WO2017212911A1 - モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両 - Google Patents

モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両 Download PDF

Info

Publication number
WO2017212911A1
WO2017212911A1 PCT/JP2017/019171 JP2017019171W WO2017212911A1 WO 2017212911 A1 WO2017212911 A1 WO 2017212911A1 JP 2017019171 W JP2017019171 W JP 2017019171W WO 2017212911 A1 WO2017212911 A1 WO 2017212911A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate drive
connection protection
reverse connection
protection fet
motor
Prior art date
Application number
PCT/JP2017/019171
Other languages
English (en)
French (fr)
Inventor
恭正 瓜生
紳 熊谷
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201780034687.2A priority Critical patent/CN109314483B/zh
Priority to JP2017562370A priority patent/JP6281674B1/ja
Priority to EP17810092.1A priority patent/EP3454468B1/en
Priority to US16/306,775 priority patent/US10486736B2/en
Priority to BR112018075175-8A priority patent/BR112018075175A2/pt
Publication of WO2017212911A1 publication Critical patent/WO2017212911A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor

Definitions

  • a motor having two system windings is connected to a power supply by two reverse connection protection FETs in common, two drive control systems (MCU (Micro Controller Unit), CPU (Central Processing Unit), In a motor control device that is driven and controlled by an MPU (Micro Processor Unit), microcomputer, etc., even if one drive control system becomes abnormal (including a failure), it is connected reversely by the drive signal of the other normal drive control system.
  • the present invention relates to a motor control device, an electric power steering device and a vehicle in which the protection FET is kept ON to achieve downsizing and cost reduction.
  • An electric power steering device which is equipped with a motor control device and applies a steering assist force (assist force) to the steering mechanism of the vehicle by the rotational force of the motor, transmits the driving force of the motor to a gear or belt via a reduction gear. With this transmission mechanism, a steering assist force is applied to the steering shaft or the rack shaft.
  • EPS electric power steering device
  • Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
  • the adjustment of the motor applied voltage is a duty of PWM control. It is done by adjusting.
  • a general configuration of an electric power steering device is described with reference to FIG. 1.
  • a column shaft (steering shaft, handle shaft) 2 of a handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5,
  • the tie rods 6a and 6b are connected to the steered wheels 8L and 8R via the hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 that detects the steering torque Th of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. Yes.
  • a control unit (ECU (Electronic Control Unit)) 30 that controls the electric power steering apparatus is supplied with electric power from a battery 13 as a power source, and also receives an ignition key signal through an ignition key 11.
  • the control unit 30 calculates the current command value of the assist (steering assist) command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, and the calculated current command value
  • the current supplied to the motor 20 is controlled by the voltage control value Vref that has been compensated for.
  • the steering angle sensor 14 is not essential and may not be provided, and may be obtained from a rotation sensor connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a control unit of an MCU (including a CPU, an MCU, etc.), and general functions executed by a program in the control unit are shown in FIG.
  • the configuration is as shown in FIG.
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are input to the current command value calculation unit 31, and the current command value calculation unit 31.
  • the calculated current command value Iref1 is added by the adding unit 32A and the compensation signal CM from the compensating unit 34 for improving the characteristics, and the added current command value Iref2 is limited to the maximum value by the current limiting unit 33.
  • the current command value Irefm whose maximum value is limited is input to the subtraction unit 32B and subtracted from the motor current detection value Im.
  • the duty is calculated, and the motor 20 is PWM driven via the inverter 37 with the PWM signal for which the duty is calculated.
  • the motor current value Im of the motor 20 is detected by the motor current detection means 38, and is input to the subtraction unit 32B and fed back.
  • the compensation unit 34 adds the detected or estimated self-aligning torque (SAT) to the inertia compensation value 342 by the addition unit 344, and further adds the convergence control value 341 to the addition result by the addition unit 345, and the addition
  • the result is input as a compensation signal CM to the adder 32A to improve the characteristics of the current command value Iref1.
  • the PWM control unit 36 sets the voltage control value Vref to a three-phase component according to a predetermined formula.
  • the duty calculation unit 36A for calculating the PWM duty values D1 to D6 of the current, and the gate drive unit 36B for driving the gate of the FET as the drive element with the PWM duty values D1 to D6 and for turning on / off by compensating for the dead time It consists of and.
  • the modulation signal (carrier) CF is input to the duty calculator 36A, and the duty calculator 36A calculates the PWM duty values D1 to D6 in synchronization with the modulation signal CF.
  • the inverter 37 is constituted by a three-phase bridge of FETs, and drives the motor 20 when each FET is turned ON / OFF with PWM duty values D1 to D6.
  • a motor release switch 23 is interposed between the inverter 37 and the motor 20 to cut off the supply of current when the assist control is stopped.
  • the motor opening switch 23 is composed of an FET with a parasitic diode inserted in each phase.
  • FIG. 4 shows a star-connected three-phase motor, in which one system is composed of a U-phase winding UW1, a V-phase winding VW1, and a W-phase winding WW1, and the other one is a U-phase winding UW2. It consists of a V-phase winding VW2 and a W-phase winding WW2. The motor is driven by passing a three-phase current through the windings UW1 to WW1 or the windings UW2 to WW2.
  • FIG. 5 shows a delta-connected three-phase motor.
  • One system is composed of a U-phase winding UW1, a V-phase winding VW1, and a W-phase winding WW1, and the other one is a U-phase winding UW2. , V-phase winding VW2 and W-phase winding WW2.
  • the motor is driven by passing a three-phase current through the windings UW1 to WW1 or the windings UW2 to WW2.
  • the motor 120 having such a multi-system motor winding is driven and controlled by, for example, a two-system drive control system (MCU, microcomputer, etc.) as shown in FIG.
  • MCU two-system drive control system
  • the entire control is performed by the MCU 100, and the first system winding # 1 of the motor 120 having the two system motor windings is driven and controlled by the inverter 121A via the motor opening switch 122A, and the second system winding # 2 is controlled. Is driven and controlled by an inverter 121B via a motor release switch 122B.
  • the MCU 100 performs ON / OFF control of the FETs 1A to 6A of the inverter 121A via the gate driving unit 130, and performs ON / OFF control of the FETs 1B to 6B of the inverter 121B via the gate driving unit 140.
  • the inverter 121A is supplied with power from the battery 150
  • the inverter 121B is supplied with power from the battery 150.
  • Patent Document 1 In such a two-system control electric power steering apparatus, as shown in, for example, Japanese Patent No. 4998366 (Patent Document 1), an excessive current flows to the ECU when the battery is reversely connected, and the reverse connection protection is performed so that the ECU does not burn out.
  • An FET is provided in each system. That is, in Patent Document 1, two reverse connection protection FETs for battery reverse connection protection are provided, and when one system FET drive circuit (predriver) fails, the remaining one system reverse connection protection FET and inverter are connected. It is configured to continue operation.
  • Patent Document 1 when one FET drive circuit fails, the remaining one reverse connection protection FET and inverter can continue to operate, and two reverse connection protection FETs are required. There is a problem that the cost becomes high.
  • the present invention has been made under the circumstances as described above, and the object of the present invention is to detect an abnormality in one of the drive control systems when the drive control of a motor having two system windings is performed by two system drive control systems. Even if a failure occurs (including a failure), a common reverse connection protection FET is turned on by a drive signal of another normal drive control system, and a motor control device capable of downsizing and cost reduction is mounted. An electric power steering apparatus and a vehicle are provided.
  • the present invention relates to a motor control device for a motor having two-system motor windings, and the above-described object of the present invention is to control the motor having a two-system motor winding via the MCU and the two-system gate drive unit.
  • the object of the present invention is to control an MCU having a two-system motor winding, a two-system inverter that drives each of the two-system motor windings via a two-system gate drive unit,
  • a reverse connection protection FET that is connected between the two systems of inverters and the power supply and supplies the power supply, and the reverse connection protection FET is obtained by a logical sum of gate drive voltages from the two systems of gate drive units. This is achieved by turning on / off.
  • An electric power steering device equipped with the motor control device which drives and controls the motor with a current command value calculated based on at least a steering torque, and applies an assist force to a vehicle steering system, or a vehicle equipped with the electric power steering device.
  • the motor control apparatus of the present invention since one reverse connection protection FET is shared by two inverters, the motor control apparatus can be reduced in size and cost.
  • an electric power steering device equipped with a highly reliable ECU can be provided, and a vehicle equipped with the electric power steering device can be provided.
  • the reverse connection protection FET is not arranged for each inverter, but only one common one is arranged for each inverter, and the drive signal for driving the reverse connection protection FET generated by the two FET gate drive units is logically processed.
  • the drive signal for driving the reverse connection protection FET generated by the two FET gate drive units is logically processed.
  • FIG. 7 shows the first embodiment of the present invention corresponding to FIG. 6, and a common reverse connection protection FET 160 is connected between the two systems of inverters 121A and 121B and the battery 150 as the power supply.
  • the reverse connection protection FET 160 When the reverse connection protection FET 160 is OFF, power is supplied from the battery 150 to the inverters 121A and 121B via the parasitic diode 161.
  • Drive signals (for example, charge pump voltages) SG1 and SG2 are output from the two gate drive units 130 and 140, respectively, and the drive signals SG1 and SG2 are wired-ORed (ored) via the diodes D1 and D2, respectively, and are protected against reverse connection. It is input to the gate of the FET 160.
  • the gate drive units 130 and 140 receive a reverse connection protection FET drive command FDC from the MCU 100, and the gate drive units 130 and 140 output drive signals SG1 and SG2 based on the reverse connection protection FET drive command FDC.
  • the MCU 100 is supplied with power from the system power supply 170, and the system power supply 170 is activated or shut down by the ignition key signal IG.
  • the configuration of the gate drive units 130 and 140 is, for example, as shown in FIG. 8, and gate drive circuits 131 and 141 for driving the FETs of the inverters 121A and 121B on / off with duty command values RV1 and RV2 from the MCU 100, respectively.
  • boosting power supplies 132 and 142 for supplying a driving voltage to the gate driving circuits 131 and 141.
  • the step-up power supplies 132 and 142 are composed of up-converters and charge pumps.
  • the gate drive circuits 131 and 141 receive the reverse connection protection FET drive command FDC from the MCU 100, and output drive signals SG1 and SG2, respectively.
  • the reverse connection protection FET 160 is turned ON / OFF by the logical sum of the drive signals SG1 and SG2.
  • the reverse connection protection FET 160 operates as shown in Table 1.
  • the reverse connection protection FET 160 When the inverters 121 ⁇ / b> A and 121 ⁇ / b> B are driven to energize the two-system winding motor 120, the reverse connection protection FET 160 is OFF and a current flows through the parasitic diode 161. When the reverse connection protection FET 160 is OFF, the current flows through the parasitic diode 161 inside the reverse connection protection FET 160, so the loss of the reverse connection protection FET 160 increases, and the drain-source breakdown voltage is exceeded due to heat generation, regenerative power from the motor, or inductive load surge. May cause a malfunction. For this reason, when operating the inverters 121A and 121B, the MCU 100 turns on the reverse connection protection FET 160 before the inverter operation is started.
  • the reverse connection protection FET 160 can be driven by the FET drive signal from the other FET drive system. Thereby, when one FET drive system becomes abnormal and the motor 120 is driven by another FET drive system and an inverter, the reverse connection protection FET 160 can be kept ON.
  • the reverse connection protection FET drive command FDC is output from the MCU 100 as shown in FIG. 7 and FIG. 8, but is output from the system power supply 170 as shown in FIG. 9 and FIG. (Second embodiment).
  • the reverse connection protection FET drive command FDC is one system, but the reverse connection protection FET drive command FDC is generated from the MCU 100 or the system power supply 170 in two systems (FDCA and FDCB).
  • 11 and 12 or FIGS. 13 and 14 can also be adopted (third embodiment and fourth embodiment). That is, in the third embodiment shown in FIGS. 11 and 12, the reverse connection protection FET drive command FDCA of the system 1 is generated from the MCU 100 and input to the gate drive unit 130, and the reverse connection protection FET drive command FDCB of the system 2 is generated.
  • the gate drive unit 140 are input to the gate drive unit 140, and the logical sum of the FET drive signals SG1 and SG2 is input to the gate of the reverse connection protection FET 160.
  • the system power supply 170 generates the reverse connection protection FET drive command FDCA of the system 1 and inputs it to the gate drive unit 130, and also generates the reverse connection protection FET drive command FDCB of the system 2 Are input to the gate drive unit 140, and the logical sum of the FET drive signals SG1 and SG2 is input to the gate of the reverse connection protection FET 160.
  • the two reverse connection protection FET drive commands FDCA and FDCB are simultaneously turned ON / OFF, and the reverse connection protection FET 160 operates as shown in Table 2 in both the third and fourth embodiments.
  • the reverse connection protection FET 160 since the reverse connection protection FET drive command FDC is only one system, the reverse connection protection FET 160 is turned off when the reverse connection protection FET drive command FDC is changed from H to L due to an abnormality.
  • the reverse connection protection FET drive commands FDCA and FDCB are independent in the third embodiment and the fourth embodiment, the reverse connection protection FET 160 can be turned ON even if one system reaches H ⁇ L output due to an abnormality.
  • FIG. 15 shows a fifth embodiment of the present invention, in which a common reverse connection protection FET 160 is connected between two systems of inverters 121A and 121B and a battery 150 as a power supply, and the reverse connection protection FET 160 is OFF. At this time, power is supplied from the battery 150 to the inverters 121A and 121B via the parasitic diode 161.
  • the reverse connection protection FET 160 is turned on / off by the FET drive unit 170, and the reverse drive protection FET drive command FDC is input from the system power supply 180 to the FET drive unit 170, and the gate drive voltages from the two systems of gate drive units 130 and 140, respectively.
  • the FET drive unit 170 is composed of a semiconductor element such as a transistor.
  • the gate drive units 130 and 140 are configured by gate drive circuits 131 and 141 that turn ON / OFF the FETs of the inverters 121A and 121B with duty command values RV1 and RV2 from the MCU 100, respectively,
  • the drive circuit 131 and 141 are provided with boosting power supplies 132 and 142 for supplying a drive voltage and outputting gate drive voltages SG1 and SG2.
  • the step-up power supplies 132 and 142 are composed of up-converters and charge pumps.
  • the reverse connection protection FET 160 is turned ON / OFF by the FET drive unit 170, and the FET drive unit 170 receives the reverse connection protection FET drive command FDC from the system power supply 180 and the two gate drive units 130 and 140. Of the gate drive voltages SG1 and SG2 are input.
  • the reverse connection protection FET 160 operates as shown in Table 3.
  • the gate from the other system of the FET drive system can be operated with the reverse connection protection FET 160 turned on by the drive voltage.
  • the reverse connection protection FET 160 can be driven by the gate drive voltage from the FET drive system. As a result, when one FET drive system becomes abnormal and the motor 120 is driven by another FET drive system and an inverter, the reverse connection protection FET 160 can be kept ON, and the loss of the reverse connection protection FET 160 is lost. Can be reduced.
  • FIGS. 17 and 18 show a sixth embodiment of the present invention corresponding to FIGS. 15 and 16, respectively.
  • a reverse connection protection FET drive command FDC is output from the MCU 100 and the FET drive unit 170 is output. To enter.
  • reverse connection protection is performed via the FET drive unit 170 based on the reverse connection protection FET drive command FDC.
  • the FET 160 is driven, the system power supply 180 or the MCU 100 does not generate the reverse connection protection FET drive command FDC, and a configuration as shown in FIG. 19 can be adopted (seventh embodiment). That is, in the seventh embodiment shown in FIG. 19, the FET drive unit 170 is omitted, and only the logical sum of the gate drive voltages SG1 and SG2 is input to the gate of the reverse connection protection FET 160.
  • the reverse connection protection FET 160 is turned on by the logical sum, and when the two FET drive systems are stopped and the gate drive voltage is turned off, the reverse connection protection FET 160 is turned off. It is supposed to be. In this case, the reverse connection protection FET 160 is turned ON / OFF as the FET drive system is started / stopped.
  • the FETs 1A to 6A, FET1B to FET6B, U1 to W1, U2 to W2, and the reverse connection protection FET 160 are all N-channel type MOS-FETs.
  • the FET drive unit 170 can be configured by an analog switch using transistors Q1 and Q2, for example, as shown in FIG.
  • FETs 1A to 6A, FET1B to FET6B, U1 to W1, U2 to W2, and the reverse connection protection FET 160 are all N-channel type MOS-FETs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

【課題】2系統巻線を有するモータを2系統の駆動制御系で駆動制御する場合に、駆動制御系の1つに異常(故障を含む)が生じた場合にも、1つの共通の逆接保護FETを他の正常な駆動制御系の駆動信号によりONして、小型化とコスト低減が可能なモータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両を提供する。 【解決手段】2系統モータ巻線を有するモータを制御するMCUと、2系統のゲート駆動部を介して2系統モータ巻線のそれぞれを駆動する2系統のインバータと、2系統のインバータと供給電源との間に接続された1個の逆接保護FETとを具備し、逆接保護FETは、2系統のゲート駆動部からのゲートドライブ信号の論理和により、逆接保護FETをON/OFFする。

Description

モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両
 本発明は、2系統巻線を有するモータを、1個の逆接保護FETで、供給電源に共通に接続された2系統の駆動制御系(MCU(Micro Controller Unit)、CPU(Central Processing Unit),MPU(Micro Processor Unit)、マイコン等)によって駆動制御するモータ制御装置において、一方の駆動制御系が異常(故障を含む)となった場合にも、他方の正常な駆動制御系の駆動信号により逆接保護FETのONを維持するようにし、小型化とコスト低減を図ったモータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両に関する。
 モータ制御装置を搭載し、車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM制御のデューティの調整で行っている。
 電動パワーステアリング装置(EPS)の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクThを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU(Electronic Control Unit))30には、電源としてのバッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結された回転センサから得ることもできる。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてMCU(CPUやMCU等を含む)の制御部で構成されるが、制御部でプログラムにより実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Velは電流指令値演算部31に入力され、電流指令値演算部31は操舵トルクTh及び車速Velに基づいてアシストマップ等を用いて電流指令値Iref1を演算する。演算された電流指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された電流指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
 減算部32Bでの減算結果ΔI(=Irefm-Im)はPI制御部35でPI(比例積分)制御され、PI制御された電圧制御値Vrefが変調信号(キャリア)CFと共にPWM制御部36に入力されてデューティを演算され、デューティを演算されたPWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出手段38で検出され、減算部32Bに入力されてフィードバックされる。
 補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、電流指令値Iref1の特性を改善する。
 モータ20が3相ブラシレスモータの場合、PWM制御部36及びインバータ37の詳細は例えば図3に示すような構成となっており、PWM制御部36は、電圧制御値Vrefを所定式に従って3相分のPWMデューティ値D1~D6を演算するデューティ演算部36Aと、PWMデューティ値D1~D6で駆動素子としてのFETのゲートを駆動すると共に、デッドタイムの補償をしてON/OFFするゲート駆動部36Bとで構成されている。デューティ演算部36Aには変調信号(キャリア)CFが入力されており、デューティ演算部36Aは変調信号CFに同期してPWMデューティ値D1~D6を演算する。インバータ37はFETの3相ブリッジで構成されており、各FETがPWMデューティ値D1~D6でON/OFFされることによってモータ20を駆動する。
 なお、インバータ37とモータ20との間には、アシスト制御停止時等に電流の供給を遮断するためのモータ開放スイッチ23が介挿されている。モータ開放スイッチ23は、各相に介挿された寄生ダイオード付きのFETで構成されている。
 近年、操舵系の冗長化が要請され、アシスト制御用のモータも多系統モ-タ巻線を有するモータが使用される。例えば図4はスター結線の3相モータを示しており、1系統がU相巻線UW1、V相巻線VW1、W相巻線WW1で構成され、他の1系統がU相巻線UW2、V相巻線VW2、W相巻線WW2で構成されている。巻線UW1~WW1又は巻線UW2~WW2に3相電流を流すことによってモータが駆動される。また、図5はデルタ結線の3相モータを示しており、1系統がU相巻線UW1、V相巻線VW1、W相巻線WW1で構成され、他の1系統がU相巻線UW2、V相巻線VW2、W相巻線WW2で構成されている。巻線UW1~WW1又は巻線UW2~WW2に3相電流を流すことによってモータが駆動される。
 このような多系統モータ巻線(2系統巻線)を有するモータ120は、例えば図6に示すような2系統の駆動制御系(MCU、マイコン等)で駆動制御されている。
 即ち、全体の制御はMCU100が行い、2系統モータ巻線を有するモータ120の第1系統巻線#1は、モータ開放スイッチ122Aを介してインバータ121Aで駆動制御され、第2系統巻線#2は、モータ開放スイッチ122Bを介してインバータ121Bで駆動制御される。MCU100は、ゲート駆動部130を介してインバータ121AのFET1A~FET6AをON/OFF制御し、ゲート駆動部140を介してインバータ121BのFET1B~FET6BをON/OFF制御する。また、インバータ121Aにはバッテリ150から電力が供給され、インバータ121Bにはバッテリ150から電力が供給される。
 このような2系統制御の電動パワーステアリング装置では、例えば特許第4998836号公報(特許文献1)に示されるように、バッテリ逆接続時に過大な電流がECUに流れ、ECUが焼損しないように逆接保護FETを各系統に設けている。即ち、特許文献1では、バッテリの逆接保護のための逆接保護FETを2系統設けており、1系統のFET駆動回路(プリドライバ)が故障した場合に、残り1系統の逆接保護FET及びインバータが動作継続できるような構成となっている。
特許第4998836号公報
 しかしながら、特許文献1では、1系統のFET駆動回路が故障した場合に、残り1系統の逆接保護FET及びインバータが動作継続できるような構成となっており、逆接保護FETが2系統必要となるため、コストが高くなるという問題がある。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、2系統巻線を有するモータを2系統の駆動制御系で駆動制御する場合に、駆動制御系の1つに異常(故障を含む)が生じた場合にも、1つの共通の逆接保護FETを他の正常な駆動制御系の駆動信号によりONして、小型化とコスト低減が可能なモータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両を提供することにある。
 本発明は、2系統モータ巻線を有するモータのモータ制御装置に関し、本発明の上記目的は、2系統モータ巻線を有するモータを制御するMCUと、2系統のゲート駆動部を介して前記2系統モータ巻線のそれぞれを駆動する2系統のインバータと、前記2系統のインバータと供給電源との間に接続された1個の逆接保護FETとを具備し、前記逆接保護FETは、前記2系統のゲート駆動部からのゲートドライブ信号の論理和により、前記逆接保護FETをON/OFFすることにより達成される。
 また、本発明の上記目的は、2系統モータ巻線を有するモータを制御するMCUと、2系統のゲート駆動部を介して前記2系統モータ巻線のそれぞれを駆動する2系統のインバータと、前記2系統のインバータと供給電源との間に接続され、電源を供給する1個の逆接保護FETとを具備し、前記2系統のゲート駆動部からのゲート駆動電圧の論理和で前記逆接保護FETをON/OFFするようになっていることにより達成される。
 上記モータ制御装置を搭載し、少なくとも操舵トルクに基づいて演算された電流指令値により前記モータを駆動制御し、車両の操舵系にアシスト力を付与する電動パワーステアリング装置、或いはそれを搭載した車両により上記目的は達成される。
 本発明のモータ制御装置によれば、1個の逆接保護FETを2系統のインバータに共通にした構成であるので、モータ制御装置の小型化とコスト低減が可能となる。
 また、上記モータ制御装置を電動パワーステアリング装置に搭載することにより、信頼性高いECUを具備した電動パワーステアリング装置を提供でき、それを搭載した車両を提供することができる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 PWM制御部及びインバータの構成例を示す結線図である。 2系統巻線モータの巻線構造(スター結線)を示す模式図である。 2系統巻線モータの巻線構造(デルタ結線)を示す模式図である。 2系統巻線モータの駆動制御系の一例を示す回路結線図である。 本発明の構成例(第1実施形態)を示す回路結線図である。 ゲート駆動部(第1実施形態)の構成例を示すブロック図である。 本発明の構成例(第2実施形態)を示す回路結線図である。 ゲート駆動部(第2実施形態)の構成例を示すブロック図である。 本発明の構成例(第3実施形態)を示す回路結線図である。 ゲート駆動部(第3実施形態)の構成例を示すブロック図である。 本発明の構成例(第4実施形態)を示す回路結線図である ゲート駆動部(第4実施形態)の構成例を示すブロック図である。 本発明の構成例(第5実施形態)を示す回路結線図である。 ゲート駆動部の構成例を示すブロック図である。 本発明の構成例(第6実施形態)を示す回路結線図である。 ゲート駆動部の構成例を示すブロック図である。 本発明の構成例(第7実施形態)を示す回路結線図である FET駆動部の回路例を示す結線図である。
 本発明では、逆接保護FETを各インバータ毎に配置するのではなく、各インバータに共通に1個のみ配置し、2系統のFETゲート駆動部で生成される逆接保護FET駆動用の駆動信号を論理和(OR)した電源を直接駆動、或いはFET駆動部を介して駆動(ON/OFF)することで、2系統の内の一方のFET駆動系が異常(故障を含む)となり、逆接保護FETの駆動信号が出力不可となった場合でも、他の系統のFET駆動系からの駆動信号により逆接保護FETを駆動(ON/OFF)することができる。よって、モータ制御装置の小型化とコスト低減が可能となる。
 以下に、本発明の実施形態を図面を参照して説明する。
 図7は、本発明の第1実施形態を図6に対応させて示しており、2系統のインバータ121A及び121Bと供給電源であるバッテリ150との間に、共通の逆接保護FET160が接続されており、逆接保護FET160がOFFのときに、寄生ダイオード161を経てバッテリ150からインバータ121A及び121Bに電源が供給される。2系統のゲート駆動部130及び140からはそれぞれ駆動信号(例えばチャージポンプ電圧)SG1及びSG2が出力され、駆動信号SG1及びSG2はそれぞれダイオードD1及びD2を経てワイヤードOR(論理和)されて逆接保護FET160のゲートに入力されている。また、ゲート駆動部130及び140には、MCU100から逆接保護FET駆動指令FDCが入力されており、ゲート駆動部130及び140は逆接保護FET駆動指令FDCを基に駆動信号SG1及びSG2を出力する。
 なお、MCU100はシステム電源170から電源を供給され、システム電源170はイグニションキー信号IGによって起動若しくは遮断される。
 ゲート駆動部130及び140の構成は例えば図8に示すようになっており、MCU100からのデューティ指令値RV1及びRV2で、それぞれインバータ121A及び121BのFETをON/OFF駆動するゲート駆動回路131及び141と、ゲート駆動回路131及び141に駆動電圧を供給する昇圧電源132及び142とで構成されている。昇圧電源132及び142は、アップコンバータやチャージポンプで構成される。
 ゲート駆動回路131及び141は、MCU100からの逆接保護FET駆動指令FDCを入力し、それぞれ駆動信号SG1及びSG2を出力する。
 このような構成において、逆接保護FET160は駆動信号SG1及びSG2の論理和によってON/OFFされる。逆接保護FET160は、表1のように動作する。
Figure JPOXMLDOC01-appb-T000001
 インバータ121A及び121Bが駆動動作して2系統巻線のモータ120へ通電する際に、逆接保護FET160がOFFで寄生ダイオード161を経て電流が流れる。逆接保護FET160がOFFの場合、逆接保護FET160内部の寄生ダイオード161を通り電流が流れるため、逆接保護FET160の損失が大きくなり、発熱或いはモータからの回生電力、誘導負荷サージによるドレインソース間耐圧の超過により故障する可能性がある。このため、インバータ121A及び121Bを動作させる際は、MCU100によってインバータ動作開始前に逆接保護FET160をONする。
 2系統のインバータ121A及び121Bの動作中に、1系統のFET駆動系が異常となり、駆動信号(SG1,SG2)が出力不可となった場合でも、駆動信号SG1及びSG2の論理和を得ているので、もう1系統のFET駆動系からの駆動信号により逆接保護FET160をONした状態で、インバータ121A及び121Bを動作させることが可能である。
 上記構成により、1系統のFET駆動系が異常となり、FET駆動信号が出力不可となった場合でも、もう1系統のFET駆動系からのFET駆動信号により逆接保護FET160を駆動することができる。これにより、1系統のFET駆動系が異常となり、もう1系統のFET駆動系及びインバータによりモータ120を駆動する場合に、逆接保護FET160はONを維持することができる。
 上述の第1実施形態では図7及び図8に示すように、逆接保護FET駆動指令FDCが  MCU100から出力されているが、図9及び図10に示すようにシステム電源170から出力するようにしても良い(第2実施形態)。
 また、上述の第1実施形態及び第2実施形態では逆接保護FET駆動指令FDCが1系統であるが、逆接保護FET駆動指令FDCをMCU100若しくはシステム電源170から2系統(FDCA,FDCB)で発生して図11及び図12或いは図13及び図14のような構成とすることも可能である(第3実施形態及び第4実施形態)。即ち、図11及び図12に示す第3実施形態では、MCU100から系統1の逆接保護FET駆動指令FDCAを発生してゲート駆動部130に入力すると共に、系統2の逆接保護FET駆動指令FDCBを発生してゲート駆動部140に入力し、FET駆動信号SG1及びSG2の論理和を逆接保護FET160のゲートに入力している。図13及び図14に示す第4実施形態では、システム電源170から系統1の逆接保護FET駆動指令FDCAを発生してゲート駆動部130に入力すると共に、系統2の逆接保護FET駆動指令FDCBを発生してゲート駆動部140に入力し、FET駆動信号SG1及びSG2の論理和を逆接保護FET160のゲートに入力している。そして、正常時は2系統の逆接保護FET駆動指令FDCA及びFDCBは同時にON/OFFされ、第3実施形態及び第4実施形態ではいずれも、逆接保護FET160は表2のように動作する。
Figure JPOXMLDOC01-appb-T000002
 第1実施形態及び第2実施形態では逆接保護FET駆動指令FDCが1系統のみのため、異常により逆接保護FET駆動指令FDCがH→Lとなった場合は、逆接保護FET160がOFFとなってしまうが、第3実施形態及び第4実施形態では逆接保護FET駆動指令FDCA及びFDCBの独立した2系統のため、1系統が異常によりH→L出力に至っても逆接保護FET160はON可能である。
 図15は本発明の第5実施形態を示しており、2系統のインバータ121A及び121Bと供給電源であるバッテリ150との間に、共通の逆接保護FET160が接続されており、逆接保護FET160がOFFのときにバッテリ150から、寄生ダイオード161を経てインバータ121A及び121Bに電源が供給される。逆接保護FET160はFET駆動部170によってON/OFFされ、FET駆動部170にはシステム電源180から逆接保護FET駆動指令FDCが入力されると共に、2系統のゲート駆動部130及び140からそれぞれゲート駆動電圧(例えばチャージポンプ電圧)SG1及びSG2がそれぞれダイオードD1及びD2を経てワイヤードOR(論理和)されてFET駆動部170に入力されている。FET駆動部170は、トランジスタ等の半導体素子で構成されている。
 ゲート駆動部130及び140の構成は例えば図16に示すように、MCU100からのデューティ指令値RV1及びRV2で、それぞれインバータ121A及び121BのFETをON/OFF駆動するゲート駆動回路131及び141と、ゲート駆動回路131及び141に駆動電圧を供給すると共に、ゲート駆動電圧SG1及びSG2を出力する昇圧電源132及び142とで構成されている。昇圧電源132及び142は、アップコンバータやチャージポンプで構成される。
 このような構成において、逆接保護FET160はFET駆動部170によってON/OFFされ、FET駆動部170には、システム電源180からの逆接保護FET駆動指令FDCと、2系統のゲート駆動部130及び140からのゲート駆動電圧SG1及びSG2の論理和とが入力される。逆接保護FET160は、表3のように動作する。
Figure JPOXMLDOC01-appb-T000003
 インバータ121A及び121Bが動作して2系統巻線のモータ120へ通電する際に、逆接保護FET160の寄生ダイオード161に電流が流れる。逆接保護FET160がOFFの場合、逆接保護FET160内部の寄生ダイオード161を通り電流が流れるため、逆接保護FET160の損失が大きくなり、発熱により故障する可能性がある。このため、インバータ121A及び121Bを動作させる際は、インバータ動作開始前に逆接保護FET160をONにして損失を低減する。この場合には、システム電源180から逆接保護FET駆動指令FDC(「H」)が出力される。
 2系統のインバータ121A及び121Bの駆動動作中に、1系統のFET駆動系が異常となり、ゲート駆動電圧(SG1,SG2)が出力不可となった場合でも、もう1系統のFET駆動系からのゲート駆動電圧により逆接保護FET160をONした状態で、インバータ121A及び121Bを動作させることが可能である。
 上記構成により、1系統のFET駆動系が異常となり、ゲート駆動電圧が出力不可となった場合でも、ゲート駆動電圧SG1及びSG2の論理和がFET駆動部170に入力されているので、もう1系統のFET駆動系からのゲート駆動電圧により逆接保護FET160を駆動することができる。これにより、1系統のFET駆動系が異常となり、もう1系統のFET駆動系及びインバータによりモータ120を駆動する場合に、逆接保護FET160はONを維持することが可能であり、逆接保護FET160の損失を低減することができる。
 図17及び図18は、本発明の第6実施形態をそれぞれ図15及び図16に対応させて示しており、第6実施形態では逆接保護FET駆動指令FDCをMCU100から出力してFET駆動部170に入力するようになっている。
 上述の第5実施形態では図15及び図16に示すように、第6実施形態では図17及び図18に示すように、逆接保護FET駆動指令FDCを基にFET駆動部170を介して逆接保護FET160を駆動しているが、システム電源180若しくはMCU100が逆接保護FET駆動指令FDCを発生させず、図19のような構成とすることも可能である(第7実施形態)。即ち、図19に示す第7実施形態ではFET駆動部170を削除しており、ゲート駆動電圧SG1及びSG2の論理和のみを逆接保護FET160のゲートに入力している。そして、ゲート駆動電圧SG1及びSG2が生成された際に、その論理和によって逆接保護FET160がONし、2系統のFET駆動系が停止してゲート駆動電圧がOFFした際に、逆接保護FET160がOFFするようになっている。この場合は、FET駆動系の起動/停止と共に、逆接保護FET160がON/OFFする。
 なお、FET1A~FET6A、FET1B~FET6B、U1~W1、U2~W2及び逆接保護FET160のFETは全てNチャネルタイプのMOS-FETで構成されている。また、FET駆動部170は、例えば図20に示すようにトランジスタQ1,Q2を用いたアナログスイッチで構成可能である。
 なお、FET1A~FET6A、FET1B~FET6B、U1~W1、U2~W2及び逆接保護FET160のFETは全てNチャネルタイプのMOS-FETで構成されている。
1       ハンドル
2       コラム軸(ステアリングシャフト、ハンドル軸)
10      トルクセンサ
12      車速センサ
13、150  バッテリ
20、120  モータ
23、122A、122B  モータ開放スイッチ
30      コントロールユニット(ECU)
31      電流指令値演算部
37、121A、121B  インバータ
100     MCU
130、140 ゲート駆動部
160     逆接保護FET
161     寄生ダイオード
170,180 システム電源

Claims (13)

  1. 2系統モータ巻線を有するモータを制御するMCUと、
    2系統のゲート駆動部を介して前記2系統モータ巻線のそれぞれを駆動する2系統のインバータと、
    前記2系統のインバータと供給電源との間に接続された1個の逆接保護FETと、
    を具備し、
    前記逆接保護FETは、前記2系統のゲート駆動部からのゲートドライブ信号の論理和により、前記逆接保護FETをON/OFFするようになっていることを特徴とするモータ制御装置。
  2. 前記2系統のゲート駆動部はそれぞれ、前記2系統のインバータFETと前記逆接保護FETを駆動するためのゲートドライブ信号を出力するゲート駆動回路と、前記ゲート駆動回路に電圧を供給する昇圧電源とで構成されている請求項1に記載のモータ制御装置。
  3. 前記2系統のゲート駆動部に逆接保護FET駆動指令が入力され、前記2系統のゲート駆動部はそれぞれ前記逆接保護FET駆動指令に基づいて前記ゲートドライブ信号を出力するようになっている請求項1又は2に記載のモータ制御装置。
  4. システム電源から前記2系統のゲート駆動部に前記逆接保護FET駆動指令が入力され、前記2系統のゲート駆動部はそれぞれ前記逆接保護FET駆動指令に基づいて前記ゲートドライブ信号を出力するようになっている請求項3に記載のモータ制御装置。
  5. 前記MCUから前記2系統のゲート駆動部に前記逆接保護FET駆動指令が入力され、前記2系統のゲート駆動部はそれぞれ前記逆接保護FET駆動指令に基づいて前記ゲートドライブ信号を出力するようになっている請求項3に記載のモータ制御装置。
  6. システム電源から前記2系統のゲート駆動部に逆接保護FET駆動指令1及び2が入力され、前記2系統のゲート駆動部はそれぞれ前記逆接保護FET駆動指令及び2に基づいて前記ゲートドライブ信号を出力するようになっている請求項3に記載のモータ制御装置。
  7. 前記MCUから前記2系統のゲート駆動部に逆接保護FET駆動指令1及び2が入力され、前記2系統のゲート駆動部はそれぞれ前記逆接保護FET駆動指令1及び2に基づいて前記ゲートドライブ信号を出力するようになっている請求項3に記載のモータ制御装置。
  8. 2系統モータ巻線を有するモータを制御するMCUと、
    2系統のゲート駆動部を介して前記2系統モータ巻線のそれぞれを駆動する2系統のインバータと、
    前記2系統のインバータと供給電源との間に接続され、電源を供給する1個の逆接保護FETと、
    を具備し、
    前記2系統のゲート駆動部からのゲート駆動電圧の論理和で前記逆接保護FETをON/OFFするようになっていることを特徴とするモータ制御装置。
  9. 前記2系統のゲート駆動部はそれぞれ、前記2系統のインバータを駆動するゲート駆動回路と、前記ゲート駆動回路に電圧を供給すると共に、前記ゲート駆動電圧を出力する昇圧電源とで構成されている請求項8に記載のモータ制御装置。
  10. 逆接保護FET駆動指令が正常の場合には、前記ゲート駆動電圧のいずれか一方が異常であっても前記論理和により前記逆接保護FETのONを継続するようになっている請求項8又は9に記載のモータ制御装置。
  11. 前記逆接保護FET駆動指令及び前記論理和を入力して、前記逆接保護FETをON/OFFするFET駆動部が設けられている請求項8乃至10のいずれかに記載のモータ制御装置。
  12. 請求項1乃至11のいずれかに記載のモータ制御装置を搭載し、少なくとも操舵トルクに基づいて演算された電流指令値により前記モータを駆動制御し、車両の操舵系にアシスト力を付与することを特徴とする電動パワーステアリング装置。
  13. 請求項12に記載の電動パワーステアリング装置を搭載している車両。
PCT/JP2017/019171 2016-06-07 2017-05-23 モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両 WO2017212911A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780034687.2A CN109314483B (zh) 2016-06-07 2017-05-23 电动机控制装置以及搭载了该电动机控制装置的电动助力转向装置和车辆
JP2017562370A JP6281674B1 (ja) 2016-06-07 2017-05-23 モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両
EP17810092.1A EP3454468B1 (en) 2016-06-07 2017-05-23 Motor control device, electric power steering device equipped with same and vehicle
US16/306,775 US10486736B2 (en) 2016-06-07 2017-05-23 Motor control unit, electric power steering apparatus equipped with the same, and vehicle
BR112018075175-8A BR112018075175A2 (pt) 2016-06-07 2017-05-23 unidade de controle de motor, aparelho de direção eléctrica equipado com o mesmo, e veículo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-113710 2016-06-07
JP2016-113711 2016-06-07
JP2016113711 2016-06-07
JP2016113710 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017212911A1 true WO2017212911A1 (ja) 2017-12-14

Family

ID=60578578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019171 WO2017212911A1 (ja) 2016-06-07 2017-05-23 モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両

Country Status (6)

Country Link
US (1) US10486736B2 (ja)
EP (1) EP3454468B1 (ja)
JP (4) JP6281674B1 (ja)
CN (1) CN109314483B (ja)
BR (1) BR112018075175A2 (ja)
WO (1) WO2017212911A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905050A (zh) * 2019-02-13 2019-06-18 苏州达方电子有限公司 电源转换系统及其操作方法
CN110389305A (zh) * 2018-04-17 2019-10-29 日本电产艾莱希斯株式会社 逆变器电路的故障诊断方法
WO2023026943A1 (ja) * 2021-08-25 2023-03-02 株式会社デンソー 電力供給装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778895B (zh) * 2016-03-14 2021-06-04 三菱电机株式会社 电动助力转向装置用的三相双重化电动机装置
CN109229361A (zh) * 2017-07-11 2019-01-18 深圳市道通智能航空技术有限公司 电机控制系统及无人机
JP6526291B1 (ja) * 2018-06-08 2019-06-05 三菱電機株式会社 電動パワーステアリング装置
CN112441108B (zh) * 2019-08-30 2022-04-01 广州汽车集团股份有限公司 电机控制装置、故障控制方法及车辆转向系统与车辆
JP7230886B2 (ja) * 2020-06-17 2023-03-01 株式会社デンソー モータ制御装置、及び操舵システム
CN112583313B (zh) * 2020-11-18 2022-07-01 上海航天控制技术研究所 基于主从调节的双绕组电机预测控制方法
JP2024081341A (ja) * 2022-12-06 2024-06-18 株式会社デンソー 半導体装置及び制御システム
CN116131714B (zh) * 2023-04-14 2023-06-16 西华大学 一种永磁多相无刷直流电机的驱动电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151366A (ja) * 2005-11-30 2007-06-14 Hitachi Ltd モータ駆動装置及びそれを用いた自動車
JP2009274686A (ja) * 2008-05-19 2009-11-26 Nsk Ltd 電動パワーステアリング装置
JP4998836B2 (ja) 2009-09-30 2012-08-15 株式会社デンソー 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP2013162680A (ja) * 2012-02-07 2013-08-19 Mitsubishi Electric Corp モータ制御装置、モータ制御装置に適用される電流制御方法、およびモータ制御装置を用いた電動パワーステアリング装置
JP2014057514A (ja) * 2009-06-24 2014-03-27 Denso Corp 駆動装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365872B2 (ja) 2009-06-24 2013-12-11 株式会社デンソー 駆動装置
US8975847B2 (en) * 2010-03-26 2015-03-10 Mitsubishi Electric Corporation Power conversion device
JP2014135866A (ja) * 2013-01-11 2014-07-24 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2014176215A (ja) * 2013-03-08 2014-09-22 Nsk Ltd モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JP2015039256A (ja) * 2013-03-15 2015-02-26 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
GB201308249D0 (en) * 2013-05-08 2013-06-12 Trw Ltd Method of controlling a motor of an electric power assisted steering system
JP6182385B2 (ja) * 2013-08-05 2017-08-16 日立オートモティブシステムズ株式会社 電動モータの制御装置
CN103587429A (zh) * 2013-11-28 2014-02-19 蒋超 一种电动汽车控制器
JP2015177697A (ja) * 2014-03-17 2015-10-05 株式会社ミツバ ブラシレスモータの駆動装置、駆動方法
JP6300351B2 (ja) * 2014-03-28 2018-03-28 ミネベアミツミ株式会社 保護回路および駆動回路
WO2016035826A1 (ja) * 2014-09-02 2016-03-10 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両
JP2017158318A (ja) * 2016-03-02 2017-09-07 日立オートモティブシステムズ株式会社 モータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151366A (ja) * 2005-11-30 2007-06-14 Hitachi Ltd モータ駆動装置及びそれを用いた自動車
JP2009274686A (ja) * 2008-05-19 2009-11-26 Nsk Ltd 電動パワーステアリング装置
JP2014057514A (ja) * 2009-06-24 2014-03-27 Denso Corp 駆動装置
JP4998836B2 (ja) 2009-09-30 2012-08-15 株式会社デンソー 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP2013162680A (ja) * 2012-02-07 2013-08-19 Mitsubishi Electric Corp モータ制御装置、モータ制御装置に適用される電流制御方法、およびモータ制御装置を用いた電動パワーステアリング装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389305A (zh) * 2018-04-17 2019-10-29 日本电产艾莱希斯株式会社 逆变器电路的故障诊断方法
CN110389305B (zh) * 2018-04-17 2022-07-08 日本电产艾莱希斯株式会社 逆变器电路的故障诊断方法
CN109905050A (zh) * 2019-02-13 2019-06-18 苏州达方电子有限公司 电源转换系统及其操作方法
CN109905050B (zh) * 2019-02-13 2021-07-09 苏州达方电子有限公司 电源转换系统及其操作方法
WO2023026943A1 (ja) * 2021-08-25 2023-03-02 株式会社デンソー 電力供給装置

Also Published As

Publication number Publication date
EP3454468A1 (en) 2019-03-13
JP2018102126A (ja) 2018-06-28
JPWO2017212911A1 (ja) 2018-06-14
JP6540834B2 (ja) 2019-07-10
CN109314483B (zh) 2020-01-31
US10486736B2 (en) 2019-11-26
JP2018117516A (ja) 2018-07-26
US20190308657A1 (en) 2019-10-10
EP3454468A4 (en) 2019-05-29
JP6521112B2 (ja) 2019-05-29
BR112018075175A2 (pt) 2019-03-26
JP6281674B1 (ja) 2018-02-21
JP2018099027A (ja) 2018-06-21
CN109314483A (zh) 2019-02-05
JP6521111B2 (ja) 2019-05-29
EP3454468B1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6281674B1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両
US8569981B2 (en) Motor drive and electric power steering apparatus using the same
US8710775B2 (en) Electric power steering apparatus
JP5867622B2 (ja) 電動パワーステアリング装置
US9914476B2 (en) Vehicle steering system
WO2016035826A1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置並びに車両
WO2019234949A1 (ja) 電動パワーステアリング装置
US10833614B2 (en) Motor drive device and electric power steering device
EP3382877B1 (en) Electronic control device and electric power steering device equipped therewith
JP6119880B2 (ja) 電動パワーステアリング装置
JP2013048524A (ja) 多相回転機の制御装置
US20200047791A1 (en) Vehicle control apparatus
US20170349204A1 (en) Vehicle Steering System
JP2020078184A (ja) 電動パワーステアリング装置
WO2023063253A1 (ja) 負荷駆動装置
JP6103079B2 (ja) 電動パワーステアリング装置
WO2023079960A1 (ja) モータ駆動装置
JP6944657B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP2013095364A (ja) 電動パワーステアリング装置
JP2009248922A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017562370

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017810092

Country of ref document: EP

Effective date: 20181204

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018075175

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018075175

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181205