WO2017217203A1 - ゴム組成物および成形体 - Google Patents

ゴム組成物および成形体 Download PDF

Info

Publication number
WO2017217203A1
WO2017217203A1 PCT/JP2017/019422 JP2017019422W WO2017217203A1 WO 2017217203 A1 WO2017217203 A1 WO 2017217203A1 JP 2017019422 W JP2017019422 W JP 2017019422W WO 2017217203 A1 WO2017217203 A1 WO 2017217203A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber composition
mass
ethylenically unsaturated
meth
Prior art date
Application number
PCT/JP2017/019422
Other languages
English (en)
French (fr)
Inventor
有信 堅田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US16/307,268 priority Critical patent/US20190292356A1/en
Priority to EP17813105.8A priority patent/EP3473671A4/en
Priority to KR1020187035212A priority patent/KR20190017766A/ko
Priority to CN201780034853.9A priority patent/CN109312121A/zh
Publication of WO2017217203A1 publication Critical patent/WO2017217203A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a rubber composition and a molded body, and particularly to a rubber composition containing carbon nanotubes and a molded body formed by molding the rubber composition.
  • CNT carbon nanotubes
  • Patent Document 1 as a composite material excellent in processability and heat resistance, a rubber having a carboxyl group-containing ethylenically unsaturated monomer unit, an amine-based crosslinking agent having a melting point of 50 ° C. or higher and 180 ° C. or lower, and A crosslinked rubber product obtained by crosslinking a crosslinkable rubber composition containing CNTs is disclosed.
  • an object of the present invention is to provide a molded article having excellent heat resistance and a rubber composition capable of forming the molded article.
  • the present inventor has intensively studied to achieve the above object. And this inventor is that the molded object obtained using the rubber composition containing the rubber
  • the headline and the present invention were completed.
  • the present invention aims to advantageously solve the above-mentioned problems, and the rubber composition of the present invention comprises a rubber having an ethylenically unsaturated monomer unit containing one or more carboxyl groups. It includes a compound having one or more amino groups and three or more aromatic condensed ring structures, and a carbon nanotube.
  • a rubber having an ethylenically unsaturated monomer unit containing one or more carboxyl groups, a compound having one or more amino groups and three or more aromatic condensed ring structures, and a carbon nanotube If the rubber composition containing is used, the molded object which is excellent in heat resistance is obtained.
  • “having a monomer unit” means “a monomer-derived structural unit is contained in a polymer (rubber) obtained using the monomer”. To do. Further, in the present invention, the “three or more aromatic condensed ring structure” is formed by condensing three or more monocyclic rings selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Refers to the structure to be created.
  • the rubber composition of the present invention preferably contains the compound at a ratio of 0.5 parts by mass or more and 5 parts by mass or less per 100 parts by mass of the rubber. If content of a compound is in the said range, the heat resistance of a molded object can further be improved.
  • the compound is at least one selected from the group consisting of 2-aminoanthracene, 1-aminopyrene, 1,6-diaminopyrene and 3-amino-9-ethylcarbazole. Is preferred. If the said compound is used, the heat resistance of a molded object can further be improved.
  • the present invention aims to advantageously solve the above problems, and the molded article of the present invention is characterized by molding any of the rubber compositions described above.
  • a molded body obtained by molding the rubber composition described above is excellent in heat resistance.
  • the rubber composition of this invention can be used when manufacturing the molded object of this invention.
  • the molded object of this invention is obtained by shape
  • the molded object of this invention is not specifically limited, It can be used for various uses, such as a belt, a hose, a gasket, packing, and an oil seal.
  • the rubber composition of the present invention comprises a rubber having an ethylenically unsaturated monomer unit containing one or more carboxyl groups, a compound having one or more amino groups and three or more aromatic condensed ring structures, Contains carbon nanotubes. And since the rubber composition of this invention contains the rubber
  • the rubber composition contains, as a rubber component, an ethylenically unsaturated monomer unit containing one or more carboxyl groups (hereinafter sometimes simply referred to as “carboxyl group-containing ethylenically unsaturated monomer unit”). It is necessary to include at least the rubber having.
  • the rubber composition may further contain a rubber having no carboxyl group-containing ethylenically unsaturated monomer unit in addition to the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit.
  • Rubber having a carboxyl group-containing ethylenically unsaturated monomer unit As the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit, any synthetic rubber in which a structural unit derived from a carboxyl group-containing ethylenically unsaturated monomer is contained in the rubber should be used. Can do.
  • carboxyl group-containing ethylenically unsaturated monomer which can be used for the preparation of rubber having a carboxyl group-containing ethylenically unsaturated monomer unit
  • ethylene having one or more carboxyl groups is not particularly limited.
  • An unsaturated monomer can be used.
  • examples of the carboxyl group-containing ethylenically unsaturated monomer include carboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid (2-ethylacrylic acid), itaconic acid, maleic acid, fumaric acid, and citraconic acid.
  • Acid monomers such as monomethyl maleate, monoethyl maleate, mono-n-butyl maleate, monomethyl fumarate, monoethyl fumarate, mono-n-butyl fumarate; It is done.
  • the carboxyl group may be a carboxylic acid anhydride group, and specific examples of the carboxylic acid anhydride monomer that is a carboxylic acid anhydride group-containing ethylenically unsaturated monomer include maleic anhydride and citraconic anhydride. Etc.
  • the carboxyl group-containing ethylenically unsaturated monomer it is preferable to use a butenedionic acid monoalkyl ester monomer, particularly monoethyl maleate, mono-n-butyl maleate, monomethyl fumarate, fumaric acid It is more preferable to use those having an alkyl group having 1 to 4 carbon atoms such as monoethyl and mono-n-butyl fumarate. These can be used individually by 1 type or in combination of 2 or more types.
  • the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is the above-mentioned carboxyl group-containing ethylenically unsaturated monomer.
  • Nitrile rubbers carboxylated nitrile rubbers
  • hydrogenated nitrile rubbers hydrogenated carboxylated nitrile rubbers
  • acrylic rubbers carboxylated acrylic rubbers synthesized using the above are preferred.
  • hydrogenated carboxylated nitrile rubber and carboxylated acrylic rubber are more preferable as the rubber having a carboxyl group-containing ethylenically unsaturated monomer unit. More preferred is a nitrile rubber. These can be used individually by 1 type or in combination of 2 or more types.
  • the carboxylated nitrile rubber that can be blended in the rubber composition includes an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a diene monomer unit, and a carboxyl group-containing ethylenically unsaturated monomer unit.
  • nitrile rubber further containing other monomer units copolymerizable with the monomers forming these monomer units.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited, and is not limited to acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, etc.
  • acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the carboxylated nitrile rubber is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more. Preferably, it is 60 mass% or less, More preferably, it is 40 mass% or less, More preferably, it is 35 mass% or less.
  • the molded article can exhibit excellent physical properties (for example, oil resistance and cold resistance).
  • Examples of the diene monomer forming the diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like having 4 or more carbon atoms.
  • Conjugated diene monomers Non-conjugated diene monomers having preferably 5 to 12 carbon atoms, such as 1,4-pentadiene and 1,4-hexadiene. Among these, as the diene monomer, a conjugated diene monomer is preferable, and 1,3-butadiene is more preferable.
  • the content of the diene monomer unit in the carboxylated nitrile rubber is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, and particularly preferably 35% by mass or more.
  • it is 89.5 mass% or less, More preferably, it is 81 mass% or less, More preferably, it is 74.5 mass% or less, Most preferably, it is 69.5 mass% or less.
  • excellent physical properties for example, rubber elasticity, heat resistance, oil resistance, and chemical stability
  • the carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit is not particularly limited, and the above-described carboxyl group-containing ethylenically unsaturated monomer may be used. it can.
  • carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated nitrile rubber monomethyl maleate, Monoethyl maleate and mono-n-butyl maleate are preferably used, and mono-n-butyl maleate is more preferably used.
  • the content of the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated nitrile rubber is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more. Moreover, it is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less.
  • the heat resistance of a molded object can fully be improved as content of a carboxyl group-containing ethylenically unsaturated monomer unit is this range.
  • Other monomers that form other monomer units include ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, diene monomer units, and carboxyl group-containing ethylenically unsaturated monomer units. Examples thereof include known monomers that can be polymerized. Specifically, other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic acid.
  • monovalent alcohol and monovalent (meth) acrylic acid such as isopropyl, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate Esters (alkyl esters of (meth) acrylic acid); aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, and vinylpyridine; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluorovinyl benzoate, Fluorine content such as difluoroethylene and tetrafluoroethylene N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl
  • the content of other monomer units in the carboxylated nitrile rubber is an amount that does not substantially hinder the effects of the present invention, and is usually less than 50% by mass, preferably 0% by mass to 10% by mass, more preferably Is 0 mass% or more and 5 mass% or less.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxylated nitrile rubber is preferably 15 or more and 200 or less, more preferably 15 or more and 150 or less, and further preferably 15 or more and 100 or less. If the Mooney viscosity is too small, the mechanical strength of the molded product may be inferior. On the other hand, if the Mooney viscosity is too large, the processability of the molded product may be inferior.
  • the carboxylated nitrile rubber can be obtained by polymerizing a monomer mixture containing the above monomers.
  • any of an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method and a solution polymerization method can be used.
  • the emulsion polymerization method under normal pressure is used. It is preferable to use it.
  • emulsion polymerization may be performed by any of a batch type, a semibatch type, and a continuous type.
  • Examples of the hydrogenated carboxylated nitrile rubber that can be blended in the rubber composition include hydrogenated rubbers obtained by hydrogenating the diene monomer units in the carboxylated nitrile rubber described above by a known method.
  • the hydrogenated carboxylated nitrile rubber obtained by hydrogenating the carboxylated nitrile rubber described above by a known method part or all of the diene monomer units of the carboxylated nitrile rubber are hydrogenated to form alkylene structural units. It has become.
  • the hydrogenated carboxylated nitrile rubber that can be blended into the rubber composition is composed of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a diene monomer unit and / or an alkylene structural unit, and a carboxyl group-containing ethylenic rubber. And further containing other monomer units copolymerizable with the monomers forming these monomer units.
  • the selective hydrogenation of the diene monomer unit in the carboxylated nitrile rubber described above can be performed using a known method such as an oil layer hydrogenation method or an aqueous layer hydrogenation method.
  • the hydrogenated carboxylated nitrile rubber preferably has an iodine value of 120 or less, more preferably 80 or less, still more preferably 25 or less, and particularly preferably 15 or less. If the iodine value of the hydrogenated carboxylated nitrile rubber is too high, the physical properties (eg, thermal stability, ozone resistance, etc.) of the molded article may be reduced.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the hydrogenated carboxylated nitrile rubber is preferably 15 or more and 200 or less, more preferably 15 or more and 150 or less, and further preferably 15 or more and 100 or less. If the Mooney viscosity is too small, the mechanical strength of the molded product may be inferior. On the other hand, if the Mooney viscosity is too large, the processability of the molded product may be inferior.
  • the carboxylated acrylic rubber that can be blended in the rubber composition includes a (meth) acrylic acid ester monomer unit and a carboxyl group-containing ethylenically unsaturated monomer unit, and optionally these monomer units. Acrylic rubber further containing other monomer units copolymerizable with the monomer that forms the.
  • the (meth) acrylic acid ester monomer forming the (meth) acrylic acid ester monomer unit which is the main component of the carboxylated acrylic rubber, is not particularly limited, for example, (meth) acrylic Examples thereof include acid alkyl ester monomers and (meth) acrylic acid alkoxyalkyl ester monomers.
  • the (meth) acrylic acid alkyl ester monomer is not particularly limited, but an ester of an alkanol having 1 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, Examples thereof include isopropyl (meth) acrylate, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n-butyl acrylate are particularly preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the (meth) acrylic acid alkoxyalkyl ester monomer is not particularly limited, but an ester of an alkoxyalkyl alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • (meth) acrylic acid Methoxymethyl, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate , 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, and the like.
  • 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the (meth) acrylic acid ester monomer unit in the carboxylated acrylic rubber is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 92% by mass or more. In addition, it is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and still more preferably 99% by mass or less.
  • the ratio of the (meth) acrylic-acid alkylester monomer unit in a (meth) acrylic-ester monomer unit is 30 to 100 mass%.
  • the carboxyl group-containing ethylenically unsaturated monomer forming the carboxyl group-containing ethylenically unsaturated monomer unit is not particularly limited, and the above-described carboxyl group-containing ethylenically unsaturated monomer may be used. it can. Among them, from the viewpoint of dispersibility of CNTs described later, the carboxyl group-containing ethylenically unsaturated monomer that forms the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated acrylic rubber includes monomethyl fumarate, Monoethyl fumarate and mono-n-butyl fumarate are preferably used, and monomethyl fumarate is more preferably used.
  • the content of the carboxyl group-containing ethylenically unsaturated monomer unit in the carboxylated acrylic rubber is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more. Moreover, it is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less.
  • the heat resistance of a molded object can fully be improved as content of a carboxyl group-containing ethylenically unsaturated monomer unit is this range.
  • Other monomers forming other monomer units include known monomers copolymerizable with (meth) acrylic acid ester monomers and carboxyl group-containing ethylenically unsaturated monomers. .
  • other monomers include acrylonitrile, methacrylonitrile, ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, ethyl vinyl ether, butyl vinyl ether, styrene, ⁇ -methylstyrene, isoprene, butadiene, chloroprene.
  • Piperylene dicyclopentadiene, norbornene, ethylidene norbornene, hexadiene, norbornadiene, divinylbenzene, ethylene glycol diacrylate, propylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate and the like.
  • polyfunctional (meth) acrylates such as ethylene glycol diacrylate, propylene glycol diacrylate, ethylene glycol dimethacrylate, and propylene glycol dimethacrylate are not included in the above-described (meth) acrylic acid ester monomers. .
  • the content of other monomer units in the carboxylated acrylic rubber is an amount that does not substantially hinder the effects of the present invention, and is usually less than 50% by mass, preferably 0% by mass to 10% by mass, more preferably Is 0 mass% or more and 5 mass% or less.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxylated acrylic rubber is preferably 10 or more and 80 or less, more preferably 20 or more and 70 or less. If the Mooney viscosity is too small, the mechanical strength of the molded product may be inferior. On the other hand, if the Mooney viscosity is too large, the processability of the molded product may be inferior.
  • the carboxylated acrylic rubber can be obtained by polymerizing a monomer mixture containing the above monomers.
  • any of an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method and a solution polymerization method can be used.
  • the emulsion polymerization method under normal pressure is used. It is preferable to use it.
  • emulsion polymerization may be performed by any of a batch type, a semibatch type, and a continuous type.
  • the compound having one or more amino groups and three or more aromatic condensed ring structures is a compound in which an amino group (—NH 2 ) can react with a carboxyl group of the rubber to form an amide bond. It is.
  • the number of amino groups in one molecule of the compound is not particularly limited as long as it is 1 or more, but is preferably 5 or less, more preferably 2 or less. . If the number of amino groups is too large, the processability of the molded product may be reduced due to the formation of a crosslinked structure via a compound, and the aromatic condensed ring structure having three or more rings in the molded product and the carbon nanotube This is because ⁇ - ⁇ interaction may be difficult.
  • the amino group may be directly bonded to an aromatic condensed ring structure having three or more rings, or may be indirectly bonded to an aromatic condensed ring structure having three or more rings.
  • the above compound has three or more aromatic condensed ring structures, such as a monocyclic aromatic hydrocarbon ring such as a benzene ring, a pyrrole ring, a furan ring, a pyridine ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole.
  • a monocyclic aromatic hydrocarbon ring such as a benzene ring, a pyrrole ring, a furan ring, a pyridine ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole.
  • a monocyclic aromatic hydrocarbon ring such as a benzene ring, a pyrrole ring, a furan ring, a pyridine ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a
  • the aromatic condensed ring structure is preferably an aromatic condensed ring structure having 4 to 8 rings. If it has an aromatic condensed ring structure formed by condensing four or more of the above-mentioned single rings, it can interact well with carbon nanotubes, further improving the heat resistance of the molded product Because it does. In addition, when the above-described aromatic condensed ring structure is formed by condensing nine or more single rings, the reactivity with the rubber may be reduced due to steric hindrance or the like.
  • the aromatic condensed ring structure having three or more rings is not particularly limited, and examples thereof include an anthracene ring structure, a pyrene ring structure, a carbazole ring structure, and an N-alkylcarbazole ring structure.
  • Specific examples of the compound having one or more amino groups and three or more aromatic condensed ring structures are not particularly limited, and aminoanthracene such as 1-aminoanthracene and 2-aminoanthracene; Mono- or diaminopyrene such as aminopyrene, 1,3-diaminopyrene, 1,6-diaminopyrene and 1,8-diaminopyrene, and amino-N-alkylcarbazole such as 3-amino-9-ethylcarbazole, etc. It is done.
  • aminoanthracene such as 1-aminoanthracene and 2-aminoanthracene
  • Mono- or diaminopyrene such as aminopyrene, 1,3-diaminopyrene, 1,6-diaminopyrene and 1,8-diaminopyrene
  • amino-N-alkylcarbazole such as 3-amino-9-ethylcarba
  • 2-aminoanthracene, 1-aminopyrene, 1,6-diaminopyrene, and 3-amino-9-ethylcarbazole are preferable from the viewpoint of easy availability and good improvement in heat resistance of the molded product.
  • 1-aminopyrene and 1,6-diaminopyrene are more preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • the compounding amount of the compound having one or more amino groups and three or more aromatic condensed ring structures is preferably 0.5 parts by mass or more per 100 parts by mass of the rubber, and 0.8 parts by mass More preferably, it is 5 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 1.5 parts by mass or less. If the compounding amount of the compound having one or more amino groups and three or more aromatic condensed ring structures is within the above range, it is possible to prevent the heat resistance of the molded product from being lowered by an excessive compound, and ⁇ interaction can be sufficiently generated. Therefore, the heat resistance of the molded body can be sufficiently increased.
  • the CNT is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used.
  • the CNTs are preferably single-walled to carbon-walled carbon nanotubes. It is more preferable that If single-walled carbon nanotubes are used, the heat resistance of the molded body can be further improved as compared with the case where multi-walled carbon nanotubes are used.
  • the average diameter (Av) of CNT is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and more preferably 10 nm or less. If the average diameter (Av) of CNTs is 0.5 nm or more, CNT aggregation can be suppressed and the dispersibility of CNTs can be improved. Moreover, if the average diameter (Av) of CNT is 15 nm or less, the heat resistance of the obtained molded object can fully be improved.
  • CNTs preferably have an average structure length of 100 ⁇ m or more and 5000 ⁇ m or less during synthesis.
  • the average diameter (Av) and average length of CNT were respectively measured by measuring the diameter (outer diameter) and length of 100 carbon nanotubes selected at random using a transmission electron microscope or a scanning electron microscope. Can be obtained. And the average diameter (Av) and average length of CNT may be adjusted by changing the manufacturing method and manufacturing conditions of CNT, or by adjusting multiple types of CNTs obtained by different manufacturing methods. Also good.
  • the BET specific surface area of the CNT is preferably 600 m 2 / g or more, more preferably 700 m 2 / g or more, further preferably 800 m 2 / g or more, and 2000 m 2 / g or less. Preferably, it is 1800 m 2 / g or less, more preferably 1500 m 2 / g or less.
  • the BET specific surface area is preferably 1300 m 2 / g or more. When the BET specific surface area of CNT is 600 m 2 / g or more, the heat resistance of the obtained molded product can be sufficiently enhanced.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • CNTs are obtained as aggregates (CNT aggregates) oriented in a direction substantially perpendicular to the base material on a base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later.
  • the mass density of the CNTs as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, the CNTs are weakly bonded, so that the CNTs can be uniformly dispersed. In addition, if the mass density is 0.002 g / cm 3 or more, the integrity of the CNTs can be improved and the variation can be suppressed, so that handling becomes easy.
  • the CNT having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for producing carbon nanotubes on the surface, and performing chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a catalyst is synthesized, a method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of an oxidizing agent (catalyst activating substance) present in the system (super growth method; see International Publication No. 2006/011655) ).
  • an oxidizing agent catalyst activating substance
  • the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
  • the compounding quantity of CNT is 0.01 mass part or more per 100 mass parts of rubber
  • it is 0.5 parts by mass or more, more preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 5 parts by mass or less. If the amount of CNT per 100 parts by mass of rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is 0.01 parts by mass or more, the heat resistance of the molded article can be sufficiently improved.
  • the amount of CNT per 100 parts by mass of rubber having a carboxyl group-containing ethylenically unsaturated monomer unit is 20 parts by mass or less, the molded product becomes too hard and the processability of the molded product is reduced. Can be suppressed.
  • Examples of the compounding agent optionally blended in the rubber composition include a crosslinking agent, a crosslinking accelerator, a crosslinking aid, a crosslinking retarder, a reinforcing filler (carbon black, silica, etc.), and a non-reinforcing filler (carbonic acid).
  • plasticizer phthalate ester, dioctyl adipate, diisononyl adipate, dinormal alkyl adipate, dialkyl adipate, dioctyl azelate, dialkyl sebacate, dioctyl sebacate, tricitrate citrate Alkyl, epoxidized unsaturated fatty acid ester, trimellitic acid ester, polyether ester, etc.
  • anti-aging agent antioxidant, light stabilizer, scorch inhibitor such as primary amine, processing aid, lubricant, adhesive, lubrication Agents, flame retardants, antifungal agents, acid acceptors, antistatic agents, magnetic compounds, colorants, etc.
  • compounding quantity of these compounding agents will not be specifically limited if it is the range which does not inhibit the effect of this invention, It can be set as the quantity according to the compounding purpose.
  • the rubber composition includes a rubber having an ethylenically unsaturated monomer unit containing one or more carboxyl groups (hereinafter sometimes simply referred to as “rubber”), one or more amino groups, and three rings. It can be prepared by mixing a compound having the above aromatic condensed ring structure (hereinafter sometimes simply referred to as “compound”), CNT, and a compounding agent optionally blended by a known method. .
  • the rubber when the rubber is obtained in a state dispersed in a dispersion medium such as water (latex state), such as when an emulsion polymerization method is used for preparing the rubber, the rubber is coagulated and dried by a known method. It is preferable to knead with the compound, CNT, and the like after the formation. This is because when CNT is mixed and dispersed in a latex in which rubber is dispersed in a dispersion medium such as water, the applied shear force is insufficient and it is difficult to obtain a good dispersion state.
  • a dispersion medium such as water
  • the kneading of the rubber, the compound, the CNT, and the optional compounding agent is more preferably performed at 150 ° C. or lower, and further preferably performed at 100 ° C. or lower.
  • the kneading time is appropriately set depending on the type and amount of the raw material used, but is usually 1 minute or more and 180 minutes or less.
  • the molded product of the present invention is obtained by molding the rubber composition described above.
  • the rubber composition As a method for molding the rubber composition, known methods such as pressurization and heating in a mold can be used. And the temperature at the time of shape
  • the rubber contained in the rubber composition reacts with at least a part of the compound to form an amide bond.
  • ⁇ - ⁇ interaction occurs between the carbon nanotubes and the aromatic condensed ring structure of three or more rings derived from the above compound bonded to the main chain of the rubber through an amide bond.
  • TMA thermomechanical analysis
  • a test piece having a thickness of 0.2 cm and a size of 0.5 cm ⁇ 0.5 cm was cut out from a molded body obtained by press molding. And according to JIS K7197, a load was applied in the thickness direction of the test piece, and a TMA curve (horizontal axis: temperature-vertical axis: deformation amount) was measured for the test piece. The measurement was performed in a compressed mode under a nitrogen atmosphere. The heating rate was 10 ° C./min and the load was 1.0 N.
  • the flow temperature Tf was calculated as follows. That is, of the detected TMA curves (horizontal axis: temperature-vertical axis: deformation amount), the temperature at which the deformation amount is maximum is defined as Tmax.
  • Tf The temperature at the intersection of the tangent line of the TMA curve at a temperature 5 ° C. lower than Tmax (Tmax-5 ° C.) and the tangent line of the TMA curve at a temperature 2 ° C. higher than Tmax (Tmax + 2 ° C.) is defined as the flow temperature Tf. Evaluation criteria for sex. It shows that it is excellent in heat resistance, so that Tf is high.
  • Example 1 Synthesis of hydrogenated carboxylated nitrile rubber (HXNBR)>
  • a metal bottle contains 180 parts of ion-exchanged water, 25 parts of 10% sodium dodecylbenzenesulfonate aqueous solution, 35 parts of acrylonitrile as an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, and one or more carboxyl groups.
  • HXNBR hydrogenated carboxylated nitrile rubber
  • the amount of mono n-butyl maleate units contained as carboxyl group-containing ethylenically unsaturated monomer units in the rubber was confirmed by the following procedure. did. That is, 0.2 g of a sample of about 2 mm square was cut out from the obtained rubber, 100 mL of 2-butanone was added and stirred for 4 hours, and then 20 mL of ethanol and 10 mL of water were added. Then, with stirring, a 0.02N aqueous ethanol solution of potassium hydroxide was used to determine the number of moles of carboxyl groups relative to 100 g of rubber by titration using thymolphthalein as an indicator at room temperature.
  • the obtained number of moles was converted to the amount of mono n-butyl maleate, and the rubber contained 6% mono n-butyl maleate units.
  • ⁇ Preparation of rubber composition> According to the blending amount shown in Table 1, using a Banbury mixer, 100 parts of the obtained hydrogenated carboxylated nitrile rubber (HXNBR), 1 part of single-walled carbon nanotube (SWCNT-1), one or more amino groups and 1 part of 1-aminopyrene as a compound having an aromatic condensed ring structure of 3 or more rings was kneaded.
  • HXNBR hydrogenated carboxylated nitrile rubber
  • SWCNT-1 single-walled carbon nanotube
  • SWCNT-1 single-walled carbon nanotube (SWCNT-1)
  • SGCNT BET specific surface area: 865 m 2 / g, average diameter (Av): 3.4 nm, average length: 2350 ⁇ m
  • the temperature of the rubber composition during kneading was set to 100 ° C. or lower.
  • Preparation of molded product> The obtained rubber composition was put into a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa to obtain a sheet-like molded body.
  • the flow temperature Tf was measured about the obtained molded object. The results are shown in Table 1.
  • Examples 2 to 3 A rubber composition was prepared in the same manner as in Example 1, except that the blending amount of 1-aminopyrene was changed to 0.5 parts (Example 2) and 5 parts (Example 3), respectively, at the time of preparation of the rubber composition. And a molded body was prepared. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In the preparation of the rubber composition, 1,6-diaminopyrene (Example 4), 2-aminoanthracene (Example 5) and 3-amino-9-ethylcarbazole (Example 6) were used instead of 1-aminopyrene, respectively. ) was used in the same manner as in Example 1 except that a rubber composition and a molded body were prepared. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 A rubber composition and a molded body were prepared in the same manner as in Example 1 except that multi-walled carbon nanotubes (MWCNT) were used instead of SWCNT-1 when preparing the rubber composition. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • MWCNT multi-walled carbon nanotube
  • a product name “NC7000” BET specific surface area: 256 m 2 / g, average diameter (Av): 9.5 nm, average length: 1.5 ⁇ m
  • NC7000 BET specific surface area: 256 m 2 / g, average diameter (Av): 9.5 nm, average length: 1.5 ⁇ m
  • Example 8 A rubber composition and a molded body were prepared in the same manner as in Example 1 except that single-walled carbon nanotubes (SWCNT-2) were used instead of SWCNT-1 when preparing the rubber composition. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • SWCNT-2 which is a single-walled carbon nanotube, is manufactured by NanoIntegris Inc. The product name is “HiPco (registered trademark)” (BET specific surface area: 512 m 2 / g, average diameter (Av): 1.1 nm, average length: 3.0 ⁇ m).
  • Example 9 In the same manner as in Example 1 except that 100 parts of carboxylated acrylic rubber (XACM) synthesized as follows was used instead of 100 parts of hydrogenated carboxylated nitrile rubber (HXNBR) when preparing the rubber composition, A rubber composition and a molded body were prepared. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • XACM carboxylated acrylic rubber
  • HXNBR hydrogenated carboxylated nitrile rubber
  • gum was confirmed in the following procedures. That is, 0.2 g of a sample of about 2 mm square was cut out from the obtained rubber, 100 mL of 2-butanone was added and stirred for 4 hours, and then 20 mL of ethanol and 10 mL of water were added. Then, with stirring, a 0.02N aqueous ethanol solution of potassium hydroxide was used to determine the number of moles of carboxyl groups relative to 100 g of rubber by titration using thymolphthalein as an indicator at room temperature. And when the calculated
  • Example 10 In the preparation of the rubber composition, in the same manner as in Example 9, except that 2-aminoanthracene (Example 10) and 3-amino-9-ethylcarbazole (Example 11) were used instead of 1-aminopyrene, respectively. Thus, a rubber composition and a molded body were prepared. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 12 A rubber composition and a molded body were prepared in the same manner as in Example 9 except that multi-walled carbon nanotubes (MWCNT) were used instead of SWCNT-1 when preparing the rubber composition. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • MWCNT multi-walled carbon nanotubes
  • Example 2 A rubber composition and a molded body were prepared in the same manner as in Example 1 except that the single-walled carbon nanotube (SWCNT-1) was not blended when the rubber composition was prepared. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A rubber composition and a molded body were prepared in the same manner as in Example 1 except that 1-aminopyrene was not blended when preparing the rubber composition. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 Similar to Example 1 except that 1,3,5-tris (4-aminophenyl) benzene, which is a compound having no aromatic condensed ring structure, was used instead of 1-aminopyrene during the preparation of the rubber composition. Thus, a rubber composition and a molded body were prepared. Then, the flow temperature Tf was measured in the same manner as in Example 1. The results are shown in Table 1.
  • the heat resistance of the molded article can be further improved by changing the compounding amount of the compound having one or more amino groups and three or more aromatic condensed ring structures.
  • the heat resistance of the molded article was changed by changing the type of the compound having one or more amino groups and three or more aromatic condensed ring structures. It can be seen that can be further improved.
  • the heat resistance of the molded product can be improved by using single-walled CNTs, particularly single-walled CNTs having a large BET specific surface area. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、耐熱性に優れる成形体、および、当該成形体を形成可能なゴム組成物を提供することを目的とする。本発明のゴム組成物は、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムと、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物と、カーボンナノチューブとを含む。また、本発明の成形体は、当該ゴム組成物を成形してなる。

Description

ゴム組成物および成形体
 本発明は、ゴム組成物および成形体に関し、特には、カーボンナノチューブを含有するゴム組成物および当該ゴム組成物を成形してなる成形体に関するものである。
 近年、耐熱性や機械的特性に優れる材料として、ゴム等のエラストマーにカーボンナノチューブ(以下「CNT」と称することがある。)を配合してなる複合材料が注目されている。
 そして、例えば特許文献1には、加工性および耐熱性に優れる複合材料として、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムと、融点が50℃以上180℃以下のアミン系架橋剤と、CNTとを含む架橋性ゴム組成物を架橋して得られるゴム架橋物が開示されている。
国際公開第2016/013218号
 しかし、近年では、複合材料からなる成形体に対し、耐熱性を更に向上させることが求められている。そのため、上記従来のゴム架橋物からなる成形体には、耐熱性を更に向上させるという点において改善の余地があった。
 そこで、本発明は、耐熱性に優れる成形体、および、当該成形体を形成可能なゴム組成物を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた。そして、本発明者は、特定の単量体単位を有するゴムと、所定の構造を有する化合物と、カーボンナノチューブとを含むゴム組成物を用いて得られる成形体が耐熱性に優れていることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のゴム組成物は、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムと、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物と、カーボンナノチューブとを含むことを特徴とする。このような、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムと、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物と、カーボンナノチューブとを含むゴム組成物を使用すれば、耐熱性に優れる成形体が得られる。
 なお、本発明において、「単量体単位を有する」とは、「その単量体を用いて得た重合体(ゴム)中に単量体由来の構造単位が含まれている」ことを意味する。また、本発明において、「3環以上の芳香族縮合環構造」とは、芳香族炭化水素環および芳香族複素環からなる群より選択される少なくとも一種の単環が3つ以上縮合して形成される構造を指す。
 ここで、本発明のゴム組成物は、前記ゴム100質量部当たり、前記化合物を0.5質量部以上5質量部以下の割合で含むことが好ましい。化合物の含有量が上記範囲内であれば、成形体の耐熱性を更に向上させることができる。
 そして、本発明のゴム組成物は、前記化合物が、2-アミノアントラセン、1-アミノピレン、1,6-ジアミノピレンおよび3-アミノ-9-エチルカルバゾールからなる群より選択される少なくとも一種であることが好ましい。上記化合物を使用すれば、成形体の耐熱性を更に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の成形体は、上述したゴム組成物の何れかを成形してなることを特徴とする。上述したゴム組成物を成形して得られる成形体は、耐熱性に優れている。
 本発明によれば、耐熱性に優れる成形体、および、当該成形体を形成可能なゴム組成物を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のゴム組成物は、本発明の成形体を製造する際に用いることができる。そして、本発明の成形体は、本発明のゴム組成物を成形して得られ、耐熱性に優れている。なお、本発明の成形体は、特に限定されることなく、ベルト、ホース、ガスケット、パッキン、オイルシールなどの種々の用途に使用することができる。
(ゴム組成物)
 本発明のゴム組成物は、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムと、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物と、カーボンナノチューブとを含有する。そして、本発明のゴム組成物は、特定の単量体単位を有するゴムと、所定の構造を有する化合物と、カーボンナノチューブとを含んでいるので、当該ゴム組成物を用いて得られる成形体は、耐熱性に優れている。なお、本発明のゴム組成物は、上記成分以外に、ゴムの加工分野において通常使用される配合剤を含んでいてもよい。
 ここで、上述したゴム組成物を使用することで耐熱性に優れる成形体を得られる理由は、明らかではないが、上述したゴム組成物を用いて形成した成形体では、上記化合物のアミノ基と上記ゴムのカルボキシル基とが反応してアミド結合を形成すると共に、上記ゴムと結合した上記化合物が有する3環以上の芳香族縮合環構造とカーボンナノチューブとの間にπ-π相互作用が働くためであると推察される。
<ゴム>
 ゴム組成物は、ゴム成分として、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位(以下、単に「カルボキシル基含有エチレン性不飽和単量体単位」と称することがある。)を有するゴムを少なくとも含むことを必要とする。
 なお、ゴム組成物は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム以外に、カルボキシル基含有エチレン性不飽和単量体単位を有さないゴムを更に含んでいてもよい。
[カルボキシル基含有エチレン性不飽和単量体単位を有するゴム]
 ここで、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムとしては、カルボキシル基含有エチレン性不飽和単量体由来の構造単位がゴム中に含まれている任意の合成ゴムを使用することができる。
 そして、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムの調製に使用し得るカルボキシル基含有エチレン性不飽和単量体としては、特に限定されることなく、カルボキシル基を1つ以上有するエチレン性不飽和単量体を用いることができる。具体的には、カルボキシル基含有エチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、エタクリル酸(2-エチルアクリル酸)、イタコン酸、マレイン酸、フマル酸、シトラコン酸などのカルボン酸単量体;マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノ-n-ブチル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノ-n-ブチルなどのブテンジオン酸モノアルキルエステル単量体;などが挙げられる。なお、カルボキシル基はカルボン酸無水物基であってもよく、カルボン酸無水物基含有エチレン性不飽和単量体である無水カルボン酸単量体の具体例としては、無水マレイン酸、無水シトラコン酸などが挙げられる。これらの中でも、カルボキシル基含有エチレン性不飽和単量体としては、ブテンジオン酸モノアルキルエステル単量体を用いることが好ましく、特にマレイン酸モノエチル、マレイン酸モノ-n-ブチル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノ-n-ブチルなどの炭素数1~4のアルキル基を有するものを用いることがより好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
 ここで、ゴム組成物を用いて得られる成形体の耐熱性の観点からは、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムとしては、上述したカルボキシル基含有エチレン性不飽和単量体を用いて合成されるニトリルゴム(カルボキシル化ニトリルゴム)、水素化ニトリルゴム(水素化カルボキシル化ニトリルゴム)およびアクリルゴム(カルボキシル化アクリルゴム)が好ましい。中でも、成形体の耐熱性を更に向上させる観点からは、カルボキシル基含有エチレン性不飽和単量体単位を有するゴムとしては、水素化カルボキシル化ニトリルゴムおよびカルボキシル化アクリルゴムがより好ましく、水素化カルボキシル化ニトリルゴムが更に好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
[[カルボキシル化ニトリルゴム]]
 ゴム組成物に配合し得るカルボキシル化ニトリルゴムとしては、α,β-エチレン性不飽和ニトリル単量体単位と、ジエン単量体単位と、カルボキシル基含有エチレン性不飽和単量体単位とを含み、任意に、これらの単量体単位を形成する単量体と共重合可能なその他の単量体単位を更に含有するニトリルゴムが挙げられる。
 α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、特に限定されることなく、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリルなどのニトリル基を有するα,β-エチレン性不飽和ニトリル化合物が挙げられる。これらの中でも、アクリロニトリルおよびメタクリロニトリルが好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
 カルボキシル化ニトリルゴム中のα,β-エチレン性不飽和ニトリル単量体単位の含有量は、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上であり、また、好ましくは60質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下である。α,β-エチレン性不飽和ニトリル単量体単位の含有量がこの範囲であると、成形体に優れた物性(例えば、耐油性や耐寒性)を発揮させることができる。
 ジエン単量体単位を形成するジエン単量体の例としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数が4以上の共役ジエン単量体;1,4-ペンタジエン、1,4-ヘキサジエンなどの炭素数が好ましくは5~12の非共役ジエン単量体が挙げられる。これらの中でも、ジエン単量体としては、共役ジエン単量体が好ましく、1,3-ブタジエンがより好ましい。
 カルボキシル化ニトリルゴム中のジエン単量体単位の含有量は、好ましくは20質量%以上、より好ましくは25質量%以上、更に好ましくは30質量%以上、特に好ましくは35質量%以上であり、また、好ましくは89.5質量%以下、より好ましくは81質量%以下、更に好ましくは74.5質量%以下、特に好ましくは69.5質量%以下である。ジエン単量体単位の含有量がこの範囲であると、成形体に優れた物性(例えば、ゴム弾性、耐熱性、耐油性および化学的安定性)を発揮させることができる。
 カルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、特に限定されることなく、前述したカルボキシル基含有エチレン性不飽和単量体を用いることができる。中でも、後述するCNTの分散性の観点からは、カルボキシル化ニトリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノ-n-ブチルを用いることが好ましく、マレイン酸モノ-n-ブチルを用いることがより好ましい。
 カルボキシル化ニトリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、また、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。カルボキシル基含有エチレン性不飽和単量体単位の含有量がこの範囲であると、成形体の耐熱性を十分に向上させることができる。
 その他の単量体単位を形成するその他の単量体としては、α,β-エチレン性不飽和ニトリル単量体単位、ジエン単量体単位およびカルボキシル基含有エチレン性不飽和単量体単位と共重合可能な既知の単量体が挙げられる。具体的には、その他の単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどの1価のアルコールと1価の(メタ)アクリル酸とのエステル((メタ)アクリル酸アルキルエステル);スチレン、α-メチルスチレン、ビニルピリジンなどの芳香族ビニル単量体;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル単量体;N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどの共重合性老化防止剤;などが挙げられる。
 なお、本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 カルボキシル化ニトリルゴム中のその他の単量体単位の含有量は、本発明の効果を実質的に阻害しない量であり、通常50質量%未満、好ましくは0質量%以上10質量%以下、より好ましくは0質量%以上5質量%以下である。
 そして、カルボキシル化ニトリルゴムのポリマームーニー粘度(ML1+4、100℃)は、好ましくは15以上200以下、より好ましくは15以上150以下、更に好ましくは15以上100以下である。ムーニー粘度が小さすぎると成形体の機械的強度が劣る場合がある。一方、ムーニー粘度が大きすぎると成形体の加工性が劣る場合がある。
 なお、カルボキシル化ニトリルゴムは、上記各単量体を含んでなる単量体混合物を重合することにより得ることができる。重合反応の形態としては、乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれも用いることができるが、重合反応の制御の容易性などから、常圧下での乳化重合法を用いることが好ましい。そして、乳化重合は、回分式、半回分式、連続式のいずれで行ってもよい。
[[水素化カルボキシル化ニトリルゴム]]
 ゴム組成物に配合し得る水素化カルボキシル化ニトリルゴムとしては、上述したカルボキシル化ニトリルゴム中のジエン単量体単位を既知の方法で水素化して得られる水素化ゴムが挙げられる。そして、上述したカルボキシル化ニトリルゴムを既知の方法で水素化して得られる水素化カルボキシル化ニトリルゴムでは、カルボキシル化ニトリルゴムのジエン単量体単位の一部または全部が水素化されてアルキレン構造単位となっている。即ち、ゴム組成物に配合し得る水素化カルボキシル化ニトリルゴムは、α,β-エチレン性不飽和ニトリル単量体単位と、ジエン単量体単位および/またはアルキレン構造単位と、カルボキシル基含有エチレン性不飽和単量体単位とを含み、任意に、これらの単量体単位を形成する単量体と共重合可能なその他の単量体単位を更に含有する。
 ここで、上述したカルボキシル化ニトリルゴム中のジエン単量体単位の選択的な水素化は、油層水素化法や水層水素化法などの公知の方法を用いて行なうことができる。
 そして、水素化カルボキシル化ニトリルゴムは、ヨウ素価が120以下であることが好ましく、80以下であることがより好ましく、25以下であることが更に好ましく、15以下であることが特に好ましい。水素化カルボキシル化ニトリルゴムのヨウ素価が高すぎると、成形体の物性(例えば、熱安定性、耐オゾン性など)が低下するおそれがある。
 なお、水素化カルボキシル化ニトリルゴムのポリマームーニー粘度(ML1+4、100℃)は、好ましくは15以上200以下、より好ましくは15以上150以下、更に好ましくは15以上100以下である。ムーニー粘度が小さすぎると成形体の機械的強度が劣る場合がある。一方、ムーニー粘度が大きすぎると成形体の加工性が劣る場合がある。
[[カルボキシル化アクリルゴム]]
 ゴム組成物に配合し得るカルボキシル化アクリルゴムとしては、(メタ)アクリル酸エステル単量体単位と、カルボキシル基含有エチレン性不飽和単量体単位とを含み、任意に、これらの単量体単位を形成する単量体と共重合可能なその他の単量体単位を更に含有するアクリルゴムが挙げられる。
 ここで、カルボキシル化アクリルゴムの主成分である(メタ)アクリル酸エステル単量体単位を形成する(メタ)アクリル酸エステル単量体としては、特に限定されることなく、例えば、(メタ)アクリル酸アルキルエステル単量体および(メタ)アクリル酸アルコキシアルキルエステル単量体などを挙げることができる。
 (メタ)アクリル酸アルキルエステル単量体としては、特に限定されないが、炭素数1~8のアルカノールと(メタ)アクリル酸とのエステルが好ましい。具体的には、(メタ)アクリル酸アルキルエステル単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどが挙げられる。これらの中でも、(メタ)アクリル酸エチルおよび(メタ)アクリル酸n-ブチルが好ましく、アクリル酸エチルおよびアクリル酸n-ブチルが特に好ましい。これらは1種単独で、または2種以上を組み合わせて使用することができる。
 (メタ)アクリル酸アルコキシアルキルエステル単量体としては、特に限定されないが、炭素数2~8のアルコキシアルキルアルコールと(メタ)アクリル酸とのエステルが好ましく、具体的には、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-プロポキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸4-メトキシブチルなどが挙げられる。これらの中でも、(メタ)アクリル酸2-エトキシエチルおよび(メタ)アクリル酸2-メトキシエチルが好ましく、アクリル酸2-エトキシエチルおよびアクリル酸2-メトキシエチルが特に好ましい。これらは1種単独で、または2種以上を組み合わせて使用することができる。
 カルボキシル化アクリルゴム中の(メタ)アクリル酸エステル単量体単位の含有量は、通常50質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは92質量%以上であり、また、好ましくは99.9質量%以下、より好ましくは99.5質量%以下、更に好ましくは99質量%以下である。(メタ)アクリル酸エステル単量体単位の含有量が少なすぎると、成形体の耐熱性などが低下するおそれがある。
 なお、(メタ)アクリル酸エステル単量体単位中の(メタ)アクリル酸アルキルエステル単量体単位の割合は、30質量%以上100質量%以下であることが好ましい。
 カルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、特に限定されることなく、前述したカルボキシル基含有エチレン性不飽和単量体を用いることができる。中でも、後述するCNTの分散性の観点からは、カルボキシル化アクリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位を形成するカルボキシル基含有エチレン性不飽和単量体としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノ-n-ブチルを用いることが好ましく、フマル酸モノメチルを用いることがより好ましい。
 カルボキシル化アクリルゴム中のカルボキシル基含有エチレン性不飽和単量体単位の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、また、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。カルボキシル基含有エチレン性不飽和単量体単位の含有量がこの範囲であると、成形体の耐熱性を十分に向上させることができる。
 その他の単量体単位を形成するその他の単量体としては、(メタ)アクリル酸エステル単量体およびカルボキシル基含有エチレン性不飽和単量体と共重合可能な既知の単量体が挙げられる。具体的には、その他の単量体としては、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテル、スチレン、α-メチルスチレン、イソプレン、ブタジエン、クロロプレン、ピペリレン、ジシクロペンタジエン、ノルボルネン、エチリデンノルボルネン、ヘキサジエン、ノルボルナジエン、ジビニルベンゼン、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレートなどが挙げられる。
 なお、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレートなどの多官能(メタ)アクリレートは、上述した(メタ)アクリル酸エステル単量体には含まれないものとする。
 カルボキシル化アクリルゴム中のその他の単量体単位の含有量は、本発明の効果を実質的に阻害しない量であり、通常50質量%未満、好ましくは0質量%以上10質量%以下、より好ましくは0質量%以上5質量%以下である。
 そして、カルボキシル化アクリルゴムのポリマームーニー粘度(ML1+4、100℃)は、好ましくは10以上80以下、より好ましくは20以上70以下である。ムーニー粘度が小さすぎると成形体の機械的強度が劣る場合がある。一方、ムーニー粘度が大きすぎると成形体の加工性が劣る場合がある。
 なお、カルボキシル化アクリルゴムは、上記各単量体を含んでなる単量体混合物を重合することにより得ることができる。重合反応の形態としては、乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれも用いることができるが、重合反応の制御の容易性などから、常圧下での乳化重合法を用いることが好ましい。そして、乳化重合は、回分式、半回分式、連続式のいずれで行ってもよい。
<1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物>
 1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物は、前述したように、アミノ基(-NH2)が上記ゴムのカルボキシル基と反応してアミド結合を形成し得る化合物である。
[アミノ基]
 ここで、上記化合物が一分子中に有するアミノ基の数は、1つ以上であれば特に限定されるものではないが、5つ以下であることが好ましく、2つ以下であることがより好ましい。アミノ基の数が多すぎる場合には、化合物を介した架橋構造の形成により成形体の加工性が低下する虞があると共に、成形体中で3環以上の芳香族縮合環構造とカーボンナノチューブとがπ-π相互作用し難くなる虞があるからである。
 なお、アミノ基は、3環以上の芳香族縮合環構造に直接結合していてもよいし、3環以上の芳香族縮合環構造に間接的に結合していてもよい。
[3環以上の芳香族縮合環構造]
 また、上記化合物が有する3環以上の芳香族縮合環構造は、ベンゼン環などの単環の芳香族炭化水素環と、ピロール環、フラン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環およびピラジン環などの単環の芳香族複素環とからなる群より選択される少なくとも一種の単環が3つ以上縮合して形成される構造であれば、特に限定されるものではない。
 なお、単環の芳香族環構造および/または2環の芳香族縮合環構造のみを有する化合物を使用した場合には、カーボンナノチューブとのπ-π相互作用が十分に得られず、成形体の耐熱性を十分に向上させることができない。
 中でも、芳香族縮合環構造は、4環以上8環以下の芳香族縮合環構造であることが好ましい。上述した単環が4つ以上縮合されて形成される芳香族縮合環構造を有していれば、カーボンナノチューブと良好にπ-π相互作用することができるので、成形体の耐熱性が更に向上するからである。また、上述した単環が9つ以上縮合されて形成される芳香族縮合環構造を有している場合には、立体障害などにより上記ゴムとの反応性が低下する虞があるからである。
 そして、3環以上の芳香族縮合環構造としては、特に限定されることなく、アントラセン環構造、ピレン環構造、カルバゾール環構造、および、N-アルキルカルバゾール環構造などが挙げられる。
 また、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物の具体例としては、特に限定されることなく、1-アミノアントラセンおよび2-アミノアントラセンなどのアミノアントラセン、1-アミノピレン、1,3-ジアミノピレン、1,6-ジアミノピレンおよび1,8-ジアミノピレンなどのモノまたはジアミノピレン、並びに、3-アミノ-9-エチルカルバゾールなどのアミノ-N-アルキルカルバゾール等が挙げられる。中でも、入手が容易で、且つ、成形体の耐熱性を良好に向上させ得る観点からは、2-アミノアントラセン、1-アミノピレン、1,6-ジアミノピレン、3-アミノ-9-エチルカルバゾールが好ましく、1-アミノピレン、1,6-ジアミノピレンがより好ましい。
 これらは1種単独で、または2種以上を組み合わせて使用することができる。
[配合量]
 そして、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物の配合量は、上記ゴム100質量部当たり、0.5質量部以上であることが好ましく、0.8質量部以上であることがより好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、1.5質量部以下であることが更に好ましい。1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物の配合量が上記範囲内であれば、過剰な化合物によって成形体の耐熱性が低下するのを抑制しつつ、π-π相互作用を十分に生じさせることができる。従って、成形体の耐熱性を十分に高めることができる。
<カーボンナノチューブ(CNT)>
 CNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、成形体の耐熱性を更に向上させることができる。
 また、CNTの平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。CNTの平均直径(Av)が0.5nm以上であれば、CNTの凝集を抑制してCNTの分散性を高めることができる。また、CNTの平均直径(Av)が15nm以下であれば、得られる成形体の耐熱性を十分に高めることができる。
 また、CNTは、合成時における構造体の平均長さが100μm以上5000μm以下であることが好ましい。
 なお、CNTの平均直径(Av)および平均長さは、それぞれ、透過型電子顕微鏡または走査型電子顕微鏡を用いて無作為に選択したカーボンナノチューブ100本の直径(外径)および長さを測定して求めることができる。
 そして、CNTの平均直径(Av)や平均長さは、CNTの製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを複数種類組み合わせることにより調整してもよい。
 更に、CNTのBET比表面積は、600m2/g以上であることが好ましく、700m2/g以上であることがより好ましく、800m2/g以上であることが更に好ましく、2000m2/g以下であることが好ましく、1800m2/g以下であることがより好ましく、1500m2/g以下であることが更に好ましい。また、CNTが主として開口したものにあっては、BET比表面積が1300m2/g以上であることが好ましい。CNTのBET比表面積が600m2/g以上であれば、得られる成形体の耐熱性を十分に高めることができる。また、CNTのBET比表面積が2000m2/g以下であれば、CNTの凝集を抑制してCNTの分散性を高めることができると共に、成形体が硬くなり過ぎて加工性が低下するのを抑制することができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 更に、CNTは、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(CNT配向集合体)として得られるが、当該集合体としての、CNTの質量密度は、0.002g/cm3以上0.2g/cm3以下であることが好ましい。質量密度が0.2g/cm3以下であれば、CNT同士の結びつきが弱くなるので、CNTを均質に分散させることができる。また、質量密度が0.002g/cm3以上であれば、CNTの一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。
 なお、上述した性状を有するCNTは、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)により製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 なお、CNTの配合量は、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たり、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、5質量部以下であることが更に好ましい。カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たりのCNTの量を0.01質量部以上とすれば、成形体の耐熱性を十分に向上させることができる。また、カルボキシル基含有エチレン性不飽和単量体単位を有するゴム100質量部当たりのCNTの量を20質量部以下とすれば、成形体が硬くなり過ぎて成形体の加工性が低下するのを抑制することができる。
<配合剤>
 ゴム組成物に任意に配合される配合剤としては、例えば、架橋剤、架橋促進剤、架橋助剤、架橋遅延剤、補強性充填材(カーボンブラック、シリカなど)、非補強性充填材(炭酸カルシウム、クレー、タルク、珪藻土など)、可塑剤(フタル酸エステル、アジピン酸ジオクチル、アジピン酸ジイソノニル、アジピン酸ジノルマルアルキル、アジピン酸ジアルキル、アゼライン酸ジオクチル、セバシン酸ジアルキル、セバシン酸ジオクチル、クエン酸トリアルキル、エポキシ化不飽和脂肪酸エステル、トリメリット酸エステル、ポリエーテルエステル等)、老化防止剤、酸化防止剤、光安定剤、一級アミンなどのスコーチ防止剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、受酸剤、帯電防止剤、磁性化合物、着色剤などが挙げられる。そして、これらの配合剤の配合量は、本発明の効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量とすることができる。
<ゴム組成物の調製方法>
 上記ゴム組成物は、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴム(以下、単に「ゴム」と称することがある。)と、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物(以下、単に「化合物」と称することがある。)と、CNTと、任意に配合される配合剤とを既知の方法で混合して調製することができる。
 ここで、上述したゴムの調製に乳化重合法を用いた場合など、ゴムが水などの分散媒に分散した状態(ラテックス状態)で得られた場合には、ゴムは既知の方法で凝固および乾燥させた後に化合物およびCNT等と混練することが好ましい。水などの分散媒中にゴムが分散しているラテックス中にCNTを混合して分散させた場合、加わるせん断力が不十分であり、良好な分散状態が得られ難いからである。
 そして、ゴムと、化合物と、CNTと、任意の配合剤との混合は、例えばバンバリーミキサーやロールを用いて行うことができる。
 なお、ゴムと、化合物と、CNTと、任意の配合剤との混練は、150℃以下で行うことがより好ましく、100℃以下で行うことが更に好ましい。また、混練時間は、用いられる原料の種類や量によって適宜設定されるが、通常、1分以上180分以下である。
(成形体)
 本発明の成形体は、上述したゴム組成物を成形して得られるものである。
 ここで、ゴム組成物の成形方法としては、金型内での加圧および加熱などの既知の手法を用いることができる。そして、ゴム組成物を成形する際の温度は、通常50℃以上250℃以下である。また、ゴム組成物を成形する際の圧力は、通常1MPa以上100MPa以下である。
 なお、前述したように、成形体中では、ゴム組成物に含まれていた上記ゴムと、上記化合物の少なくとも一部とが反応してアミド結合を形成していると推察される。そして、成形体中では、カーボンナノチューブと、アミド結合を介してゴムの主鎖に結合した、上記化合物由来の3環以上の芳香族縮合環構造とがπ-π相互作用していると推察される。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、ゴムのヨウ素価およびポリマームーニー粘度、カーボンナノチューブのBET比表面積、並びに、成形体の流動温度は、下記の方法で測定および評価した。
<ヨウ素価>
 ゴムのヨウ素価は、JIS K6235に準じて測定した。
<ポリマームーニー粘度>
 ゴムのムーニー粘度(ML1+4、100℃)は、JIS K6300-1に従って測定した。
<BET比表面積>
 CNTのBET比表面積は、JIS Z8830に準拠し、BET比表面積測定装置((株)マウンテック製、「HM model-1210」)を用いて測定した。
<流動温度:Tf>
 成形体の流動温度Tfは、熱機械分析(TMA)装置(SII社製、「TMA/SS6100」)を用いて評価した。
 具体的には、プレス成形により得られた成形体から、厚さ0.2cm、寸法0.5cm×0.5cmの大きさの試験片を切り出した。そして、試験片について、JIS K7197に準拠し、試験片の厚さ方向に荷重を負荷してTMA曲線(横軸:温度-縦軸:変形量)を測定した。なお、測定は、窒素雰囲気下にて、圧縮モードで行った。昇温速度は毎分10℃、荷重は1.0Nとした。
 そして、流動温度Tfを、次のようにして算出した。即ち、検出されたTMA曲線(横軸:温度-縦軸:変形量)のうち、変形量が最大となる温度をTmaxとした。そして、Tmaxより5℃低い温度(Tmax-5℃)におけるTMA曲線の接線と、Tmaxより2℃高い温度(Tmax+2℃)におけるTMA曲線の接線との交点の温度を流動温度Tfとし、これを耐熱性の評価基準とした。Tfが高いほど、耐熱性に優れることを示す。
(実施例1)
<水素化カルボキシル化ニトリルゴム(HXNBR)の合成>
 金属製ボトルに、イオン交換水180部、濃度10%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、α,β-エチレン性不飽和ニトリル単量体としてのアクリロニトリル35部、カルボキシル基を1つ以上含有するエチレン性不飽和単量体(カルボキシル基含有エチレン性不飽和単量体)としてのマレイン酸モノn-ブチル6部、および、t-ドデシルメルカプタン(分子量調整剤)0.5部を順次投入し、内部の気体を窒素で3回置換した後、共役ジエン単量体としての1,3-ブタジエン59部を投入した。その後、金属製ボトルを5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部を添加した。そして、金属製ボトルを回転させながら16時間重合させた。次いで、濃度10%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合反応を停止した後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、カルボキシル化ニトリルゴムのラテックス(固形分濃度約30%)を得た。
 次に、上記で得られたラテックスに含有されるゴムの乾燥重量に対するパラジウム含有量が1,000ppmになるように、オートクレーブ中に、上記にて製造したラテックスと、パラジウム触媒(1%酢酸パラジウムアセトン溶液と等重量のイオン交換水とを混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、水素化カルボキシル化ニトリルゴムのラテックスを得た。
 最後に、上記で得られた水素化カルボキシル化ニトリルゴムのラテックスに2倍容量のメタノールを加えて凝固させた後、ろ過して固形物(クラム)を取り出し、それを60℃で12時間真空乾燥することにより、水素化カルボキシル化ニトリルゴム(HXNBR)を得た。そして、得られた水素化カルボキシル化ニトリルゴム(HXNBR)のヨウ素価およびムーニー粘度を上述の方法により測定したところ、ヨウ素価は11であり、ムーニー粘度は45であった。
 なお、得られた水素化カルボキシル化ニトリルゴム(HXNBR)について、ゴム中にカルボキシル基含有エチレン性不飽和単量体単位として含まれているマレイン酸モノn-ブチル単位の量を以下の手順で確認した。即ち、得られたゴムから約2mm角の試料0.2gを切り出し、2-ブタノン100mLを加えて4時間攪拌した後、エタノール20mLおよび水10mLを加えた。そして、攪拌下、水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ゴム100gに対するカルボキシル基のモル数を求めた。そして、求めたモル数をマレイン酸モノn-ブチルの量に換算したところ、ゴム中にはマレイン酸モノn-ブチル単位が6%含まれていた。
<ゴム組成物の調製>
 表1に示す配合量に従い、バンバリーミキサーを用いて、得られた水素化カルボキシル化ニトリルゴム(HXNBR)100部と、単層カーボンナノチューブ(SWCNT-1)1部と、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物としての1-アミノピレン1部とを混練した。なお、単層カーボンナノチューブ(SWCNT-1)としては、スーパーグロース法を用いて調製したSGCNT(BET比表面積:865m2/g、平均直径(Av):3.4nm、平均長さ:2350μm)を使用した。また、混練中のゴム組成物の温度は100℃以下とした。
<成形体の調製>
 得られたゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレス成形してシート状の成形体を得た。そして、得られた成形体について、流動温度Tfの測定を行った。結果を表1に示す。
(実施例2~3)
 ゴム組成物の調製時に、1-アミノピレンの配合量を、それぞれ、0.5部(実施例2)および5部(実施例3)に変更した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(実施例4~6)
 ゴム組成物の調製時に、1-アミノピレンに替えて、それぞれ、1,6-ジアミノピレン(実施例4)、2-アミノアントラセン(実施例5)および3-アミノ-9-エチルカルバゾール(実施例6)を使用した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(実施例7)
 ゴム組成物の調製時に、SWCNT-1に替えて、多層カーボンナノチューブ(MWCNT)を使用した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
 なお、多層カーボンナノチューブ(MWCNT)としては、ナノシル社製の商品名「NC7000」(BET比表面積:256m2/g、平均直径(Av):9.5nm、平均長さ:1.5μm)を使用した。
(実施例8)
 ゴム組成物の調製時に、SWCNT-1に替えて、単層カーボンナノチューブ(SWCNT-2)を使用した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
 なお、単層カーボンナノチューブであるSWCNT-2は、NanoIntegris Inc.社製の商品名「HiPco(登録商標)」(BET比表面積:512m2/g、平均直径(Av):1.1nm、平均長さ:3.0μm)である。
(実施例9)
 ゴム組成物の調製時に、水素化カルボキシル化ニトリルゴム(HXNBR)100部に替えて以下のようにして合成したカルボキシル化アクリルゴム(XACM)100部を使用した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
<カルボキシル化アクリルゴム(XACM)の合成>
 温度計および攪拌装置を備えた重合反応器に、イオン交換水200部、ラウリル硫酸ナトリウム3部、(メタ)アクリル酸エステル単量体としてのアクリル酸エチル49部およびアクリル酸n-ブチル49部、並びに、カルボキシル基を1つ以上含有するエチレン性不飽和単量体(カルボキシル基含有エチレン性不飽和単量体)としてのフマル酸モノメチル2部を投入した。その後、減圧脱気および窒素置換を2度行って酸素を十分に除去した後、クメンハイドロパーオキシド0.005部およびホルムアルデヒドスルホキシル酸ナトリウム0.002部を加えて、常圧下、30℃で乳化重合を開始し、重合転化率が95%に達するまで反応させた。そして、得られたラテックスを塩化カルシウム水溶液で凝固させ、水洗、乾燥してカルボキシル化アクリルゴム(XACM)を得た。得られたカルボキシル化アクリルゴム(XACM)のムーニー粘度を上述の方法により測定したところ、ムーニー粘度は35であった。
 なお、得られたカルボキシル化アクリルゴム(XACM)について、ゴム中にカルボキシル基含有エチレン性不飽和単量体単位として含まれているフマル酸モノメチル単位の量を以下の手順で確認した。即ち、得られたゴムから約2mm角の試料0.2gを切り出し、2-ブタノン100mLを加えて4時間攪拌した後、エタノール20mLおよび水10mLを加えた。そして、攪拌下、水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ゴム100gに対するカルボキシル基のモル数を求めた。そして、求めたモル数をフマル酸モノメチルの量に換算したところ、ゴム中にはフマル酸モノメチル単位が2%含まれていた。
(実施例10~11)
 ゴム組成物の調製時に、1-アミノピレンに替えて、それぞれ、2-アミノアントラセン(実施例10)および3-アミノ-9-エチルカルバゾール(実施例11)を使用した以外は実施例9と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(実施例12)
 ゴム組成物の調製時に、SWCNT-1に替えて、多層カーボンナノチューブ(MWCNT)を使用した以外は実施例9と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(比較例1)
 ゴム組成物の調製時に、水素化カルボキシル化ニトリルゴム(HXNBR)100部に替えて、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を含まない水素化ニトリルゴム(HNBR;日本ゼオン製、商品名「Zetpol(登録商標)2010L」、ヨウ素価11、ムーニー粘度(ML1+4,100℃)57.5)を使用した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(比較例2)
 ゴム組成物の調製時に、単層カーボンナノチューブ(SWCNT-1)を配合しなかった以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(比較例3)
 ゴム組成物の調製時に、1-アミノピレンを配合しなかった以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
(比較例4)
 ゴム組成物の調製時に、1-アミノピレンに替えて、芳香族縮合環構造を有さない化合物である1,3,5-トリス(4-アミノフェニル)ベンゼンを使用した以外は実施例1と同様にして、ゴム組成物および成形体を調製した。そして、実施例1と同様にして流動温度Tfの測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムと、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物と、カーボンナノチューブとを併用した実施例1~12の成形体は、カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムを使用していない比較例1の成形体、カーボンナノチューブを使用していない比較例2の成形体、並びに、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物を使用していない比較例3,4の成形体と比較し、耐熱性を向上することができることが分かる。
 また、表1の実施例1~3より、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物の配合量を変更することで、成形体の耐熱性を更に向上させ得ることが分かる。更に、表1の実施例1,4~6および9~11より、1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物の種類を変更することで、成形体の耐熱性を更に向上させ得ることが分かる。また、表1の実施例1,7,8および9,12より、単層のCNT、特にBET比表面積の大きな単層CNTを使用することにより、成形体の耐熱性を向上させ得ることが分かる。
 本発明によれば、耐熱性に優れる成形体、および、当該成形体を形成可能なゴム組成物を提供することができる。

Claims (4)

  1.  カルボキシル基を1つ以上含有するエチレン性不飽和単量体単位を有するゴムと、
     1つ以上のアミノ基および3環以上の芳香族縮合環構造を有する化合物と、
     カーボンナノチューブと、
    を含む、ゴム組成物。
  2.  前記ゴム100質量部当たり、前記化合物を0.5質量部以上5質量部以下の割合で含む、請求項1に記載のゴム組成物。
  3.  前記化合物が、2-アミノアントラセン、1-アミノピレン、1,6-ジアミノピレンおよび3-アミノ-9-エチルカルバゾールからなる群より選択される少なくとも一種である、請求項1または2に記載のゴム組成物。
  4.  請求項1~3の何れかに記載のゴム組成物を成形してなる、成形体。
PCT/JP2017/019422 2016-06-15 2017-05-24 ゴム組成物および成形体 WO2017217203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/307,268 US20190292356A1 (en) 2016-06-15 2017-05-24 Rubber composition and shaped product
EP17813105.8A EP3473671A4 (en) 2016-06-15 2017-05-24 RUBBER COMPOSITION AND MOLDED ARTICLES
KR1020187035212A KR20190017766A (ko) 2016-06-15 2017-05-24 고무 조성물 및 성형체
CN201780034853.9A CN109312121A (zh) 2016-06-15 2017-05-24 橡胶组合物和成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119160 2016-06-15
JP2016119160A JP2017222785A (ja) 2016-06-15 2016-06-15 ゴム組成物および成形体

Publications (1)

Publication Number Publication Date
WO2017217203A1 true WO2017217203A1 (ja) 2017-12-21

Family

ID=60664521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019422 WO2017217203A1 (ja) 2016-06-15 2017-05-24 ゴム組成物および成形体

Country Status (6)

Country Link
US (1) US20190292356A1 (ja)
EP (1) EP3473671A4 (ja)
JP (1) JP2017222785A (ja)
KR (1) KR20190017766A (ja)
CN (1) CN109312121A (ja)
WO (1) WO2017217203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001357A1 (en) 2019-07-02 2021-01-07 Arlanxeo Deutschland Gmbh Use of vulcanisates comprising peg acrylate-hnbr copolymer in contact with pah
WO2021001343A1 (en) 2019-07-02 2021-01-07 Arlanxeo Deutschland Gmbh Hnbr vulcanisates containing polycyclic aromatic hydrocarbons

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536127B1 (ko) * 2023-01-20 2023-05-30 주식회사 페스티 파이렌을 포함하는 커플링제에 의해 개질된 실리카 입자를 포함하는 고무 보강용 충전제 및 이를 첨가하여 제조된 고무

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106901A (en) * 1976-03-02 1977-09-08 Oji Paper Co Photoosensitive resin composition
JP2005162790A (ja) * 2003-11-28 2005-06-23 Nara Institute Of Science & Technology カーボンナノチューブ複合体
JP2010001475A (ja) * 2008-06-23 2010-01-07 Lanxess Deutschland Gmbh カーボンナノチューブ含有ゴム組成物
JP2013504684A (ja) * 2009-09-14 2013-02-07 ナミックス株式会社 高密度相互接続フリップチップのためのアンダーフィル
WO2016013218A1 (ja) * 2014-07-25 2016-01-28 日本ゼオン株式会社 架橋性ゴム組成物およびゴム架橋物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158488A (en) * 1998-10-08 2000-12-12 The Goodyear Tire & Rubber Company Rubber composition containing modified carbon black and article having component thereof
ITMI20111170A1 (it) * 2011-06-27 2012-12-28 Polimeri Europa Spa "procedimento per la preparazione di gomme nitrile"

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106901A (en) * 1976-03-02 1977-09-08 Oji Paper Co Photoosensitive resin composition
JP2005162790A (ja) * 2003-11-28 2005-06-23 Nara Institute Of Science & Technology カーボンナノチューブ複合体
JP2010001475A (ja) * 2008-06-23 2010-01-07 Lanxess Deutschland Gmbh カーボンナノチューブ含有ゴム組成物
JP2013504684A (ja) * 2009-09-14 2013-02-07 ナミックス株式会社 高密度相互接続フリップチップのためのアンダーフィル
WO2016013218A1 (ja) * 2014-07-25 2016-01-28 日本ゼオン株式会社 架橋性ゴム組成物およびゴム架橋物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3473671A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001357A1 (en) 2019-07-02 2021-01-07 Arlanxeo Deutschland Gmbh Use of vulcanisates comprising peg acrylate-hnbr copolymer in contact with pah
WO2021001343A1 (en) 2019-07-02 2021-01-07 Arlanxeo Deutschland Gmbh Hnbr vulcanisates containing polycyclic aromatic hydrocarbons
US20220372255A1 (en) * 2019-07-02 2022-11-24 Arlanxeo Deutschland Gmbh HNBR vulcanisates containing polycyclic aromatic hydrocarbons

Also Published As

Publication number Publication date
US20190292356A1 (en) 2019-09-26
EP3473671A1 (en) 2019-04-24
EP3473671A4 (en) 2020-02-26
CN109312121A (zh) 2019-02-05
JP2017222785A (ja) 2017-12-21
KR20190017766A (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6202008B2 (ja) ゴム組成物および成形体
JP5536376B2 (ja) カーボンナノチューブ含有ゴム組成物
JP5338658B2 (ja) ニトリル共重合体ゴム組成物
JP6497375B2 (ja) ラテックス組成物およびその製造方法、並びに、複合材料の製造方法および導電性成形体の製造方法
JP5742836B2 (ja) ホース用ニトリル共重合体ゴム組成物および架橋物
WO2005092971A1 (ja) マスターバッチ組成物、これを含有してなるゴム組成物及び加硫物
WO2017217203A1 (ja) ゴム組成物および成形体
JP6624057B2 (ja) 架橋性ゴム組成物およびゴム架橋物
JPWO2013133358A1 (ja) ニトリル共重合体ゴム組成物の製造方法
JP2004285293A (ja) 架橋性ニトリル共重合ゴム組成物及び架橋成形体
JP2014156385A (ja) カーボンナノチューブ分散液及びその利用
JP2009221371A (ja) ニトリル共重合体ゴム組成物の製造方法
JP5803914B2 (ja) ニトリル共重合体ゴム組成物
WO2003046073A1 (fr) Vulcanisat de caoutchouc, procede de fabrication, composition polymere, composition de caoutchouc et composition de caoutchouc vulcanisable utilisee dans ce procede
WO2018123713A1 (ja) 架橋性ゴム組成物、及びゴム架橋物
JP4573035B2 (ja) ニトリル基含有共重合ゴム組成物及びゴム加硫物
JP4985922B2 (ja) 高飽和ニトリルゴム、その製造方法およびゴム架橋物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035212

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017813105

Country of ref document: EP

Effective date: 20190115