さ)である。図6に示すように、凸部8dの形状が横置きの三角柱である場合、凸部8dの高さ6dは、平坦部9に直交する方向における凸部8dの最大長さ(横置きの三角柱の高さ)である。
 上記微細構造7を構成する凸部8の底面積(凸部8の底面10一つあたりの面積)は、好ましくは75μm以上250000μm以下である。凸部8の底面積は、複数の凸部8間においてこの範囲で変化していてもよい(互いに異なっていてもよい)。凸部8の底面積が78μm以上である場合、微細加工が容易になり、微細構造の作製のコストがより低減する。凸部8の底面積が250000μm以下である場合、一つの検査キット内で微細構造7を構成する凸部8の数が多くなり、液体試料の展開がより容易になる。
 上記微細構造7を構成する凸部8同士の最近接距離5は、好ましくは500μm以下、より好ましくは2μm以上100μm以下である。凸部8同士の最近接距離5は、複数の凸部8間においてこの範囲で変化していてもよい(互いに異なっていてもよい)。凸部8同士の最近接距離5は、0μmより小さいことは有りえず、500μm以下である場合、液体試料と流路2との接触面積が増大し、これにより毛細管力が増大するため液体試料を移動させることがより容易になる。ここで、「凸部8同士の最近接距離」とは、同一の領域内で隣り合う一対の凸部8の最近接距離である。
 上記微細構造7を構成する凸部8のアスペクト比は、好ましくは0.1以上2.0以下である。ここで言うアスペクト比とは、凸部8の高さ6(Lh)を、凸部8の底面10の代表長さ(径4)(Lv)で割った値(Lh/Lv)である。アスペクト比が0.1以上である場合、液体試料と流路2との接触面積が増大し、これにより毛細管力が増大するため液体試料を移動させることがより容易になる。アスペクト比が2.0以下である場合、微細構造の作製がより容易になる。
 微細構造7は、同一領域内において、互いに同一の凸部8から構成されていてよい。微細構造7は、同一領域内において、互いに異なる凸部8から構成されていてもよい。この場合、互いに異なる凸部8は、同一領域内において、液体試料の輸送方向dに沿って、一定の規則に従い並んでいてよい。つまり、凸部8は、同一の領域内において、例えば、凸部8の底面10の径4、凸部8の高さ6、凸部8同士の最近接距離5及び凸部8のアスペクト比(Lh/Lv)の少なくとも1つが、液体試料の輸送方向dに沿って、一定の規則に従い変化(増大又は減少)するように並んでいてよい。
 図8は、図2に示す膜担体3において、微細構造7が液体試料の輸送方向に沿って変化する箇所(互いに異なる微細構造を有する第一の領域A及び第二の領域B(又は第二の領域B及び第三の領域C)の境界付近)を拡大した俯瞰図(上面図)の一例を示す。図8に示すように、第一の領域A(第二の領域B)と第二の領域B(第三の領域C)とは、互いに異なる微細構造7A(7B),7B(7C)を有している。例えば、第一の領域A(第二の領域B)の微細構造7A(7B)と第二の領域B(第三の領域C)の微細構造7B(7C)とでは、凸部8A(8B),8B(8C)はいずれも図3に示したような円錐状であるが、凸部8の底面の径4A(4B),4B(4C)が互いに異なっており、また、同一領域内の凸部8同士の最近接距離5A(5B),5B(5C)も互いに異なっている。
 第一の領域A(第二の領域B)の微細構造7A(7B)と第二の領域B(第三の領域C)の微細構造7B(7C)とでは、図8に示した例以外にも、例えば、凸部8の形状、凸部8の底面10の径4、凸部8の底面積、凸部8の高さ6、同一領域内の凸部8同士の最近接距離5及び凸部8のアスペクト比(Lh/Lv)の少なくとも1つが互いに異なっていてよい。
 隣接する領域(第一の領域A及び第二の領域B(又は第二の領域B及び第三の領域C))は、各領域間に所定の間隔を空けて配置されている。異なる領域間における凸部8同士の最近接距離(緩衝距離ともいう)5Dは、好ましくは500μm以下である。緩衝距離5Dは、1μm以上であってよい。凸部8同士の緩衝距離5Dが500μm以下である場合、各領域間での液体試料の輸送がより滞りなく行われる。
 膜担体3が上述した微細構造7を有することにより、液体試料検査キット18内(膜担体3上)を流れる液体試料の流速が、液体試料の輸送方向dに沿って変化する。上記液体試料検査キット18内での流速は、微細構造7が均一に作製されている領域(第一の領域A、第二の領域B及び第三の領域Cの各領域)での平均流速をもって評価する。微細構造7が均一に作製されている領域とは、同一の微細構造7が並んでいる領域や、微細構造7が一定の規則に従って一様に変化し続ける領域をいう。平均流速とは、微細構造7が均一に作製されている領域の液体試料進行方向(輸送方向d)の始点から終点までの距離(最短距離)を、液体試料が始点から終点まで進行する(輸送される)のにかかった時間で割った値である。液体試料検査キット18内での流速(各領域での平均流速)は、後述する実施例に記載の方法で測定することができる。
 図9は、他の一実施形態における膜担体の上面図である。図2に示す膜担体3では、第三の領域Cに検知ゾーン3yが設けられているが、図9に示す膜担体13では、第二の領域Bに検知ゾーン13yが設けられている。図9に示すように滴下ゾーン13x及び検知ゾーン13yは、膜担体13の短手方向の略全体にわたって形成されていてもよい。
 検知ゾーン13yを有する第二の領域Bにおける流速は、滴下ゾーン13xを有する第一の領域Aにおける流速と比較して遅いことが好ましい。この場合、被検出物質と検出物質との反応性が良好なものとなり、検査キットの感度がより向上する傾向がある。この場合に流速が比較的遅くなる第二の領域Bの輸送方向dにおける長さを最小限にとどめ、検査時間を短縮する観点から、この膜担体13では、第二の領域Bの輸送方向dにおける長さは、第一の領域A(更には第三の領域C)の輸送方向dにおける長さよりも短くなっている。また、第三の領域Cにおける流速は、検知ゾーン13yを有する第二の領域Bにおける流速と比較して速いことが好ましい。この場合、液体試料が始点から終点まで進行する(輸送される)のにかかる時間がより短くなり、判定時間の短縮につながることに加えて、第三の領域C(下流側の領域)から検知ゾーン13yを有する第二の領域Bへの液体試料の逆流を抑制することが可能となる。
 上記液体試料検査キット18内において、最も小さい流速に対する最も大きい流速の比は、好ましくは1以上10以下である。最も小さい流速に対する最も大きい流速の比は、より好ましくは1.0を超え10以下であり、更に好ましくは、1.2以上10以下である。最も大きい流速を最も小さい流速で割った際の比が1より小さくなることはなく、この値が10以下である場合、流速が変化する箇所で液体試料が流路2外にあふれたり、液体試料の展開が止まってしまったりすることが抑制される。「最も小さい流速」及び「最も大きい流速」は、膜担体3に設けられた複数の領域(第一の領域A、第二の領域B及び第三の領域C)毎に測定される平均流速のうち、最も小さい平均流速及び最も大きい平均流速をそれぞれ意味する。
 上記液体試料検査キット18内での最も小さい流速と最も大きい流速は、いずれも、好ましくは0.30mm/s以上5.0mm/s以下である。最も小さい流速が0.30mm/s以上である場合、検査キットの作り込み時の作製ばらつきによる不具合(例えば、液体試料の展開が停止してしまう等)がより抑制される。最も大きい流速が5.0mm/s以下である場合、流路2中での液体試料の流れを制御することがより容易になり、液体試料が流路2外にあふれることを抑制できる。
 本実施形態の液体試料検査キット18の微細構造7及び膜担体3は、熱可塑性プラスチックからなっていてよい。換言すれば、熱可塑性プラスチックからなる膜状の基材を加工することにより、微細構造7を有する膜担体3を作製することができる。加工方法としては、例えば、熱インプリント、UVインプリント、射出成型、エッチング、フォトリソグラフィー、機械切削、レーザー加工等が挙げられる。この中でも安価に精密な加工を施す手法として、熱可塑性プラスチックに対する熱インプリントが適している。熱可塑性プラスチックとしてはポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、フッ素系樹脂及びアクリル系樹脂等が挙げられ、具体的にはポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフッ化ビニリデン(PVDF)、ポリメタクリル酸メチル(PMMA)等様々な種類のものを用いることができる。
 インプリントや射出成型といった金型を用いた加工方法の場合、錐体は、底面に比べ上部が細くなっているため、同底面の柱体を作製するよりも金型作製時に削り出す体積は少なくて済み、金型を安価に作製することができる。この場合、液体試料中の被検出物質の検出をより安価に行うことが可能となる。
 以上説明したとおり、膜担体3は、液体試料中の被検出物質を検出する液体試料検査キット18用の膜担体3であって、膜担体3の一面上に設けられた、液体試料を輸送するための毛細管作用を生じせしめる微細構造7と、微細構造7により形成された、液体試料を輸送する流路2と、を備え、膜担体3には、液体試料の輸送方向に沿って設けられた、微細構造7及び流路2を有する複数の領域A,B,Cが設けられ、隣接する領域A,B(B,C)が互いに異なる微細構造7を有する。
 本実施形態に係る液体試料検査キット18では、膜担体3が有する検知ゾーン3yにおいて、被検出物質が検出された際に色変化が生じる。色変化は、光学的手法で確認可能な色変化であってよい。
 上記光学的手法としては、主に目視による判定と蛍光強度を測定する手法の2つが挙げられる。目視によって判定する場合には、検知前と検知後の色をCIE1976L色空間の表色系で測定した際の、2つの色刺激間の色差(JIS Z8781-4:2013に記載のΔE)が0.5以上となるような色変化が生じることが好ましい。この色差が0.5以上であると、色の違いを目視で確認することが容易になる。蛍光強度を測定して判定する場合には、検知ゾーン3yでの蛍光強度(Fl1)と、検知ゾーン3yに隣接する上流域および下流域での蛍光強度(Fl2)との比(Fl1/Fl2)=10/1以上となるような色変化が生じることが好ましい。この比が10/1以上であると、シグナルとノイズの分離が容易になる。
 本実施形態の液体試料検査キット18に検知ゾーン3yを作製するためには、一実施形態において、流路2の少なくとも一部に、検出物質が固定化されている。つまり、検知ゾーン3yには、被検出物質を検出する検出物質が固定されている。検知ゾーン3yにおける色変化は、被検出物質が検出物質により(検出物質と反応して)検知ゾーン3yに保持されることによって生じる。
 言い換えれば、液体試料検査キット18の製造方法は、検知ゾーン3yに、被検出物質を検知ゾーン3yに保持することによって色変化を生じせしめる検出物質を固定する工程を備えている。検知ゾーン3yに検出物質(試薬)をより効率よく固定化できる点から、膜担体3における検知ゾーン3yを設ける箇所に予め表面処理を施していてよい。
 上記表面処理の方法としては、何ら限定されるものではなく、例えばUV照射、UV/オゾン処理、各種プラズマ処理、3-AminopropyltriethoxysilaneやGlutaraldehydeによる表面修飾等の種々の方法を用いることができる。
 本実施形態において、上記検出物質(試薬)としては、例えば、抗体が挙げられる。抗体は、被出検物質と抗原抗体反応する抗体であり、ポリクローナル抗体であってもモノクローナル抗体であってもよい。
 検知ゾーン3yにおける色変化は、液体試料中の被検出物質と特異的に反応する抗体又はその抗原結合性断片を有する標識体によって生じるものであってよい。色変化は、例えば、標識体が、検出物質により(検出物質と反応(結合)して)検知ゾーン3yに保持されて呈色することによって生じる。
 標識体は、例えば、コロイド粒子、ラテックス粒子等の粒子に上記抗体又はその抗原結合性断片が結合したものであってよい。抗原結合性断片とは、被検出物質と特異的に結合することができる断片をいい、例えば、抗体の抗原結合性断片をいう。標識体は、抗体又はその抗原結合性断片を介して被検出物質に結合することができる。粒子は、磁性又は蛍光発光性を有してもよい。コロイド粒子としては、金コロイド粒子、白金コロイド粒子の金属コロイド粒子等が挙げられる。粒子は、粒径制御、分散安定性及び結合容易性の点で、好ましくはラテックス粒子である。ラテックス粒子の材料としては特に限定されないが、ポリスチレンが好ましい。
 粒子は、視認性の点で、好ましくは着色粒子又は蛍光粒子であり、より好ましくは着色粒子である。着色粒子は、肉眼で色が検出可能なものであればよい。蛍光粒子は、蛍光物質を含有すればよい。粒子は、着色ラテックス粒子又は蛍光ラテックス粒子であってよい。粒子が着色ラテックス粒子である場合、上述の色変化が、目視により好適に判定される。また、粒子が蛍光ラテックス粒子である場合、上述の色変化が、蛍光強度の測定により好適に判定される。
 上述したような標識体が、滴下される液体試料中の被検出物質と反応し得るように、検査キット18の少なくとも一部に設けられている。標識体は、例えば、検査キット18中の部材に設けられていてよく、膜担体3の流路2の少なくとも一部(検知ゾーン3yより上流側)に設けられていてよい。そして、被検出物質と反応(結合)した標識体は、検出物質により(検出物質が被検出物質と反応(結合)することにより)検知ゾーン3yに保持される。これにより、検知ゾーン3yにおける色変化(標識体による呈色)が生じる。
 本実施形態の一側面に係る液体試料の検査方法は、検査キット18を用いる検査方法である。
 検査キット18を用いる、液体試料の検査方法は、液体試料と、液体試料中の被検出物質と特異的に結合する標識体とを混合して混合液体試料(混合済み液体試料)を調製し、被検出物質と標識体とを互いに結合させる工程と、混合液体試料を膜担体3に設けられた滴下ゾーン3xに滴下する工程と、微細構造7により、混合液体試料を滴下ゾーン3xから検知ゾーン3yへ輸送する工程と、検知ゾーン3yにおける色変化(標識体の呈色)を検知する工程と、を備えてよい。
 また、例えば、上記検査方法は、液体試料を、膜担体3の表面のうち滴下ゾーン3xに滴下する工程と、膜担体3の表面に形成されている微細構造7(複数の凸部8)が奏する毛細管作用により、微細構造7を介して、液体試料を滴下ゾーン3xから検知ゾーン3yへ輸送する工程と、輸送過程において、液体試料中の被検出物質を、上記の抗体又はその抗原結合性断片を介して標識体と結合させ、更に、被検出物質を、検知ゾーン3yに固定された試薬と結合させて、検知ゾーン3yにおける色変化を検知する(色変化の有無を光学的に判定する)工程と、を備えてよい。
 上記の検査方法の被検出物質と標識体とを互いに結合させる工程では、液体試料と標識体とを混合する方法は特に制限されない。例えば標識体の入れられた容器に液体試料を添加する方法でもよいし、例えば標識体をふくむ液体と液体試料とを混合してもよい。また例えば液体試料の入れられた容器の滴下口にフィルターを挟み、そのフィルター中に標識体を固定化していてもよい。
 以下、本実施形態を具体的に説明するが、本実施形態はこれらの実験例に限定されるものではない。
[実験例1]
<モールドの準備>
 モールドは、レーザー加工及び機械切削によって作製した。図10に微細構造を作成するためのモールド20を示す。図10に示すモールド20は、複数の領域(第一の領域A、第二の領域B及び第三の領域C)を有し、その表面には、図8に示す微細構造(凸部)に対応する凹部が形成されている(図示せず)。モールド20はアルミ合金A5052製である。このモールド(金型)の中心部には、30mm×30mmの範囲に微細加工が施されている。モールド20の加工範囲のうち、特定の一辺(20A)から加工範囲内側に16mm分の領域(領域A)と、特定の一辺の対辺(20B)から加工範囲内側に11mm分の領域(領域C)には、径が10μm、深さ(表では高さということもある)10μmの円錐型の凹部が、微細構造同士の最近接距離(5A、5C)を5μmとして図8のような三角配列形式で並んでいる。上記加工範囲のそれ以外の範囲(領域B)では、径が10μm、深さ10μmの円錐型の凹部が、領域Bにおける微細構造の最近接微細構造間距離最近接距離(5B)を5μmとして図8のような三角配列形式(千鳥状)で並んでいる。なお、領域A、B間及び領域B、C間境界での緩衝距離5Dはどちらも5μmである。
 上記のモールドの凹凸面に対し、転写した際のモールドと熱可塑性プラスチックの剥離を容易かつ確実にするため、離型処理を施した。離型処理は、ダイキン工業社製オプツールHD-2100THに約1分間浸し、乾燥させたのち、一晩静置することで行った。
<微細構造の転写>
 上記のようにして得られたモールドを用いて、熱可塑性プラスチックに微細構造を転写した。熱可塑性プラスチックとしては、ポリスチレン(デンカ株式会社製デンカスチレンシート、膜厚300μm)を用いた。加工方法として熱インプリントを用い、装置はSCIVAX社製X-300を用いた。成形温度は120℃、印加圧力は5.5MPaとし、10分間転写を行った。転写後は、圧力を印加したまま熱可塑性プラスチックとモールドを80℃まで冷却し、その後圧力を除くことで、一端側から順に領域A、領域B及び領域Cを有する膜担体を作製した。
[実験例2]
 実験例1における領域A、B及びCの微細構造を、径が100μm、深さ100μmの円錐型の凹部としたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例3]
 実験例1における領域A、B及びCの微細構造を、径が500μm、深さ500μmの円錐型の凹部としたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例4]
 実験例1における領域A及びCの微細構造を、径が100μm、深さ100μmの円錐型の凹部とし、領域Bの微細構造を径が30μm、深さ30μmの円錐型の凹部としたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例5]
 実験例4における領域A及びCの微細構造を、径が250μm、深さ250μmの円錐型の凹部とし、領域Bの微細構造を径が30μm、深さ30μmの円錐型の凹部としたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例6]
 実験例4における領域A及びCの微細構造を、径が250μm、深さ250μmの円錐型の凹部とし、領域Bの微細構造を径が10μm、深さ10μmの円錐型の凹部としたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例7]
 実験例4における領域A及びCの微細構造を、径が100μm、深さ100μmの円錐型の凹部とし、領域Bの微細構造を径が10μm、深さ10μmの円錐型の凹部としたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例8]
 実験例4における領域A及びCの微細構造を、径が500μm、深さ500μmの円錐型の凹部とし、領域Bの微細構造を径が10μm、深さ10μmの円錐型の凹部とした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例9]
 実験例4における領域Aの微細構造を輸送方向と垂直方向に1mm幅ずつ16区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径及び深さが100μmから4.7μmずつ減少していく(つまり、輸送方向に沿って、100μmから4.7μmずつ減少していく)ものとし、更に領域Cの微細構造を輸送方向と垂直方向に1mm幅ずつ11区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径及び深さが100μmから7μmずつ減少していく(つまり、輸送方向に沿って、100μmから7μmずつ増大していく)ものとしたこと以外は、実験例1と同様の条件で膜担体を作製した。
[実験例10]
 実験例4における領域Aの微細構造を輸送方向と垂直方向に1mm幅ずつ16区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径及び深さが250μmから14.7μmずつ減少していくものとし、更に領域Cの微細構造を輸送方向と垂直方向に1mm幅ずつ11区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径及び深さが250μmから22μmずつ減少していくものとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例11]
 実験例4における領域A及びCの微細構造の径を50μmとし、領域Bの微細構造の径を15μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例12]
 実験例4における領域A及びCの微細構造の径を50μmとし、領域Bの微細構造の径を300μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例13]
 実験例4における領域A及びCの微細構造の径を500μmとし、領域Bの微細構造の径を300μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例14]
 実験例4における領域Bの微細構造を径が200μm、深さ100μmの円錐型の凹部とした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例15]
 実験例4における領域Bの微細構造を径が500μm、深さ100μmの円錐型の凹部とした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例16]
 実験例4における領域Aの微細構造を輸送方向と垂直方向に1mm幅ずつ16区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径が100μmから10μmずつ増加していくものとし、更に領域Cの微細構造を輸送方向と垂直方向に1mm幅ずつ11区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径が100μmから15μmずつ増加していくものとし、領域Bの円錐型凹部の径を250μm、深さを100μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例17]
 実験例4における領域Aの微細構造を輸送方向と垂直方向に1mm幅ずつ16区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の径が100μmから26.7μmずつ増加していくものとし、更に領域Cの微細構造を1mm幅ずつ11区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの円錐型凹部の深さが100μmから40μmずつ増加していくものとし、領域Bの円錐型凹部の径を500μm、深さを100μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例18]
 実験例4における領域Bの微細構造を、径が100μm、深さ100μmの円錐型の凹部とし、更に微細構造同士の最近接距離を30μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例19]
 実験例4における領域Bの微細構造を、径が100μm、深さ100μmの円錐型の凹部とし、更に微細構造同士の最近接距離を100μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例20]
 実験例4における領域A及びCの微細構造を、径が500μm、深さ500μmの円錐型の凹部とし、領域Bの微細構造を径が500μm、深さ500μmの円錐型の凹部とし更に微細構造同士の最近接距離を100μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例21]
 実験例4における領域A及びCの微細構造を、径が500μm、深さ500μmの円錐型の凹部とし、領域Bの微細構造を径が500μm、深さ500μmの円錐型の凹部とし更に微細構造同士の最近接距離を500μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例22]
 実験例4における領域A及びCの微細構造を、径が250μm、深さ250μmの円錐型の凹部とし、領域Bの微細構造を径が250μm、深さ250μmの円錐型の凹部とし更に微細構造同士の最近接距離を100μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例23]
 実験例4における領域A及びCの微細構造を、径が250μm、深さ250μmの円錐型の凹部とし、領域Bの微細構造を径が250μm、深さ250μmの円錐型の凹部とし更に微細構造同士の最近接距離を250μmとした以外は、実験例1と同様の条件で膜担体を作製した。
[実験例24]
 実験例4における領域Aの微細構造を輸送方向と垂直方向に1mm幅ずつ16区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの微細構造同士の最近接距離が5μmから1.7μmずつ増加していくものとし、更に領域Cの微細構造を輸送方向と垂直方向に1mm幅ずつ11区画に分割し、領域Bに近づくにつれそれぞれの区画ごとの微細構造同士の最近接距離が5μmから2.5μmずつ増加していくものとし、更に領域Bの微細構造を径が100μm、深さ100μmの円錐型の凹部、微細構造同士の最近接距離を30μmとした以外は、実験例1と同様の条件で膜担体を作製した。
<検知ゾーンの作製>
 上記のように作製した膜担体の領域Bの構造を転写した部分のみにUV処理を施した。その部分に、抗A型インフルエンザNP抗体浮遊液、並びに抗B型インフルエンザNP抗体浮遊液を各々線幅1mmで塗布し(塗布量は各3μL)、温風下で良く乾燥させ、検出物質を固定化した。
<標識体のセット>
 精製抗A型インフルエンザウイルスNP抗体(上記と別の抗体)及び精製抗B型インフルエンザウイルスNP抗体(上記と別の抗体)を使用した。抗A型インフルエンザウイルスNP抗体に粒子径0.394μmの青色ラテックス粒子(CM/BL セラダイン製)を共有結合で標識し、糖、界面活性剤及びタンパク質を含むトリス緩衝液にラテックス粒子の濃度が0.025w/v%になるように懸濁し、ソニケーションを行って充分に分散浮遊させた抗A型標識体を調製した。同様に抗B型インフルエンザウイルスNP抗体に青色ラテックス粒子を標識した抗B型標識体を調製した。
 抗A型標識体と抗B型標識体とを混合し、大きさが3cm×1cmのガラス繊維(33GLASS NO.10539766 Schleicher&Schuell製)に1平方センチメートルあたり50μLになる量を塗布し、温風下で良く乾燥させ、標識体パッドを作製した。その後、実験例1~24のようにして作製した膜担体の領域Aの端部2mmだけ標識体パッドを重ね、カッターで幅5mmの短冊に裁断して一体化された液体サンプル検査キットを作製した。
<検知評価>
 上記のように作製された液体試料検査キットの端部の標識体パッド上(滴下ゾーン)に、液体試料を100μL滴下した。液体サンプルは、希釈溶液としてデンカ生研社製クイックナビ―Fluに付属している検体浮遊液を用い、A型インフルエンザウイルス A/Beijing/32/92(H3N2)を4×10倍に希釈したものと、B型インフルエンザウイルス B/Shangdong/7/97を4×10倍に希釈したものの2種を用いた。滴下後の液体試料の移動する様子を直上からデジタルカメラで録画した。この動画から、領域A~Cそれぞれにおける液体試料の移動する流速を評価した。流速は、A型インフルエンザウイルスを希釈したものの流速と、B型インフルエンザウイルスを希釈したものの流速との、平均値を平均流速として用いた。また、流速比は、最も大きい流速を最も小さい流速で割った際の比である。この結果を表1~3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 検知の判定は、15分間後に検知ゾーン(A型インフルエンザウイルス検出部並びにB型インフルエンザウイルス検出部)の着色ラインの有無を目視により観察して行った。
 判定の結果、A/Beijing/32/92(H3N2)を4×10倍に希釈したものを用いた場合はA型検知ゾーンのみに色の変化が確認でき、B/Shangdong/7/97を4×10倍に希釈したものを用いた場合はB型検知ゾーンのみに色の変化が確認できた。
 実験例1~24のように作製した膜担体から、上記のように液体試料検査キットを作製した。次いで、A型インフルエンザウイルス A/Beijing/32/92(H3N2)の希釈倍率を4×10から大きくしていった際に、試験開始後15分後に着色ラインの有無を目視できなくなる希釈倍率(A型目視判定可能な限界倍率)を求めた。その希釈倍率の1/2の希釈倍率で検査した際に、試験開始してから着色ラインの色の濃さが安定するまでの時間(A型の濃さが安定するまでの時間)を求めた。その結果を表1~3に示す。
 実験例1~24のように作製した膜担体から、上記のように液体試料検査キットを作製した。次いで、B型インフルエンザウイルスB/Shangdong/7/97の希釈倍率を4×10から大きくしていった際に、着色ラインの有無を目視できなくなる希釈倍率(B型目視判定可能な限界倍率)を求めた。その希釈倍率の1/2の希釈倍率で検査した際に、試験開始してから着色ラインの色の濃さが安定するまでの時間(B型の濃さが安定するまでの時間)を求めた。その結果を表1~3に示す。
 濃さが安定するまでの時間は、A型の濃さが安定するまでの時間と、B型の濃さが安定するまでの時間との平均値を、濃さが安定するまでの時間として用いた。
 表1~3には、各実験例について以下の基準に基づく総合評価の結果も併せて示す。
A:判定時間4分以内にA型で5×10以上、B型で5×10以上の希釈倍率で判定可能なもの、又は、判定時間6分以内にA型で7×10以上、B型で7×10以上の希釈倍率で判定可能なもの。
B:総合評価がA、Cいずれにもあてはまらないもの。
C:判定時間が7分以上のもの、又は、判定可能な希釈倍率がA型で4×10以下、又は、B型で4×10以下のもの。
[実験例25~45]
 実験例25~45における膜担体の作製は、領域A~Cにおいて、表4に示すとおりの微細構造(凸部)同士の最近接距離、凸部の径及び凸部の高さとなるようにすること以外は、実験例1と同様にして行った。
 次いで、用いる粒子を着色ラテックス粒子から蛍光ラテックス粒子(micromer-F 蛍光ラテックス粒子 材料ポリスチレン コアフロント社製)に変更し、試験開始後4分後に着色ラインの有無をイムノクロマトリーダ(C11787 浜松ホトニクス社製)で読み取りできなくなる倍率(蛍光判定限界倍率)を求めたこと以外は、実験例1~24と同様にして、検知ゾーンの作製、標識体のセット及び検知評価を行った。結果を表4~5に示した。
 表4~5には、各実験例について以下の基準に基づく総合評価の結果も併せて示す。
A:試験開始後4分での蛍光判定可能な限界倍率が、A型で3×10以上、B型で3×10以上であるもの。
B:総合評価がA、Cいずれにもあてはまらないもの。
C:試験開始後4分での蛍光判定可能な限界倍率が、A型で2×10未満、B型で2×10未満であるもの。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~3の結果から、本実施形態による液体試料検査キットは、流路中の微細構造の高さ、底面積、最近接距離、アスペクト比を変化させることで、流速を調整できることが示された。その結果、本実施形態は、液体試料検査キットの感度や着色が安定するまでの時間を調整することができ、高感度かつ短時間な検査が実施可能であることが示された。また、表4~5の結果から、上記液体試料検査キットにおいて、粒子を蛍光ラテックス粒子とした場合であっても、高感度な検査が実施可能であることが確認された。
 本実施形態の液体試料検査キットは、短時間で高感度な検査を安価に実施することができるため、使い捨て可能なPOCT試薬に有用である。
 2  流路
 3,3a,13  微細構造が設けられた膜担体
 3x,13x  滴下ゾーン
 3y,13y  検知ゾーン
 4,4a,4b,4c,4d  凸部の底面における代表長さ(凸部の底面の径)
 4A 微細構造が変化する箇所での前方(輸送方向の上流側)の底面の代表長さ(第一の領域Aにおける凸部の底面の径)
 4B 微細構造が変化する箇所での後方の底面の代表長さ(第二の領域Bにおける凸部の底面の径)
 4C 微細構造が変化する箇所での後方の底面の代表長さ(第三の領域Cにおける凸部の底面の径)
 5  最近接微細構造間距離
 5A 微細構造が変化する箇所での前方の最近接微細構造間距離(第一の領域Aにおける微細構造(凸部)同士の最近接微細構造間距離)
 5B 微細構造が変化する箇所での後方の最近接微細構造間距離(第二の領域Bにおける微細構造(凸部)同士の最近接微細構造間距離)
 5C 微細構造が変化する箇所での後方の最近接微細構造間距離(第三の領域Cにおける微細構造(凸部)同士の最近接微細構造間距離)
 5D 緩衝距離(微細構造が変化する箇所での緩衝距離)
 6,6a,6b,6c,6d  凸部の高さ
 7,7a,7b,7c,7d 微細構造
 8,8a,8b,8c,8d  凸部
 9 平坦部
 10,10a,10b,10c,10d 凸部の底面
 18  液体試料用の検査キット
 18a  筐体
 18b  第一開口部
 18c  第二開口部
 20  モールド
 20A  特定の一辺
 20B  特定の一辺の対辺
 A 第一の領域
 B 第二の領域
 C 第三の領域
 d  液体試料の流れる方向(輸送方向)

Claims (14)

  1.  液体試料中の被検出物質を検出する検査キット用の膜担体であって、
     前記液体試料を輸送できる少なくとも一つの流路を備え、
     前記流路の底面に、前記液体試料を輸送するための毛細管作用を生じせしめる微細構造が設けられ、
     前記微細構造が、前記液体試料の輸送方向に沿って変化するように設けられている、液体試料検査キット用膜担体。
  2.  前記微細構造は、前記流路内における前記液体試料の流速が前記流路内で変化するように設けられている、請求項1に記載の液体試料検査キット用膜担体。
  3.  前記微細構造は、前記流路内における前記液体試料の、最も小さい流速と最も大きい流速との比が1以上10以下となるように設けられている、請求項1又は2に記載の液体試料検査キット用膜担体。
  4.  前記微細構造は、前記流路内における前記液体試料の最も小さい流速と最も大きい流速とが、いずれも0.30mm/s以上5.0mm/s以下となるように設けられている、請求項1~3の何れか一項に記載の液体試料検査キット用膜担体。
  5.  前記微細構造の高さが、前記流路内で10μm以上500μm以下である、請求項1~4の何れか一項に記載の液体試料検査キット用膜担体。
  6.  前記微細構造の底面積が、前記流路内で75μm以上250000μm以下である、請求項1~5の何れか一項に記載の液体試料検査キット用膜担体。
  7.  前記微細構造同士の最近接距離が、前記流路内で500μm以下である、請求項1~6の何れか一項に記載の液体試料検査キット用膜担体。
  8.  前記微細構造のアスペクト比が、0.1以上2.0以下である、請求項1~7の何れか一項に記載の液体試料検査キット用膜担体。
  9.  液体試料中の被検出物質を検出する液体試料検査キットであって、
     請求項1~8の何れか一項に記載された液体試料検査キット用膜担体を備え、
     前記膜担体は、前記液体試料中の前記被検出物質を検出する検知ゾーンを有し、
     前記検知ゾーンにおいて、前記被検出物質が検出された際に色変化が生じる、液体試料検査キット。
  10.  前記液体試料中の前記被検出物質と特異的に反応する抗体又はその抗原結合性断片を有する標識体が、前記被検出物質と反応し得るように前記液体試料検査キットの少なくとも一部に設けられており、
     前記色変化は、前記被検出物質と結合した前記標識体によって生じる、請求項9に記載の液体試料検査キット。
  11.  前記標識体が、着色ラテックス粒子又は蛍光ラテックス粒子に前記抗体又は前記抗原結合性断片が結合した粒子である、請求項10に記載の液体試料検査キット。
  12.  前記検知ゾーンには、前記被検出物質を検出する検出物質が固定されており、
     前記色変化は、前記標識体が前記検出物質により前記検知ゾーンに保持されて呈色することによって生じる、請求項10又は11に記載の液体試料検査キット。
  13.  請求項9~12の何れか一項に記載された液体試料検査キットの製造方法であって、
     前記検知ゾーンに、前記被検出物質を前記検知ゾーンに保持することによって前記色変化を生じせしめる検出物質を固定する工程を備える、液体試料検査キットの製造方法。
  14.  請求項9~12の何れか一項に記載された液体試料検査キットを用いる、液体試料の検査方法であって、
     前記液体試料と、前記液体試料中の被検出物質と特異的に結合する標識体とを混合して混合液体試料を調製し、前記被検出物質と前記標識体とを互いに結合させる工程と、
     前記混合液体試料を前記膜担体に設けられた滴下ゾーンに滴下する工程と、
     前記微細構造により、前記混合液体試料を前記滴下ゾーンから前記検知ゾーンへ輸送する工程と、
     前記検知ゾーンにおける色変化を検知する工程と、を備える、液体試料の検査方法。
PCT/JP2017/021801 2016-06-14 2017-06-13 液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法 WO2017217406A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018523928A JP6849678B2 (ja) 2016-06-14 2017-06-13 液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法
US16/309,877 US10994271B2 (en) 2016-06-14 2017-06-13 Membrane carrier for liquid sample test kit, liquid sample test kit, and method for producing liquid sample test kit
KR1020197000999A KR102394394B1 (ko) 2016-06-14 2017-06-13 액체 시료 검사 키트용 막 담체, 액체 시료 검사 키트 및 액체 시료 검사 키트의 제조 방법
EP17813302.1A EP3470842B1 (en) 2016-06-14 2017-06-13 Membrane carrier for liquid sample test kit, liquid sample test kit, and method for producing liquid sample test kit
CN201780036987.4A CN109313187B (zh) 2016-06-14 2017-06-13 液体试样检测试剂盒用膜载体、液体试样检测试剂盒和液体试样检测试剂盒的制造方法
ES17813302T ES2877797T3 (es) 2016-06-14 2017-06-13 Portador de membrana para el kit de prueba de muestra líquida, kit de prueba de muestra líquida y método para producir el kit de prueba de muestra líquida

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016118027 2016-06-14
JP2016-118027 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217406A1 true WO2017217406A1 (ja) 2017-12-21

Family

ID=60663255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021801 WO2017217406A1 (ja) 2016-06-14 2017-06-13 液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法

Country Status (7)

Country Link
US (1) US10994271B2 (ja)
EP (1) EP3470842B1 (ja)
JP (1) JP6849678B2 (ja)
KR (1) KR102394394B1 (ja)
CN (1) CN109313187B (ja)
ES (1) ES2877797T3 (ja)
WO (1) WO2017217406A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740040A (zh) * 2018-09-25 2021-04-30 电化株式会社 检验试剂盒用膜载体及检验试剂盒
US11162938B2 (en) 2017-03-28 2021-11-02 Denka Company Limited Membrane carrier, kit for testing liquid sample using same, and manufacturing method thereof
WO2021220956A1 (ja) * 2020-04-28 2021-11-04 デンカ株式会社 検出装置及び検出方法
WO2022118727A1 (ja) * 2020-12-01 2022-06-09 デンカ株式会社 検出装置
US11385227B2 (en) 2017-03-28 2022-07-12 Denka Company Limited Membrane carrier and kit for testing liquid sample using same
EP3971568A4 (en) * 2019-05-15 2022-11-30 Denka Company Limited BACKING FILM AND INSPECTION KIT

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333607B2 (en) * 2018-10-02 2022-05-17 Electronics And Telecommunications Research Institute Fluorescent signal detection apparatus using diagnostic kit
CN109541248B (zh) * 2018-12-11 2023-09-15 苏州英赛斯智能科技有限公司 一种流动注射反应池装置和用于此装置的换向流体单元
KR102461334B1 (ko) * 2020-02-14 2022-10-28 광운대학교 산학협력단 유속 조절부를 구비하는 상부 케이스 및 이를 구비한 현장용 진단 키트

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111197A1 (en) * 2005-03-29 2009-04-30 Inverness Medical Switzerland Gmbh Hybrid device
WO2009096529A1 (ja) * 2008-02-01 2009-08-06 Nippon Telegraph And Telephone Corporation フローセル
JP2013053897A (ja) * 2011-09-02 2013-03-21 Seiko Epson Corp 液体吸収部材及び生体反応検出システム
JP2013148586A (ja) * 2012-01-20 2013-08-01 Ortho-Clinical Diagnostics Inc アッセイ装置を通じた流体流の制御
JP2014098715A (ja) * 2014-02-12 2014-05-29 Denka Seiken Co Ltd 着色ラテックス粒子を用いるメンブレンアッセイ法およびキット
WO2016051974A1 (ja) * 2014-10-02 2016-04-07 ソニー株式会社 標的物質測定キット、標的物質測定システム、イムノクロマト測定キット及びイムノクロマト測定システム

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147011B1 (ja) 1970-12-28 1976-12-13
JPS513075A (en) 1974-06-28 1976-01-12 Inoue Japax Res Waiya katsuteingusochi
JPS5233757A (en) 1975-09-10 1977-03-15 Ikegami Tsushinki Co Ltd Automatic compensation circuit of balance in a differential transformer
HU196394B (en) 1986-06-27 1988-11-28 Richter Gedeon Vegyeszet Process for preparing 2-halogenated ergoline derivatives
US6767510B1 (en) * 1992-05-21 2004-07-27 Biosite, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membranes
US5458852A (en) 1992-05-21 1995-10-17 Biosite Diagnostics, Inc. Diagnostic devices for the controlled movement of reagents without membranes
JP2588174Y2 (ja) 1993-04-16 1999-01-06 株式会社三星製作所 織機の耳糸ボビンホルダ装置
US5719034A (en) * 1995-03-27 1998-02-17 Lifescan, Inc. Chemical timer for a visual test strip
JP3652029B2 (ja) 1996-10-16 2005-05-25 積水化学工業株式会社 高感度免疫測定法
JP3513075B2 (ja) 2000-04-05 2004-03-31 デンカ生研株式会社 免疫測定法及びそのための試薬
SE0201738D0 (sv) 2002-06-07 2002-06-07 Aamic Ab Micro-fluid structures
JP2005077301A (ja) 2003-09-02 2005-03-24 Asahi Kasei Corp 免疫学的検出担体および測定法
JP4972295B2 (ja) 2005-07-12 2012-07-11 ローム株式会社 免疫分析方法及びバイオチップ
JP2009241375A (ja) 2008-03-31 2009-10-22 Toray Ind Inc 熱プリントラミネーション用ポリプロピレンフィルム
GB0811132D0 (en) 2008-06-18 2008-07-23 Secr Defence Detection device
JP5147011B2 (ja) 2008-08-22 2013-02-20 国立大学法人北海道大学 血清脂質の測定方法及び測定装置
WO2010043075A1 (zh) 2008-10-17 2010-04-22 红电医学科技股份有限公司 流体检测试片及其测试方法
US9205396B2 (en) 2008-11-26 2015-12-08 Sumitomo Bakelite Co., Ltd. Microfluidic device
US20100145294A1 (en) * 2008-12-05 2010-06-10 Xuedong Song Three-dimensional vertical hydration/dehydration sensor
US8377643B2 (en) 2009-03-16 2013-02-19 Abaxis, Inc. Split flow device for analyses of specific-binding partners
EP2421649B1 (en) 2009-04-23 2018-01-24 Dublin City University A lateral flow assay device for coagulation monitoring and method thereof
CA2780648C (en) 2009-11-17 2015-09-15 Asahi Kasei Fibers Corporation Organic colored microparticles, diagnostic reagent kit containing the same, and in vitro diagnosis method
JP2012002806A (ja) 2010-05-19 2012-01-05 Nanbu Plastics Co Ltd 親水性基板のパッケージおよびイムノクロマト用試験具
WO2011149864A1 (en) 2010-05-24 2011-12-01 Web Industries, Inc. Microfluidic surfaces and devices
US8623292B2 (en) * 2010-08-17 2014-01-07 Kimberly-Clark Worldwide, Inc. Dehydration sensors with ion-responsive and charged polymeric surfactants
JP5799395B2 (ja) 2011-07-28 2015-10-28 富山県 血液中の浮遊癌細胞を捕捉できるマイクロチップ
JP2013113633A (ja) 2011-11-25 2013-06-10 Nanbu Plastics Co Ltd ストリップ
JP5841433B2 (ja) * 2012-01-11 2016-01-13 日東電工株式会社 口腔内フィルム状基剤及び製剤
JP6008670B2 (ja) 2012-09-21 2016-10-19 東洋濾紙株式会社 イムノクロマトグラフ試験ストリップ用メンブレン、試験ストリップ及び検査方法
JP6320711B2 (ja) 2012-09-28 2018-05-09 積水メディカル株式会社 油溶性色素含有診断薬用着色ラテックス粒子
JP2016011943A (ja) 2013-12-24 2016-01-21 株式会社リコー 分析デバイス
JP6726104B2 (ja) 2014-12-15 2020-07-22 デンカ株式会社 液体試料検査キット、及び液体試料検査キットの作製方法
JP6671892B2 (ja) 2015-08-21 2020-03-25 国立大学法人千葉大学 イムノクロマト用複合粒子とその製造方法
WO2018181549A1 (ja) 2017-03-28 2018-10-04 デンカ株式会社 膜担体、並びにそれを用いた液体試料検査キット及びその製造方法
KR102547418B1 (ko) 2017-03-28 2023-06-23 덴카 주식회사 막 담체 및 이를 이용한 액체 시료 검사 키트

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111197A1 (en) * 2005-03-29 2009-04-30 Inverness Medical Switzerland Gmbh Hybrid device
WO2009096529A1 (ja) * 2008-02-01 2009-08-06 Nippon Telegraph And Telephone Corporation フローセル
JP2013053897A (ja) * 2011-09-02 2013-03-21 Seiko Epson Corp 液体吸収部材及び生体反応検出システム
JP2013148586A (ja) * 2012-01-20 2013-08-01 Ortho-Clinical Diagnostics Inc アッセイ装置を通じた流体流の制御
JP2014098715A (ja) * 2014-02-12 2014-05-29 Denka Seiken Co Ltd 着色ラテックス粒子を用いるメンブレンアッセイ法およびキット
WO2016051974A1 (ja) * 2014-10-02 2016-04-07 ソニー株式会社 標的物質測定キット、標的物質測定システム、イムノクロマト測定キット及びイムノクロマト測定システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RIVAS, LOURDES ET AL.: "Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics", LAB ON A CHIP, vol. 14, no. 22, 2014, pages 4406 - 4414, XP055449438 *
See also references of EP3470842A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162938B2 (en) 2017-03-28 2021-11-02 Denka Company Limited Membrane carrier, kit for testing liquid sample using same, and manufacturing method thereof
US11385227B2 (en) 2017-03-28 2022-07-12 Denka Company Limited Membrane carrier and kit for testing liquid sample using same
CN112740040A (zh) * 2018-09-25 2021-04-30 电化株式会社 检验试剂盒用膜载体及检验试剂盒
KR20210049877A (ko) * 2018-09-25 2021-05-06 덴카 주식회사 검사 키트용 막 담체 및 검사 키트
EP3859335A4 (en) * 2018-09-25 2021-12-08 Denka Company Limited MEMBRANE SUPPORT FOR TEST KIT AND TEST KIT
KR102581959B1 (ko) * 2018-09-25 2023-09-22 덴카 주식회사 검사 키트용 막 담체 및 검사 키트
JP7498114B2 (ja) 2018-09-25 2024-06-11 デンカ株式会社 検査キット用膜担体および検査キット
EP3971568A4 (en) * 2019-05-15 2022-11-30 Denka Company Limited BACKING FILM AND INSPECTION KIT
WO2021220956A1 (ja) * 2020-04-28 2021-11-04 デンカ株式会社 検出装置及び検出方法
WO2022118727A1 (ja) * 2020-12-01 2022-06-09 デンカ株式会社 検出装置

Also Published As

Publication number Publication date
EP3470842B1 (en) 2021-05-12
JP6849678B2 (ja) 2021-03-24
CN109313187B (zh) 2022-05-06
CN109313187A (zh) 2019-02-05
EP3470842A1 (en) 2019-04-17
EP3470842A4 (en) 2020-02-26
US20190329246A1 (en) 2019-10-31
US10994271B2 (en) 2021-05-04
JPWO2017217406A1 (ja) 2019-04-11
KR20190017952A (ko) 2019-02-20
ES2877797T3 (es) 2021-11-17
KR102394394B1 (ko) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2017217406A1 (ja) 液体試料検査キット用膜担体、液体試料検査キット及び液体試料検査キットの製造方法
JP7306998B2 (ja) 液体試料検査キット用膜担体、液体試料検査キット、液体試料検査キットの製造方法、液体試料の検査方法及び膜担体
JP7069125B2 (ja) 膜担体及びそれを用いた液体試料検査キット
JP6978489B2 (ja) 膜担体、並びにそれを用いた液体試料検査キット及びその製造方法
JP7267381B2 (ja) 液体試料検査キット用膜担体、液体試料検査キット及び膜担体
KR20210142702A (ko) 막 담체 및 검사 키트

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523928

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000999

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017813302

Country of ref document: EP

Effective date: 20190114