WO2017211312A1 - 海水式碳捕集封存方法及装置 - Google Patents

海水式碳捕集封存方法及装置 Download PDF

Info

Publication number
WO2017211312A1
WO2017211312A1 PCT/CN2017/087530 CN2017087530W WO2017211312A1 WO 2017211312 A1 WO2017211312 A1 WO 2017211312A1 CN 2017087530 W CN2017087530 W CN 2017087530W WO 2017211312 A1 WO2017211312 A1 WO 2017211312A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
carbon
carbon dioxide
trap
capture
Prior art date
Application number
PCT/CN2017/087530
Other languages
English (en)
French (fr)
Inventor
彭斯干
Original Assignee
彭斯干
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭斯干 filed Critical 彭斯干
Priority to CA3025952A priority Critical patent/CA3025952C/en
Priority to US15/568,596 priority patent/US11045758B2/en
Priority to AU2017276466A priority patent/AU2017276466B2/en
Priority to MYPI2018002336A priority patent/MY193676A/en
Priority to EP17809751.5A priority patent/EP3470131A4/en
Priority to JP2018564853A priority patent/JP2019524424A/ja
Priority to SG11201810876SA priority patent/SG11201810876SA/en
Publication of WO2017211312A1 publication Critical patent/WO2017211312A1/zh
Priority to US17/329,808 priority patent/US11648507B2/en
Priority to JP2022099281A priority patent/JP2022128475A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the seawater carbon capture and storage method and device (Ocean CCS) of the invention is used for capturing and storing carbon dioxide contained in fossil energy marine facilities such as coastal power plants and marine vessels, and/or carbon contained in the atmosphere. It belongs to the field of clean energy and geoengineering technology.
  • CCS Carbon Capture and Storage
  • the invention aims to overcome the shortcomings of the existing marine carbon sequestration technical solutions by providing a seawater carbon capture and storage method and apparatus (Ocean CCS), and to provide a marine carbon sequestration technical solution that complies with environmental regulations and is most cost-effective.
  • Ocean CCS seawater carbon capture and storage method and apparatus
  • Marine carbon sequestration is a practical technical tool for combating climate change that is affordable to both economic and environmental costs.
  • a first aspect of the present invention provides a seawater carbon capture and storage method, the method comprising the steps of:
  • Carbon capture extracting seawater to wash carbon dioxide-containing gas, and generating washed seawater with carbon dioxide dissolved in the gas as carbon capture integrated product;
  • Carbon sequestration The carbon trapping product is injected into the sea water body for seawater carbon sequestration.
  • the carbon capture integrated product described in the above step 2) is injected into the marine water body, and the atmospheric water pipe is injected into the marine water body.
  • the amount of seawater in the carbon capture integrated product is proportionally controlled with the amount of carbon dioxide to control the pH value of the carbon capture integrated product when injected into the sea.
  • Step 1) The carbon dioxide-containing gas refers to the atmosphere; the seawater is washed by using wind, and/or ocean current waves, and/or sunlight to extract seawater for washing.
  • the carbon dioxide-containing gas is an exhaust gas discharged from the combustion of fossil fuels.
  • the carbon dioxide in the exhaust gas is at least 10%, or 20%, or 50%, or 70%, or 80%, or 90% dissolved in the washed seawater and injected into the sea water body, and the amount of the washed seawater is configured to be sufficient to absorb At least 10%, or 20%, or 50%, or 70%, or 80%, or 90% of the carbon dioxide in the exhaust gas is emitted.
  • the extracted seawater is raised to an altitude of no more than 50m, or 40m, or 30m, or 20m, or 19m, or 15m, or 12m, or 10m, or 9m, or 8m, or 6m, or 5m, or 4m, Or 2m, or 1m, to wash the exhaust gas containing carbon dioxide, the zero meter (0m) reference of the altitude is the sea level at the seawater extraction.
  • the energy consumption of capturing carbon dioxide by washing and controlling the lifting height of the washing seawater is not more than 1000 MJ/t, or 500 MJ/t, or 400 MJ/t, or 350 MJ/t, or 300 MJ/t, or 250 MJ/t , or 200 MJ/t, or 150 MJ/t, or 100 MJ/t, or 60 MJ/t, or 50 MJ/t, or 40 MJ/t, or 30 MJ/t, or 20 MJ/t, or 10 MJ/t, or 5 MJ/t .
  • the carbon capture to the carbon sequestration is a continuous reaction process.
  • the carbon capture integrated product is injected into the sea water body, which is injected into the surface layer of the sea, and/or the middle layer, and/or the deep water body.
  • the carbon trapping product is injected into the sea water body, and the washed seawater is injected into the ocean current of the sea, and the ocean current is an ocean current that does not pass through the seawater.
  • the washing of the filler is washing by washing the seawater with the exhaust gas through a large area of the filler;
  • a second aspect of the present invention provides a seawater carbon capture and storage method, the steps comprising
  • the fossil fuel comprises coal, oil, natural gas;
  • the burner is a burner used in a coastal thermal power plant or a marine vessel;
  • the burner comprises a boiler and a steam turbine, an internal combustion engine, a gas turbine;
  • the exhaust gas is fossil fuel
  • the flue gas produced by the combustion; b the seawater is seawater directly extracted from the ocean, or/and directly extracted from the ocean and passed through the seawater for reuse after the burner is cooled.
  • the carbon dioxide gas in the exhaust gas purified by the step d is reduced by at least 10%, or 20%, or 50%, or 70% of the mass of the carbon dioxide gas in the exhaust gas described in the step , or 80%, or 90%.
  • the carbon dioxide gas in the exhaust gas purified by the step d is reduced by at least 20% of the mass of the carbon dioxide gas in the exhaust gas described in the step a.
  • the seawater temperature in which the exhaust gas carbon dioxide is continuously output in the e step is higher than the seawater temperature increase value of the step b introduced into the carbon trap by less than 50 °C.
  • the seawater temperature in which the exhaust gas carbon dioxide is continuously output in the e step is higher than the seawater temperature increase value of the step b introduced into the carbon trap by less than 20 °C.
  • the seawater temperature in which the exhaust gas carbon dioxide is continuously output in the e step is higher than the seawater temperature increase value of the step b introduced into the carbon trap by less than 2 °C.
  • the pH value of the seawater in which the exhaust gas carbon dioxide is continuously output in the e step is lower than the pH value of the seawater in the carbon sequestration zone by no more than 2 pH units.
  • a third aspect of the present invention provides a seawater type carbon trap storage apparatus for use in the method of the present invention, comprising a burner for producing a fossil fuel combustion exhaust gas, and a burner connected to the burner for scrubbing exhaust gas to capture carbon dioxide a carbon trap, a seawater extraction device that introduces seawater to a carbon trap, and a discharge cylinder that extracts purified exhaust gas from a carbon trap, and a seawater drain pipe; a carbon trap has a packing layer and includes a cloth In the water device, the seawater outlet of the carbon trap is connected to the seawater drain pipe, and the outlet of the seawater drain pipe is connected to the ocean water body.
  • the seawater type carbon capture and storage device wherein the height of the water trap of the carbon trap is less than or equal to 50 m, or 40 m, or 30 m, or 20 m, or 19 m, or 15 m, or 12 m, or 10 m, or 9 m, or 8m, or 6m, or 5m, or 4m, or 2m, or 1m; the height of the water distributor is the height of the horizontal centerline of the water distributor relative to the sea level at the water intake of the seawater extraction equipment.
  • the seawater type carbon capture and storage device has a seawater extraction device which is a seawater cooling system of a burner, and/or a seawater pump.
  • the seawater type carbon capture and storage device has a seawater regulating pump connected with a regulator for regulating the pH value of the washed seawater injected into the sea.
  • the seawater-type carbon capture and storage device, the filler layer in the carbon trap consists of an industrial bulk filler, and/or a structured packing, and/or an orifice filler, and/or a grid.
  • the filler has a dry filler factor of 5 to 2000/m, and the definition of the dry filler factor is determined by a conventional filler industry product manual.
  • the seawater drain pipe is a film water pipe.
  • the carbon trap is placed on an offshore platform that is adjustable in height with the tide level.
  • a fourth aspect of the present invention provides a seawater type carbon trap storage apparatus for use in the method of the present invention, comprising a carbon trap for transporting seawater to a seawater extraction device of the carbon trap, A power device for powering the seawater extraction device, a water distributor above the carbon trap, and a lower sump, and a seawater drain connected to the sump.
  • the power plant includes a wind power device, and/or an ocean current wave translating device, and/or a solar power plant.
  • the power device includes a pneumatic device and a power coupling device, and the power coupling device connects the seawater extraction
  • the apparatus transmits kinetic energy generated by the pneumatic device to the seawater extraction device, the power coupling device being a mechanical coupling device, and/or an electromechanical coupling device composed of a wind power generator and an electric motor.
  • the power device includes a water moving device and a power coupling device, and the power coupling device is connected to the seawater extraction device to transmit kinetic energy generated by the water moving device to the seawater extraction device, wherein the power coupling device is a mechanical coupling An electromechanical coupling consisting of a device, and/or a hydroelectric generator and an electric motor.
  • the above two devices for use in the method of the invention are fixed to a seabed and/or an offshore platform.
  • the invention utilizes carbon dioxide as a natural substance which is soluble in seawater and is abundantly present in seawater, can be friendly long-term and mass storage in the ocean, enables seawater to wash fossil fuel exhaust gas, or directly washes the collected atmosphere, that is, the natural state. Air, dissolved exhaust gas and/or carbon dioxide in the atmosphere for carbon capture, and then seawater dissolved in exhaust gas and/or atmospheric carbon dioxide is injected into the surface of the ocean under conditions that control pH and other environmental regulations. / or the middle layer, and / or deep water body, the implementation of marine carbon storage; the use of ocean current diffusion can further reduce the impact on the marine environment and enhance the storage effect.
  • the depth of injection into the ocean water body can be the surface layer, the middle layer or the deep layer.
  • bicarbonate ions are the main form of carbon dioxide in seawater, and together with carbonic acid and carbonate ions are collectively referred to as dissolved inorganic carbon (DIC).
  • DIC dissolved inorganic carbon
  • the solubility of carbon dioxide in water is very low, so seawater washing produces washed seawater containing a low concentration of CO 2 , that is, a low concentration of DIC.
  • the low concentration is relative to the prior art: the prior art carbon capture integrated product is a pure carbon dioxide liquid, a dense phase gas or a solid, and the carbon content per unit volume of the medium is several orders of magnitude higher than the inventive solution. It is possible that a low concentration requires a larger amount of washed seawater, which will result in a very large total energy consumption.
  • the present invention controls the total energy consumption by controlling the seawater lifting height and the like, and the cost of capturing and storing carbon dioxide can be reduced by at least one order of magnitude compared with the existing CCS scheme. Among them, the multiplex cooling and drainage of coastal thermal power plants can reduce costs.
  • the present invention since sulfur dioxide is also a natural substance which is soluble in seawater and is abundantly present in seawater, and the sulfur dioxide in the flue gas is less than carbon dioxide and more soluble in water, the present invention has the technical effect of flue gas desulfurization.
  • the application of the invention in the marine shipping industry can produce dual technical effects: first, the use of ocean surface carbon sink resources to achieve carbon capture and storage of escaping carbon emissions that could not be captured, and ultra-low cost reduction of ship carbon emissions, and secondly Avoiding the use of low-sulfur fuels indirectly reduces carbon emissions in the refining industry. Therefore, the shipping industry can effectively resolve the dual pressures of the international carbon reduction and sulfur reduction laws and continue to maintain the dual advantages of economy and green.
  • the application of the present invention to carbon capture and storage of air in a natural state is also of particular importance, because one is equal to the use of atmospheric circulation without cost to transport and capture various types of carbon emissions, including escapes that cannot be captured by other means.
  • Carbon emissions the second is the use of wind, ocean currents, sunlight and other renewable energy for zero-energy carbon capture and storage, and third, there is no sea area limitations, without the need for peripheral support, can be installed in a large number of sea areas.
  • the present invention has achieved good technical effects by adopting natural engineering methods, and an effective and feasible technical solution for realizing people's long-term desire to utilize marine resources to cope with climate change.
  • FIG. 1 is a schematic view showing an embodiment of a seawater carbon capture and storage method of the present invention.
  • FIG. 2 is a schematic view showing another embodiment of the seawater carbon capture and storage method of the present invention.
  • FIG 3 is a schematic view of an embodiment of the present invention for a coastal gas-fired combined cycle power plant.
  • FIG. 4 is a schematic view of another embodiment of the present invention for a coastal coal-fired power plant.
  • Figure 5 is a schematic illustration of an embodiment of the invention for a marine vessel.
  • Fig. 6 is a schematic view showing an embodiment of the present invention for hydro-atmospheric atmospheric carbon capture and storage.
  • Fig. 7 is a schematic view showing an embodiment of the wind-sea atmospheric carbon capture and storage of the present invention.
  • the seawater carbon capture and storage method provided by the invention comprises the following steps:
  • Carbon capture extracting seawater to wash carbon dioxide-containing gas, and generating washed seawater with carbon dioxide dissolved in the gas as carbon capture integrated product;
  • Carbon sequestration The carbon trapping product is injected into the sea water body for seawater carbon sequestration.
  • Seawater referred to here refers to natural seawater extracted from the ocean, including natural seawater extracted from the ocean for cooling in industrial facilities.
  • seawater can achieve the object of the present invention without adding any other substance (for example, adding a base).
  • some other additives may be added to achieve a particular purpose, for example, to absorb a particular component of the exhaust.
  • Washing refers to the capture of carbon dioxide by contacting seawater with a gas containing carbon dioxide.
  • Contact means include, but are not limited to, jet injectors, bubblers, venturi towers, showers, filters, rotary atomizers, grid columns, orifice columns, or packed columns.
  • Carbon capture as referred to herein means that the washing process captures CO 2 in a gas containing carbon dioxide. This is because some of the CO 2 in the washing process dissolves into the washed seawater and becomes dissolved inorganic carbon (DIC) in the washed seawater.
  • DIC dissolved inorganic carbon
  • carbon sequestration means that the washed seawater in which the CO 2 in the exhaust gas is dissolved is directly injected into the marine water body using an atmospheric pressure pipe.
  • the dissolved CO 2 is not concentrated before injection, but the dissolved CO 2 can be further diluted as needed by adding additional seawater to control the drainage pH in the environmental protection regulations, because different regions Sea areas, including sea areas of different depths, may have different requirements for specific environmental indicators such as drainage pH.
  • the marine water body referred to here refers to the ocean surface layer (tens of meters deep water depth), the middle layer (water depth within hundreds of meters) or the deep layer (water depth of several hundred meters or more).
  • IPCC and IEA International studies conducted by IPCC and IEA have shown that the physical and chemical systems of marine water bodies, as well as the marine ecosystems therein, can absorb and store carbon dioxide in a friendly manner.
  • ocean-flowing seawater that is, the diffusion of ocean currents
  • CO 2 is soluble in water and the ocean can absorb more CO 2 . These are common sense. However, there has been no technical solution for utilizing seawater to carry out carbon capture and storage, because it is customary for those skilled in the art to only purify the captured CO 2 into a liquid, dense phase or solid state. By reducing the volume of material in the transportation and storage sectors, the cost can only be tolerated; since the cost of the high-concentration method is far from being reduced to an affordable level, it is even more difficult to imagine any low-concentration scheme.
  • the inventors of the present application have unexpectedly discovered that the low-concentration method of seawater washing can not only desulfurize, but also achieve carbon capture and storage, and find a significant cost reduction.
  • the method reduces the cost to a level that is affordable and practical.
  • the inventors of the present application first discovered that in the existing seawater washing desulfurization process (FGD, EGC), less than 10% of the carbon dioxide in the exhaust gas is usually dissolved into the washed seawater, but then is driven to the atmosphere during the drainage aeration treatment. .
  • the inventor of the present application conducted a multi-year test on a coastal thermal power plant FGD and a marine tanker EGC embodiment and confirmed that proper seawater washing and desulfurization process design can make the washing and drainage without affecting environmental protection regulations. Drive out or even drive out carbon dioxide.
  • the inventors of the present application have found through further embodiments that increasing the amount of washed seawater can cause more than 10% of the carbon dioxide in the exhaust gas to be trapped and sequestered, and further measures to control the seawater lifting height can increase the amount of washed seawater.
  • the increased energy consumption and cost are controlled.
  • the cost of capturing and sequestering at least 20% of the carbon dioxide in the exhaust gas is generally acceptable. If more carbon dioxide is to be removed and the cost is acceptable, in the following typical applications, the following examples are described in detail, and can ultimately achieve no less than 30%, or 40%, or 50% of the exhaust gas, respectively. %, or 60%, or 70%, or 80%, or 90% of the goal of carbon dioxide capture and storage; in the coastal thermal power plant example, even if 99% of the CO 2 in the exhaust gas achieves carbon capture and storage, the increase The cost is also acceptable.
  • the amount of washed seawater is increased because a certain amount of seawater can be dissolved in a limited amount of CO 2 .
  • 1 m 3 of fresh water at normal temperature and pressure can dissolve into about 0.8 m 3 of CO 2 gas, and the seawater can be dissolved in a little more.
  • a large amount of washed seawater is required.
  • the use of all the original cooling seawater to wash the flue gas can only achieve a carbon dioxide capture rate of about 30%, and the collection rate must be increased to more than 90%, and the amount of washed seawater needs to be increased. It is more than twice the amount of original cooling water. Generally speaking, this is a very large quantity.
  • the carbon traps require seawater to raise altitudes no greater than 20m, or 19m, or 15m, or 12m, or 10m, or 9m, or 8m, or 6m, or 5m, or 4m, or 2m, or 1m.
  • the carbon trap is placed on a platform whose height can be adjusted with the tidal level, or on the floating dock, and the energy of the seawater can be increased by utilizing the principle of rising water. Always the lowest.
  • the inventors of the present application have also found by the examples that in a plurality of washing modes, using a packing scrubber or an absorption tower as a carbon trap is advantageous for reducing the amount of sea water and lowering the lifting height of the washing seawater, thereby extracting seawater. It has the least energy consumption and the most stable operation.
  • the filler used has a dry filler factor of preferably 5 to 2000/m (the definition of dry filler factor, from conventional fillers). The industrial product manual gives) a better effect of seawater scrubbing carbon capture.
  • an embodiment having a filler dry filler factor of 5/m can satisfy the requirements.
  • the dry filler factor is 10/m, or 15/m, or 35/m, or 55/m, or 65/m, Or 95/m, or 150/m, or 250/m, or 350/m, or 450/m, or 650/m, or 850/m, or 1000/m, or 1200/m, or 1500/m, Or 1800/m, or 2000/m filler, can also meet the requirements.
  • the washing of the filler is washing by washing the seawater with the exhaust gas through a large area of the filler.
  • the inventors of the present application have found that the use of filler washing and controlling the height of the washing seawater can ultimately control the carbon capture energy consumption and reduce the overall cost of the CCS process to a practical level.
  • the carbon dioxide carbon capture energy consumption is controlled to no more than 1000 MJ/t (megajoules per ton) to meet practical needs; in power plant and marine applications, the following examples further demonstrate that Carbon capture energy consumption is controlled to no more than 500 MJ/t, or 400 MJ/t, or 350 MJ/t, or 300 MJ/t, or 250 MJ/t, or 200 MJ/t, or 150 MJ/t, or 100 MJ/t, or 60 MJ /t, or 50MJ/t, or 40MJ/t, or 30MJ/t, or 20MJ/t, or 10MJ/t, or 5MJ/t, can also meet practical needs.
  • the inventors of the present application have further found that the application of the present invention can perform carbon capture and storage of air in a natural state at sea, and the effect of reducing atmospheric carbon content is good.
  • the following embodiments use only offshore wind power, and/or ocean current waves, and / or natural energy such as sunlight, mechanical energy and / or electrical energy, that is, renewable energy, equal to zero energy consumption, operating costs are extremely low, only construction cost depreciation, and because there is no need to send electricity to the shore, there is no need for peripheral support, its construction costs It is also very low; on the other hand, the purpose of building a large number of offshore wind power and wave power is to replace the fossil energy on the shore to ultimately reduce the carbon emissions to the atmosphere, and the present invention directly captures and sequesters carbon dioxide in the atmosphere. The carbon reduction effect is higher.
  • Embodiment 1 It is a basic embodiment of the seawater type carbon capture and storage method of the present invention. As shown in FIG. 1, the implementation steps include: 1) carbon capture: extracting seawater to wash the carbon dioxide-containing gas to generate carbon dioxide in the dissolved gas. After washing, seawater is used as a carbon capture product; 2) Carbon sequestration: The carbon trapping product is injected into the sea water body for seawater carbon sequestration.
  • the carbon capture integrated product of step 2) is injected into the marine water body, and the atmospheric water pipeline is injected into the marine water body.
  • the carbon capture to the carbon sequestration is a continuous reaction process.
  • Still another embodiment is to proportionally control the amount of seawater in the carbon capture assembly and the amount of carbon dioxide to control the pH of the carbon capture product when injected into the sea.
  • the carbon capture integrated product is discharged into the sea water body, and the washed seawater is injected into the ocean current, which is an ocean current that does not pass through the extracted seawater.
  • the carbon capture integrated products of the following embodiments are discharged into the sea water body, which is discharged to the surface layer of the sea, and/or the middle layer, and/or the deep water body.
  • Embodiment 2 is another basic embodiment of the seawater carbon capture and storage method of the present invention.
  • the carbon dioxide-containing gas is exhaust gas discharged from fossil fuel combustion
  • the implementation steps include: a. Exchanging exhaust gas containing combustion-generated carbon dioxide discharged from the burner into the carbon trap; and b. continuously introducing seawater into the carbon trap; c. in the carbon trap, increasing the exhaust gas introduced in step a by the filler
  • the contact area of the seawater introduced in step b is such that the seawater washes and dissolves the carbon dioxide in the exhaust gas; d. the purified exhaust gas which has been reduced by the seawater washing and continuously discharged to the atmosphere; e.
  • the seawater in which the carbon dioxide is dissolved in the step c Continuously outputting from the carbon trap; f. continuously discharging the seawater dissolved in the exhaust gas carbon dioxide continuously discharged into the sea water body to complete the marine carbon sequestration;
  • the fossil fuel includes coal, oil, natural gas;
  • the burner is used for a coastal thermal power plant or a marine vessel; the burner includes a boiler steam turbine device, an internal combustion engine, a gas turbine, and a gas steam combined power Set; said exhaust gases or fumes produced by the combustion exhaust gas of fossil fuels; step B the water is seawater and / or extracted directly from the sea by a combustor cooling multiplexed extracted directly from the sea water.
  • Embodiment 3 An embodiment based on Embodiment 2, as shown in Fig. 2, the mass of the carbon dioxide gas in the exhaust gas purified by the step d is at least 10% of the mass of the carbon dioxide gas in the exhaust gas described in the step a.
  • the mass of carbon dioxide gas reduced in the exhaust gas purified in step d is at least 20% of the mass of carbon dioxide gas in the exhaust gas described in step a.
  • the mass of the carbon dioxide gas in the exhaust gas purified in step d is at least 30%, 40%, 50%, 60%, 70%, 80% of the mass of the carbon dioxide gas in the exhaust gas described in step a, 90%.
  • Embodiment 4 An embodiment based on Embodiment 2.
  • the pH value of the seawater in which the exhaust gas carbon dioxide is continuously output in the e step is lower than the pH value of the seawater background in the discharge area by no more than 2 pH units. This is to introduce carbon capture through design
  • the amount of exhaust gas, the amount of sea water, and the ratio of gas to liquid are controlled to meet the regulations and technical standards for marine drainage.
  • Embodiment 5 is a basic embodiment of a seawater type carbon trap storage device used in the method of the present invention, as shown in Fig. 3, which comprises a burner 1 for producing a fossil fuel combustion exhaust gas, and a burner connected thereto a carbon trap 2 for washing exhaust gas to capture carbon dioxide, a seawater extracting device 3 for introducing seawater to a carbon trap, and an exhaust cylinder 6 for extracting purified exhaust gas from the carbon trap, and a seawater drain pipe 7; carbon
  • the trap has a packing layer and includes a water distributor 2.1, the seawater outlet 5 of the carbon trap is connected to the seawater drain 7, and the outlet of the seawater drain is connected to the ocean water.
  • Embodiment 6 An embodiment based on Embodiment 5.
  • the carbon trap 2 includes a water distributor 2.1, the height of the water distributor is 2.2 or less and 20 m; the height of the water distributor 2.2 is the height of the horizontal center line of the water distributor 2.1 relative to the sea level 3.2 of the water intake point of the seawater extraction device 3. .
  • the heights of the water distributors of the following embodiments are respectively 19 m, 15 m, 12 m, 10 m, 9 m, 8 m, 6 m, 5 m, 4 m, 2 m, 1 m.
  • the purpose of reducing the water collector height 2.2 is to reduce the energy consumption of the extracted seawater, which is the main energy consumption of the process of the present invention.
  • the carbon trap 2 is provided with a packing layer composed of an industrial bulk packing, and the dry packing factor of the packing is 5/m.
  • Still another embodiment of the filler has a dry filler factor of 30/m.
  • the dry filler factors of the filler are 60/m, 120/m, 200/m, 300/m, 400/m, 500/m, 600/m, 700/m, 800/m, 900, respectively. /m, 1000/m, 1200/m, 1400/m, 1600/m, 1800/m, 2000/m.
  • the filler layer consists of a structured packing.
  • the filler layer is comprised of an orifice filler.
  • the filler layer is composed of a mixture of various fillers.
  • Embodiment 7 An embodiment based on Embodiment 5. As shown in FIG. 4, the seawater extraction device 3 to which the carbon trap 2 is connected is a seawater cooling system of the burner 1.
  • the seawater extraction device 3 of another embodiment is a seawater incremental pump 3.1.
  • seawater extraction device 3 is a seawater cooling system of the burner 1 and a seawater incremental pump 3.1. This is to reduce the amount of carbon dioxide to provide a larger amount of seawater.
  • Example 8 An example of a coastal gas-fired combined cycle power plant, as shown in Fig. 3, has three sets of gas-fired combined cycle power generating sets, each set of 400 MW, with a total installed capacity of 1200 MW. This embodiment is implemented in two phases.
  • the carbon dioxide in the exhaust gas of one of the generator sets is captured, and the oxidation in the flue gas of the unit At least 90% of the carbon is trapped and dissolved into the washed seawater and discharged into the sea water body.
  • the annual capture and storage of carbon dioxide is about 1 million tons.
  • the plant was originally designed for high-concentration carbon capture and storage projects. It also captures carbon dioxide from the exhaust gas of one of the generator sets.
  • the annual capture and storage of carbon dioxide is about 1 million tons. It is designed to absorb, desorb, purify and compress carbon dioxide. , transportation and other processes; captured high-concentration carbon dioxide injected into the oilfield flooding (EOR) to increase production, equipped with a dedicated offshore platform, is a submarine geological storage program; after the completion of the project design, although the oil production increase can bring a certain income, so that The total cost is lower than other non-EOR CCS projects, but it is still not as low as people can afford, so the project was eventually terminated.
  • EOR oilfield flooding
  • the carbon trap of this embodiment is installed in an empty space prepared for the original CCS project, and only needs one-fifth of the area; the height of the carbon trap water distributor is about 10 m; the seawater introduction device directly uses the existing seawater cooling of the power plant.
  • the system therefore, also utilizes the existing cooling water intake and outlet of the power plant, and makes the drainage depth greater than 150 meters; because the coastal power plant guarantees the cooling efficiency, the cooling water outlet is originally in the ocean water body and does not flow through the water intake.
  • the carbon dioxide emissions from the washing and collecting are also rapidly diffused and diluted with the ocean currents, making the already small marine environment less influential.
  • the energy consumption for capturing carbon dioxide in this embodiment is not more than 100 MJ/t, and the cost and operating cost of the CCS device are one tenth of the original high concentration projects.
  • the carbon capture device and the seawater introduction pump were expanded on the basis of the first phase, and the remaining two generator sets were subjected to seawater washing carbon capture and marine water body carbon sequestration. After the completion of the second phase, the whole plant will capture and store about 3 million tons of carbon dioxide annually.
  • Yet another embodiment is to position the carbon trap on a platform that is height adjustable with the tide level. Yet another embodiment is to place the carbon trap on a floating offshore platform. In this way, regardless of the high tide, the energy consumption of seawater can be reduced to the lowest.
  • Embodiment 9 An example of a coastal coal-fired power plant, as shown in Fig. 4, is a 600 MW coal-fired generating unit, which is implemented in two phases.
  • the carbon dioxide emitted by the generator set is trapped and dissolved into the washed seawater.
  • the washed seawater directly uses the existing 70,000 t/h of cooled seawater in the power plant, and the annual collection and storage of carbon dioxide is about 800,000 tons.
  • the generator set In the second phase, about 95% of the carbon dioxide emitted by the generator set is trapped and dissolved in the washed seawater.
  • the amount of washed seawater to be configured is increased by 210,000 t/h from the expanded seawater introduction pump.
  • the generator set After the completion of the second phase of implementation, the generator set will capture and store about 3 million tons of carbon dioxide annually.
  • the carbon trap uses a packed tower to reduce the height, and the height of the water distributor is about 9 m.
  • the organic braided film water pipe is transported to the marine middle water body about 300 m below sea level to carry out marine carbon sequestration.
  • the CO 2 emission of the power plant flue gas is reduced by 80%, and the energy consumption of capturing carbon dioxide is not more than 200 MJ/t.
  • Example 10 The present embodiment, such as Figure 4, has a seawater regulating pump in communication with a regulator for regulating the pH of the wash seawater injected into the sea. This implementation allows for better control of the pH of the seawater discharged while minimizing energy consumption.
  • the seawater containing carbon dioxide after washing is discharged into the ocean water body between the sea level and the seabed, specifically the ocean middle layer water body of 800 m below the sea surface.
  • Yet another embodiment is a seawater containing carbon dioxide after washing, which is discharged to a deep ocean water body of 1500 m below sea level.
  • Embodiment 11 An embodiment of a marine vessel, as shown in FIG. 5, the burner 1 includes a 30MW marine two-stroke diesel engine, the fuel is heavy oil, sulfur is 3.5% vv, and the CO 2 production is about 8100 Nm 3 /h, using carbon capture.
  • the design of the collector and the original silencer is designed and constructed.
  • the height of the water distributor is 6m, which is considered according to the ship's heavy waterline; the carbon capture and storage capacity is about 5800t/h, and the seawater incremental pump 3.1 flow is adjustable to control the drainage pH.
  • CO 2 is reduced by 50 to 70% (the specific value is related to the seawater quality and water temperature where the ship is sailing), SO 2 is reduced by 98%, equivalent to 0.5% S fuel, and can be 2020 After the United Nations implemented the global shipping limit, it continued to use existing low-cost fuel.
  • the energy consumption for capturing carbon dioxide is not more than 20MJ/t, and the operating cost of the whole process is equivalent to 0.6% of the total power consumption of the main engine.
  • the drainage complies with the MEPC rules of MARPOL Convention Annex VI and is discharged to the surface water body of the ocean.
  • the pH detection and control of the water inlet and the drain are provided, in accordance with the MEPC rules of Annex VI of the MARPOL Convention: the ship in progress uses the seawater to wash the engine exhaust gas, the chemical is not added, the washing drainage is generated, and the pH does not change beyond the inlet. Two pH units of seawater are permitted to be discharged directly into the sea, that is, discharged into the surface water body of the ocean.
  • LNG which produces less carbon emissions than coal and fuel, but is still a fossil energy source that needs to reduce and control carbon emissions.
  • Embodiment 12 is an embodiment of an atmospheric carbon capture and sequestration device on the ocean, as shown in FIG. 6, which includes a carbon trap 2 for transporting seawater to the seawater extraction device 3 of the carbon trap for A power plant 14 that powers the seawater extraction device, a water distributor 2.1 above the carbon trap 2, and a lower sump 2.3, and a seawater drain 7 in communication with the sump.
  • the device is mounted on a platform that floats on the surface of the sea and the platform is anchored to the seabed.
  • the device of another embodiment is mounted on a marine platform that is rigidly coupled to the seabed.
  • Yet another embodiment of the apparatus is mounted on a mobile offshore platform.
  • Embodiment 13 is a further embodiment based on Embodiment 12, as shown in FIG. 6, the power device 14 includes a water moving device 14.2, a power coupling device 14.3, and the power coupling device 14.3 is connected to the seawater extraction device 3 The kinetic energy generated by the hydrodynamic device 14.2 is transmitted to the seawater extraction device 3, which is a mechanical coupling device.
  • the power coupling device 14.3 of another embodiment is an electromechanical coupling device composed of a hydroelectric generator and an electric motor.
  • Embodiment 14 is a further embodiment based on Embodiment 12, as shown in FIG. 7, the power device 14 includes a pneumatic device 14.1, a power coupling device 14.3, and the power coupling device 14.3 is connected to the seawater extraction device 3 Transmitting the kinetic energy generated by the pneumatic device 14.1 to the seawater extraction device 3, the power coupling device 14.3 being Mechanical coupling device.
  • the sump 2.3 below the carbon trap 2 of the present embodiment is connected to a seawater drain pipe 7, and the outlet of the seawater drain pipe 7 is connected to the ocean water body to inject the washed seawater containing carbon dioxide into the sea.
  • the pneumatic device is a vertical axis wind wheel. A horizontal axis wind wheel can also be used.
  • the pneumatic device converts the captured offshore wind energy into rotating mechanical energy and directly drives the seawater extraction device to raise seawater.
  • the seawater extracted from the deeper part has better effect of washing and trapping carbon dioxide; the liquid level of the water collector below the carbon trap makes the deeper the washing seawater is injected into the sea, and the better the storage effect of carbon dioxide.
  • the power coupling device 14.3 has a mechanical speed control function.
  • the carbon trap 2 adopts a vertical open design to facilitate wind trapping; a packing composed of a grid of grids is provided to improve washing efficiency.
  • hollow spray towers for carbon traps
  • Still another embodiment of the carbon trap is a conventional scrubber. Washing seawater is not directly collected by the sump and is deposited on the ocean surface as another embodiment.
  • the carbon trap uses a blower to force the blast, and the power of the blower also comes from the air mover.
  • the device of the above embodiment is also a carbon-reducing windmill device, and the manufacturing and maintenance cost is much lower than that of the wind turbine of the same wind wheel diameter. Since the multi-stage energy conversion is not required, the effect of reducing the atmospheric carbon content is several times higher than that of the latter.
  • Embodiment 15 A further embodiment based on Embodiment 12, the power device 14 includes a pneumatic device 14.1, a power coupling device 14.3, and the power coupling device 14.3 is an electromechanical coupling device composed of a wind power generator and an electric motor. At this time, the power equipment 14 directly uses the existing offshore wind power generator.
  • the power unit 14 directly uses an existing solar power generation apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种海水式碳捕集封存方法及装置(Ocean CCS),用于对滨海电厂、海洋船舶等化石能源海洋设施排放废气,以及大气实施碳捕集与封存。利用海洋海量贮存二氧化碳的地球工程学原理,采用自然工程学方法,以海水洗涤化石燃料废气和/或空气进行碳捕集,再将洗涤溶有二氧化碳的海水,在控制pH值等指标使其符合环境法规的条件下,注入到海洋表层,或中层,或深层水体实施海洋碳封存,并利用洋流扩散增进封存效果。

Description

海水式碳捕集封存方法及装置 技术领域
本发明海水式碳捕集封存方法及装置(Ocean CCS),用于对滨海电厂、海洋船舶等化石能源海洋设施排放和/或大气所含有的二氧化碳实施捕集与封存。属于清洁能源和地球工程技术领域。
背景技术
对二氧化碳进行捕集与封存,即CCS(Carbon Capture and Storage),是减少大气中温室气体不可缺少的技术手段,但现有CCS试验示范项目全部是成本高昂的地质封存方案(POLICY),在经济合理和可负担性方面差距很大,规模化减排作用难以预期。
根据地球工程学理论,大气中过多的二氧化碳最终要靠深海水体(Water column)来消化。为此,国际机构组织大规模研究,进一步发现:目前海洋本来就以约6Gt/y(吉吨/年)的速率自然吸收大气中的二氧化碳,并自然向深海迁徙。国际研究还认为:“二氧化碳是天然存在的产物,由于海洋碳储层的规模非常巨大(比地质储层大很多倍),因此二氧化碳对海洋环境的整体影响非常小”(IEA OCEAN STORAGE OF CO2),结论是:海洋碳封存方案对于应对气候变化,最具成本效益和封存潜力,而且最安全有效。为此,又曾于2001年开展海洋碳封存现场试验,准备向夏威夷和挪威两处海域注入液态二氧化碳,但在作好了物资场地(包括准备注入海洋的60t液态二氧化碳)等充分准备后,试验却被阻止,因为环保组织和机构指出:液态、密相气态或固态CO2注入海洋,会导致接触的海洋生物立即死亡,使注入区域的海洋生态环境遭到破坏,属于伦敦公约、奥斯陆巴黎(OSPAR)公约禁止的海洋“倾废”行为。从此十多年来国际上对海洋碳封存的试验研究一直陷于停滞。于是,由于沿用了地质封存的高纯度二氧化碳模式,现有海洋封存技术方案无法进行海洋现场试验示范,既无法证实和体现“最具成本效益”的优势,也无望成为实用的碳减排技术。因此,人们利用海洋资源有效应对气候变化的渴 望长期无法实现。
发明内容
本发明海水式碳捕集封存方法及装置(Ocean CCS)的发明目的在于,克服现有海洋碳封存技术方案的缺陷,提供一种符合环境法规并最具成本效益的海洋碳封存技术方案,使海洋碳封存成为经济和环境成本均可负担的应对气候变化实用技术手段。
本发明第一个方面是提供了一种海水式碳捕集与封存方法,所述方法包括如下步骤:
1)碳捕集:抽取海水洗涤含二氧化碳的气体,生成溶有气体中二氧化碳的洗涤后海水作为碳捕集成品;
2)碳封存:将所述碳捕集成品注入大海水体进行海水碳封存。
进一步的技术方案是:
上述步骤2)所述的碳捕集成品注入海洋水体,是采用常压管道注入海洋水体。
对所述碳捕集成品中的海水的量与二氧化碳的量进行比例控制,以控制碳捕集成品注入大海时的pH值。
步骤1)所述含二氧化碳的气体,是指大气;所述的使海水洗涤,是利用风、和/或洋流波浪、和/或阳光提供动力抽取海水进行洗涤。
所述含二氧化碳的气体,是化石燃料燃烧排放的废气。
所述排放废气中的二氧化碳,至少有10%、或20%、或50%、或70%、或80%、或90%溶入洗涤海水后注入大海水体,洗涤海水的量被配置为足以吸收排放废气中至少10%、或20%、或50%、或70%、或80%、或90%的二氧化碳。
所述抽取的海水被提升至海拔高度不大于50m、或40m、或30m、或20m、或19m、或15m、或12m、或10m、或9m、或8m、或6m、或5m、或4m,或2m、或1m,以洗涤含有二氧化碳的排放废气,该海拔高度的零米(0m)基准为抽取海水处的海平面。
提供填料,通过填料洗涤和控制洗涤海水的提升高度使捕集二氧化碳的能耗不大于1000MJ/t,或500MJ/t,或400MJ/t,或350MJ/t,或300MJ/t,或250MJ/t,或200MJ/t,或150MJ/t,或100MJ/t,或60MJ/t,或50MJ/t,或40MJ/t,或30MJ/t,或20MJ/t,或10MJ/t,或5MJ/t。
所述碳捕集到所述碳封存是连续的反应过程。
碳捕集成品注入大海水体,是注入大海表层,和/或中层,和/或深层水体。
碳捕集成品注入大海水体,是将所述的洗涤后海水注入大海的洋流中,该洋流是不经过抽取海水处的洋流。
所述的填料洗涤,是使洗涤海水与排放废气通过填料大面积接触进行的洗涤;
本发明的第二个方面是提供一种海水式碳捕集封存方法,步骤包括,
a.将化石燃料燃烧器排出的含有燃烧产生的二氧化碳的废气连续导入碳捕集器;同时
b.将海水连续导入碳捕集器;
c.在碳捕集器中,通过填料加大a步骤导入的废气与b步骤导入的海水的接触面积来洗涤和溶解废气中的二氧化碳;
d.将经过海水洗涤后二氧化碳气体减少了的净化的废气连续排往大气;
e.将c步骤溶有废气二氧化碳的海水从碳捕集器连续输出;
f.将e步骤连续输出的溶有废气二氧化碳的海水连续排注至大海碳封存处,实现海洋碳封存;
所述的化石燃料包括煤炭、石油、天然气;所述的燃烧器为滨海火电厂或海洋船舶使用的燃烧器;所述的燃烧器包括锅炉和汽轮机、内燃机、燃气轮机;所述的废气为化石燃料燃烧产生的烟气;b步骤所述海水为从海洋直接提取的海水,或/和从海洋直接提取经用于燃烧器冷却后复用的海水。
进一步的技术方案是:
所述的海水式碳捕集封存方法,其d步骤净化的废气中二氧化碳气体减少的质量至少为a步骤所述的废气中二氧化碳气体质量的10%、或20%、或50%、或70%、或80%、或90%。
所述的海水式碳捕集封存方法,其d步骤净化的废气中二氧化碳气体减少的质量至少为a步骤所述的废气中二氧化碳气体质量的20%。
所述的海水式碳捕集封存方法,其e步骤连续输出的溶有废气二氧化碳的海水温度比b步骤导入碳捕集器的海水温度升高值小于50℃。
所述的海水式碳捕集封存方法,其e步骤连续输出的溶有废气二氧化碳的海水温度比b步骤导入碳捕集器的海水温度升高值小于20℃。
所述的海水式碳捕集封存方法,其e步骤连续输出的溶有废气二氧化碳的海水温度比b步骤导入碳捕集器的海水温度升高值小于2℃。
所述的海水式碳捕集封存方法,其e步骤连续输出的溶有废气二氧化碳的海水pH值比碳封存处区域海水pH背景值降低不超过2个pH单位。
本发明的第三个方面是提供一种用于本发明方法的海水式碳捕集封存装置,它包括产生化石燃料燃烧废气的燃烧器,和与燃烧器连接的用于洗涤废气以捕集二氧化碳的碳捕集器,向碳捕集器导入海水的海水抽取设备,和从碳捕集器导出净化废气的排气筒,以及海水排水管;碳捕集器内有填料层,并包括有布水器,该碳捕集器的海水输出口与海水排水管联通,海水排水管的出口连通至海洋水体。
进一步的技术方案是:
所述的海水式碳捕集封存装置,其碳捕集器的布水器高度小于等于50m、或40m、或30m、或20m、或19m、或15m、或12m、或10m、或9m、或8m、或6m、或5m、或4m,或2m、或1m;所述的布水器高度是布水器水平中心线相对海水抽取设备取水处海平面的高度值。
所述的海水式碳捕集封存装置,其海水抽取设备为燃烧器的海水冷却系统,或/和海水抽取泵。
所述的海水式碳捕集封存装置,其有一个海水调控泵与调控器联通,用于调控洗涤海水注入大海时的pH值。
所述的海水式碳捕集封存装置,其碳捕集器内的填料层,由工业散装填料,和/或规整填料,和/或孔板填料,和/或格栅组成。
所述的填料的干填料因子为5~2000/m,干填料因子的定义按常规的填料行业产品手册确定。
所述的海水式碳捕集封存装置,其海水排水管是薄膜输水管。
碳捕集器设置在高度可随潮位调节的海洋平台上。
本发明的第四个方面是提供一种用于本发明方法的海水式碳捕集封存装置,它包括碳捕集器,用于将海水输送至所述碳捕集器的海水抽取设备,用于给所述海水抽取设备提供动力的动力设备,位于所述碳捕集器上方的布水器,及下方的集水器,以及与所述集水器连通的海水排水管。
进一步的技术方案是:
所述动力设备包括风力设备,和/或洋流波浪换能设备、和/或太阳能发电设备。
所述动力设备包括风动装置、动力联接装置,所述动力联接装置连接所述海水抽取 设备以将风动装置产生的动能传递给所述海水抽取设备,所述的动力联接装置是机械联接装置,和/或风力发电机及电动机组成的机电联接装置。
所述动力设备包括水动装置、动力联接装置,所述动力联接装置连接所述海水抽取设备以将水动装置产生的动能传递给所述海水抽取设备,所述的动力联接装置,是机械联接装置,和/或水力发电机及电动机组成的机电联接装置。
所述的以上两项用于本发明方法的装置,固定在海床上和/或海洋平台上。
本发明的技术原理和效果:
本发明利用二氧化碳是可溶于海水并大量存在于海水中的天然物质,可以在海洋中友好地长期和海量贮存的原理,使海水洗涤化石燃料废气,或直接洗涤收集的大气,即自然状态的空气,溶出废气和/或大气中的二氧化碳进行碳捕集,再将溶有废气和/或大气中二氧化碳的海水,在控制pH值等指标使符合环境法规的条件下,注入到海洋表层,和/或中层,和/或深层水体,实施海洋碳封存;利用洋流扩散可以进一步降低对海洋环境的影响,增进封存效果。注入海洋水体的深度可以是表层、中层或深层。有研究认为:注入海洋1000m深的CO2可以封存1000年。
CO2溶入海水按以下平衡等式从左向右反应:
Figure PCTCN2017087530-appb-000001
(碳酸)
Figure PCTCN2017087530-appb-000002
(重碳酸盐离子)
Figure PCTCN2017087530-appb-000003
(碳酸盐离子)
其中重碳酸盐离子是海水中二氧化碳的主要形态,与碳酸、碳酸盐离子一起统称为溶解无机碳(DIC)(dissolved inorganic carbon)。
通常二氧化碳在水中的溶解度很低,所以海水洗涤产生含低浓度CO2,即含低浓度DIC的洗涤后海水。所述的低浓度,是相对现有技术而言:现有技术的碳捕集成品为纯二氧化碳液体、密相气体或固体,单位体积介质中的碳含量,比本发明方案高若干量级。人们有可能认为低浓度需要更大量的洗涤海水,将导致总能耗十分巨大。然而,本发明采用控制海水提升高度等方法控制总能耗,反而可使捕集封存二氧化碳的成本,比现有CCS方案至少降低一个量级。其中的滨海火电厂复用冷却排水还可再减少成本。
同时,由于二氧化硫也是可溶于海水并大量存在于海水中的天然物质,而烟气中的二氧化硫比二氧化碳含量少,且更易溶于水,所以本发明兼具烟气脱硫的技术效果。
显然,沿海地区往往大型碳排放点源密集,规模效应突出,应用本发明有利实现商业规模碳捕集与封存。
海洋航运业应用本发明,则可产生双重技术效果:一是利用海洋表层碳汇资源,使原本无法捕集的逃逸性碳排放实现碳捕集与封存,超低成本减少船舶碳排放,二是避免换用低硫燃油,间接减少了炼油业碳排放。因此,航运业得以有效化解国际减碳、减硫法令的双重压力,继续保持经济、绿色的双重优势。
而应用本发明对自然状态下的空气进行碳捕集与封存,也具有特别重要的意义,因为一是等于利用大气环流无成本输送捕集各类碳排放,包括其它方式无法捕集的逃逸性碳排放,二是利用风力、洋流、阳光等可再生能源进行零能耗碳捕集与封存,三是没有海域局限,无须周边支持,可以在各种海域大量安装。
显然,本发明根据地球工程学原理,采用自然工程学方法,取得了良好技术效果,为实现人们利用海洋资源应对气候变化的长期愿望,增加一种可负担和可行的有效技术方案。
附图说明
图1是本发明海水式碳捕集封存方法的一种实施步骤示意图。
图2是本发明海水式碳捕集封存方法的另一种实施步骤示意图。
图3是本发明用于滨海燃气蒸汽联合循环发电厂的实施例示意图。
图4是本发明用于滨海燃煤发电厂的另一实施例示意图。
图5是本发明用于海洋船舶的实施例示意图。
图6是本发明水力海上大气碳捕集封存的实施例示意图。
图7是本发明风力海上大气碳捕集封存的实施例示意图。
附图中的图号标记对像的名称为:
1—燃烧器,2—碳捕集器,2.1—布水器,2.2—布水器高度,2.3—集水器,3—海水抽取设备,3.1—海水增量泵,3.2—海平面线,4—调控海水泵,5—洗涤海水输出口,6—排气筒,7—排水管,8—调控器,9—船舶海底门,10—船舶海水总管,11—船舱,12—海岸,13—洋流,14—动力设备,14.1—风动装置,14.2—水动装置,14.3—动力联接装置,15—风。
具体实施方式
本发明所提供的一种海水式碳捕集与封存方法,包括如下步骤:
1)碳捕集:抽取海水洗涤含二氧化碳的气体,生成溶有气体中二氧化碳的洗涤后海水作为碳捕集成品;
2)碳封存:将所述碳捕集成品注入大海水体进行海水碳封存。
这里所说的海水指的是抽取自海洋的天然海水,包括抽取自海洋用于工业设施冷却的天然海水。在本发明中,海水可以不添加任何其它物质(例如,添加碱)就可以实现本发明目的。当然,在某些应用场合,也可以添加一些其它的添加剂以实现特定目的,例如,为了吸收排放废气中的某种特定成分。
这里所说的洗涤指的是将海水与含二氧化碳的气体进行接触来捕集二氧化碳。接触的方式包括但不限于:喷射注入器、鼓泡器、文丘里塔、喷淋器、过滤器、旋转喷雾器、格栅塔、孔板塔或填料塔等反应器。
这里所说的碳捕集指的是,洗涤过程捕集了含二氧化碳的气体中的CO2。这是由于洗涤过程中的部分CO2溶入洗涤海水,成为洗涤海水中的溶解无机碳(DIC)。
这里所说的碳封存指的是:将溶有废气中CO2的洗涤后海水使用常压管道直接注入海洋水体。在注入前不对溶入的CO2进行浓缩处理,但需要时可以对溶入的CO2进一步稀释处理,方法是掺入额外海水,以控制排水pH值处于环保法规要求的范围,因为不同地区的海域,包括不同深度的海域,可能会对排水pH值等具体环保指标有不同的要求。
这里所说的海洋水体指的是海洋表层(数十米水深)、中层(数百米以内水深)或深层(数百米以上水深)海水。IPCC和IEA组织的国际研究表明:海洋水体自身的理化系统,以及其中的海洋生态系统,都可以吸收并友好储存二氧化碳。
利用海洋流动的海水即洋流扩散,可以使海洋碳封存的效果更好,特别是使碳捕集成品排注至大海水体中不经过取水口的洋流里,可以避免排水回流到取水口。
CO2可溶于水,海洋能吸收较多CO2,这些都是常识。但至今缺少利用海水来实施碳捕集与封存的技术方案,这是因为,本领域的技术人员一直习惯地认为,只有将捕集的CO2提纯成液态、密相气态或固态的高浓度方式,减少运输与封存环节物质体量,其成本才有可能承受;由于高浓度方式的成本还远没有降低到可以承受的程度,因而更不 能想象任何低浓度方案。
然而,本申请发明人在长期从事海水洗涤脱硫的研究中,却意外地发现通过海水洗涤这种低浓度方式,不仅可以脱硫,还可以实现碳捕集与封存,而且找到了大幅度降低成本的方法,将成本降低到可以负担和实用的程度。
本申请发明人先是发现,在现有的海水洗涤脱硫工艺(FGD、EGC)中,废气中的二氧化碳通常也有不到10%溶入洗涤海水,但随后又在排水曝气处理时被驱赶到大气。为此,本申请发明人对一座滨海火电厂FGD,和一艘海洋油轮EGC实施例进行多年试验并证实:适当的海水洗涤脱硫工艺设计,可使洗涤排水在不影响环保规定的情况下,少驱出甚至不驱出二氧化碳。
本申请发明人通过进一步实施例发现,加大洗涤海水量可以使排放废气中超过10%的二氧化碳被捕集与封存,而进一步采取控制海水提升高度的工艺措施,就可以使加大洗涤海水量所增加的能耗和成本得到控制。这样,在各种应用场合,例如发电厂和船舶实施例,捕集与封存排放废气中至少20%二氧化碳所增加的成本,通常都可以接受。如果要去除更多的二氧化碳,而且成本可以接受,在几种典型的应用场合,以下的实施例进行了具体的细节说明,最终可实现分别不少于废气中30%,或40%,或50%、或60%,或70%、或80%、或90%的二氧化碳捕集与封存的目标;在滨海火电厂实施例中,即使废气中99%的CO2实现碳捕集封存,所增加的成本也是可以接受的。
对于加大洗涤海水量,是因为一定量的海水可溶入的CO2量有限,一般常温常压下1m3淡水可溶入大约0.8m3的CO2气体,海水可溶入量稍多,要从废气中捕集大量的CO2,就需要大量的洗涤海水。例如一个发电厂的实施例中,利用原有的全部冷却海水洗涤烟气,只能实现约30%的二氧化碳捕集率,要将捕集率提高到90%以上,需要再增加的洗涤海水量,约为原有冷却海水量的两倍多,通常来说,这是非常巨大的数量。而要使成本可以接受,就需要采取两方面工艺措施,一是控制提取海水的能耗,二是控制洗涤海水对CO2的吸收效率以尽量减少海水量。为控制提取海水的能耗,需要控制洗涤海水的提升高度,即提升至碳捕集器所需要的高度,对于一项大型发电厂实施例,碳捕集器需要的海水提升的海拔高度在50m可以满足需要,当然,在另一些实施例中,40m,或30m也可以满足需要。在几种典型的应用场合,例如发电厂和海洋船舶,以下的实施例进行了具体的细节说明,碳捕集器需要的海水提升海拔高度不大于20m、或19m、或15m、或12m、或10m、或9m、或8m、或6m、或5m、或4m,或2m、或1m。在另一实施 例中,由于当地海域的潮汐平均落差较大,将碳捕集器设置在高度可随潮位调节的平台上,或浮船坞上,可以利用水涨船高的原理,使海水提升的能耗始终最低。
另一方面,本申请发明人通过实施例还发现,在众多的洗涤方式中,用填料洗涤器或吸收塔作为碳捕集器,较有利于减少海水量及降低洗涤海水提升高度,因此提取海水的能耗最少,运行也最稳定。基于长期从事海水洗涤脱硫的经验,以及针对吸收二氧化碳的试验,本申请发明人还发现:所采用的填料的干填料因子最好为5~2000/m(干填料因子的定义,由常规的填料工业产品手册给出),可使海水洗涤碳捕集的效果更好。例如填料干填料因子为5/m的实施例可以满足要求,在以下实施例中,干填料因子为10/m,或15/m,或35/m,或55/m,或65/m,或95/m,或150/m,或250/m,或350/m,或450/m,或650/m,或850/m,或1000/m,或1200/m,或1500/m,或1800/m,或2000/m的填料,也可以满足要求。所述的填料洗涤,是使洗涤海水与排放废气通过填料大面积接触进行的洗涤。
这样,本申请发明人发现,采用填料洗涤和控制洗涤海水的提升高度等措施,最终可以使碳捕集能耗得到控制,并使CCS工艺整体成本降低到可以实用的程度。例如,在一项实施例中,将二氧化碳碳捕集能耗控制到不大于1000MJ/t(兆焦耳/吨),满足了实用需要;在发电厂和船舶应用场合,以下实施例进一步表明,将碳捕集能耗控制到不大于500MJ/t,或400MJ/t,或350MJ/t,或300MJ/t,或250MJ/t,或200MJ/t,或150MJ/t,或100MJ/t,或60MJ/t,或50MJ/t,或40MJ/t,或30MJ/t,或20MJ/t,或10MJ/t,或5MJ/t,也可以满足实用需要。
本申请发明人进一步发现,应用本发明可以在海上对自然状态下的空气进行碳捕集与封存,减少大气碳含量的效果很好,以下实施例只使用海上风力,和/或洋流波浪,和/或阳光等自然能量转换的机械能和/或电能,也就是可再生能源,等于零能耗,运行成本极低,只有建造成本折旧,而由于无须向岸发电输电,也无须周边支持,其建造成本也非常低;另一方面,人们建造大量海上风电、波电的目的,无非是要取代岸上化石能源,以最终减少对大气的碳排放,而本发明直接对大气中的二氧化碳进行捕集封存,减碳功效更高。
结合附图和实施例对本发明作进一步说明如下。
实施例1:是本发明海水式碳捕集封存方法的一种基本实施例。如附图1所示,实施步骤包括:1)碳捕集:抽取海水洗涤含二氧化碳的气体,生成溶有气体中二氧化碳的 洗涤后海水作为碳捕集成品;2)碳封存:将所述碳捕集成品注入大海水体进行海水碳封存。
进一步的实施例是步骤2)所述的碳捕集成品注入海洋水体,是采用常压管道注入海洋水体。所述碳捕集到所述碳封存是连续的反应过程。
还有一个实施例是对所述碳捕集成品中的海水的量与二氧化碳的量进行比例控制,以控制碳捕集成品注入大海时的pH值。
另一个实施例是碳捕集成品排注至大海水体,是将所述的洗涤后海水注入大海的洋流中,该洋流是不经过抽取海水处的洋流。
以下几项实施例的碳捕集成品排注至大海水体,是排注至大海表层,和/或中层,和/或深层水体。
实施例2:是本发明海水式碳捕集封存方法的另一种基本实施例,如附图2所示,所述含二氧化碳的气体,是化石燃料燃烧排放的废气,实施步骤包括:a.将燃烧器排出的含有燃烧产生的二氧化碳的废气连续导入碳捕集器;同时b.将海水连续导入碳捕集器;c.在碳捕集器中,通过填料加大a步骤导入的废气与b步骤导入的海水的接触面积来使海水洗涤和溶解废气中的二氧化碳;d.将经过海水洗涤后二氧化碳气体减少了的净化的废气连续排往大气;e.将c步骤溶有废气二氧化碳的海水从碳捕集器连续输出;f.将e步骤连续输出的溶有废气二氧化碳的海水连续排注至大海水体,实现海洋碳封存;所述的化石燃料包括煤炭、石油、天然气;所述的燃烧器为滨海火电厂或海洋船舶使用的燃烧器;所述的燃烧器包括锅炉汽轮机装置、内燃机、燃气轮机、燃气蒸汽联合动力装置;所述的废气或烟气为化石燃料燃烧产生的废气;b步骤所述海水为从海洋直接提取的海水,和/或从海洋直接提取经用于燃烧器冷却后复用的海水。
实施例3:是在实施例2基础上的实施例,如附图2,d步骤净化的废气中二氧化碳气体减少的质量至少为a步骤所述的废气中二氧化碳气体质量的10%。
另一实施例是,d步骤净化的废气中二氧化碳气体减少的质量至少为a步骤所述的废气中二氧化碳气体质量的20%。
还有以下实施例分别是,d步骤净化的废气中二氧化碳气体减少的质量至少为a步骤所述的废气中二氧化碳气体质量的30%,40%,50%,60%,70%,80%,90%。
实施例4:是在实施例2基础上的实施例。e步骤连续输出的溶有废气二氧化碳的海水pH值比排注区域海水背景pH值降低不超过2个pH单位。这是通过设计导入碳捕集 器的废气量、海水量,以及气、液的比例来控制的,目的是符合有关海洋排水的法规和技术标准。
实施例5:是一种用于本发明方法的海水式碳捕集封存装置的基本实施例,如附图3所示,它包括产生化石燃料燃烧废气的燃烧器1,和与燃烧器连接的用于洗涤废气以捕集二氧化碳的碳捕集器2,向碳捕集器导入海水的海水抽取设备3,和从碳捕集器导出净化废气的排气筒6,以及海水排水管7;碳捕集器内有填料层,并包括有布水器2.1,该碳捕集器的海水输出口5与海水排水管7联通,海水排水管的出口连通至海洋水体。
实施例6:是在实施例5基础上的实施例。碳捕集器2包括有布水器2.1,布水器高度2.2小于等于20m;所述的布水器高度2.2是布水器2.1水平中心线相对海水抽取设备3取水点海平面3.2的高度值。
还有以下多个实施例的布水器高度分别小于等于19m、15m、12m、10m、9m、8m、6m、5m、4m,2m、1m。
降低布水器高度2.2的目的是降低提取海水的能耗,该项能耗是本发明工艺的主要能耗。
碳捕集器2内设有填料层,由工业散装填料组成,填料的干填料因子为5/m。
还有一实施例填料的干填料因子为30/m。
另有以下实施例,填料的干填料因子分别为60/m,120/m,200/m,300/m,400/m,500/m,600/m,700/m,800/m,900/m,1000/m,1200/m,1400/m,1600/m,1800/m,2000/m。
另一实施例是填料层由规整填料组成。还有一实施例是填料层由孔板填料组成。
又一实施例是填料层由各种填料混合组成。
实施例7:是在实施例5基础上的实施例。如图4所示,碳捕集器2连接的海水抽取设备3为燃烧器1的海水冷却系统。
另一实施例的海水抽取设备3为海水增量泵3.1。
还有一个实施例是海水抽取设备3为燃烧器1的海水冷却系统和海水增量泵3.1。这是为减排更大量的二氧化碳,以提供更大量的海水。
实施例8:滨海燃气蒸汽联合循环发电厂的实施例,如图3,该厂共有三套燃气蒸汽联合循环发电机组,每组400MW,总计1200MW装机。本实施例分二期实施。
一期实施,捕集其中一台发电机组排放废气中的二氧化碳,该机组烟气中的二氧化 碳至少90%被捕集溶入洗涤海水后排注至大海水体,年捕集封存二氧化碳约100万吨。
该厂原来进行过高浓度碳捕集与封存项目设计,也是捕集其中一台发电机组排放废气中的二氧化碳,年捕集封存二氧化碳约100万吨,设计有二氧化碳的吸收、解吸、提纯、压缩、输送等工序;捕集的高浓度二氧化碳注入海底油田驱油(EOR)增产,配置有专用海洋平台,属于海底地质封存方案;项目设计完成后发现,虽然驱油增产可带来一定收入,使总成本相对于其他非EOR CCS项目较低,但仍无法低到人们可以承受的程度,因此项目最后还是被终止。
本实施例碳捕集器安装在为原CCS项目准备的空场地,并只需要其五分之一面积;碳捕集器布水器高度约10m;海水导入设备直接利用发电厂现有海水冷却系统,所以也利用了发电厂现有冷却水取水口和排水口,并使排水深度大于150米;由于滨海发电厂为保证冷却效率,其冷却排水口本来就处于海洋水体中不流经取水口的洋流里,这样洗涤捕集的二氧化碳排放后,也随洋流迅速扩散稀释,使本来就很小的海洋环境影响更小。本实施例捕集二氧化碳的能耗不大于100MJ/t,CCS装置造价和运行成本均为原高浓度项目的十分之一。
二期实施,在一期基础上扩建增加碳捕集器和海水导入泵,对其余2台发电机组进行海水洗涤碳捕集和海洋水体碳封存。二期完成后全厂年捕集封存二氧化碳约300万吨。
还有一实施例是将碳捕集器设置在高度可随潮位调节的平台上。又一个实施例是将碳捕集器设置在浮动海洋平台上。这样不论涨潮落潮,提升海水的能耗都可以最低。
实施例9:滨海燃煤电厂实施例,如图4,燃烧器为600MW燃煤发电机组,分二期实施。
一期实施,发电机组排放烟气中的二氧化碳至少25%被捕集溶入洗涤海水,洗涤海水直接利用电厂现有的70,000t/h冷却海水,年捕集封存二氧化碳约80万吨。
二期实施,发电机组排放烟气中的二氧化碳约95%被捕集溶入洗涤海水,以此配置的洗涤海水量需要增加210,000t/h,来自扩建的海水导入泵。二期实施完成后该发电机组年捕集封存二氧化碳约300万吨。
碳捕集器采用填料塔以降低高度,其布水器高度约为9m;采用有机编织薄膜输水管,输送到海平面下约300m的海洋中层水体中,实施海洋碳封存。
本实施例使发电厂烟气的CO2排放减少80%,捕集二氧化碳的能耗不大于200MJ/t。
实施例10:本实施例如图4,其有一个海水调控泵与调控器联通,用于调控洗涤海水注入大海时的pH值。这样实施能够更好地控制排注海水的pH值,同时能耗最低。
洗涤后含有二氧化碳的海水,排注至海平面至海床之间的海洋水体,具体是海面以下800m的海洋中层水体。
又一实施例是洗涤后含有二氧化碳的海水,排注至海平面以下1500m的海洋深层水体。有研究认为:注入海洋上千米,可使二氧化碳封存上千年。
实施例11:是海洋船舶的实施例,如图5,燃烧器1包括1台30MW船用二冲程柴油机,燃油为重油,含硫3.5%v-v,CO2产生量约8100Nm3/h,采用碳捕集器与原消音器合并方案设计建造,其中的布水器高度6m,按船舶重载水线考虑;碳捕集封存水量约5800t/h,海水增量泵3.1流量可调,以控制排水pH值;经本实施例处理的船舶废气:CO2减少50~70%(具体数值与船舶航行所在的海水水质和水温有关),SO2减少98%,等效0.5%S燃油,可以在2020年联合国实施全球航运限硫令后,继续使用现有低成本燃油。捕集二氧化碳的能耗不大于20MJ/t,全流程运行成本相当于主机满功率油耗的0.6%,排水符合MARPOL公约附则VI下MEPC规则,排注至海洋表层水体。
本实施例设有入水口和排水口pH检测及控制,符合MARPOL公约附则VI下MEPC规则:行进中的船舶,利用海水洗涤发动机废气,未添加化学制剂,产生的洗涤排水,pH变化不超过入口海水2个pH单位,许可直接排海,即排注至海洋表层水体。
另一新造船舶实施例的燃料为LNG,产生的碳排放少于燃煤和燃油,但仍属于需要减少和控制碳排放的化石能源。
实施例12:是海洋上大气碳捕集与封存装置的实施例,如图6,它包括碳捕集器2,用于将海水输送至所述碳捕集器的海水抽取设备3,用于给所述海水抽取设备提供动力的动力设备14,位于所述碳捕集器2上方的布水器2.1,及下方的集水器2.3,以及与所述集水器连通的海水排水管7。装置安装在浮于海面的平台上,平台锚固于海床。
另一实施例所述的装置是安装在与海床刚性连接的海洋平台上。还有一实施例装置安装在移动式海洋平台上。
实施例13:是在实施例12基础上的进一步实施例,如图6,所述动力设备14包括水动装置14.2、动力联接装置14.3,所述动力联接装置14.3连接所述海水抽取设备3以将水动装置14.2产生的动能传递给所述海水抽取设备3,所述的动力联接装置14.3,是机械联接装置。
另一实施例所述的动力联接装置14.3,是水力发电机及电动机组成的机电联接装置。
实施例14:是在实施例12基础上的进一步实施例,如图7,所述动力设备14包括风动装置14.1、动力联接装置14.3,所述动力联接装置14.3连接所述海水抽取设备3以将风动装置14.1产生的动能传递给所述海水抽取设备3,所述的动力联接装置14.3,是 机械联接装置。
本实施例碳捕集器2下方的集水器2.3连接有海水排水管7,该海水排水管7的出口联通至海洋水体,以将溶有二氧化碳的洗涤海水注入大海。风动装置为垂直轴风轮。也可以采用水平轴风轮。风动装置将捕获的海上风能转化为转动的机械能,直接驱动海水抽取设备提升海水。从较深处抽取的海水,洗涤捕集二氧化碳的效果较好;碳捕集器下方集水器的液位,使洗涤海水注入大海越深,二氧化碳的封存效果越好。动力联接装置14.3具有机械调速功能。碳捕集器2采用了垂直开敞式设计,以利捕风;其中设置栅板栅网组成的填料以提高洗涤效率。
碳捕集器采用空心喷淋塔也是一种实施例。还有一实施例的碳捕集器是常规洗涤塔。洗涤海水不经集水器收集直接撒布在洋面是另一实施例。
还有一个实施例是碳捕集器使用鼓风机强制鼓风,鼓风机的动力也来自风动装置。
以上实施例装置也是一种减碳风车装置,制造和维护成本远低于同等风轮直径的风力发电机,由于无须多级能量转换,减少大气碳含量的功效数倍于后者。
实施例15:是在实施例12基础上的又一实施例,所述动力设备14包括风动装置14.1、动力联接装置14.3,所述动力联接装置14.3是风力发电机和电动机组成的机电联接装置,这时的动力设备14直接采用现有的海上风力发电机。
还有一实施例所述动力设备14直接采用现有太阳能发电设备。
本发明的权利要求保护范围不限于上述实施例。

Claims (15)

  1. 一种海水式碳捕集与封存方法,其特征在于,所述方法包括如下步骤:
    1)碳捕集:抽取海水洗涤含二氧化碳的气体,生成溶有气体中二氧化碳的洗涤后海水作为碳捕集成品;
    2)碳封存:将所述碳捕集成品注入大海水体进行海水碳封存。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括,步骤2)所述的碳捕集成品注入海洋水体,是采用常压管道注入海洋水体。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:对所述碳捕集成品中的海水的量与二氧化碳的量进行比例控制,以控制碳捕集成品注入大海时的pH值。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:步骤1)所述含二氧化碳的气体,是指大气;所述的使海水洗涤,是利用风、和/或洋流波浪、和/或阳光提供动力抽取海水进行洗涤。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述含二氧化碳的气体,是化石燃料燃烧的排放废气。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述排放废气中的二氧化碳,至少有10%、或20%、或50%、或70%、或80%、或90%溶入洗涤海水后注入大海水体,洗涤海水的量被配置为足以吸收排放废气中至少10%、或20%、或50%、或70%、或80%、或90%的二氧化碳。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:所述抽取的海水被提升至海拔高度不大于50m、或40m、或30m、或20m、或19m、或15m、或12m、或10m、或9m、或8m、或6m、或5m、或4m,或2m、或1m,以洗涤含有二氧化碳的排放废气,该海拔高度的零米(0m)基准为抽取海水处的海平面。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:提供填料,通过填料洗涤和控制洗涤海水的提升高度使捕集二氧化碳的能耗不大于1000MJ/t,或500MJ/t,或400MJ/t,或350MJ/t,或300MJ/t,或250MJ/t,或200MJ/t,或150MJ/t,或100MJ/t,或60MJ/t,或50MJ/t,或40MJ/t,或30MJ/t,或20MJ/t,或10MJ/t,或5MJ/t。
  9. 一种用于权利要求5所述方法的海水式碳捕集封存装置,其特征在于,它包括产生化石燃料燃烧废气的燃烧器(1),和与燃烧器(1)连接的用于洗涤废气以捕集二氧化碳的碳捕集器(2),向碳捕集器(2)导入海水的海水抽取设备(3),和从碳捕集器(2)导出净化废气的排气筒(6),以及海水排水管(7);碳捕集器(2)内有填料层,并包括有布水器(2.1),该碳捕集器(2)的海水输出口(5)与海水排水管(7)联通,海水排水管(7)的出口连通至海洋水体。
  10. 根据权利要求9所述的装置,其特征在于,碳捕集器(2)的布水器高度(2.2)小于等于50m、或40m、或30m、或20m、或19m、或15m、或12m、或10m、或9m、或8m、或6m、或5m、或4m,或2m、或1m;所述的布水器高度(2.2)是布水器(2.1)水平中心线相对海水抽取设备(3)取水处海平面(3.2)的高度值。
  11. 根据权利要求9所述的装置,其特征在于,有一个海水调控泵(4)与调控器(8)联通,用于调控洗涤海水注入大海时的pH值。
  12. 根据权利要求9所述的装置,其特征在于,碳捕集器(2)内的填料层,由工业散装填料,和/或规整填料,和/或孔板填料,和/或格栅组成。
  13. 一种用于权利要求4所述方法的海水式碳捕集封存装置,其特征在于,它包括碳捕集器(2),用于将海水输送至所述碳捕集器(2)的海水抽取设备(3),用于给所述海水抽取设备(3)提供动力的动力设备(14),位于所述碳捕集器(2)上方的布水器(2.1),及下方的集水器(2.3),以及与所述集水器连通的海水排水管(7)。
  14. 根据权利要求13所述的装置,其特征在于,所述动力设备(14)包括风动装置 (14.1)、动力联接装置(14.3),所述动力联接装置(14.3)连接所述海水抽取设备(3)以将风动装置(14.1)产生的动能传递给所述海水抽取设备(3),所述的动力联接装置(14.3),是机械联接装置,和/或风力发电机及电动机组成的机电联接装置。
  15. 根据权利要求13所述的装置,其特征在于,所述动力设备(14)包括水动装置(14.2)、动力联接装置(14.3),所述动力联接装置(14.3)连接所述海水抽取设备(3)以将水动装置(14.2)产生的动能传递给所述海水抽取设备(3),所述的动力联接装置(14.3),是机械联接装置,和/或水力发电机及电动机组成的机电联接装置。
PCT/CN2017/087530 2016-06-11 2017-06-08 海水式碳捕集封存方法及装置 WO2017211312A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3025952A CA3025952C (en) 2016-06-11 2017-06-08 Process and apparatus of ocean carbon capture and storage
US15/568,596 US11045758B2 (en) 2016-06-11 2017-06-08 Process and apparatus of ocean carbon capture and storage
AU2017276466A AU2017276466B2 (en) 2016-06-11 2017-06-08 Ocean carbon capture and storage method and device
MYPI2018002336A MY193676A (en) 2016-06-11 2017-06-08 Process and apparatus of ocean carbon capture and storage
EP17809751.5A EP3470131A4 (en) 2016-06-11 2017-06-08 CARBON SEPARATION AND STORAGE METHOD AND DEVICE
JP2018564853A JP2019524424A (ja) 2016-06-11 2017-06-08 海洋炭素の回収及び貯留方法並びに設備
SG11201810876SA SG11201810876SA (en) 2016-06-11 2017-06-08 Process and apparatus of ocean carbon capture and storage
US17/329,808 US11648507B2 (en) 2016-06-11 2021-05-25 Process and apparatus of ocean carbon capture and storage
JP2022099281A JP2022128475A (ja) 2016-06-11 2022-06-21 海洋炭素の回収及び貯留方法並びに設備

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610408323.3A CN106076066A (zh) 2016-06-11 2016-06-11 海水式碳捕集封存方法及装置
CN201610408323.3 2016-06-11
CN201710137942.8A CN106731510A (zh) 2016-06-11 2017-03-09 海水式碳捕集封存方法及装置
CN201710137942.8 2017-03-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/568,596 A-371-Of-International US11045758B2 (en) 2016-06-11 2017-06-08 Process and apparatus of ocean carbon capture and storage
US17/329,808 Division US11648507B2 (en) 2016-06-11 2021-05-25 Process and apparatus of ocean carbon capture and storage

Publications (1)

Publication Number Publication Date
WO2017211312A1 true WO2017211312A1 (zh) 2017-12-14

Family

ID=57228748

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2016/089870 WO2017210956A1 (zh) 2016-06-11 2016-07-13 海水式碳捕集封存方法及装置
PCT/CN2017/082913 WO2017211147A1 (zh) 2016-06-11 2017-05-03 海水式碳捕集封存方法及装置
PCT/CN2017/087530 WO2017211312A1 (zh) 2016-06-11 2017-06-08 海水式碳捕集封存方法及装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/089870 WO2017210956A1 (zh) 2016-06-11 2016-07-13 海水式碳捕集封存方法及装置
PCT/CN2017/082913 WO2017211147A1 (zh) 2016-06-11 2017-05-03 海水式碳捕集封存方法及装置

Country Status (10)

Country Link
US (2) US11045758B2 (zh)
EP (1) EP3470131A4 (zh)
JP (2) JP2019524424A (zh)
CN (4) CN106076066A (zh)
AU (1) AU2017276466B2 (zh)
CA (1) CA3025952C (zh)
HK (1) HK1247586A1 (zh)
MY (1) MY193676A (zh)
SG (1) SG11201810876SA (zh)
WO (3) WO2017210956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812033A4 (en) * 2018-06-25 2022-03-23 Sigan Peng METHOD AND DEVICE FOR GENERATING LOW CARBON ENERGY FROM FOSSILS

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015364268B2 (en) 2014-12-18 2020-11-05 California Institute Of Technology Method and apparatus for CO2 sequestration
NO20170525A1 (en) * 2016-04-01 2017-10-02 Mirade Consultants Ltd Improved Techniques in the upstream oil and gas industry
CN106076066A (zh) * 2016-06-11 2016-11-09 彭斯干 海水式碳捕集封存方法及装置
CN106823674A (zh) * 2017-01-09 2017-06-13 神华集团有限责任公司 气体处理方法及装置
CN108268074B (zh) * 2017-12-26 2019-12-31 上海亨远船舶设备有限公司 一种用于船舶尾气钠碱脱硫系统的嵌入型闭环控制方法
CN111151117A (zh) * 2019-04-07 2020-05-15 魏善兆 一种生产和封固二氧化碳的工艺
CN114206474A (zh) * 2019-05-23 2022-03-18 加州理工学院 用于海洋船舶中的co2封存的系统和方法
CN113905803A (zh) * 2019-12-04 2022-01-07 富士电机株式会社 废气处理装置
DK202000104A1 (en) * 2020-01-28 2021-10-07 Maersk Drilling As An offshore jack-up installation, assembly and method
WO2021187971A1 (en) * 2020-03-17 2021-09-23 Jeremy Duncan Stuart Joynson Method of processing gas loaded with carbon dioxide
US20230390701A1 (en) * 2021-01-11 2023-12-07 Nataqua, Inc. Techniques To Synthesize Greenhouse Gases
WO2022178195A1 (en) * 2021-02-22 2022-08-25 Seaquest Ccs, Llc Systems and methods of carbon dioxide removal with permanent subsea sequestration
JPWO2023002544A1 (zh) * 2021-07-19 2023-01-26
US20230115891A1 (en) * 2021-10-08 2023-04-13 Lawrence Livermore National Security, Llc System for direct air capture using ocean energy and fluidics principles
US11560322B1 (en) 2022-04-20 2023-01-24 James Cheng-Shyong Lu Self-sufficient systems for carbon dioxide removal and sequestration
CN115445391A (zh) * 2022-08-19 2022-12-09 浙江海洋大学 海洋碳捕获和储存的装置及方法
WO2024067448A1 (zh) * 2022-09-26 2024-04-04 彭斯干 蓝碳式空气直接碳捕集封存方法与系统
WO2024085994A1 (en) * 2022-10-17 2024-04-25 Nataqua, Inc. Techniques to synthesize greenhouse gases
WO2024140859A1 (zh) * 2022-12-28 2024-07-04 彭斯干 净零碳化石能源生产方法、ccs系统及蓝碳电站
WO2024140761A1 (zh) * 2022-12-28 2024-07-04 彭斯干 海船尾气脱碳方法、ccs系统及蓝碳海船
CN116040138B (zh) * 2023-01-06 2024-09-20 重庆大学 一种二氧化碳水合物海洋封存方法
CN117085456B (zh) * 2023-10-16 2024-01-12 太原理工大学 一种井内烟气捕集装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852332A (zh) * 2010-05-18 2010-10-06 兰州理工大学 用于海底封存温室气体的系统及其使用方法
US8551221B2 (en) * 2009-11-02 2013-10-08 Thomas D. Wolfe Method for combining desalination and osmotic power with carbon dioxide capture
CN105587294A (zh) * 2015-11-26 2016-05-18 彭斯干 无碳排放海洋油气能源的生产方法及装备
CN105819445A (zh) * 2016-03-22 2016-08-03 石家庄新华能源环保科技股份有限公司 一种深海封存二氧化碳的方法
CN106076066A (zh) * 2016-06-11 2016-11-09 彭斯干 海水式碳捕集封存方法及装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235607A (en) * 1979-01-19 1980-11-25 Phillips Petroleum Company Method and apparatus for the selective absorption of gases
JPH0194916A (ja) * 1987-10-05 1989-04-13 Sumitomo Heavy Ind Ltd 高圧海水中での炭酸ガス溶解方法
EP0408979B1 (en) 1989-07-19 1998-01-21 Mitsubishi Jukogyo Kabushiki Kaisha Method and system for throwing carbon dioxide into the deep sea
JPH03188924A (ja) * 1989-12-19 1991-08-16 Mitsubishi Heavy Ind Ltd 排ガスの海中投棄方法
JPH04104834A (ja) * 1990-08-24 1992-04-07 Ishikawajima Harima Heavy Ind Co Ltd Co↓2海洋処理方法
JPH04141217A (ja) * 1990-10-02 1992-05-14 Mitsubishi Heavy Ind Ltd 炭酸ガス吸収除去装置
US5397553A (en) * 1992-10-05 1995-03-14 Electric Power Research Institute, Inc. Method and apparatus for sequestering carbon dioxide in the deep ocean or aquifers
JP2958460B1 (ja) * 1998-08-28 1999-10-06 工業技術院長 低純度二酸化炭素ガスを海水中に溶解し、深海へ送り込む方法及び装置
CN1262145A (zh) * 1999-01-26 2000-08-09 彭斯干 纯海水工业烟气脱硫方法
JP3587715B2 (ja) * 1999-03-16 2004-11-10 松下電器産業株式会社 Co2固定システム、co2固定量算出方法、co2固定量算出システム
WO2001000316A1 (fr) * 1999-06-29 2001-01-04 Sumitomo Metal Industries, Ltd. Procede de dissolution de gaz hydrosoluble en mer destine a etre isole a grande profondeur, dispositif afferent, procede de pose du dispositif
JP2001227322A (ja) * 2000-02-18 2001-08-24 Mitsubishi Heavy Ind Ltd 船舶における排ガス冷却装置
US6406219B1 (en) * 2000-08-31 2002-06-18 Jolyon E. Nove Greenhouse gas emission disposal from thermal power stations
JP2003326155A (ja) * 2002-05-09 2003-11-18 Kaken:Kk 大気中の二酸化炭素の削減方法とその装置
US6881389B2 (en) * 2002-09-24 2005-04-19 Edg, Inc. Removal of H2S and CO2 from a hydrocarbon fluid stream
JP2007008732A (ja) * 2005-06-28 2007-01-18 Toshiba Corp 二酸化炭素回収システムおよび二酸化炭素回収方法
US20080025852A1 (en) * 2006-07-25 2008-01-31 Davis Albert H Economical tide/wave/swell/wind/solar powered high pressure fluid pump
JP2008029975A (ja) * 2006-07-31 2008-02-14 Petroleum Energy Center 二酸化炭素溶解システムおよび二酸化炭素溶解方法
JP5166791B2 (ja) * 2007-07-24 2013-03-21 三菱重工業株式会社 排煙脱硫装置
JP5033931B2 (ja) * 2008-06-13 2012-09-26 斯幹 彭 航海船における排ガス洗浄装置および排ガス洗浄方法
CN101732961A (zh) * 2008-11-27 2010-06-16 何刚 一种海水脱硫工艺
FR2942145B1 (fr) * 2009-02-18 2011-09-09 Arkema France Procede de recuperation de co2 d'un gaz industriel
JP5366300B2 (ja) * 2009-03-10 2013-12-11 国立大学法人東北大学 二酸化炭素低排出発電方法及びシステム
JP5704937B2 (ja) * 2011-01-31 2015-04-22 三菱日立パワーシステムズ株式会社 二酸化炭素分離回収装置を備えた火力発電システム
JP5773687B2 (ja) * 2011-02-28 2015-09-02 三菱日立パワーシステムズ株式会社 海水排煙脱硫システムおよび発電システム
JP6003245B2 (ja) * 2011-06-24 2016-10-05 株式会社Ihi 排ガスの処理方法及び処理装置
CN103813982A (zh) * 2011-09-02 2014-05-21 艺科环球科技私人有限公司 碳化二氧化碳的方法及其应用
KR20130073790A (ko) * 2011-12-25 2013-07-03 서희동 배기가스에 함유된 이산화탄소를 격리처리하는 방법
GB2505390A (en) * 2012-03-29 2014-03-05 Statoil Petroleum As Capturing and storing acidic gas
DK2644252T3 (en) * 2012-03-29 2015-02-16 Doosan Lentjes Gmbh A flue gas cleaning device
KR102113348B1 (ko) * 2012-09-27 2020-05-20 한국전력공사 탁도계를 이용한 이산화탄소 농축수 포집 장치
JP5593471B2 (ja) 2013-04-24 2014-09-24 株式会社メトラン 呼吸補助装置
JP6302191B2 (ja) * 2013-09-02 2018-03-28 三菱日立パワーシステムズ株式会社 発電システム
JP6173133B2 (ja) * 2013-09-02 2017-08-02 三菱日立パワーシステムズ株式会社 発電システム
CN105498492A (zh) * 2015-12-06 2016-04-20 彭斯干 海洋平台高温烟气安全排放方法及降温净化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551221B2 (en) * 2009-11-02 2013-10-08 Thomas D. Wolfe Method for combining desalination and osmotic power with carbon dioxide capture
CN101852332A (zh) * 2010-05-18 2010-10-06 兰州理工大学 用于海底封存温室气体的系统及其使用方法
CN105587294A (zh) * 2015-11-26 2016-05-18 彭斯干 无碳排放海洋油气能源的生产方法及装备
CN105819445A (zh) * 2016-03-22 2016-08-03 石家庄新华能源环保科技股份有限公司 一种深海封存二氧化碳的方法
CN106076066A (zh) * 2016-06-11 2016-11-09 彭斯干 海水式碳捕集封存方法及装置
CN106731510A (zh) * 2016-06-11 2017-05-31 彭斯干 海水式碳捕集封存方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, JIANGHAI ET AL.: "Marine Carbon Sequestration: Current Situation, Problems and Future", ADVANCES IN EARTH SCIENCE, vol. 30, no. 1, 31 January 2015 (2015-01-31), pages 17 - 25, XP055554484, ISSN: 1001-8166 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812033A4 (en) * 2018-06-25 2022-03-23 Sigan Peng METHOD AND DEVICE FOR GENERATING LOW CARBON ENERGY FROM FOSSILS

Also Published As

Publication number Publication date
CN106731510A (zh) 2017-05-31
US20210275960A1 (en) 2021-09-09
US20180161719A1 (en) 2018-06-14
US11648507B2 (en) 2023-05-16
AU2017276466B2 (en) 2022-06-02
HK1247586A1 (zh) 2018-09-28
AU2017276466A2 (en) 2019-01-24
JP2022128475A (ja) 2022-09-01
WO2017210956A1 (zh) 2017-12-14
SG11201810876SA (en) 2019-01-30
US11045758B2 (en) 2021-06-29
JP2019524424A (ja) 2019-09-05
EP3470131A1 (en) 2019-04-17
WO2017211147A1 (zh) 2017-12-14
AU2017276466A1 (en) 2019-01-24
CN113877368A (zh) 2022-01-04
CA3025952C (en) 2024-03-26
CN107485968A (zh) 2017-12-19
CN106076066A (zh) 2016-11-09
EP3470131A4 (en) 2020-01-22
MY193676A (en) 2022-10-25
CA3025952A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2017211312A1 (zh) 海水式碳捕集封存方法及装置
WO2020000121A1 (zh) 低碳排放化石能源产生方法及装置
KR20060118999A (ko) 해상 복합화력 발전소
US9358491B2 (en) Carbon dioxide neutralizing power generating device
CN115445391A (zh) 海洋碳捕获和储存的装置及方法
CN101482006A (zh) 用于油田的热电联产系统
CN105819445A (zh) 一种深海封存二氧化碳的方法
KR101888684B1 (ko) 이산화탄소 해양저장을 위한 중화 농축반응 시스템 및 이산화탄소의 해양격리방법
TWI842483B (zh) 自給自足的二氧化碳捕捉和封存系統及其方法
KR20130075151A (ko) 액화이산화탄소 임시저장플랜트
CN105289245A (zh) 锅炉排烟海水填料洗涤脱硫方法及洗涤装置
CN106621756B (zh) 船机排气多污染物协同治理的装置及其工作方法
Kumar et al. An approach of CO 2 capture technology for mitigating global warming and climate change-an overview
JP3208501U (ja) Co2回収液化装置及びそれを搭載したシステム船
WO2024140859A1 (zh) 净零碳化石能源生产方法、ccs系统及蓝碳电站
WO2017088346A1 (zh) 无碳排放海洋油气能源的生产方法及装备
WO2024067448A1 (zh) 蓝碳式空气直接碳捕集封存方法与系统
Castroa et al. CO2 capture from flue gases: a possibility to reduce the CO2 footprint in offshore oil installations
Danziger Energy and Environmental Technology Inventions
Atoui Energy transition of Oil and Gas Platforms
Mborah et al. Removal of carbon dioxide gas from the exhaust gases generated at the Takoradi Thermal Power Station
KAMIJO et al. Deployment of World’s Largest Post-combustion Carbon Capture Plant for Coal-fired Power Plants
Cooper Carbon Dioxide Control-Technology for the Future

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15568596

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3025952

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018564853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017809751

Country of ref document: EP

Effective date: 20190111

ENP Entry into the national phase

Ref document number: 2017276466

Country of ref document: AU

Date of ref document: 20170608

Kind code of ref document: A