WO2023079960A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2023079960A1
WO2023079960A1 PCT/JP2022/038969 JP2022038969W WO2023079960A1 WO 2023079960 A1 WO2023079960 A1 WO 2023079960A1 JP 2022038969 W JP2022038969 W JP 2022038969W WO 2023079960 A1 WO2023079960 A1 WO 2023079960A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
charge pump
inverter
battery
Prior art date
Application number
PCT/JP2022/038969
Other languages
English (en)
French (fr)
Inventor
宏紀 名倉
秀樹 株根
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023079960A1 publication Critical patent/WO2023079960A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a motor drive device.
  • a motor drive device that converts DC power from a battery with an inverter and supplies it to a multiphase motor.
  • an electric motor drive device disclosed in Patent Document 1 is provided with a plurality of motor relays capable of interrupting a current path connecting a connection point between arms of each phase of an inverter and a motor winding.
  • a plurality of motor relays are driven by a common driver circuit with the reverse connection protection relay.
  • drive devices for auxiliary motors installed in vehicles were generally designed assuming a battery voltage of 12V.
  • the battery voltage for auxiliary equipment of electric vehicles is scheduled to be increased to 24 V or 48 V, and the conventional 12 V specification drive circuit will exceed the withstand voltage. Therefore, in addition to an inverter that can be driven at a high voltage, a driver circuit for driving the motor relay is required, which is an obstacle in miniaturization and high integration of the motor drive device.
  • An object of the present disclosure is to provide a motor drive device capable of driving a motor relay with a simple configuration.
  • a motor drive device of the present disclosure includes an inverter, a polyphase pre-driver circuit, a control section, and a plurality of motor relays.
  • the inverter includes multiple-phase upper and lower arm switching elements connected in series between a power supply line connected to the battery and a ground line, converts DC power from the battery, and supplies the converted DC power to the multiphase motor.
  • the multiphase predriver circuit operates with the voltage supplied from the battery and drives multiple switching elements of the inverter.
  • the control unit commands a drive signal to the polyphase pre-driver circuit and controls energization from the inverter to the polyphase motor.
  • a plurality of motor relays composed of semiconductor switching elements are provided between the inter-arm connection point, which is the connection point of the switching elements of the upper and lower arms of each phase, and each phase winding of the multiphase motor. Cut off the current from the motor side to the inverter side.
  • the multiphase predriver circuit has a charge pump that boosts the voltage of the battery.
  • the output end of the charge pump is connected to the gate of the motor relay for each phase.
  • the motor relays of each phase are turned on by the output voltage of the charge pump, except when there is a command from the control unit.
  • the motor relay can be driven with a simple configuration. Further, when the battery voltage is increased from 12V to 24V or 48V, for example, the motor relay can be driven as the charge pump voltage is increased to drive the inverter.
  • FIG. 1 is a configuration diagram of the motor drive device of the first embodiment
  • FIG. 2 is a circuit diagram showing a motor relay drive configuration in the motor drive device of the first embodiment
  • FIG. 3 is a circuit diagram showing a motor relay drive configuration in the motor drive device of the second embodiment
  • FIG. 4 is a circuit diagram showing a motor relay drive configuration in the motor drive device of the third embodiment
  • FIG. 5 is a circuit diagram showing a motor relay drive configuration in the motor drive device of the fourth embodiment
  • FIG. 6 is a configuration diagram of a motor drive device of a comparative example.
  • a motor drive device will be described based on the drawings. In a plurality of embodiments, substantially the same configurations are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the first to fourth embodiments are collectively referred to as "this embodiment".
  • a "polyphase motor” in this embodiment is a three-phase motor, and a “polyphase pre-driver circuit” is a three-phase pre-driver circuit.
  • the motor driving device of the present embodiment converts the DC power of the battery in the electric power steering device and supplies it to the steering assist motor.
  • the steering assist motor is composed of a three-phase brushless motor.
  • the voltage of the auxiliary battery mounted on the vehicle was generally 12V, but in this embodiment, it is mainly assumed that it will be 24V or 48V, which will be adopted in electric vehicles in the future.
  • “24V/48V” in the drawings and the following specification means “24V or 48V”.
  • the configuration of this embodiment is basically the same even when a 12V battery is used.
  • the present embodiment may be applied not only to electric vehicles but also to engine vehicles.
  • the ECU of the electric power steering device functions as a motor drive device.
  • the ECU is composed of a microcomputer, a customized integrated IC, and the like, and includes a CPU, ROM, RAM, I/O (not shown), and a bus line connecting these components.
  • the ECU controls software processing by executing a program pre-stored in a physical memory device such as a ROM (that is, a readable non-temporary tangible recording medium) by the CPU, or hardware processing by a dedicated electronic circuit. to run.
  • FIG. 1 shows the configuration of a motor driving device 101 according to the first embodiment.
  • the motor drive device 101 includes an inverter 60, a three-phase pre-driver circuit 40, a microcomputer 30 as a "control section", a plurality of motor relays 71, 72, 73, and the like.
  • FIG. 1 illustrates the configuration of the motor drive device 101 with one system, it may have a redundant configuration with two or more systems. For example, in a dual-system motor drive, power is supplied from two inverters to a double winding motor having two sets of windings.
  • the inverter 60 is provided between the power line Lp connected to the positive electrode of the battery 15 and the ground line Lg connected to the negative electrode of the battery 15 .
  • Inverter 60 includes three-phase upper and lower arm switching elements 61-66 connected in series between power supply line Lp and ground line Lg. Specifically, U-phase, V-phase, and W-phase upper arm switching elements 61, 62, and 63 and lower arm switching elements 64, 65, and 66 are bridge-connected.
  • MOSFETs are used as the switching elements 61 - 66 of the inverter 60 .
  • the MOSFETs used in this embodiment are basically N-channel type.
  • connection points of the switching elements of the upper and lower arms of each phase are defined as "arm-to-arm connection points Nu, Nv, Nw".
  • Inter-arm connection points Nu, Nv, and Nw are connected to three-phase windings 81, 82, and 83 of motor 80, respectively.
  • Inverter 60 converts the DC power of battery 15 and supplies it to three-phase windings 81 , 82 , 83 .
  • three-phase windings 81, 82, and 83 are connected at a neutral point Nm. Note that the three-phase windings 81, 82, and 83 may be delta-connected.
  • the inverter capacitor 56 is connected in parallel with the inverter 60 between the power supply line Lp and the ground line Lg, and charged with the voltage applied to the inverter 60 .
  • the inverter capacitor 56 functions as a smoothing capacitor.
  • a filter capacitor 16 and a choke coil (inductor) 17 that constitute an LC filter circuit for noise countermeasures are provided on the battery 15 side of the inverter 60.
  • the filter capacitor 16 and the inverter capacitor 56 are composed of, for example, polar aluminum electrolytic capacitors.
  • the choke coil 17 is provided on the power supply line Lp.
  • the reverse connection protection relay 52 is connected to the power line Lp between the choke coil 17 and the inverter 60.
  • the reverse connection protection relay 52 is connected in parallel with a freewheeling diode that conducts current from the battery 15 side to the inverter 60 side, and cuts off the current from the inverter 60 side to the battery 15 side when the relay 52 is OFF.
  • a freewheeling diode that conducts current from the battery 15 side to the inverter 60 side, and cuts off the current from the inverter 60 side to the battery 15 side when the relay 52 is OFF.
  • the reverse connection protection relay 52 composed of a MOSFET
  • a parasitic diode of the MOSFET functions as a free wheel diode.
  • the reverse connection protection relay 52 may be provided on the ground line Lg.
  • a power supply relay may be provided at the position of X indicated by the two-dot chain line, that is, on the battery 15 side of the reverse connection protection relay 52 .
  • the power supply relay is connected in parallel with a freewheeling diode that conducts current from the inverter 60 side to the battery 15 side, and cuts off the current from the battery 15 side to the inverter 60 side when the power relay is OFF.
  • the motor relays 71 , 72 , 73 are provided in the motor current paths between the arm connection points Nu, Nv, Nw of each phase and the three-phase windings 81 , 82 , 83 .
  • the motor relays 71, 72, 73 are composed of MOSFETs, which are semiconductor switching elements.
  • the parasitic diode conducts current from the inter-arm connection points Nu, Nv, Nw to the three-phase windings 81 , 82 , 83 .
  • the motor relays 71, 72, and 73 cut off current from the motor 80 side to the inverter 60 side when turned off.
  • the inverter 60 or each phase motor current path is provided with a current sensor that detects the phase current.
  • the microcomputer (control unit) 30 calculates a drive signal for the inverter 60 by current feedback control based on the phase current detection value and the motor rotation angle so that the motor 80 outputs the command torque.
  • part of the functions of the microcomputer 30 as a control section may be shared by the integrated IC. In the case of a two-system configuration, the control information may be communicated between the microcomputers of each system.
  • FIG. 2 particularly shows the configuration of the three-phase pre-driver circuit 40 and the driving configuration of the motor relays 71 , 72 and 73 .
  • the three-phase pre-driver circuit 40 operates with the voltage supplied from the battery 15 and drives the switching elements 61 - 66 of the inverter 60 .
  • the microcomputer 30 commands a drive signal to the three-phase pre-driver circuit 40 and controls energization from the inverter 60 to the three-phase motor 80 .
  • a power supply voltage of 24V/48V is supplied from the power supply line Lp after the choke coil 17 to the three-phase pre-driver circuit 40 .
  • the power supply voltage of 24V/48V is indicated as "PIG".
  • a power supply voltage of 12 V is supplied from the power supply line Lp through the step-down regulator 18 . If the battery voltage is 12V, the buck regulator 18 is not required.
  • the three-phase pre-driver circuit 40 has a charge pump 43 that boosts the battery voltage.
  • the output voltage of charge pump 43 is referred to as charge pump voltage Vcp.
  • a voltage of 12 V input via the step-down regulator 18 is referred to as a non-boosted voltage Vnb.
  • the charge pump voltage Vcp is output to the gates of upper arm (high side) switching elements 61-63.
  • the non-boosted voltage Vnb is output to the gates of the lower arm (low side) switching elements 64-66.
  • "HS" in the figure indicates the high side
  • LS indicates the low side.
  • the charge pump 43 While the power supply voltage is being supplied to the three-phase pre-driver circuit 40, the charge pump 43 superimposes the voltage charged on the capacitor Ccp and basically continues to output a constant voltage.
  • the charge pump 43 is controlled by the logic circuit in the three-phase pre-driver circuit 40. stops working.
  • the output end of the charge pump 43 is connected to the gates of the motor relays 71, 72, 73 of each phase.
  • charge pump voltage paths 461, 462, and 463 for each phase branch off from the charge pump voltage path 46 common to the three phases connected to the output end of the charge pump 43, and the motor of each phase It is connected to the gates of relays 71 , 72 and 73 .
  • the motor relays 71, 72, and 73 of each phase are turned ON by the output voltage Vcp of the charge pump 43, except when there is a command from the microcomputer 30 (that is, a cutoff signal to be described later).
  • the motor relays 71, 72, and 73 can be turned on using the charge pump voltage Vcp required to drive the upper arm switching elements 61-63 of the inverter 60 without using a driver circuit dedicated to the motor relays.
  • a MOSFET is provided between the three-phase common charge pump voltage path 46 and the ground.
  • a gate cutoff switch 47 common to the three phases is also provided.
  • the gate cutoff switch 47 when a cutoff signal common to the three phases is input from the microcomputer 30, the gate cutoff switch 47 is turned on to ground the charge pump voltage path 46.
  • FIG. As a result, the gate voltage supplied from the output terminal of the charge pump 43 to the motor relays 71, 72, 73 is cut off, and the motor relays 71, 72, 73 are simultaneously turned off.
  • the output end of the charge pump 43 is connected to the gate of the reverse connection protection relay 52 via another charge pump voltage path 45. Therefore, the reverse connection protection relay 52 can also be turned on using the charge pump voltage Vcp without using a dedicated driver circuit.
  • driving the reverse connection protection relay 52 is a supplementary matter in this embodiment. In FIG. 2, illustration of the reverse connection protection relay 52 is omitted.
  • the motor drive device 109 of the comparative example includes a relay driver circuit 49 capable of commonly driving the motor relays 71 , 72 , 73 and the reverse connection protection relay 52 based on the drive signal from the microcomputer 30 .
  • the motor drive device 109 of the comparative example is based on the prior art of Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-45576, corresponding US Publication: US2014/055059A1).
  • the motor relays 71, 72, 73 and the reverse connection protection relay 52 use a common driver circuit to achieve miniaturization and high integration. No change. Therefore, the size of the device is increased and the cost is increased.
  • the motor relays 71, 72, and 73 are driven by the output voltage Vcp of the charge pump 43, so a driver circuit dedicated to the motor relays is not required. Therefore, the motor relays 71, 72, 73 can be driven with a simple configuration. Further, when the battery voltage is increased from 12V to 24V/48V, for example, the motor relays 71, 72 and 73 can be driven as the charge pump voltage Vcp for driving the inverter 60 is increased.
  • FIG. 3 to 5 show drive configurations of motor relays 71, 72 and 73 according to FIG. 2 of the first embodiment.
  • gate cutoff switches 471, 472, 473 are provided for each phase between the charge pump voltage paths 461, 462, 463 of each phase and the ground.
  • Each gate cutoff switch 471, 472, 473 is turned on when a cutoff signal is input from the microcomputer 30, and by grounding the charge pump voltage paths 461, 462, 463, the motor relays 71, 72, 73 of each phase are turned on. are turned off individually. That is, based on the cutoff signal for each phase from the microcomputer 30, the gate cutoff switch 471 is supplied to the U-phase motor relay 71, the gate cutoff switch 472 is supplied to the V-phase motor relay 72, and the gate cutoff switch 473 is supplied to the W-phase motor relay 73. It is possible to cut off each gate voltage individually.
  • the microcomputer 30 outputs three-phase shut-off signals at the same time when the energization of the three phases is normally stopped at the same time.
  • the microcomputer 30 outputs three-phase shut-off signals at the same time when the energization of the three phases is normally stopped at the same time.
  • one of the three phases such as an inverter switching element or a current sensor, fails, there is a technique for driving with two normal phases. In that case, in the second embodiment, only the motor relays of the phases whose driving is to be stopped can be cut off individually.
  • a third embodiment will be described with reference to FIG.
  • gate cutoff switches 471, 472, 473 are provided in the middle of charge pump voltage paths 461, 462, 463 of respective phases.
  • the gate cutoff switches 471, 472, 473 cut off the charge pump voltage paths 461, 462, 463 based on the cutoff signal for each phase from the microcomputer 30, thereby individually turning the motor relays 71, 72, 73 of each phase. It can be cut off.
  • the same effect as in the second embodiment can be obtained.
  • a common gate cutoff switch 47 may be provided in the same manner as in the third embodiment in the middle of the three-phase common charge pump voltage path 46 in FIG. 1 of the first embodiment.
  • a fourth embodiment will be described with reference to FIG.
  • the gate cutoff switches for the motor relays 71, 72, 73 are not provided. Instead, the microcomputer 30 outputs a signal to stop the operation of the charge pump 43 .
  • the charge pump 43 is configured so that no residual voltage remains after the operation is stopped. By outputting a stop signal to the charge pump 43, the microcomputer 30 stops the operation of the inverter 60 and collectively turns off the motor relays 71, 72, and 73 of each phase. This configuration also allows the motor relays 71, 72, and 73 to be turned off intentionally.
  • the motor drive device of the present disclosure may not have a reverse connection protection relay.
  • the motor relays 71, 72, 73 and the gate cutoff switches 47, 471, 472, 473 are not limited to MOSFETs, and may be composed of other semiconductor switching elements such as bipolar transistors.
  • the number of phases of the polyphase motor and the polyphase pre-driver circuit is not limited to three, but may be two or four or more.
  • the motor drive device of the present disclosure may be applied to an in-vehicle device other than an electric power steering device, or to a drive device for various multiphase motors other than a device mounted on a vehicle.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

モータ駆動装置の多相プリドライバ回路(40)は、バッテリ(15)から供給される電圧により動作し、インバータ(60)の複数のスイッチング素子(61-66)を駆動する。半導体スイッチング素子で構成された複数のモータリレー(71、72、73)は、各相のアーム間接続点(Nu、Nv、Nw)と多相モータの各相巻線(81、82、83)との間に設けられ、OFF時に多相モータ(80)側からインバータ(60)側への電流を遮断する。多相プリドライバ回路(40)は、バッテリ(15)の電圧を昇圧するチャージポンプ(43)を有する。チャージポンプ(43)の出力端は、各相のモータリレー(71、72、73)のゲートに接続されている。チャージポンプ(43)の動作中、制御部(30)から指令がある場合を除き、各相のモータリレー(71、72、73)はチャージポンプ(43)の出力電圧によりONする。

Description

モータ駆動装置 関連出願の相互参照
 本出願は、2021年11月2日に出願された日本出願番号2021-179685号に基づくものであり、ここにその記載内容を援用する。
 本開示は、モータ駆動装置に関する。
 従来、バッテリの直流電力をインバータで変換し、多相モータに供給するモータ駆動装置が知られている。例えば特許文献1に開示された電動機駆動装置は、インバータの各相のアーム間接続点とモータ巻線とを接続する電流経路を遮断可能な複数のモータリレーが設けられている。複数のモータリレーは、逆接続保護リレーと共通のドライバ回路により駆動される。
特開2014-45576号公報
 従来、車両に搭載される補機モータの駆動装置は、一般に12Vのバッテリ電圧を想定して設計されていた。今後、電動自動車の補機用バッテリ電圧は24V又は48Vに高圧化される予定であり、従来の12V仕様の駆動回路では耐圧超過となる。そのため、高電圧で駆動可能なインバータに加え、モータリレーを駆動するドライバ回路が必要となり、モータ駆動装置の小型化や高集積化の点で障壁となる。
 本開示の目的は、簡易な構成でモータリレーを駆動可能なモータ駆動装置を提供することにある。
 本開示のモータ駆動装置は、インバータと、多相プリドライバ回路と、制御部と、複数のモータリレーと、を備える。インバータは、バッテリに接続される電源ラインとグランドラインとの間に直列接続された複数相の上下アームのスイッチング素子を含み、バッテリの直流電力を変換して多相モータに供給する。
 多相プリドライバ回路は、バッテリから供給される電圧により動作し、インバータの複数のスイッチング素子を駆動する。制御部は、多相プリドライバ回路に駆動信号を指令し、インバータから多相モータへの通電を制御する。
 半導体スイッチング素子で構成された複数のモータリレーは、各相の上下アームのスイッチング素子の接続点であるアーム間接続点と多相モータの各相巻線との間に設けられ、OFF時に多相モータ側からインバータ側への電流を遮断する。
 多相プリドライバ回路は、バッテリの電圧を昇圧するチャージポンプを有する。チャージポンプの出力端は、各相のモータリレーのゲートに接続されている。チャージポンプの動作中、制御部から指令がある場合を除き、各相のモータリレーはチャージポンプの出力電圧によりONする。
 これにより、モータリレー専用のドライバ回路が不要となる。したがって、簡易な構成でモータリレーを駆動することができる。また、バッテリ電圧が例えば12Vから24V又は48Vに高圧化された場合、インバータの駆動用にチャージポンプ電圧が高圧化されることに伴ってモータリレーも駆動可能となる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態のモータ駆動装置の構成図であり、 図2は、第1実施形態のモータ駆動装置でのモータリレー駆動構成を示す回路図であり、 図3は、第2実施形態のモータ駆動装置でのモータリレー駆動構成を示す回路図であり、 図4は、第3実施形態のモータ駆動装置でのモータリレー駆動構成を示す回路図であり、 図5は、第4実施形態のモータ駆動装置でのモータリレー駆動構成を示す回路図であり、 図6は、比較例のモータ駆動装置の構成図である。
 複数の実施形態によるモータ駆動装置を図面に基づいて説明する。複数の実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。第1~第4実施形態を包括して「本実施形態」という。本実施形態での「多相モータ」は三相モータであり、「多相プリドライバ回路」は三相プリドライバ回路である。本実施形態のモータ駆動装置は、電動パワーステアリング装置においてバッテリの直流電力を変換して操舵アシストモータに供給する。操舵アシストモータは三相ブラシレスモータで構成されている。
 なお、車両に搭載される補機バッテリの電圧は従来12Vが一般的であったが、本実施形態では主に、今後、電気自動車で採用される予定である24V又は48Vを想定する。図中及び以下の明細書中の「24V/48V」は「24V又は48V」を意味する。ただし、12Vのバッテリを用いる場合でも本実施形態の構成は基本的に同様である。本実施形態は、電気自動車に限らずエンジン車に適用されてもよい。
 具体的には、電動パワーステアリング装置のECUがモータ駆動装置として機能する。ECUは、マイコンやカスタマイズされた統合IC等で構成され、図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECUは、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理による制御を実行する。
 (第1実施形態)
 図1に第1実施形態のモータ駆動装置101の構成を示す。モータ駆動装置101は、インバータ60、三相プリドライバ回路40、「制御部」としてのマイコン30、複数のモータリレー71、72、73等を備える。図1には一系統のモータ駆動装置101の構成を例示するが、二系統以上の冗長構成であってもよい。例えば二系統のモータ駆動装置では、二組の巻線組を有する二重巻線モータに対し二つのインバータから電力供給する。
 インバータ60は、バッテリ15の正極に接続される電源ラインLpと、バッテリ15の負極に接続されるグランドラインLgとの間に設けられる。インバータ60は、電源ラインLpとグランドラインLgとの間に直列接続された、三相の上下アームのスイッチング素子61-66を含む。詳しくは、U相、V相、W相の上アームのスイッチング素子61、62、63及び下アームのスイッチング素子64、65、66がブリッジ接続されている。本実施形態では、インバータ60のスイッチング素子61-66としてMOSFETが用いられる。本実施形態で用いられるMOSFETは基本的にNチャネル型である。
 各相の上下アームのスイッチング素子の接続点を「アーム間接続点Nu、Nv、Nw」と定義する。アーム間接続点Nu、Nv、Nwは、それぞれモータ80の三相巻線81、82、83に接続されている。インバータ60は、バッテリ15の直流電力を変換して三相巻線81、82、83に供給する。例えばY結線のモータ80の場合、三相巻線81、82、83は中性点Nmで接続されている。なお、三相巻線81、82、83はΔ結線されてもよい。
 インバータコンデンサ56は、電源ラインLpとグランドラインLgとの間にインバータ60と並列に接続され、インバータ60に印加される電圧が充電される。モータ駆動装置101の通常動作時、インバータコンデンサ56は平滑コンデンサとして機能する。
 インバータ60のバッテリ15側には、ノイズ対策用LCフィルタ回路を構成するフィルタコンデンサ16及びチョークコイル(インダクタ)17が設けられている。フィルタコンデンサ16及びインバータコンデンサ56は、例えば有極性のアルミ電解コンデンサで構成されている。チョークコイル17は電源ラインLpに設けられている。
 図1の構成では、チョークコイル17とインバータ60との間の電源ラインLpに逆接続保護リレー52が接続されている。逆接続保護リレー52は、バッテリ15側からインバータ60側への電流を導通する還流ダイオードが並列接続されており、OFF時にインバータ60側からバッテリ15側への電流を遮断する。例えばMOSFETで構成された逆接続保護リレー52では、MOSFETの寄生ダイオードが還流ダイオードとして機能する。他の構成例では逆接続保護リレー52はグランドラインLgに設けられてもよい。
 また他の構成例では、二点鎖線で示すXの位置、すなわち逆接続保護リレー52のバッテリ15側に電源リレーが設けられてもよい。その場合、電源リレーは、インバータ60側からバッテリ15側への電流を導通する還流ダイオードが並列接続されており、OFF時にバッテリ15側からインバータ60側への電流を遮断する。
 モータリレー71、72、73は、各相のアーム間接続点Nu、Nv、Nwと三相巻線81、82、83との間のモータ電流経路に設けられる。モータリレー71、72、73は、半導体スイッチング素子であるMOSFETで構成されている。寄生ダイオードは、アーム間接続点Nu、Nv、Nwから三相巻線81、82、83への電流を導通する。モータリレー71、72、73は、OFF時にモータ80側からインバータ60側への電流を遮断する。
 図示を省略するが、インバータ60又は各相モータ電流経路には相電流を検出する電流センサが設けられる。モータ駆動装置101の通常動作時、マイコン(制御部)30は、モータ80が指令トルクを出力するように、相電流検出値及びモータ回転角に基づく電流フィードバック制御によりインバータ60の駆動信号を演算する。なお、マイコン30による制御部としての機能の一部を統合ICが分担してもよい。また二系統構成の場合、各系統のマイコンの間で制御情報を相互に通信してもよい。
 続いて、図1と共に図2を参照する。図2には特に三相プリドライバ回路40の構成、及び、モータリレー71、72、73の駆動構成を示す。三相プリドライバ回路40は、バッテリ15から供給される電圧により動作し、インバータ60の複数のスイッチング素子61-66を駆動する。マイコン30は、三相プリドライバ回路40に駆動信号を指令し、インバータ60から三相モータ80への通電を制御する。
 三相プリドライバ回路40には、チョークコイル17後の電源ラインLpから24V/48Vの電源電圧が供給される。図2では、24V/48Vの電源電圧を「PIG」と記す。また、電源ラインLpから降圧レギュレータ18を経由して12Vの電源電圧が供給される。バッテリ電圧が12Vの場合、降圧レギュレータ18は不要である。
 三相プリドライバ回路40は、バッテリ電圧を昇圧するチャージポンプ43を有する。チャージポンプ43の出力電圧をチャージポンプ電圧Vcpと記す。また、降圧レギュレータ18を経由して入力される12Vの電圧を非昇圧電圧Vnbと記す。チャージポンプ電圧Vcpは、上アーム(ハイサイド)スイッチング素子61-63のゲートに出力される。非昇圧電圧Vnbは、下アーム(ローサイド)スイッチング素子64-66のゲートに出力される。図中の「HS」はハイサイド、「LS」はローサイドを示す。
 三相プリドライバ回路40に電源電圧が供給されている間、チャージポンプ43は、コンデンサCcpに充電された電圧を重畳させ、基本的に常時一定の電圧を出力し続ける。三相プリドライバ回路40への電源電圧の供給が途絶えた場合、又は、チャージポンプ電圧Vcpが上限閾値を超えるか下限閾値を下回った場合、三相プリドライバ回路40内のロジック回路によりチャージポンプ43の動作が停止する。
 本実施形態では、チャージポンプ43の出力端が各相のモータリレー71、72、73のゲートに接続されている。例えば第1実施形態の構成では、チャージポンプ43の出力端に接続された三相共通のチャージポンプ電圧経路46から各相のチャージポンプ電圧経路461、462、463が分岐して、各相のモータリレー71、72、73のゲートに接続されている。
 これにより、チャージポンプ43の動作中、マイコン30から指令(すなわち、後述の遮断信号)がある場合を除き、各相のモータリレー71、72、73はチャージポンプ43の出力電圧VcpによりONする。つまり、モータリレー専用のドライバ回路を用いず、インバータ60の上アームスイッチング素子61-63の駆動に必要なチャージポンプ電圧Vcpを利用してモータリレー71、72、73をONすることができる。
 また、チャージポンプ43の動作中に意図的にモータリレー71、72、73をOFFするため、第1実施形態では、三相共通のチャージポンプ電圧経路46とグランドとの間に、MOSFETで構成された、三相共通のゲート遮断スイッチ47が設けられている。第1実施形態では、マイコン30から三相共通の遮断信号が入力されたとき、ゲート遮断スイッチ47がONし、チャージポンプ電圧経路46を接地させる。その結果、チャージポンプ43の出力端からモータリレー71、72、73に供給されるゲート電圧が遮断され、モータリレー71、72、73は同時にOFFする。
 三相モータ80の通常の動作では、三相巻線81、82、83への通電を同時に開始し同時に停止する。また外力により発生した逆起電力がモータ80からインバータ60を経由してバッテリ15側に回生する場合、三相に同じタイミングで回生電流が流れると考えられる。このような場合、三相共通の遮断信号でモータリレー71、72、73をOFFすることが有効である。
 さらに図1の構成例では、チャージポンプ43の出力端が別のチャージポンプ電圧経路45を介して逆接続保護リレー52のゲートに接続されている。したがって、逆接続保護リレー52についても同様に、専用のドライバ回路を用いず、チャージポンプ電圧Vcpを利用してONすることができる。ただし、本実施形態において逆接続保護リレー52の駆動は補足的事項である。図2では逆接続保護リレー52の図示を省略する。
 ここで図6を参照し、比較例のモータ駆動装置109と対比しつつ第1実施形態の効果について説明する。比較例のモータ駆動装置109は、マイコン30からの駆動信号に基づき、モータリレー71、72、73と逆接続保護リレー52とを共通に駆動可能なリレードライバ回路49を備える。比較例のモータ駆動装置109は、特許文献1(特開2014-45576号公報、対応US公報:US2014/055059A1)の従来技術に基づくものである。
 比較例ではモータリレー71、72、73と逆接続保護リレー52とのドライバ回路を共通にすることで小型化、高集積化が図られているものの、リレー専用のドライバ回路が必要であることに変わりはない。したがって、装置が大型化、コストアップする。
 それに対し第1実施形態ではチャージポンプ43の出力電圧Vcpによりモータリレー71、72、73を駆動するため、モータリレー専用のドライバ回路が不要となる。したがって、簡易な構成でモータリレー71、72、73を駆動することができる。また、バッテリ電圧が例えば12Vから24V/48Vに高圧化された場合、インバータ60の駆動用にチャージポンプ電圧Vcpが高圧化されることに伴ってモータリレー71、72、73も駆動可能となる。
 (第2実施形態)
 図3を参照し、第2実施形態について説明する。以下の第2~第4実施形態で参照される図3~図5は、第1実施形態の図2に準じ、モータリレー71、72、73の駆動構成を示す。第2実施形態のモータ駆動装置102では、各相のチャージポンプ電圧経路461、462、463とグランドとの間に、ゲート遮断スイッチ471、472、473が相毎に設けられている。
 各ゲート遮断スイッチ471、472、473は、マイコン30からの遮断信号が入力されたときONし、チャージポンプ電圧経路461、462、463を接地させることで、各相のモータリレー71、72、73を個別にOFFする。つまり、マイコン30からの相毎の遮断信号に基づいて、ゲート遮断スイッチ471はU相モータリレー71、ゲート遮断スイッチ472はV相モータリレー72、ゲート遮断スイッチ473はW相モータリレー73に供給されるゲート電圧を個別に遮断可能である。
 第2実施形態においても通常に三相の通電を同時に停止する場合、マイコン30は三相同時に遮断信号を出力する。一方、例えば三相のうち一相のインバータスイッチング素子や電流センサ等が故障したとき、正常な二相で駆動する技術がある。その場合、第2実施形態では、駆動を停止させる相のモータリレーのみを個別に遮断することができる。
 なお、電動パワーステアリング装置に適用される冗長二系統構成のモータ駆動装置では、一方の系統の一相が故障したとき、異常系統全体を停止し、正常な一系統の駆動に切り替えることが普通である。したがって、三相駆動から二相駆動への切り替えは、主に一系統構成のモータ駆動装置において有用である。
 (第3実施形態)
 図4を参照し、第3実施形態について説明する。第3実施形態のモータ駆動装置103では、各相のチャージポンプ電圧経路461、462、463の途中にゲート遮断スイッチ471、472、473が設けられている。ゲート遮断スイッチ471、472、473は、マイコン30からの相毎の遮断信号に基づいてチャージポンプ電圧経路461、462、463を遮断することで、各相のモータリレー71、72、73を個別に遮断可能である。第3実施形態でも第2実施形態と同様の作用効果が得られる。
 なお、第1実施形態の図1における三相共通のチャージポンプ電圧経路46の途中に、第3実施形態と同様の方式による共通のゲート遮断スイッチ47を設けてもよい。
 (第4実施形態)
 図5を参照し、第4実施形態について説明する。第4実施形態のモータ駆動装置104ではモータリレー71、72、73のゲート遮断スイッチが設けられない。その代わり、マイコン30からチャージポンプ43の動作を停止する信号が出力される。チャージポンプ43は動作停止後に残電圧が残らないように回路が構成されている。マイコン30は、チャージポンプ43に停止信号を出力することで、インバータ60の動作を停止するとともに各相のモータリレー71、72、73を一括してOFFする。この構成でもモータリレー71、72、73を意図的にOFFすることができる。
 (その他の実施形態)
 (a)本開示のモータ駆動装置は逆接続保護リレーを備えなくてもよい。また、チャージポンプ電圧Vcpにより各相のモータリレー71、72、73を駆動しさえすればよく、チャージポンプ電圧Vcpにより逆接続保護リレーを駆動しなくてもよい。
 (b)モータリレー71、72、73やゲート遮断スイッチ47、471、472、473は、MOSFETに限らず、バイポーラトランジスタ等の他の半導体スイッチング素子等で構成されてもよい。
 (c)多相モータ及び多相プリドライバ回路の相の数は三相に限らず、二相、又は四相以上であってもよい。
 (d)本開示のモータ駆動装置は、電動パワーステアリング装置以外の車載装置や、車両に搭載される装置以外の各種多相モータの駆動装置に適用されてもよい。
 以上、本開示はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。

Claims (3)

  1.  バッテリ(15)に接続される電源ライン(Lp)とグランドライン(Lg)との間に直列接続された複数相の上下アームのスイッチング素子(61-66)を含み、前記バッテリの直流電力を変換して多相モータ(80)に供給するインバータ(60)と、
     前記バッテリから供給される電圧により動作し、前記インバータの複数のスイッチング素子を駆動する多相プリドライバ回路(40)と、
     前記多相プリドライバ回路に駆動信号を指令し、前記インバータから前記多相モータへの通電を制御する制御部(30)と、
     半導体スイッチング素子で構成され、各相の上下アームのスイッチング素子の接続点であるアーム間接続点(Nu、Nv、Nw)と前記多相モータの各相巻線(81、82、83)との間に設けられ、OFF時に前記多相モータ側から前記インバータ側への電流を遮断する複数のモータリレー(71、72、73)と、
     を備え、
     前記多相プリドライバ回路は、前記バッテリの電圧を昇圧するチャージポンプ(43)を有し、
     前記チャージポンプの出力端は、各相の前記モータリレーのゲートに接続されており、
     前記チャージポンプの動作中、前記制御部から指令がある場合を除き、各相の前記モータリレーは前記チャージポンプの出力電圧によりONするモータ駆動装置。
  2.  前記制御部からの遮断信号が入力されたとき、前記チャージポンプの出力端から前記モータリレーに供給されるゲート電圧を遮断する一つ以上のゲート遮断スイッチ(47、471、472、473)をさらに備える請求項1に記載のモータ駆動装置。
  3.  前記ゲート遮断スイッチは相毎に設けられており、前記制御部からの相毎の遮断信号に基づいて各相の前記モータリレーに供給されるゲート電圧を個別に遮断可能である請求項2に記載のモータ駆動装置。
PCT/JP2022/038969 2021-11-02 2022-10-19 モータ駆動装置 WO2023079960A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179685A JP2023068512A (ja) 2021-11-02 2021-11-02 モータ駆動装置
JP2021-179685 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023079960A1 true WO2023079960A1 (ja) 2023-05-11

Family

ID=86241009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038969 WO2023079960A1 (ja) 2021-11-02 2022-10-19 モータ駆動装置

Country Status (2)

Country Link
JP (1) JP2023068512A (ja)
WO (1) WO2023079960A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118641A (ja) * 2015-12-22 2017-06-29 株式会社ジェイテクト 制御装置
JP2018078498A (ja) * 2016-11-11 2018-05-17 富士電機株式会社 負荷駆動回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118641A (ja) * 2015-12-22 2017-06-29 株式会社ジェイテクト 制御装置
JP2018078498A (ja) * 2016-11-11 2018-05-17 富士電機株式会社 負荷駆動回路

Also Published As

Publication number Publication date
JP2023068512A (ja) 2023-05-17

Similar Documents

Publication Publication Date Title
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2018163591A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US10486736B2 (en) Motor control unit, electric power steering apparatus equipped with the same, and vehicle
JP6237671B2 (ja) 電力変換装置
US10742137B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2018173469A1 (ja) モータシステム
US10829147B2 (en) Power conversion device, motor drive unit, and electric power steering device
US11114969B2 (en) Power converter, motor driving unit, and electric power steering device
US20200274461A1 (en) Electric power conversion device, motor driver, and electric power steering device
WO2021161794A1 (ja) 電力変換器の制御回路
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
US10833614B2 (en) Motor drive device and electric power steering device
US20190367080A1 (en) Control device and electric power steering device using same
CN110915121B (zh) 电力转换装置、马达模块以及电动助力转向装置
CN110870197B (zh) 电力转换装置、马达模块以及电动助力转向装置
US11031880B2 (en) Power converter, motor driving unit, and electric power steering device
US10840899B2 (en) Motor drive device and electric power steering device
WO2023079960A1 (ja) モータ駆動装置
WO2019151308A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2023079961A1 (ja) 負荷駆動装置
US11420672B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2023063253A1 (ja) 負荷駆動装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2023026943A1 (ja) 電力供給装置
WO2019053974A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889780

Country of ref document: EP

Kind code of ref document: A1