WO2017217066A1 - トランスアクスル装置 - Google Patents

トランスアクスル装置 Download PDF

Info

Publication number
WO2017217066A1
WO2017217066A1 PCT/JP2017/012273 JP2017012273W WO2017217066A1 WO 2017217066 A1 WO2017217066 A1 WO 2017217066A1 JP 2017012273 W JP2017012273 W JP 2017012273W WO 2017217066 A1 WO2017217066 A1 WO 2017217066A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
engine
rotating electrical
power
Prior art date
Application number
PCT/JP2017/012273
Other languages
English (en)
French (fr)
Inventor
大蔵 荻野
昌弘 松下
Original Assignee
三菱自動車工業株式会社
三菱自動車エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社, 三菱自動車エンジニアリング株式会社 filed Critical 三菱自動車工業株式会社
Priority to KR1020187035762A priority Critical patent/KR20190008288A/ko
Priority to EP17812972.2A priority patent/EP3453551A4/en
Priority to CN201780033149.1A priority patent/CN109311381A/zh
Priority to US16/304,059 priority patent/US20200317040A1/en
Publication of WO2017217066A1 publication Critical patent/WO2017217066A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/36Toothed gearings for conveying rotary motion with gears having orbital motion with two central gears coupled by intermeshing orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/48Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears
    • F16H3/52Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears
    • F16H3/54Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears one of the central gears being internally toothed and the other externally toothed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/73Planetary gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a transaxle device used in a hybrid vehicle equipped with an engine and two rotating electric machines.
  • the driving mode includes EV mode in which only the motor is driven using the battery charging power, series mode in which the generator is driven by the engine and only the motor is driven while generating power, and parallel driving in which the engine and the motor are used in combination. Mode etc. are included.
  • Switching of the running mode is performed by controlling a mechanism such as a sleeve or a clutch interposed on a power transmission path in the transaxle device. This mechanism is disposed, for example, on an axis in a power transmission path between the engine and the generator or on an axis in a power transmission path between the engine and the drive wheels (see Patent Documents 1 and 2).
  • the gear position can be switched according to the output required by the driver, the vehicle speed, etc. without switching the driving mode, the driving pattern will increase, and the effect of improving drivability and improving fuel efficiency is expected.
  • a plurality of shift stages may be provided in the transaxle device so as to be switchable.
  • the increase in the size of the powertrain including the transaxle device tends to cause a drop in the vehicle mountability. Therefore, in order to suppress the increase in the size of the powertrain, it is important to configure and arrange multiple gears and mechanisms for switching between them. Become.
  • This case has been devised in view of such a problem, and one of the purposes is to suppress an increase in the size of the power train regarding a transaxle device including a plurality of shift speeds and a mechanism for switching the speeds.
  • the present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and has another function and effect that cannot be obtained by conventional techniques. is there.
  • a transaxle device disclosed herein includes an engine, a first rotating electrical machine, and a second rotating electrical machine, and individually supplies the power of the engine and the first rotating electrical machine to an output shaft on a drive wheel side.
  • a transaxle device for a hybrid vehicle that transmits power of the engine to the second rotating electrical machine as well as a casing having a mounting surface to which the first rotating electrical machine and the second rotating electrical machine are attached.
  • a countershaft disposed in the casing and on a power transmission path between the input shaft and the output shaft that are coaxially connected to the rotation shaft of the engine, and is interposed in the countershaft And a switching mechanism that switches between a high gear stage and a low gear stage, and the planetary gear is close to the mounting surface of the casing and viewed from the mounting surface side. It is characterized in that it is arranged so as not to overlap with any of the first rotary electric machine and the second rotary electric machine.
  • the first rotating electric machine means a motor generator (motor generator) or an electric motor having a rotating armature or field and at least an electric function.
  • the second rotating electric machine means a motor generator (motor generator) or a generator having a rotating armature or a magnetic field and having at least a power generation function.
  • the switching mechanism includes a clutch provided so that two of the elements of the planetary gear can be restrained and a brake provided so that the sun gear of the planetary gear can be restrained.
  • the casing has a cylindrical portion that protrudes outward along the axial direction around the counter shaft and incorporates the planetary gear. In this case, it is preferable that the cylindrical portion is disposed in a region between the rotating shaft of the first rotating electrical machine and the rotating shaft of the second rotating electrical machine as viewed from the mounting surface side.
  • the transaxle device includes a connection / disconnection mechanism that is interposed on a power transmission path from the first rotating electrical machine to the output shaft, and that connects / disconnects transmission of power from the first rotating electrical machine. It is preferable.
  • a first gear provided on the input shaft for transmitting the power of the engine to the second rotating electrical machine, and provided on the input shaft separately from the first gear, And a second gear for transmitting to the output shaft side.
  • FIG. 3 It is a top view which illustrates the internal structure of the vehicle carrying the transaxle apparatus which concerns on embodiment. It is a typical side view of a power train provided with the transaxle device of FIG. It is sectional drawing which cut
  • (A) is a skeleton figure which shows the power train provided with the transaxle apparatus of FIG. 3,
  • (b) is a nomograph. It is a skeleton figure which shows the power train which concerns on a 1st modification.
  • (A) is a skeleton figure which shows the power train which concerns on a 2nd modification, (b) is a collinear chart.
  • (A) is a skeleton figure which shows the powertrain which concerns on a 3rd modification, (b) is a collinear chart. It is a skeleton figure which shows the power train which concerns on a 4th modification.
  • transaxle device as an embodiment will be described with reference to the drawings.
  • Each embodiment shown below is only an example, and there is no intention of excluding various modifications and application of technology that are not clearly shown in each of the following embodiments.
  • Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit thereof. Further, they can be selected as necessary, or can be appropriately combined.
  • the transaxle 1 (transaxle device) of the present embodiment is applied to the vehicle 10 shown in FIG.
  • This vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (electric motor, first rotating electrical machine), and a generator 4 for power generation (generator, second rotating electrical machine).
  • the generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3.
  • the vehicle 10 is prepared with three types of travel modes, EV mode, series mode, and parallel mode. These travel modes are alternatively selected by an electronic control unit (not shown) according to the vehicle state, the travel state, the driver's request output, etc., and the engine 2, motor 3 and generator 4 are used properly according to the type. It is done.
  • the motor 3 may have a power generation function (generator function), and the generator 4 may have an electric function (motor function).
  • the EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using the charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped.
  • the EV mode is selected when the running load and running speed are low or when the battery charge level is high.
  • the series mode is a travel mode in which the generator 2 is driven by the engine 2 to generate power, and the vehicle 10 is driven by the motor 3 using the electric power.
  • the series mode is selected when the traveling load and traveling speed are medium or when the battery charge level is low.
  • the parallel mode is a travel mode in which the vehicle 10 is mainly driven by the engine 2 and the drive of the vehicle 10 is assisted by the motor 3 as necessary, and is selected when the travel load and travel speed are high.
  • the engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and the respective powers of the engine 2 and the motor 3 are transmitted individually.
  • the generator 2 and the drive wheels 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheels 8.
  • the transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential device, hereinafter referred to as “diff 18”) and a transmission (reduction gear) are integrally formed. A plurality of mechanisms responsible for power transmission between the motor and the driven device are incorporated.
  • the transaxle 1 according to the present embodiment is configured to be capable of high / low switching (switching between a high speed stage and a low speed stage), and when traveling in a parallel mode, the electronic gear controls the high gear according to the traveling state, required output, and the like. The stage and the low gear stage are switched.
  • Engine 2 is an internal combustion engine (gasoline engine, diesel engine) that burns gasoline or light oil.
  • the engine 2 is a so-called horizontal engine that is disposed sideways so that the direction of the crankshaft 2 a (rotating shaft) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side surface of the transaxle 1. .
  • the crankshaft 2 a is disposed in parallel to the drive shaft 9 of the drive wheel 8.
  • the operating state of the engine 2 is controlled by an electronic control unit.
  • Both the motor 3 and the generator 4 are motor generators (motor / generators) having both a function as a motor and a function as a generator.
  • the motor 3 mainly functions as an electric motor to drive the vehicle 10 and functions as a generator during regeneration.
  • the generator 4 functions as an electric motor (starter) when starting the engine 2, and generates power with engine power when the engine 2 is operating.
  • An inverter (not shown) that converts a direct current and an alternating current is provided around each of the motor 3 and the generator 4 (or inside each).
  • the rotational speeds of the motor 3 and the generator 4 are controlled by controlling the inverter.
  • the operating state of the motor 3, generator 4 and each inverter is controlled by an electronic control unit.
  • the motor 3 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation shaft 3a, and with respect to the left side surface 1F (mounting surface) of the transaxle 1 with the bottom surface facing the transaxle 1 side. Fixed. Further, the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation shaft 4a, and, like the motor 3, the left side of the transaxle 1 with the bottom face directed to the transaxle 1 side. Fixed to the surface 1F.
  • FIG. 2 is a side view of the power train 7 including the engine 2, the motor 3, the generator 4, and the transaxle 1 as viewed from the left side. In this side view, the engine 2 is omitted. As shown in FIG. 2, a pump 5 is fixed to the left side surface 1 ⁇ / b> F of the transaxle 1 in addition to the motor 3 and the generator 4.
  • the pump 5 is a hydraulic pressure generator that pumps oil having a function such as hydraulic oil or lubricating oil to a hydraulic circuit (not shown) using the power on the drive wheel 8 side.
  • FIG. 3 is a cross-sectional view of the transaxle 1 according to the present embodiment cut in the axial direction along the power transmission path
  • FIG. 4A is a skeleton diagram of the powertrain 7 provided with the transaxle 1.
  • the pump 5 and the transaxle 1 are integrated (the pump 5 is built in the casing 1C).
  • FIG. 4B is a collinear diagram, where the vertical axis corresponds to the rotational speed (or rotational speed ratio), and the horizontal axes S, C, and R in the figure represent the sun gear, carrier, and ring gear, respectively. Correspond.
  • the transaxle 1 is provided with six shafts 11 to 16 arranged in parallel to each other.
  • the rotating shaft connected coaxially with the crankshaft 2a is referred to as an input shaft 11.
  • the rotation shafts coaxially connected to the drive shaft 9, the rotation shaft 3a of the motor 3 and the rotation shaft 4a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14, respectively.
  • the rotating shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first counter shaft 15 and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12.
  • the rotating shaft is called the second counter shaft 16.
  • both ends of the six shafts 11 to 16 are pivotally supported on the casing 1C via bearings 11e to 16e.
  • openings are formed in the side surfaces of the casing 1C located on the input shaft 11, the output shaft 12, the motor shaft 13, and the generator shaft 14, and are connected to the crankshaft 2a and the like through these openings.
  • a torque limiter 6 having a function of blocking excessive torque and protecting the power transmission mechanism is interposed on the crankshaft 2a.
  • the first counter shaft 15 is connected to the rotation shaft of the pump 5.
  • first path 61 a power transmission path from the input shaft 11 to the output shaft 12
  • second path 62 a power transmission path from the input shaft 11 to the generator shaft 14
  • third path 63 a power transmission path from the input shaft 11 to the generator shaft 14
  • the first path 61 (first mechanism) is a path related to power transmission from the engine 2 to the drive wheels 8 and is responsible for power transmission during the operation of the engine 2. In the middle of the first path 61, a switching mechanism 20A, which will be described later, is connected to perform connection / disconnection of the power transmission and high / low switching.
  • the second path 62 (second mechanism) is a path related to power transmission from the motor 3 to the drive wheels 8 and bears power transmission of the motor 3. In the middle of the second path 62, a connection / disconnection mechanism described later for connecting / disconnecting the power transmission is interposed.
  • the third path 63 (third mechanism) is a path related to power transmission from the engine 2 to the generator 4, and bears power transmission at the time of engine start and power transmission at the time of power generation by the engine 2.
  • the “fixed gear” means a gear that is provided integrally with the shaft and cannot rotate relative to the shaft.
  • the “idle gear” means a gear pivotally supported so as to be rotatable relative to the shaft.
  • the input shaft 11 and the generator shaft 14 are provided with fixed gears 11a and 14a, respectively. These fixed gears 11a and 14a are always meshed. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, so that power can be transmitted between the engine 2 and the generator 4.
  • the fixed gear 11 a of the input shaft 11 is always meshed with the idle gear 15 b provided on the first counter shaft 15.
  • the first countershaft 15 is provided with a switching mechanism 20A for controlling the power connection / disconnection state of the engine 2 and switching between the high gear stage and the low gear stage.
  • the switching mechanism 20A can freely restrain a planetary gear 30A interposed in the first counter shaft 15, a clutch 40A in which two of the elements of the planetary gear 30A can be restrained, and a sun gear 31a of the planetary gear 30A.
  • a brake 50 ⁇ / b> A a brake 50 ⁇ / b> A.
  • the planetary gear 30A is disposed near the left side surface 1F of the casing 1C and does not overlap with either the motor 3 or the generator 4 when viewed from the left side surface 1F (that is, in a side view).
  • the clutch 40A and the brake 50A are disposed adjacent to the left side of the planetary gear 30A.
  • the casing 1C of the present embodiment is formed in a cylindrical shape in which the periphery of the first counter shaft 15 projects outward (left side) along the axial direction.
  • This cylindrical projecting portion (hereinafter referred to as “cylindrical portion 1D”) is arranged and shaped so as not to interfere with either the motor 3 or the generator 4 when the motor 3 and the generator 4 are attached to the casing 1C.
  • the cylindrical portion 1D of the present embodiment has a rotating shaft 3a (motor shaft 13) of the motor 3 and a rotating shaft 4a ( It is arranged in the area between the generator shaft 14).
  • region between” here means the area
  • the switching mechanism 20A is built in the cylindrical portion 1D.
  • a pump 5 is attached to the outer end surface (left end surface) of the cylindrical portion 1D.
  • the planetary gear 30A includes a sun gear 31a composed of a rotating gear, a ring gear 33a connected to the rotating gear 15b via a connecting element 35a, a carrier 32a disposed between the sun gear 31a and the ring gear 33a, and a carrier
  • the pinion gear 34a is rotatably supported by the shaft 32a and always meshed with the sun gear 31a and the ring gear 33a.
  • the clutch 40A is a multi-plate clutch that controls the power connection / disconnection state and the gear position of the engine 2, and includes two engagement elements 41a and 42a.
  • the brake 50A is a multi-plate brake that controls the gear position together with the planetary gear 30A and the clutch 40A, and has two elements 51a and 52a.
  • the ring gear 33a has inner teeth that mesh with the pinion gear 34a, and rotates integrally with the idle gear 15b. Since the idle gear 15b is always meshed with the fixed gear 11a of the input shaft 11, the ring gear 33a is connected to the input shaft 11 via the fixed gear 11a, the idle gear 15b, and the coupling element 35a.
  • the power of 2 is an input element.
  • One engagement element 41a of the clutch 40A is fixed to the carrier 32a, and the first counter shaft 15 is connected to the carrier 32a. That is, the power of the engine 2 is output from the carrier 32a to the first countershaft 15 (drive wheel 8 side).
  • the sun gear 31a is pivotally supported so as to be rotatable relative to the first counter shaft 15.
  • the sun gear 31a has a tooth surface portion that meshes with the pinion gear 34a on the right portion, and a projecting portion that protrudes to the left of the tooth surface portion.
  • the engaging element 42a and the first element 51a of the brake 50A are fixed.
  • the second element 52a of the brake 50A is fixed to the cylindrical surface of the cylindrical portion 1D of the casing 1C.
  • the engagement elements 41a and 42a are separated (disconnected) and approached (engaged) from each other in accordance with the oil pressure of the oil flowing in from the oil passage inlet 5a provided at the left end of the first countershaft 15. Driven. That is, the clutch 40A opens or restrains the sun gear 31a and the carrier 32a among the elements of the planetary gear 30A according to the hydraulic pressure.
  • a pressure adjusting device that adjusts the oil pressure fed from the pump 5 to an appropriate oil pressure may be provided on the hydraulic circuit.
  • the pressure adjusting device includes a plurality of solenoid valves (on-off solenoid valves, linear solenoid valves, etc.).
  • the brake 50A is driven in a direction in which the two elements 51a and 52a are separated (cut) and approached (engaged) from each other in accordance with the oil pressure of oil flowing from an oil passage inlet (not shown) to restrain the sun gear 31a. Or open it.
  • the power input to the ring gear 33a is output from the carrier 32a and driven. It is transmitted to the wheel 8 side.
  • the clutch 40A is disengaged and the brake 50A opens the sun gear 31a, the power input to the ring gear 33a is not transmitted to the drive wheel 8 side. That is, in this case, the power transmission of the engine 2 is cut off.
  • the sun gear 31a and the carrier 32a are restrained and rotate integrally.
  • the alignment chart in this case is as shown on the left side of FIG. 4B, and since the rotation speed is the same for all three elements, the gear ratio is 1.
  • the brake 50A restrains the sun gear 31a with the clutch 40A disconnected, the rotation of the sun gear 31a is prohibited.
  • the alignment chart in this case is as shown on the right side of FIG. 4B, and the rotational speed of the carrier 32a (output) is smaller than the rotational speed of the ring gear 33a (input).
  • the rotation of the sun gear 31a when the rotation of the sun gear 31a is prohibited, the rotation of the engine 2 is decelerated (torque is amplified) and output from the carrier 32a, so that the gear ratio is greater than 1.
  • a low gear position is achieved with respect to a state in which the sun gear 31a and the carrier 32a are constrained (a state where the gear ratio is 1).
  • the high gear stage (gear ratio 1) and the low gear stage are switched by controlling the clutch 40A and the brake 50A of the switching mechanism 20A.
  • the gear ratio of the low gear stage is changed to the gear ratio of the high gear stage (shift ratio) by prohibiting the rotation of the sun gear 31a and the rotation of the carrier 32a and the ring gear 33a.
  • the value is close to the ratio 1).
  • the first counter shaft 15 is provided with a fixed gear 15a adjacent to the right side of the idle gear 15b.
  • This fixed gear 15 a is always meshed with a ring gear 18 a of a differential 18 provided on the output shaft 12.
  • the second counter shaft 16 is provided with two fixed gears 16a and 16b.
  • the fixed gear 16a closer to the right side surface has a tooth surface portion that always meshes with an idler gear 13b provided on the motor shaft 13, and a parking gear 19 is integrated on the right side of the tooth surface portion.
  • the fixed gear 16b near the left side surface 1F is always meshed with the ring gear 18a of the differential 18.
  • the idle gear 13b of the motor shaft 13 constitutes a connection / disconnection mechanism together with the motor side clutch 17 interposed in the motor shaft 13.
  • the motor-side clutch 17 is a multi-plate clutch that controls the power connection / disconnection state of the motor 3, and includes an engagement element 17a fixed to the motor shaft 13 and an engagement element 17b fixed to the idle gear 13b. Have.
  • the engaging element 17a receives power from the motor 3, and the engaging element 17b outputs power to the drive wheel 8 side.
  • These engaging elements 17a and 17b are driven in directions of separating (cutting) and approaching (engaging) each other according to the oil pressure of the oil flowing from the oil passage inlet 5b provided in the motor shaft 13.
  • the motor side clutch 17 When the motor side clutch 17 is engaged, the power of the motor 3 is transmitted to the drive wheel 8 side via the idle gear 13b and the fixed gears 16a and 16b, and the rotation on the drive wheel 8 side is transmitted to the motor 3. . That is, in the state where the motor side clutch 17 is engaged, power running drive and regenerative power generation by the motor 3 are possible. On the contrary, if the motor-side clutch 17 is disconnected while the engine 2 is running (when the motor 3 is stopped), the idle gear 13b is idled, and the rotation on the drive wheel 8 side is not transmitted to the motor 3. 3 is not carried around and resistance is reduced.
  • the parking gear 19 is an element constituting a parking lock device.
  • the parking gear 19 is engaged with a parking sprag (not shown) to rotate the second counter shaft 16 (that is, the output shaft 12).
  • Ban As shown in FIG. 3, the differential 18 transmits the power transmitted to the ring gear 18a to the output shaft 12 via the differential case 18b, the pinion shaft 18c, the differential pinion 18d, and the side gear 18e.
  • the transaxle 1 described above is provided with a switching mechanism 20A, which switches between the high gear stage and the low gear stage according to the running state, the required output, and the like when traveling in the parallel mode. That is, in the parallel mode, the power of the engine 2 can be switched (transmitted) in two stages, so that the driving pattern can be increased, and the effects of improving drivability and improving fuel efficiency can be obtained. Can be improved. Further, since the switching mechanism 20A is configured to include the planetary gear 30A, it is possible to suppress the generation of sound at the time of high / low switching as compared with a case where a switching mechanism using a sleeve is provided, for example.
  • the planetary gear 30A interposed in the first counter shaft 15 is disposed near the left side surface 1F to which the motor 3 and the generator 4 are attached, and is not overlapped with either the motor 3 or the generator 4 in a side view.
  • the power train 7 including the transaxle 1 while incorporating a plurality of shift speeds (high gear speed, low gear speed) and a switching mechanism 20A for switching between the speed change gears.
  • the power of the engine 2 and the motor 3 can be output individually, so even if torque loss occurs during high / low switching, this torque loss can be covered with the power of the motor 3. Thereby, a shift shock can be suppressed.
  • the switching mechanism 20A has the clutch 40A and the brake 50A, and the sun gear 31a of the planetary gear 30A is restrained by the brake 50A.
  • the parallel mode that travels with the power of the engine 2 is a travel mode that is selected when the travel load and the travel speed are high. Therefore, when two gear ratios are set in the parallel mode, the parallel mode is performed at a high vehicle speed range. Therefore, it is necessary to make these transmission ratios close to each other.
  • the brake 50A since the brake 50A restrains the sun gear 31a, the gear ratio between the high gear stage and the low gear stage can be made close to each other.
  • the casing 1C of the transaxle 1 described above is outward in the region between the rotating shaft 3a (motor shaft 13) of the motor 3 and the rotating shaft 4a (generator shaft 14) of the generator 4 in a side view. It has a protruding cylindrical part 1D. That is, the cylindrical portion 1D is provided so as not to interfere with the motor 3 and the generator 4, so that the planetary gear 30A is incorporated in the cylindrical portion 1D without increasing the size of the power train 7.
  • a switching mechanism 20A having a planetary gear 30A can be incorporated in the transaxle 1.
  • connection / disconnection mechanism is interposed on the power transmission path (second path 62) from the motor 3 to the output shaft 12, the power transmission of the motor 3 and the motor 3 The power transmission to can be connected and disconnected.
  • the power transmission is cut off, thereby avoiding the rotation of the motor 3. can do.
  • field weakening control has been performed to prevent the occurrence of regenerative braking when the motor 3 is rotated at high speed.
  • this control requires electric power, the field-weakening control is not preferable from the viewpoint of improving power consumption.
  • the field weakening control is not performed, depending on the number of rotations of the motor 3, a phenomenon that a regenerative brake is generated despite acceleration is generated, which may give the driver a sense of incongruity.
  • FIGS. 5 to 8 are skeleton diagrams showing a powertrain 7 including the transaxle 1 according to the first to fourth modifications.
  • symbol (different alphabet etc. to the same number) is attached
  • the overlapping description is omitted.
  • the transaxle 1 according to the first modification is different from the above-described embodiment except that the configuration for connecting the input shaft 11 and the generator shaft 14 is different from the configuration of the connection / disconnection mechanism. It is constituted similarly.
  • a fixed gear 11b (second gear) that is always meshed with the fixed gear 14a of the generator 14 is provided on the input shaft 11, and the engine 2 and the generator are connected by these fixed gears 11b and 14a. Power transmission to and from 4 is possible.
  • the fixed gear 11a (first gear) described above is always meshed only with the idle gear 15b of the first counter shaft 15.
  • the transaxle 1 of the present modification is provided with a connection / disconnection mechanism having a motor side clutch 17 ′ and an idle gear 16 c interposed in the second counter shaft 16.
  • the idle gear 16 c is fixed to one engaging element 17 a ′ of the motor side clutch 17 ′, and always meshes with a fixed gear 13 a provided on the motor shaft 13, and rotates following the rotation of the motor shaft 13.
  • the motor-side clutch 17 ′ is a multi-plate clutch that controls the power connection / disconnection state of the motor 3.
  • the motor-side clutch 17 ′ is fixed to one engagement element 17 a ′ fixed to the idle gear 16 c and the second counter shaft 16. And the other engaging element 17b '.
  • the engaging element 17a ' is input with power from the motor 3, and the engaging element 17b' outputs power to the drive wheel 8 side.
  • These engagement elements 17a 'and 17b' are driven in a direction of separating (cutting) and approaching (engaging) each other according to the oil pressure of the oil flowing in from the oil passage inlet 5b provided in the second countershaft 16.
  • the operation and effect when the motor side clutch 17 'is connected / disconnected are the same as those of the above-described embodiment.
  • the input shaft 11 of the present modification is provided with a fixed gear 11a for transmitting power to the output shaft 12 side and a fixed gear 11b for transmitting power to the generator 4 separately from this.
  • a fixed gear 11a for transmitting power to the output shaft 12 side
  • a fixed gear 11b for transmitting power to the generator 4 separately from this.
  • the transaxle 1 according to the second modification is different from that of the above-described embodiment in that the carrier 32b and the ring gear 33b of the planetary gear 30B are restrained by the clutch 40B.
  • the input shaft 11 is provided with a fixed gear 11b
  • the second countershaft 16 is provided with a connection / disconnection mechanism. It may be the same as the embodiment described above.
  • the switching mechanism 20B of this modification is for switching between a high gear stage and a low gear stage, and includes a planetary gear 30B and a clutch 40B interposed in the first counter shaft 15, and a brake 50B.
  • the ring gear 33b is connected to the idle gear 15b via one engagement element 41b of the clutch 40B, and the carrier 32b is connected to the first counter shaft 15. That is, also in this modification, the power of the engine 2 is input to the ring gear 33b and output from the carrier 32b.
  • the first element 51b of the brake 50B is fixed to the sun gear 31b.
  • the sun gear 31b is restrained.
  • the other engagement element 42 b of the clutch 40 B is fixed to the first counter shaft 15.
  • the engagement elements 41b and 42b are separated (cut) and approached (engaged) with each other in accordance with the oil pressure of the oil flowing from the oil passage inlet 5a provided on the right side of the first countershaft 15. ) Is driven in the direction. That is, the clutch 40B opens or restrains the carrier 32b and the ring gear 33b among the elements of the planetary gear 30B according to the hydraulic pressure.
  • the transaxle 1 according to this modification can also switch between the high gear stage (speed ratio 1) and the low gear stage, as in the above-described embodiment.
  • the same effects as those of the above-described embodiment can be obtained.
  • the transaxle 1 according to the third modification is different from that of the embodiment described above in that the power input / output path for the planetary gear 30C is different, and the carrier 32c and the ring gear 33c are connected. It differs in that it is restrained by the clutch 40C.
  • the input shaft 11 is provided with a fixed gear 11b
  • the second countershaft 16 is provided with a connection / disconnection mechanism. It may be the same as the embodiment described above.
  • the switching mechanism 20C of this modification is for switching between a high gear stage and a low gear stage, and has a planetary gear 30C, a clutch 40C, and a brake 50C that are interposed in the first countershaft 15.
  • the carrier 32c is connected to the idle gear 15b via the first connecting element 35c
  • the ring gear 33c is connected to the first counter shaft 15 via the second connecting element 36c. That is, in this modification, the power of the engine 2 is input to the carrier 32c and output from the ring gear 33c.
  • the first element 51c of the brake 50C is fixed to the sun gear 31c.
  • the sun gear 31c is restrained.
  • one engagement element 41c is fixed to the carrier 32c, and the other engagement element 42c is fixed to the first counter shaft 15. That is, the clutch 40C of the present modification opens or restrains the carrier 32c and the ring gear 33c among the elements of the planetary gear 30C according to the hydraulic pressure.
  • the transaxle 1 of the present modification if the clutch 40C is engaged or the brake 50C is in a state of restraining the sun gear 31c, the power input to the carrier 32c is output from the ring gear 33c and fixed. It is transmitted to the drive wheel 8 side through the gear 15a. On the other hand, when the clutch 40C is disengaged and the brake 50C opens the sun gear 31c, the power transmission of the engine 2 is cut off.
  • the carrier 32c and the ring gear 33c are restrained and rotate integrally.
  • the alignment chart in this case is as shown on the left side of FIG. 7B, and since the rotational speed is the same for all three elements, the gear ratio is 1.
  • the brake 50C restrains the sun gear 31c with the clutch 40C disengaged, the rotation of the sun gear 31c is prohibited.
  • the alignment chart in this case is as shown on the right side of FIG. 7B, and the rotational speed of the ring gear 33c (output) is larger than the rotational speed of the carrier 32c (input).
  • the transaxle 1 of this modification the high gear stage and the low gear stage (gear ratio 1) can be switched as in the above-described embodiment.
  • the same effects as those of the above-described embodiment can be obtained.
  • the transaxle 1 according to the third modification is different from that of the above-described embodiment in that the planetary gear 30D is a step pinion type and the power input / output path for the planetary gear 30D is different.
  • the input shaft 11 is provided with a fixed gear 11b
  • the second countershaft 16 is provided with a connection / disconnection mechanism. It may be the same as the embodiment described above.
  • the switching mechanism 20D of the present modification also switches between a high gear stage and a low gear stage, and includes a planetary gear 30D, a clutch 40D, and a brake 50D that are interposed in the first countershaft 15.
  • the carrier 32d is connected to the idle gear 15b, and one engaging element 41d of the clutch 40D is fixed.
  • two pinion gears 34d and 34d 'having different numbers of teeth are rotatably supported on the carrier 32d.
  • One pinion gear 34d with a large number of teeth is always meshed with the sun gear 31d, and the other pinion gear 34d 'with a small number of teeth is always meshed with the ring gear 33d.
  • the ring gear 33d is connected to the first countershaft 15 via a coupling element 35d. That is, in this modification, the power of the engine 2 is input to the carrier 32d and output from the ring gear 33d.
  • the sun gear 31d is provided as an idler gear as in the above-described embodiment, and the other engaging element 42d of the clutch 40D and the first element 51d of the brake 50D are fixed.
  • the second element 52d of the brake 50D is fixed to the casing 1C. That is, also in this modification, the clutch 40D restrains or releases the sun gear 31d and the carrier 32d according to the oil pressure, and the brake 50D restrains or releases the sun gear 31d according to the oil pressure.
  • the transaxle 1 of this modification if the clutch 40D is engaged or the brake 50D is in a state of restraining the sun gear 31d, the power input to the carrier 32d is output from the ring gear 33d and fixed. It is transmitted to the drive wheel 8 side through the gear 15a. On the other hand, when the clutch 40D is disengaged and the brake 50D opens the sun gear 31d, the power transmission of the engine 2 is cut off.
  • the transaxle 1 of this modification the high gear stage and the low gear stage (gear ratio 1) can be switched as in the above-described embodiment.
  • the same effects as those of the above-described embodiment can be obtained.
  • the switching mechanism may be configured to switch between a high gear stage and a low gear stage by restraining one element other than the sun gear of the planetary gear with a brake and restraining two elements with a clutch.
  • the relative positions of the engine 2, the motor 3, the generator 4, and the pump 5 with respect to the transaxle 1 are not limited to those described above.
  • the arrangement of the six shafts 11 to 16 in the transaxle 1 may be set according to these relative positions.
  • the arrangement of gears provided on each shaft in the transaxle 1 is an example, and is not limited to the above.
  • the motor-side clutch 17 interposed in the middle of the second path 62 related to power transmission from the motor 3 to the drive wheels 8 may be omitted.

Abstract

エンジン(2),第一の回転電機(3)及び第二の回転電機(4)を装備したハイブリッド車両のトランスアクスル装置(1)は、エンジン(2)及び第一の回転電機(3)の動力を個別に駆動輪側の出力軸(12)に伝達するとともにエンジン(2)の動力を第二の回転電機(4)にも伝達する。また、トランスアクスル装置(1)は、第一及び第二の回転電機(3,4)が取り付けられる取付面(1F)を持つケーシング(1C)と、ケーシング(1C)内であって、エンジン(2)の回転軸(2a)と同軸上に接続された入力軸(11)及び出力軸(12)の間の動力伝達経路上に配置されたカウンタ軸(15)と、カウンタ軸(15)に介装された遊星ギヤ(30A)を持ち、ハイギヤ段とローギヤ段とを切り替える切替機構(20A)と、を備えている。遊星ギヤ(30A)は、ケーシング(1C)の取付面(1F)寄りであって、取付面(1F)側から見て第一及び第二の回転電機(3,4)のいずれとも重ならないように配置されている。

Description

トランスアクスル装置
 本発明は、エンジンと二つの回転電機とを装備したハイブリッド車両に用いられるトランスアクスル装置に関する。
 従来、エンジンと回転電機(モータ,ジェネレータ,モータジェネレータ)とを装備したハイブリッド車両において、走行モードを切り替えながら走行する車両が実用化されている。走行モードには、バッテリの充電電力を用いてモータのみで走行するEVモードや、エンジンによってジェネレータを駆動し、発電しながらモータのみで走行するシリーズモード、エンジンとモータとを併用して走行するパラレルモード等が含まれる。走行モードの切り替えは、トランスアクスル装置内における動力伝達経路上に介装されたスリーブやクラッチ等の機構が制御されることで実施される。この機構は、例えばエンジンとジェネレータとの間の動力伝達経路内の軸上や、エンジンと駆動輪との間の動力伝達経路内の軸上に配置される(特許文献1,2参照)。
特開平11-170877号公報 特開2013-180680号公報
 ところで、走行モードを切り替えることなく、運転者の要求する出力や車速等に応じて変速段を切り替えることができれば、走行パターンが増えることになり、ドライバビリティの向上や燃費改善といった効果が見込まれる。これを実現するためには、トランスアクスル装置内に複数の変速段を切り替え可能に設ければよい。ただし、トランスアクスル装置を含むパワートレインの大型化は車両搭載性の低下を招きやすいため、パワートレインの大型化を抑制するためには複数の変速段やこれを切り替える機構の構成,配置が重要となる。
 本件は、このような課題に鑑み案出されたもので、複数の変速段とこれを切り替える機構とを備えたトランスアクスル装置に関し、パワートレインの大型化を抑制することを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。
 (1)ここで開示するトランスアクスル装置は、エンジン,第一の回転電機及び第二の回転電機を装備し、前記エンジン及び前記第一の回転電機の動力を個別に駆動輪側の出力軸に伝達するとともに前記エンジンの動力を前記第二の回転電機にも伝達するハイブリッド車両のトランスアクスル装置であって、前記第一の回転電機及び前記第二の回転電機が取り付けられる取付面を有するケーシングと、前記ケーシング内であって、前記エンジンの回転軸と同軸上に接続された入力軸と前記出力軸との間の動力伝達経路上に配置されたカウンタ軸と、前記カウンタ軸に介装された遊星ギヤを有し、ハイギヤ段とローギヤ段とを切り替える切替機構と、を備え、前記遊星ギヤが、前記ケーシングの前記取付面寄りであって、前記取付面側から見て前記第一の回転電機及び前記第二の回転電機のいずれとも重ならないように配置されたことを特徴としている。なお、前記第一の回転電機とは、回転する電機子又は界磁を有し、少なくとも電動機能を有する電動発電機(モータジェネレータ)又は電動機を意味する。また、前記第二の回転電機とは、回転する電機子又は界磁を有し、少なくとも発電機能を有する電動発電機(モータジェネレータ)又は発電機を意味する。
 (2)前記切替機構は、前記遊星ギヤの要素のうちの二つを拘束自在に設けられたクラッチと、前記遊星ギヤのサンギヤを拘束自在に設けられたブレーキと、を有することが好ましい。
 (3)前記ケーシングは、前記カウンタ軸の周囲に軸方向に沿って外方へ突設され、前記遊星ギヤを内蔵する筒状部を有することが好ましい。この場合、前記筒状部は、前記取付面側から見て前記第一の回転電機の回転軸と前記第二の回転電機の回転軸との間の領域内に配置されていることが好ましい。
 (4)前記トランスアクスル装置は、前記第一の回転電機から前記出力軸までの動力伝達経路上に介装され、前記第一の回転電機の動力の伝達を断接する断接機構を備えていることが好ましい。
 (5)前記入力軸に設けられ、前記エンジンの動力を前記第二の回転電機に伝達する第一ギヤと、前記入力軸に前記第一ギヤとは別体で設けられ、前記エンジンの動力を前記出力軸側に伝達する第二ギヤと、を備えていることが好ましい。
 パワートレインの大型化を抑制しながら、複数の変速段(ハイギヤ段,ローギヤ段)とこれを切り替えるための機構とを備えることができる。
実施形態に係るトランスアクスル装置を搭載した車両の内部構成を例示する上面図である。 図1のトランスアクスル装置を備えたパワートレインの模式的な側面図である。 図1のトランスアクスル装置を動力伝達経路に沿って軸方向に切断した断面図である。 (a)は図3のトランスアクスル装置を備えたパワートレインを示すスケルトン図であり、(b)は共線図である。 第一変形例に係るパワートレインを示すスケルトン図である。 (a)は第二変形例に係るパワートレインを示すスケルトン図であり、(b)は共線図である。 (a)は第三変形例に係るパワートレインを示すスケルトン図であり、(b)は共線図である。 第四変形例に係るパワートレインを示すスケルトン図である。
 図面を参照して、実施形態としてのトランスアクスル装置について説明する。以下に示す各実施形態はあくまでも例示に過ぎず、以下の各実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。
[1.全体構成]
 本実施形態のトランスアクスル1(トランスアクスル装置)は、図1に示す車両10に適用される。この車両10は、エンジン2と走行用のモータ3(電動機,第一の回転電機)と発電用のジェネレータ4(発電機,第二の回転電機)とを装備したハイブリッド車両である。ジェネレータ4はエンジン2に連結され、モータ3の作動状態とは独立して作動可能とされる。また、車両10にはEVモード,シリーズモード,パラレルモードの三種類の走行モードが用意される。これらの走行モードは、図示しない電子制御装置によって、車両状態や走行状態,運転者の要求出力等に応じて択一的に選択され、その種類に応じてエンジン2,モータ3,ジェネレータ4が使い分けられる。なお、モータ3は発電機能(ジェネレータの機能)を有していてもよいし、また、ジェネレータ4は電動機能(モータの機能)を有していてもよい。
 EVモードは、エンジン2及びジェネレータ4を停止させたまま、図示しない駆動用のバッテリの充電電力を用いてモータ3のみで車両10を駆動する走行モードである。EVモードは、走行負荷,走行速度が低い場合やバッテリの充電レベルが高い場合に選択される。シリーズモードは、エンジン2でジェネレータ4を駆動して発電しつつ、その電力を利用してモータ3で車両10を駆動する走行モードである。シリーズモードは、走行負荷,走行速度が中程度の場合やバッテリの充電レベルが低い場合に選択される。パラレルモードは、おもにエンジン2で車両10を駆動し、必要に応じてモータ3で車両10の駆動をアシストする走行モードであり、走行負荷,走行速度が高い場合に選択される。
 駆動輪8には、トランスアクスル1を介してエンジン2及びモータ3が並列に接続され、エンジン2及びモータ3のそれぞれの動力が個別に伝達される。また、エンジン2には、トランスアクスル1を介してジェネレータ4及び駆動輪8が並列に接続され、エンジン2の動力が駆動輪8に加えてジェネレータ4にも伝達される。
 トランスアクスル1は、デファレンシャルギヤ18(差動装置、以下「デフ18」と呼ぶ)を含むファイナルドライブ(終減速機)とトランスミッション(減速機)とを一体に形成した動力伝達装置であり、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。本実施形態のトランスアクスル1は、ハイロー切替(高速段,低速段の切替)が可能に構成されており、パラレルモードでの走行時において、電子制御装置によって走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。
 エンジン2は、ガソリンや軽油を燃焼とする内燃機関(ガソリンエンジン,ディーゼルエンジン)である。このエンジン2は、クランクシャフト2a(回転軸)の向きが車両10の車幅方向に一致するように横向きに配置されたいわゆる横置きエンジンであり、トランスアクスル1の右側面に対して固定される。クランクシャフト2aは、駆動輪8のドライブシャフト9に対して平行に配置される。エンジン2の作動状態は、電子制御装置で制御される。
 モータ3及びジェネレータ4はいずれも、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機(モータ・ジェネレータ)である。モータ3は、おもに電動機として機能して車両10を駆動し、回生時には発電機として機能する。ジェネレータ4は、エンジン2を始動させる際に電動機(スターター)として機能し、エンジン2の作動時にはエンジン動力で発電を実施する。モータ3及びジェネレータ4の各周囲(又は各内部)には、直流電流と交流電流とを変換するインバータ(図示略)が設けられる。モータ3及びジェネレータ4の各回転速度は、インバータを制御することで制御される。なお、モータ3,ジェネレータ4,各インバータの作動状態は、電子制御装置で制御される。
 本実施形態のモータ3は、その外形が回転軸3aを中心軸とした円筒状に形成され、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面1F(取付面)に対して固定される。また、本実施形態のジェネレータ4は、その外形が回転軸4aを中心軸とした円筒状に形成され、モータ3と同様に、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面1Fに対して固定される。
 図2は、エンジン2,モータ3,ジェネレータ4,トランスアクスル1を含むパワートレイン7を左側から見た側面図である。なお、この側面図ではエンジン2を省略している。図2に示すように、トランスアクスル1の左側面1Fには、モータ3及びジェネレータ4に加えてポンプ5が固定される。ポンプ5は、駆動輪8側の動力を利用して、作動油や潤滑油といった機能を持つオイルを図示しない油圧回路に圧送する油圧発生装置である。
[2.トランスアクスル]
 図3は、本実施形態のトランスアクスル1を動力伝達経路に沿って軸方向に切断した断面図であり、図4(a)はこのトランスアクスル1を備えたパワートレイン7のスケルトン図である。なお、図4以降のスケルトン図では、ポンプ5とトランスアクスル1とを一体化させて(ポンプ5をケーシング1Cに内蔵させて)図示する。また、図4(b)は共線図であり、図中縦軸は回転速度(あるいは回転速度比)に対応し、図中横軸のS,C,Rはそれぞれ、サンギヤ,キャリア,リングギヤに対応する。
 図2~図4(a)に示すように、トランスアクスル1には、互いに平行に配列された六つの軸11~16が設けられる。以下、クランクシャフト2aと同軸上に接続される回転軸を入力軸11と呼ぶ。同様に、ドライブシャフト9,モータ3の回転軸3a,ジェネレータ4の回転軸4aのそれぞれと同軸上に接続される回転軸を、出力軸12,モータ軸13,ジェネレータ軸14と呼ぶ。また、入力軸11と出力軸12との間の動力伝達経路上に配置された回転軸を第一カウンタ軸15と呼び、モータ軸13と出力軸12との間の動力伝達経路上に配置された回転軸を第二カウンタ軸16と呼ぶ。
 図3に示すように、六つの軸11~16はいずれも、両端部が軸受11e~16eを介してケーシング1Cに軸支される。また、入力軸11,出力軸12,モータ軸13,ジェネレータ軸14のそれぞれの軸上に位置するケーシング1Cの側面には開口が形成されており、これらの開口を通じてクランクシャフト2a等と接続される。なお、クランクシャフト2a上には、過大トルクを遮断して動力伝達機構を保護する機能を持ったトルクリミッタ6が介装される。また、図4(a)に示すように、第一カウンタ軸15には、ポンプ5の回転軸が接続される。
 トランスアクスル1の内部には、三つの動力伝達経路が形成される。具体的には、図2中に二点鎖線で示すように、入力軸11から出力軸12に至る動力伝達経路(以下「第一経路61」と呼ぶ)と、モータ軸13から出力軸12に至る動力伝達経路(以下「第二経路62」と呼ぶ)と、入力軸11からジェネレータ軸14に至る動力伝達経路(以下「第三経路63」と呼ぶ)とが形成される。
 第一経路61(第一機構)は、エンジン2から駆動輪8への動力伝達に係る経路であり、エンジン2の作動時における動力の伝達を担うものである。第一経路61の中途には、その動力伝達の断接とハイロー切替とを実施する後述の切替機構20Aが介装される。第二経路62(第二機構)は、モータ3から駆動輪8への動力伝達に係る経路であり、モータ3の動力伝達を担うものである。第二経路62の中途には、その動力伝達を断接する後述の断接機構が介装される。第三経路63(第三機構)は、エンジン2からジェネレータ4への動力伝達に係る経路であり、エンジン始動時の動力伝達及びエンジン2による発電時の動力伝達を担うものである。
 次に、図3,図4(a)及び(b)を用いてトランスアクスル1の構成を詳述する。なお、以下の説明において、「固定ギヤ」とは、軸と一体に設けられ、軸に対して相対回転不能な歯車を意味する。また、「遊転ギヤ」とは、軸に対して相対回転可能に枢支された歯車を意味する。
 図3及び図4(a)に示すように、入力軸11及びジェネレータ軸14には、固定ギヤ11a,14aがそれぞれ設けられる。これらの固定ギヤ11a,14aは常時噛合している。つまり、入力軸11とジェネレータ軸14とは、二つの固定ギヤ11a,14aを介して連結されており、エンジン2とジェネレータ4との間で動力伝達可能とされる。なお、入力軸11の固定ギヤ11aは、第一カウンタ軸15に設けられた遊転ギヤ15bとも常時噛合している。
 第一カウンタ軸15には、エンジン2の動力の断接状態を制御するとともにハイギヤ段とローギヤ段とを切り替える切替機構20Aが介装される。切替機構20Aは、第一カウンタ軸15に介装された遊星ギヤ30Aと、遊星ギヤ30Aの要素のうちの二つを拘束自在に設けられたクラッチ40Aと、遊星ギヤ30Aのサンギヤ31aを拘束自在に設けられたブレーキ50Aとを有する。遊星ギヤ30Aは、ケーシング1Cの左側面1F寄りであって、左側面1F側から見て(すなわち側面視で)モータ3及びジェネレータ4のいずれとも重ならないように配置される。クラッチ40A及びブレーキ50Aは、この遊星ギヤ30Aの左側に隣接配置される。
 本実施形態のケーシング1Cは、第一カウンタ軸15の周囲が、軸方向に沿って外方(左側)へ突設された筒状に形成される。この筒状の突設部分(以下「筒状部1D」という)は、ケーシング1Cにモータ3及びジェネレータ4を取り付ける場合に、モータ3及びジェネレータ4のいずれとも干渉しない配置及び形状とされる。本実施形態の筒状部1Dは、パワートレイン7を左側面1F(取付面)側から見て(側面視で)、モータ3の回転軸3a(モータ軸13)とジェネレータ4の回転軸4a(ジェネレータ軸14)との間の領域内に配置される。なお、ここでいう「間の領域」とは、側面視で、二つの軸3a,4aを結んだ直線に対して直交するとともに各軸3a,4aを通る二直線で挟まれた領域を意味する。切替機構20Aは、この筒状部1Dに内蔵される。なお、筒状部1Dの外端面(左側の端面)には、ポンプ5が取り付けられる。
 遊星ギヤ30Aは、遊転ギヤで構成されたサンギヤ31aと、連結要素35aを介して遊転ギヤ15bと接続されたリングギヤ33aと、サンギヤ31a及びリングギヤ33aの間に配置されたキャリア32aと、キャリア32aに回動可能に支持されてサンギヤ31a及びリングギヤ33aと常時噛合しているピニオンギヤ34aとを有する。また、クラッチ40Aは、エンジン2の動力の断接状態と変速段とを制御する多板式クラッチであり、二つの係合要素41a,42aを有する。ブレーキ50Aは、遊星ギヤ30A及びクラッチ40Aとともに変速段を制御する多板式ブレーキであり、二つの要素51a,52aを有する。
 リングギヤ33aは、ピニオンギヤ34aと噛合する内側の歯を有し、遊転ギヤ15bと一体回転する。遊転ギヤ15bは入力軸11の固定ギヤ11aと常時噛合していることから、リングギヤ33aは、固定ギヤ11a,遊転ギヤ15b及び連結要素35aを介して入力軸11に接続されており、エンジン2の動力が入力される要素となる。キャリア32aには、クラッチ40Aの一方の係合要素41aが固定されるとともに、第一カウンタ軸15が接続される。すなわち、エンジン2の動力は、キャリア32aから第一カウンタ軸15(駆動輪8側)へ出力される。
 サンギヤ31aは、第一カウンタ軸15に対して相対回転可能に枢支され、右部にピニオンギヤ34aと噛み合う歯面部を持ち、この歯面部の左側に突設された突出部にクラッチ40Aの他方の係合要素42aとブレーキ50Aの第一要素51aとが固定されている。なお、ブレーキ50Aの第二要素52aは、ケーシング1Cの筒状部1Dの筒面に固定されている。
 クラッチ40Aは、第一カウンタ軸15の左端に設けられた油路入口5aから流入したオイルの油圧に応じて、係合要素41a,42aが互いに離間(切断),接近(係合)する方向に駆動される。すなわち、クラッチ40Aは、遊星ギヤ30Aの要素のうち、サンギヤ31aとキャリア32aとを油圧に応じて開放又は拘束する。なお、ポンプ5から圧送されたオイルを適切な油圧に調圧する調圧装置を油圧回路上に設けてもよい。調圧装置は、例えば複数のソレノイド弁(オンオフソレノイド弁,リニアソレノイド弁等)から構成される。また、ブレーキ50Aは、図示しない油路入口から流入したオイルの油圧に応じて、二つの要素51a,52aが互いに離間(切断),接近(係合)する方向に駆動されて、サンギヤ31aを拘束又は開放する。
 本実施形態のトランスアクスル1では、クラッチ40Aが係合された状態か、又は、ブレーキ50Aがサンギヤ31aを拘束した状態であれば、リングギヤ33aに入力された動力がキャリア32aから出力されて、駆動輪8側へと伝達される。一方、クラッチ40Aが切断されるとともにブレーキ50Aがサンギヤ31aを開放している場合には、リングギヤ33aに入力された動力は駆動輪8側へ伝達されない。すなわち、この場合はエンジン2の動力伝達が遮断された状態となる。
 クラッチ40Aが係合された状態でブレーキ50Aが開放されると、サンギヤ31aとキャリア32aとが拘束されて一体回転する。この場合の共線図は図4(b)の左側に示す通りであり、回転速度は三要素とも同一となることから、変速比は1となる。一方、クラッチ40Aが切断された状態でブレーキ50Aがサンギヤ31aを拘束すると、サンギヤ31aの回転が禁止される。この場合の共線図は図4(b)の右側に示す通りであり、キャリア32a(出力)の回転速度がリングギヤ33a(入力)の回転速度よりも小さくなる。
 すなわち、サンギヤ31aの回転が禁止されると、エンジン2の回転が減速されて(トルクが増幅されて)キャリア32aから出力されることから、変速比は1よりも大きい状態となる。言い換えると、この場合は、サンギヤ31aとキャリア32aとを拘束した状態(変速比1の状態)に対し、ローギヤ段となる。このように、本実施形態のトランスアクスル1では、切替機構20Aが有するクラッチ40A及びブレーキ50Aが制御されることで、ハイギヤ段(変速比1)とローギヤ段とが切り替えられる。なお、共線図から明らかなように、サンギヤ31aの回転を禁止することで、キャリア32aやリングギヤ33aの回転を禁止する場合と比較して、ローギヤ段の変速比がハイギヤ段の変速比(変速比1)に近い値となる。
 図3及び図4(a)に示すように、第一カウンタ軸15には、遊転ギヤ15bの右側に隣接して固定ギヤ15aが設けられる。この固定ギヤ15aは、出力軸12に設けられたデフ18のリングギヤ18aと常時噛合している。
 第二カウンタ軸16には、二つの固定ギヤ16a,16bが設けられる。右側面寄りの固定ギヤ16aは、モータ軸13に設けられた遊転ギヤ13bと常時噛合する歯面部を左部に有し、この歯面部の右側にパーキングギヤ19が一体化されている。一方、左側面1F寄りの固定ギヤ16bは、デフ18のリングギヤ18aと常時噛合している。
 モータ軸13の遊転ギヤ13bは、モータ軸13に介装されたモータ側クラッチ17とともに断接機構を構成する。モータ側クラッチ17は、モータ3の動力の断接状態を制御する多板式クラッチであり、モータ軸13に固定された係合要素17aと、遊転ギヤ13bに固定された係合要素17bとを有する。係合要素17aはモータ3からの動力が入力されるものであり、係合要素17bは駆動輪8側に動力を出力するものである。これらの係合要素17a,17bは、モータ軸13に設けられた油路入口5bから流入したオイルの油圧に応じて互いに離間(切断),接近(係合)する方向に駆動される。
 モータ側クラッチ17を係合すると、モータ3の動力が遊転ギヤ13b及び固定ギヤ16a,16bを介して駆動輪8側へと伝達されるとともに、駆動輪8側の回転がモータ3へと伝わる。つまり、モータ側クラッチ17が係合された状態では、モータ3による力行駆動,回生発電が可能となる。反対に、エンジン2での走行時(モータ3の停止時)にモータ側クラッチ17を切断すると、遊転ギヤ13bが空転し、駆動輪8側の回転がモータ3に伝わることがないため、モータ3が連れ回されることがなくなり抵抗が小さくなる。
 パーキングギヤ19は、パーキングロック装置を構成する要素であり、運転者によりPレンジが選択されると、図示しないパーキングスプラグと係合して、第二カウンタ軸16(すなわち出力軸12)の回転を禁止する。
 なお、デフ18は、図3に示すように、リングギヤ18aに伝達された動力を、デフケース18b,ピニオンシャフト18c,デフピニオン18d,サイドギヤ18eを介して出力軸12に伝達する。
[3.作用,効果]
 (1)上述したトランスアクスル1には切替機構20Aが設けられ、パラレルモードでの走行時に、走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。つまり、パラレルモードにおいて、エンジン2の動力を二段階に切り替えて伝達(出力)することができるため、走行パターンを増やすことができ、ドライバビリティの向上や燃費改善といった効果が得られ、車両商品性を向上させることができる。また、切替機構20Aが遊星ギヤ30Aを有して構成されていることから、例えばスリーブを用いた切替機構を設ける場合と比較して、ハイロー切替時における音の発生を抑制することができる。
 また、第一カウンタ軸15に介装された遊星ギヤ30Aは、モータ3及びジェネレータ4が取り付けられる左側面1F寄りであって、側面視でモータ3及びジェネレータ4のいずれとも重ならないように配置される。このため、複数の変速段(ハイギヤ段,ローギヤ段)とこれを切り替える切替機構20Aとをトランスアクスル1に内蔵しつつ、トランスアクスル1を含むパワートレイン7の大型化を抑制することができる。
 さらに、上述した車両10では、エンジン2及びモータ3の動力を個別に出力可能であるため、ハイロー切替時にトルク抜けが生じたとしても、このトルク抜けをモータ3の動力でカバーすることができる。これにより、変速ショックを抑制することができる。
 (2)上述したトランスアクスル1では、切替機構20Aがクラッチ40Aとブレーキ50Aとを有しており、ブレーキ50Aによって遊星ギヤ30Aのサンギヤ31aが拘束される。ところで、エンジン2の動力で走行するパラレルモードは、走行負荷,走行速度が高い場合に選択される走行モードであることから、パラレルモードにおいて二つの変速比を設定する場合には、高車速域での変速を想定していることからこれらの変速比を近い値にする必要がある。これに対し、上述したトランスアクスル1では、ブレーキ50Aがサンギヤ31aを拘束するため、ハイギヤ段とローギヤ段の変速比を近い値にすることができる。
 (3)上述したトランスアクスル1のケーシング1Cは、側面視でモータ3の回転軸3a(モータ軸13)とジェネレータ4の回転軸4a(ジェネレータ軸14)との間の領域内に、外方へ突設された筒状部1Dを有している。すなわち、この筒状部1Dはモータ3ともジェネレータ4とも干渉しないように設けられていることから、この筒状部1Dに遊星ギヤ30Aを内蔵することで、パワートレイン7を大型化することなく、遊星ギヤ30Aを有する切替機構20Aをトランスアクスル1に組み込むことができる。
 (4)上述したトランスアクスル1によれば、モータ3から出力軸12までの動力伝達経路(第二経路62)上に断接機構が介装されているため、モータ3の動力伝達及びモータ3に対する動力伝達を断接することができる。これにより、エンジン2の動力で走行するパラレルモードにおいて、エンジン2のみで走行している場合(モータ3が停止している場合)に、動力伝達を切断することで、モータ3の連れ回りを回避することができる。
 従来、断接機構のないトランスアクスルでは、モータ3が高速で連れ回された場合の回生ブレーキの発生を防ぐために、弱め界磁制御を実施していた。ただし、この制御の実施には電力が必要なことから、電費向上の観点からは弱め界磁制御の実施は好ましくなかった。しかしながら、弱め界磁制御を実施しなければ、モータ3の回転数によっては加速中にもかかわらず回生ブレーキが発生するという現象が生じ、運転者に違和感を与えかねない。
 このような課題に対し、上述したトランスアクスル1では、断接機構によってモータ3の連れ回りを回避することができるため、弱め界磁制御の実施の必要性をなくすことができる。これにより、無駄な電力消費を回避することができ、電費を向上させることができる。また、モータ3の動力伝達を遮断することから、加速中における回生ブレーキの発生を確実に防止することができ、運転者に違和感を与えることもない。
[4.変形例]
 上述したトランスアクスル1は一例であって、その構成は上述したものに限られない。以下、トランスアクスル1の変形例について、図5~図8を用いて説明する。図5~図8は、第一変形例~第四変形例に係るトランスアクスル1を備えたパワートレイン7を示すスケルトン図である。なお、上述した実施形態やそれまでに説明した変形例と同様の構成については、上述した実施形態や変形例の符号と同一の符号又は同様の符号(同一の数字に異なるアルファベット等)を付し、重複する説明は省略する。
 [4-1.第一変形例]
 図5に示すように、第一変形例に係るトランスアクスル1は、入力軸11とジェネレータ軸14とを連結する構成と、断接機構の構成とが異なる点を除いて、上述した実施形態と同様に構成されている。本変形例のトランスアクスル1には、ジェネレータ14の固定ギヤ14aと常時噛合する固定ギヤ11b(第二ギヤ)が入力軸11に設けられており、これらの固定ギヤ11b,14aによってエンジン2とジェネレータ4との間で動力伝達可能とされる。なお、上述した固定ギヤ11a(第一ギヤ)は、第一カウンタ軸15の遊転ギヤ15bのみと常時噛合している。
 また、本変形例のトランスアクスル1には、第二カウンタ軸16に介装されたモータ側クラッチ17′と遊転ギヤ16cとを有する断接機構が設けられる。遊転ギヤ16cは、モータ側クラッチ17′の一方の係合要素17a′に固定されるとともに、モータ軸13に設けられた固定ギヤ13aと常時噛合し、モータ軸13の回転に追従して回転する。モータ側クラッチ17′は、モータ3の動力の断接状態を制御する多板式クラッチであり、遊転ギヤ16cに固定された一方の係合要素17a′と、第二カウンタ軸16に固定された他方の係合要素17b′とを有する。
 係合要素17a′はモータ3からの動力が入力されるものであり、係合要素17b′は駆動輪8側に動力を出力するものである。これらの係合要素17a′,17b′は、第二カウンタ軸16に設けられた油路入口5bから流入したオイルの油圧に応じて互いに離間(切断),接近(係合)する方向に駆動される。なお、モータ側クラッチ17′の断接時における作用,効果は上述した実施形態と同様である。
 したがって、本変形例に係るトランスアクスル1によっても、上述した実施形態と同様の構成からは同様の効果を得ることができる。また、本変形例の入力軸11には、出力軸12側へ動力を伝達する固定ギヤ11aと、これとは別体でジェネレータ4へ動力を伝達する固定ギヤ11bとが設けられる。このようにエンジン2の動力を別々のギヤ11a,11bで出力軸12側とジェネレータ4とに伝達することで、それぞれのギヤ比を所望の値に設計しやすくすることができる。また、軸方向に直交する方向(ギヤ径方向)の寸法を短縮することができ、パワートレイン7の小型化を図ることができる。
 [4-2.第二変形例]
 図6(a)に示すように、第二変形例に係るトランスアクスル1は、上述した実施形態のものに対し、遊星ギヤ30Bのキャリア32bとリングギヤ33bとをクラッチ40Bにより拘束する点で異なる。なお、本変形例では、第一変形例と同様に、入力軸11には固定ギヤ11bが設けられており、第二カウンタ軸16には断接機構が設けられているが、これらの構成は上述した実施形態と同様であってもよい。
 本変形例の切替機構20Bは、ハイギヤ段とローギヤ段とを切り替えるものであって、第一カウンタ軸15に介装された遊星ギヤ30B及びクラッチ40Bと、ブレーキ50Bとを有する。遊星ギヤ30Bは、リングギヤ33bがクラッチ40Bの一方の係合要素41bを介して遊転ギヤ15bと接続されるとともに、キャリア32bが第一カウンタ軸15に接続される。すなわち、本変形例においても、エンジン2の動力はリングギヤ33bに入力され、キャリア32bから出力される。
 また、サンギヤ31bにはブレーキ50Bの第一要素51bが固定されている。第一要素51bがケーシング1Cに固定された第二要素52bと接近(係合)することで、サンギヤ31bが拘束される。一方、クラッチ40Bの他方の係合要素42bは、第一カウンタ軸15に固定されている。本変形例のクラッチ40Bは、第一カウンタ軸15の右側に設けられた油路入口5aから流入したオイルの油圧に応じて、係合要素41b,42bが互いに離間(切断),接近(係合)する方向に駆動される。すなわち、クラッチ40Bは、遊星ギヤ30Bの要素のうち、キャリア32bとリングギヤ33bとを油圧に応じて開放又は拘束する。
 したがって、本変形例のトランスアクスル1においても、上述した実施形態と同様に、クラッチ40Bが係合された状態か、又は、ブレーキ50Bがサンギヤ31bを拘束した状態であれば、リングギヤ33bに入力された動力がキャリア32bから出力されて、固定ギヤ15aを介して駆動輪8側へと伝達される。一方、クラッチ40Bが切断されるとともにブレーキ50Bがサンギヤ31bを開放している場合には、エンジン2の動力伝達が遮断された状態となる。
 クラッチ40Bが係合された状態でブレーキ50Bが開放されると、キャリア32bとリングギヤ33bが拘束されて一体回転する。この場合の共線図を図6(b)の左側に示す。また、クラッチ40Bが切断された状態でブレーキ50Bがサンギヤ31bを拘束すると、サンギヤ31bの回転が禁止される。この場合の共線図を図6(b)の右側に示す。これらの共線図から明らかなように、本変形例に係るトランスアクスル1によっても、上述した実施形態と同様に、ハイギヤ段(変速比1)とローギヤ段とを切り替えることができる。また、その他にも上述した実施形態と同様の効果を得ることができる。
 [4-3.第三変形例]
 図7(a)に示すように、第三変形例に係るトランスアクスル1は、上述した実施形態のものに対し、遊星ギヤ30Cに対する動力の入出力経路が異なるとともに、キャリア32cとリングギヤ33cとをクラッチ40Cにより拘束する点で異なる。なお、本変形例では、第一変形例と同様に、入力軸11には固定ギヤ11bが設けられており、第二カウンタ軸16には断接機構が設けられているが、これらの構成は上述した実施形態と同様であってもよい。
 本変形例の切替機構20Cは、ハイギヤ段とローギヤ段とを切り替えるものであって、第一カウンタ軸15に介装された遊星ギヤ30Cとクラッチ40Cとブレーキ50Cとを有する。遊星ギヤ30Cは、キャリア32cが第一連結要素35cを介して遊転ギヤ15bと接続されるとともに、リングギヤ33cが第二連結要素36cを介して第一カウンタ軸15に接続される。すなわち、本変形例では、エンジン2の動力はキャリア32cに入力され、リングギヤ33cから出力される。
 また、サンギヤ31cにはブレーキ50Cの第一要素51cが固定されている。第一要素51cがケーシング1Cに固定された第二要素52cと接近(係合)することで、サンギヤ31cが拘束される。クラッチ40Cは、一方の係合要素41cがキャリア32cに固定されるとともに、他方の係合要素42cが第一カウンタ軸15に固定されている。つまり、本変形例のクラッチ40Cは、遊星ギヤ30Cの要素のうち、キャリア32cとリングギヤ33cとを油圧に応じて開放又は拘束する。
 本変形例のトランスアクスル1では、クラッチ40Cが係合された状態か、又は、ブレーキ50Cがサンギヤ31cを拘束した状態であれば、キャリア32cに入力された動力がリングギヤ33cから出力されて、固定ギヤ15aを介して駆動輪8側へと伝達される。一方、クラッチ40Cが切断されるとともにブレーキ50Cがサンギヤ31cを開放している場合には、エンジン2の動力伝達が遮断された状態となる。
 クラッチ40Cが係合された状態でブレーキ50Cが開放されると、キャリア32cとリングギヤ33cが拘束されて一体回転する。この場合の共線図は図7(b)の左側に示す通りであり、回転速度は三要素とも同一となることから、変速比は1となる。一方、クラッチ40Cが切断された状態でブレーキ50Cがサンギヤ31cを拘束すると、サンギヤ31cの回転が禁止される。この場合の共線図は図7(b)の右側に示す通りであり、リングギヤ33c(出力)の回転速度がキャリア32c(入力)の回転速度よりも大きくなる。
 すなわち、サンギヤ31cの回転が禁止されると、エンジン2の回転が増速されてリングギヤ33cから出力されることから、変速比は1よりも小さい状態となる。言い換えると、この場合は、キャリア32cとリングギヤ33cとを拘束した状態(変速比1の状態)に対し、ハイギヤ段となる。なお、共線図から明らかなように、サンギヤ31cの回転を禁止することで、キャリア33cやリングギヤ33cの回転を禁止する場合と比較して、ハイギヤ段の変速比がローギヤ段の変速比(変速比1)に近い値となる。
 したがって、本変形例のトランスアクスル1によっても、上述した実施形態と同様に、ハイギヤ段とローギヤ段(変速比1)とを切り替えることができる。また、その他にも上述した実施形態と同様の効果を得ることができる。
 [4-4.第四変形例]
 図8に示すように、第三変形例に係るトランスアクスル1は、上述した実施形態のものに対し、遊星ギヤ30Dがステップピニオン式であるとともに、この遊星ギヤ30Dに対する動力の入出力経路が異なる。なお、本変形例では、第一変形例と同様に、入力軸11には固定ギヤ11bが設けられており、第二カウンタ軸16には断接機構が設けられているが、これらの構成は上述した実施形態と同様であってもよい。
 本変形例の切替機構20Dも、ハイギヤ段とローギヤ段とを切り替えるものであって、第一カウンタ軸15に介装された遊星ギヤ30Dとクラッチ40Dとブレーキ50Dとを有する。遊星ギヤ30Dは、キャリア32dが遊転ギヤ15bと接続されるとともに、クラッチ40Dの一方の係合要素41dが固定される。また、キャリア32dには、互いに歯数が異なる二つのピニオンギヤ34d,34d′が回動可能に支持される。歯数が多い一方のピニオンギヤ34dはサンギヤ31dと常時噛合し、歯数が少ない他方のピニオンギヤ34d′はリングギヤ33dと常時噛合している。リングギヤ33dは、連結要素35dを介して第一カウンタ軸15に接続される。すなわち、本変形例では、エンジン2の動力はキャリア32dに入力され、リングギヤ33dから出力される。
 また、サンギヤ31dは、上述した実施形態と同様に遊転ギヤとして設けられ、クラッチ40Dの他方の係合要素42dとブレーキ50Dの第一要素51dとが固定されている。なお、ブレーキ50Dの第二要素52dは、ケーシング1Cに固定されている。すなわち、本変形例においても、クラッチ40Dは油圧に応じてサンギヤ31dとキャリア32dとを拘束又は開放し、ブレーキ50Dは油圧に応じてサンギヤ31dを拘束又は開放する。
 本変形例のトランスアクスル1では、クラッチ40Dが係合された状態か、又は、ブレーキ50Dがサンギヤ31dを拘束した状態であれば、キャリア32dに入力された動力がリングギヤ33dから出力されて、固定ギヤ15aを介して駆動輪8側へと伝達される。一方、クラッチ40Dが切断されるとともにブレーキ50Dがサンギヤ31dを開放している場合には、エンジン2の動力伝達が遮断された状態となる。
 クラッチ40Dが係合された状態でブレーキ50Dが開放されると、サンギヤ31dとキャリア32dとが拘束されて一体回転するため、変速比は1となる。一方、クラッチ40Dが切断された状態でブレーキ50Dがサンギヤ31dを拘束すると、サンギヤ31dの回転が禁止されるため、リングギヤ33d(出力)の回転速度がキャリア32d(入力)の回転速度よりも大きくなる。すなわち、この場合にはエンジン2の回転が増速されてリングギヤ33dから出力されることから、変速比は1よりも小さい状態(ハイギヤ段)となる。
 したがって、本変形例のトランスアクスル1によっても、上述した実施形態と同様に、ハイギヤ段とローギヤ段(変速比1)とを切り替えることができる。また、その他にも上述した実施形態と同様の効果を得ることができる。
[5.その他]
 以上、本発明の実施形態及び変形例を説明したが、本発明は上述した実施形態等に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。例えば、切替機構が、遊星ギヤのサンギヤ以外の一要素をブレーキで拘束するとともに、二つの要素をクラッチで拘束することで、ハイギヤ段とローギヤ段とを切り替えるように構成してもよい。
 また、トランスアクスル1に対するエンジン2,モータ3,ジェネレータ4,ポンプ5の相対位置は上述したものに限らない。これらの相対位置に応じて、トランスアクスル1内の六つの軸11~16の配置を設定すればよい。また、トランスアクスル1内の各軸に設けられるギヤの配置も一例であって、上述したものに限られない。なお、モータ3から駆動輪8への動力伝達に係る第二経路62の中途に介装されたモータ側クラッチ17を省略してもよい。
 1 トランスアクスル(トランスアクスル装置)
 1C ケーシング
 1D 筒状部
 1F 左側面(取付面)
 2 エンジン
 2a クランクシャフト(回転軸)
 3 モータ(電動機,第一の回転電機)
 3a 回転軸
 4 ジェネレータ(発電機,第二の回転電機)
 4a 回転軸
 8 駆動輪
 10 車両
 11 入力軸
 11a 固定ギヤ(第一ギヤ)
 11b 固定ギヤ(第二ギヤ)
 12 出力軸
 15 第一カウンタ軸(カウンタ軸)
 20A,20B,20C,20D 切替機構
 30A,30B,30C,30D 遊星ギヤ
 31a,31b,31c,31d サンギヤ(要素)
 32a,32b,32c,32d キャリア(要素)
 33a,33b,33c,33d リングギヤ(要素)
 40A,40B,40C,40D クラッチ
 50A,50B,50C,50D ブレーキ
 

Claims (5)

  1.  エンジン,第一の回転電機及び第二の回転電機を装備し、前記エンジン及び前記第一の回転電機の動力を個別に駆動輪側の出力軸に伝達するとともに前記エンジンの動力を前記第二の回転電機にも伝達するハイブリッド車両のトランスアクスル装置であって、
     前記第一の回転電機及び前記第二の回転電機が取り付けられる取付面を有するケーシングと、
     前記ケーシング内であって、前記エンジンの回転軸と同軸上に接続された入力軸と前記出力軸との間の動力伝達経路上に配置されたカウンタ軸と、
     前記カウンタ軸に介装された遊星ギヤを有し、ハイギヤ段とローギヤ段とを切り替える切替機構と、を備え、
     前記遊星ギヤが、前記ケーシングの前記取付面寄りであって、前記取付面側から見て前記第一の回転電機及び前記第二の回転電機のいずれとも重ならないように配置された
    ことを特徴とする、トランスアクスル装置。
  2.  前記切替機構は、前記遊星ギヤの要素のうちの二つを拘束自在に設けられたクラッチと、前記遊星ギヤのサンギヤを拘束自在に設けられたブレーキと、を有する
    ことを特徴とする、請求項1記載のトランスアクスル装置。
  3.  前記ケーシングは、前記カウンタ軸の周囲に軸方向に沿って外方へ突設され、前記遊星ギヤを内蔵する筒状部を有し、
     前記筒状部は、前記取付面側から見て前記第一の回転電機の回転軸と前記第二の回転電機の回転軸との間の領域内に配置された
    ことを特徴とする、請求項1又は2記載のトランスアクスル装置。
  4.  前記電動機から前記出力軸までの動力伝達経路上に介装され、前記第一の回転電機の動力の伝達を断接する断接機構を備えた
    ことを特徴とする、請求項1~3の何れか1項に記載のトランスアクスル装置。
  5.  前記入力軸に設けられ、前記エンジンの動力を前記出力軸側に伝達する第一ギヤと、
     前記入力軸に前記第一ギヤとは別体で設けられ、前記エンジンの動力を前記第二の回転電機に伝達する第二ギヤと、を備えた
    ことを特徴とする、請求項1~4の何れか1項に記載のトランスアクスル装置。
     
PCT/JP2017/012273 2016-06-13 2017-03-27 トランスアクスル装置 WO2017217066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187035762A KR20190008288A (ko) 2016-06-13 2017-03-27 트랜스액슬 장치
EP17812972.2A EP3453551A4 (en) 2016-06-13 2017-03-27 BOX-BRIDGE DEVICE
CN201780033149.1A CN109311381A (zh) 2016-06-13 2017-03-27 变速驱动桥装置
US16/304,059 US20200317040A1 (en) 2016-06-13 2017-03-27 Transaxle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016117007A JP2017222199A (ja) 2016-06-13 2016-06-13 トランスアクスル装置
JP2016-117007 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217066A1 true WO2017217066A1 (ja) 2017-12-21

Family

ID=60663212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012273 WO2017217066A1 (ja) 2016-06-13 2017-03-27 トランスアクスル装置

Country Status (6)

Country Link
US (1) US20200317040A1 (ja)
EP (1) EP3453551A4 (ja)
JP (1) JP2017222199A (ja)
KR (1) KR20190008288A (ja)
CN (1) CN109311381A (ja)
WO (1) WO2017217066A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018113958A1 (de) * 2018-06-12 2019-12-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeuggetriebe
WO2020053939A1 (ja) * 2018-09-10 2020-03-19 日産自動車株式会社 車両用の動力伝達装置
WO2020065799A1 (ja) * 2018-09-26 2020-04-02 日産自動車株式会社 電動車両の制御方法および電動車両の駆動システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545103B1 (ko) * 2018-08-07 2023-06-19 현대자동차주식회사 전기 모터를 구비한 자동차 및 그를 위한 주차 제어 방법
JP7211065B2 (ja) 2018-12-21 2023-01-24 スズキ株式会社 ハイブリッド車両用駆動装置
EP4023515B1 (en) * 2019-08-28 2023-08-09 NISSAN MOTOR Co., Ltd. Power transmission device
CN114294385A (zh) * 2022-01-04 2022-04-08 吉林大学 一种无动力中断两挡变速电动驱动桥及电动汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156388A (ja) * 1995-12-06 1997-06-17 Toyota Motor Corp ハイブリッド駆動装置
JP2011011706A (ja) * 2009-07-06 2011-01-20 Mazda Motor Corp ハイブリッド車両用駆動装置
JP2013154683A (ja) * 2012-01-27 2013-08-15 Fuji Heavy Ind Ltd ハイブリッド車両の駆動装置およびその制御方法
JP2013180680A (ja) * 2012-03-02 2013-09-12 Mitsubishi Motors Corp ハイブリッド車用トランスアクスル装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170877A (ja) 1997-12-09 1999-06-29 Kyowa Gokin Kk 自動車用変速機
JP2010076679A (ja) * 2008-09-26 2010-04-08 Aisin Aw Co Ltd ハイブリッド駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156388A (ja) * 1995-12-06 1997-06-17 Toyota Motor Corp ハイブリッド駆動装置
JP2011011706A (ja) * 2009-07-06 2011-01-20 Mazda Motor Corp ハイブリッド車両用駆動装置
JP2013154683A (ja) * 2012-01-27 2013-08-15 Fuji Heavy Ind Ltd ハイブリッド車両の駆動装置およびその制御方法
JP2013180680A (ja) * 2012-03-02 2013-09-12 Mitsubishi Motors Corp ハイブリッド車用トランスアクスル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3453551A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018113958A1 (de) * 2018-06-12 2019-12-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeuggetriebe
US10837525B2 (en) 2018-06-12 2020-11-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle transmission
DE102018113958B4 (de) 2018-06-12 2022-03-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kompaktes 2-Gang-Kraftfahrzeuggetriebe zur Ankoppelung einer elektrischen Maschine
WO2020053939A1 (ja) * 2018-09-10 2020-03-19 日産自動車株式会社 車両用の動力伝達装置
CN112703123A (zh) * 2018-09-10 2021-04-23 日产自动车株式会社 车辆用的动力传递装置
EP3851309A4 (en) * 2018-09-10 2021-07-28 Nissan Motor Co., Ltd. POWER TRANSMISSION DEVICE FOR A VEHICLE
US11891045B2 (en) 2018-09-10 2024-02-06 Nissan Motor Co., Ltd. Power transmission device for vehicle
WO2020065799A1 (ja) * 2018-09-26 2020-04-02 日産自動車株式会社 電動車両の制御方法および電動車両の駆動システム

Also Published As

Publication number Publication date
US20200317040A1 (en) 2020-10-08
CN109311381A (zh) 2019-02-05
EP3453551A4 (en) 2019-06-05
JP2017222199A (ja) 2017-12-21
EP3453551A1 (en) 2019-03-13
KR20190008288A (ko) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2017217066A1 (ja) トランスアクスル装置
JP6819083B2 (ja) トランスアクスル装置
JP7060066B2 (ja) トランスアクスル装置
WO2017217065A1 (ja) トランスアクスル装置
JP4331228B2 (ja) 車両用動力伝達装置
JP6256374B2 (ja) ハイブリッド車両
JP6287887B2 (ja) ハイブリッド車両
JP2010058695A (ja) 動力装置
JP6812835B2 (ja) トランスアクスル装置
JP6137429B1 (ja) ハイブリッド車両
JP2020093664A (ja) 車両用電気駆動装置
JP5115465B2 (ja) 駆動装置
JP4952520B2 (ja) ハイブリッド車の駆動装置
JP7151632B2 (ja) ハイブリッド車両
EP3933229B1 (en) Vehicle drive device
JP6390750B2 (ja) ハイブリッド車両
JP6984222B2 (ja) ハイブリッド四輪駆動車
JP2017193195A (ja) ハイブリッド車両
JP2022127840A (ja) 車両用駆動装置
WO2020110577A1 (ja) 電動車両の動力伝達装置
WO2019202946A1 (ja) モータユニット
JP2021046204A (ja) トランスアクスル装置
JP2019026136A (ja) 車両用駆動装置
JP2009191903A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035762

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017812972

Country of ref document: EP

Effective date: 20181205