WO2020000121A1 - 低碳排放化石能源产生方法及装置 - Google Patents

低碳排放化石能源产生方法及装置 Download PDF

Info

Publication number
WO2020000121A1
WO2020000121A1 PCT/CN2018/092544 CN2018092544W WO2020000121A1 WO 2020000121 A1 WO2020000121 A1 WO 2020000121A1 CN 2018092544 W CN2018092544 W CN 2018092544W WO 2020000121 A1 WO2020000121 A1 WO 2020000121A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
seawater
combustion
oxygen
energy
Prior art date
Application number
PCT/CN2018/092544
Other languages
English (en)
French (fr)
Inventor
彭斯干
Original Assignee
彭斯干
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭斯干 filed Critical 彭斯干
Priority to PCT/CN2018/092544 priority Critical patent/WO2020000121A1/zh
Priority to EP18924949.3A priority patent/EP3812033A4/en
Priority to SG11202013037XA priority patent/SG11202013037XA/en
Priority to CA3104187A priority patent/CA3104187A1/en
Priority to PCT/CN2018/110488 priority patent/WO2020000787A1/zh
Priority to JP2020572518A priority patent/JP2021529080A/ja
Priority to US17/255,066 priority patent/US20210372615A1/en
Priority to AU2018430238A priority patent/AU2018430238A1/en
Publication of WO2020000121A1 publication Critical patent/WO2020000121A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00006Liquid fuel burners using pure oxygen or O2-enriched air as oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/50Intercepting solids by cleaning fluids (washers or scrubbers)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the low-carbon emission fossil energy generation method and device are used for low-carbon atmospheric emission to generate energy using fossil fuels such as fossils and biomass, and are suitable for coastal and marine areas, and belong to the field of clean energy and climate mitigation technology.
  • U.S. Patent No. 15568596 discloses a technical solution for washing carbonaceous gases by seawater for carbon storage in marine water bodies.
  • the existing cooling water in industrial installations such as power plants is used for low desorption.
  • the design of a full-chain oxygen-enriched low-carbon emission power generation project disclosed in Europe is formed by adding an air separation system (ASU) and a flue gas treatment system (GPU) on the basis of a conventional power plant, which can produce a carbon dioxide concentration of more than 85%
  • ASU air separation system
  • GPU flue gas treatment system
  • the design goal is geological storage and long-distance transportation, further purification and compression of carbon dioxide-rich flue gas is still needed, and it still faces large cost challenges.
  • the purpose of the low-carbon emission fossil energy generation method and device of the present invention is to improve the cost-effectiveness of a seawater scrubbing carbon capture scheme at a high carbon capture rate, and at the same time overcome the technical cost obstacles of the existing oxygen-rich combustion scheme, and provide a Significant cost-effectiveness, low-carbon atmospheric emissions of fossil energy generation methods and devices that are conducive to large-scale deployment.
  • a first aspect of the present invention is to provide a method for generating low-carbon emission fossil energy, the method includes the following steps:
  • Oxygen-enhanced combustion increase the oxygen concentration in the combustion atmosphere of fossil fuels to increase the carbon dioxide concentration in the flue gas while generating thermal energy during combustion;
  • the fossil fuel includes one or more combinations of carbon-containing fuels such as petroleum, natural gas, combustible ice, biomass, and coal.
  • the increasing the oxygen concentration of the fossil fuel combustion atmosphere is to increase the volume percentage of oxygen in the combustion atmosphere gas from the proportion of air-assisted oxygen to 25% to 95%.
  • the increase of the oxygen concentration of the fossil fuel combustion atmosphere is to increase the oxygen obtained from the oxygen production step such as a cryogenic liquefied air method, and / or a PSA pressure swing adsorption method, and / or a membrane separation method. Concentration in a fossil fuel combustion atmosphere.
  • the step 4) washing and discharging seawater and injecting it into the ocean water body includes injecting the water quality of the water quality restoration step 3) in the vicinity of the implementation site using an atmospheric pressure pipe.
  • the step 6) converts the thermal energy generated by the aerobic combustion into the output of applied energy, including conversion into one or more combinations of applied energy such as electrical energy, kinetic energy, and thermal energy medium.
  • the step of preparing oxygen is a step of preparing oxygen which simultaneously recovers and utilizes by-product nitrogen.
  • a second aspect of the present invention is to provide a low-carbon emission fossil energy generating device used in the method of the present invention, which includes an aerator, a burner, and a carbon trap;
  • the aerator includes an air intake passage, The air supply channel and the nitrogen exhaust channel are connected to the atmosphere and the air supply channel is connected to the burner.
  • the burner includes a fuel conveyor, a smoke exhaust channel, and an energy conversion output device.
  • the carbon trap includes a washing water introduction channel, a seawater extraction device, and a decarbonized flue gas outlet channel.
  • the washing water introduction channel is connected to the seawater extraction device, and the decarbonized flue gas outlet channel is connected to the atmosphere through an exhaust cylinder.
  • the seawater discharge outlet is connected to the seawater drainage pipe through a water quality restorer, and the seawater drainage pipe outlet is connected to the ocean water body.
  • the aerator includes an oxygen increasing device selected from a cryogenic air liquefaction separation device, and / or a PSA pressure swing adsorption device, and / or a membrane separation device.
  • the burner is composed of a boiler that burns fossil and / or biomass carbonaceous fuel, and / or an internal combustion engine; the energy conversion output device connected to the burner is a turbine generator, and / or a heating boiler, And / or thruster formation.
  • the carbon trap is composed of a seawater flue gas scrubber; the water quality restorer connected to the carbon trap is composed of a water flow mixing device, so that fresh seawater and acidic seawater are fully mixed in an environment isolated from the atmosphere.
  • the aerator is connected to a nitrogen recovery and utilization device through a nitrogen exhaust channel;
  • the nitrogen recovery and utilization device is composed of a synthetic ammonia and / or nitrogen fertilizer production device, and / or a chemical sealed gas storage and transportation device.
  • a low-carbon emission fossil fuel power plant includes any of the technical features described in the technical solution and further technical solutions of the low-carbon emission fossil energy generating device used in the method of the present invention, and belongs to the low-carbon emission fossil energy generating device.
  • a low-carbon emission fossil fuel-powered marine vessel includes any of the technical features described in the technical solution and further technical solutions of the low-carbon emission fossil energy generating device used in the method of the present invention, and belongs to the low-carbon emission fossil energy generation Device.
  • the invention utilizes the principle that carbon dioxide is a natural substance that is soluble in seawater and exists in a large amount in seawater, and can be stored in the ocean in a friendly and long-term and massive manner, so that seawater is used to wash fossil fuel flue gas, and the carbon dioxide in the flue gas is dissolved to realize carbon capture. Then, the acidic seawater formed by the dissolved carbon dioxide in the flue gas is adjusted to restore the water quality, so that the pH is restored to the legally prescribed value allowed to be discharged to the ocean, and then injected into the marine water body to implement marine carbon storage. At this time, the carbon dioxide in the seawater is mainly converted into a safe and stable bicarbonate ion form.
  • an oxygen-enriched combustion method is used to increase the CO 2 concentration in the flue gas.
  • the oxygen-enriched combustion method of the present invention can be regarded as a modified and optimized oxygen-enriched combustion method.
  • the main difference from the existing oxygen-enriched combustion method is that the carbon-containing flue gas generated by the oxygen-enhanced combustion method of the present invention is not compressed and oxygen is supplied.
  • the selection range of the concentration and the concentration of the generated carbon dioxide is relatively large; at the same time, the carbon trap of the scheme of the present invention has the technical effect of flue gas desulfurization.
  • the solution of the present invention omits at least the flue gas processing device (GPU) and FGD device and their energy consumption, and the air separation (ASU) device does not require the preparation of high-purity oxygen, but is comprehensive Considering the overall cost factors such as the amount of washing water, the optimized design of the oxygen supply concentration and the carbon dioxide concentration is generated. Therefore, the oxygen-enriched combustion of the present invention is about 50% to 80% lower than the carbon capture integrated cost of the existing oxygen-enriched combustion scheme, and the storage cost is reduced by about 2 It can increase the energy conversion rate of the burner by about 1 to 3%, and simultaneously recycle nitrogen resources for oxygen production, which has the effect of CCUS, which is carbon capture and storage.
  • the scheme of the invention is beneficial to realize long-term safety and ecological environment-friendly utilization of marine natural carbon sink carbon pool resources, and generates low-cost clean energy with low carbon emissions to the atmosphere.
  • FIG. 1 is a schematic diagram of an implementation step of the method of the present invention.
  • Fig. 2 is a schematic structural view of an apparatus used in the method of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of a method for transforming a coastal power plant by applying the method and device scheme of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a marine ship to which the method of the present invention is applied.
  • Embodiment 1 is a basic embodiment of the method of the present invention.
  • the implementation steps include: 1) Oxygen-enhanced combustion: increase the oxygen concentration in the fossil fuel combustion atmosphere, so as to generate heat energy during combustion, and increase the carbon dioxide concentration in the combustion smoke; 2) carbon capture by seawater washing: The seawater is used to wash the combustion flue gas in step 1) to perform high-carbon decarbonization of the flue gas to generate clean decarbonized flue gas and acidic washing water in which carbon dioxide in the flue gas is dissolved; 3) water quality recovery : Dilute the acidic washing water generated in step 2) with fresh seawater to restore the pH of the acidic washing water to the legally prescribed value allowed to be discharged to the ocean, and become the seawater for washing and discharging; 4) Carbon storage of marine water: washing and discharging in step 3) Seawater is injected into the ocean water to achieve long-term safety and marine ecological environment-friendly marine carbon sequestration; 5) Low-carbon atmospheric emissions: Discharge the decarbonized flue gas from step
  • Embodiment 2 is a group of embodiments based on Embodiment 1.
  • the fossil fuels are petroleum, natural gas, combustible ice, biomass fuel, and coal.
  • the biomass fuel is used as a carbon-containing fuel for the production of low-carbon emission energy, as well as the ordinary fossil fuel, and the low-carbon emission combustion of the biomass fuel has special significance for climate mitigation.
  • Embodiment 1 On the basis of Embodiment 1, there is another group of embodiments, which are the fossil fuels, which are a combination of petroleum and natural gas, a combination of natural gas and combustible ice, and a combination of biomass fuel and coal.
  • the fossil fuels which are a combination of petroleum and natural gas, a combination of natural gas and combustible ice, and a combination of biomass fuel and coal.
  • a further set of embodiments based on embodiment 1 is to increase the oxygen concentration of the fossil fuel combustion atmosphere, and increase the volume percentage of oxygen in the combustion atmosphere gas from the proportion of air-assisted oxygen to 25% to 35%, respectively. , 35% to 55%, 55% to 75%, 75% to 95%.
  • Embodiment 1 On the basis of Embodiment 1, there is another group of embodiments, which is to increase the concentration of carbon dioxide in the combustion flue gas.
  • the volume percentage of carbon dioxide in the flue gas is increased from about 15% of the carbon dioxide in the air to coal combustion to 20% to 30%. , 30% to 50%, 50% to 70%, 70% to 90%.
  • Example 1 On the basis of Example 1, another group of examples is to increase the concentration of carbon dioxide in the combustion flue gas.
  • the volume percentage of carbon dioxide in the flue gas is increased from about 5% of the carbon dioxide ratio of the air-assisted fuel to 10% to 20%. , 20% to 40%, 40% to 70%, 70% to 90%.
  • Embodiment 3 It is another basic embodiment based on Embodiment 1:
  • the increased oxygen concentration of the fossil fuel combustion atmosphere is prepared by increasing the combustion environment by a cryogenic air liquefaction separation method.
  • Oxygen another basic embodiment is to increase the oxygen produced by the PSA pressure swing adsorption method in a combustion environment; and another embodiment is to increase the oxygen produced by a membrane separation method in a combustion environment.
  • the step 6) converts the thermal energy generated by the aerobic combustion into the application energy output, and the steam generated by the boiler is used to drive the turbine generator to be converted into electrical energy and output to the power grid; another One embodiment is the thermal energy generated by aerobic combustion, which is converted by the internal combustion engine to the kinetic energy that propels the ship's propellers; another embodiment is the thermal energy generated by aerobic combustion, which is converted by a heating boiler into hot steam and / or hot water medium for output. Another set of embodiments is an application energy combination that simultaneously converts the thermal energy generated by aerobic combustion into electrical energy and kinetic and thermal energy media.
  • Embodiment 4 is a basic embodiment of the technical solution of the device of the present invention. As shown in FIG. 2, it includes an aerator 1, a burner 2, and a carbon trap 3.
  • the aerator 1 includes Air channel 1.1, air supply channel 1.2, nitrogen exhaust channel 1.3, the air inlet channel 1.1 is connected to the atmosphere, and the air supply channel 1.2 is connected to the burner 2;
  • the burner 2 includes a fuel conveyor 2.1, a smoke exhaust channel 2.2, and energy Conversion output device 2.3, the smoke exhaust channel 2.2 is connected to the carbon trap 3;
  • the carbon trap 3 includes a washing water introduction channel 3.1, a seawater extraction device 3.2, a decarbonized flue gas outlet channel 3.3, and the washing water introduction channel 3.1 Connected to seawater extraction equipment 3.2.
  • the decarbonized flue gas outlet channel 3.3 is connected to the atmosphere through the exhaust pipe 3.4.
  • the seawater discharge port 3.5 is connected to the seawater drainage pipe 3.7 through the water quality restorer 3.6.
  • the seawater drainage pipe 3.7 is connected to the ocean water body. .
  • Embodiment 5 is an embodiment based on Embodiment 4.
  • the carbon trap 3 is composed of seawater flue gas scrubber; the water quality restorer 3.6 connected to the carbon trap 3 is composed of
  • the water flow mixing device is configured so that fresh seawater and acidic seawater are sufficiently mixed in an environment isolated from the atmosphere.
  • the aerator includes an oxygen increasing device, which is respectively selected from a cryogenic air liquefaction separation device, and / or a PSA pressure swing adsorption device, and / or a membrane separation device.
  • Embodiment 4 On the basis of Embodiment 4, there is another group of embodiments in which the burner is respectively composed of a boiler for burning fossil and / or biomass carbon fuel, and / or an internal combustion engine.
  • the energy conversion and output device connected to the burner is composed of a turbine generator, and / or a heating boiler, and / or a propeller.
  • Embodiment 6 is an embodiment based on Embodiment 4.
  • the aerator 1 is connected to a nitrogen recovery and utilization device 1.4 through a nitrogen exhaust channel 1.3; the nitrogen recovery and utilization device is composed of a complete synthetic ammonia production plant.
  • the nitrogen recovery and utilization device according to another embodiment is composed of a complete nitrogen fertilizer production plant.
  • the nitrogen recovery and utilization device is composed of a chemically sealed gas storage and transportation device.
  • the step of producing oxygen in the above embodiments is a step of producing oxygen that simultaneously recovers and utilizes by-product nitrogen, and is therefore also a CCUS embodiment of carbon capture, utilization, and storage.
  • Embodiment 7 is a modified embodiment of a power plant based on Embodiment 4, Embodiment 5, and Embodiment 6. As shown in FIG. 3, the burner is a supercritical coal-fired boiler supporting a 600MW steam turbine generator set. , Burning pulverized coal and biomass fuel, the transformation will be implemented in two phases.
  • a set of aerator is installed in the boiler air inlet channel, and a set of seawater scrubbing carbon trap is installed in the smoke outlet channel; the added aerator is selected from the cryogenic air liquefaction separation device.
  • the oxygen volume concentration of the boiler inlet air can be increased from about 20% to about 40% in the air, and the volume concentration of carbon dioxide produced by the combustion flue gas is about 36%; the seawater was used to wash the carbon trap, and a packed tower was used.
  • the height of its water distributor is about 9m; washing seawater directly uses the existing cooling seawater of the power plant, and no additional drainage and drainage facilities are built. It can achieve annual capture and storage of about 300,000 tons of carbon dioxide and reduce the CO 2 emissions of the power plant. At about 10%, SO 2 was reduced by 99%. Oxygen-enhanced combustion also improves boiler combustion efficiency by 3%.
  • the scale and output of the aerator are increased in the boiler air inlet channel, the seawater scrubbing carbon trap is expanded in the smoke outlet channel, and the seawater pumping station is expanded.
  • the added aerator uses one PSA pressure swing adsorption device and two membrane separation devices. After increasing the scale of the aerator, the oxygen concentration in the inlet air of the boiler reaches about 80%, and the carbon dioxide concentration in the combustion flue gas is about 76%; the amount of washed seawater is increased to about 210,000t / h, and the expanded seawater pump is used to wash the seawater.
  • the water quality recovery device adjusts the pH value to reach no less than 6.5 as required by the environmental management department according to the law, and then uses normal pressure pipelines to inject into the marine water body near the power plant water quality recovery system; it can achieve an annual capture and storage of about 2.3 million tons of carbon dioxide. Power plants CO 2 emissions are reduced by about 80%.
  • the second-stage reconstruction examples meet the needs of large-scale CCS for the development of the hydrogen energy industry.
  • Embodiment 8 is an embodiment of a group of low-carbon emission fossil fuel power plants, which respectively includes one of the technical characteristics of the low-carbon emission fossil energy generating device described in Embodiment 4, Embodiment 5, Embodiment 6, and Embodiment 7 or Many technical features belong to the low-carbon emission fossil energy generating device.
  • Embodiment 9 is an embodiment of a marine ship based on Embodiment 4, Embodiment 5, and Embodiment 6.
  • the burner 2 includes a 23 MW marine diesel engine as the main thrust engine connected to the thruster.
  • a heating boiler as an auxiliary machine, a marine aerator is installed in the engine and boiler inlets, and a marine seawater scrubbing carbon trap is installed in the exhaust passage; the drainage is in accordance with the MEPC rules under Annex VI of the MARPOL Convention and permits direct Drain into a body of ocean water.
  • the CO 2 of ship tail gas is reduced by 30-50% (the specific value is related to the sea water quality and water temperature where the ship is sailing), and the SO 2 is reduced by 99%.
  • Oxygen-enhanced combustion improves the efficiency of marine diesel engines by about 3.8%.
  • the fuel of another ship embodiment is LNG, which produces less carbon emissions than coal and fuel oil, but still belongs to fossil energy sources that need to reduce and control carbon emissions.
  • Embodiment 10 is an embodiment of a group of low-carbon-emitting fossil fuel-powered marine vessels, including the technical characteristics of the low-carbon-emitting fossil energy generating device described in Example 4, Example 5, Example 6, and Example 9, respectively.
  • One or more technical features belong to the low-carbon emission fossil energy generating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

一种低碳排放化石能源产生方法及装置,属于清洁能源和气候减缓技术领域,适用于滨海及海洋区域以对大气低碳排放的方式,利用化石燃料、生物质燃料等含碳燃料产生能源。其主要步骤包括增氧燃烧和海水一次洗涤烟气进行高脱碳率的碳捕集,并使洗涤海水的水质恢复到允许排往海洋的现行法律规定值后实现海洋碳封存,以此实现长期安全和生态环境友好的海洋自然碳汇碳库资源利用,产生对大气低碳排放的低成本清洁能源。

Description

低碳排放化石能源产生方法及装置 技术领域
本发明低碳排放化石能源产生方法及装置,用于低碳大气排放的方式使用化石及生物质等化石燃料产生能源,适用于滨海及海洋区域,属于清洁能源和气候减缓技术领域。
背景技术
UNFCCC巴黎协定提出本世纪下半叶实现“排放源”和“清除汇”规模平衡的气候目标以来,海洋占地球自然碳汇碳库93%并自然清除着近40%人为排碳量的科学事实被重新重视,利用地球最大的自然“清除汇”海洋,化石能源实现低碳大气排放的方案被重新提出。
美国15568596号专利申请“海水式碳捕集封存方法与装置”,公开了一种海水洗涤含碳气体进行海洋水体碳封存的技术方案,在利用发电厂等工业装置现有冷却水进行较低脱碳率的碳捕集时,具有显著的成本效益;在进行高脱碳率的碳捕集时,由于常规发电厂烟气中二氧化碳浓度较低,成本效益存在提升空间。
另一方面,为进行采油驱油,及近年来的地质碳封存(包括海底地质和亚地质碳封存,以及海底二氧化碳湖封存),现有技术发展了获取高浓度二氧化碳的富氧燃烧发电技术,相对胺剂洗涤等方式成本显著较低。如欧洲公开的一例全链式富氧燃烧低碳排放发电项目设计,是在常规发电厂基础上增加空气分离系统(ASU)和烟气处理系统(GPU)形成的,可以产生二氧化碳浓度85%以上的烟气;但由于该设计目标是地质封存及远距输送,需进一步提纯并压缩富含二氧化碳的烟气,目前仍面临较大成本挑战。
发明内容
本发明低碳排放化石能源产生方法及装置的发明目的在于,提升海水洗涤碳捕集方案在高碳捕集率时的成本效益,同时克服现有富氧燃烧方案的技术成本障碍,提供一种成本效益显著,利于大规模部署的低碳大气排放化石能源产生方法及装置。
本发明第一个方面是提供了一种低碳排放化石能源产生方法,所述方法包括如下步骤:
1)增氧燃烧:增加化石燃料燃烧氛围的氧气浓度,使燃烧产生热能的同时,提高燃烧烟气中的二氧化碳浓度;
2)海水洗涤碳捕集:用海水对步骤1)的燃烧烟气进行洗涤,以对烟气进行高脱碳率的碳捕集,产生清洁的脱碳烟气和溶有烟气中二氧化碳的酸性洗涤水;
3)水质恢复:用新鲜海水稀释步骤2)生成的酸性洗涤水,使酸性洗涤水的pH恢复到允许排往海洋的法律规定值,成为洗涤排放海水;
4)海洋水体碳封存:将步骤3)的洗涤排放海水注入海洋水体,以实现长期安全和海洋生态环境友好的海洋碳封存;
5)低碳大气排放:将步骤2)的脱碳烟气排往大气;
6)能源输出:使步骤1)增氧燃烧产生的热能转换为应用能源输出。
进一步的技术方案是:
所述的化石燃料包括石油,天然气,可燃冰,生物质,煤炭这类含碳燃料中的一种或多种组合。
所述增加化石燃料燃烧氛围的氧气浓度,是使燃烧氛围气体中氧气所占的体积百分比从空气助燃的氧气比例增加到25%~95%。
所述的增加化石燃料燃烧氛围的氧气浓度,是增加取自于深冷式液化空气法,和/或PSA式变压吸附法,和/或膜分离法之类制取氧气步骤制取的氧气在化石燃料燃烧氛围中的浓度。
所述的步骤4)洗涤排放海水注入海洋水体,包括采用常压管道注入步骤3)的水质恢复实施地点近旁的海洋水体。
所述步骤6)使增氧燃烧产生的热能转换为应用能源输出,包括转换为电能,动能,热能介质等应用能源中的一种或多种组合输出。
所述制取氧气的步骤,是同时回收利用副产物氮气的制取氧气步骤。
本发明的第二个方面是提供一种用于本发明方法的低碳排放化石能源产生装置,它包括增氧器,燃烧器,以及碳捕集器;所述增氧器包括进气通道,送风通道,排氮通道,该进气通道与大气联通,送风通道与燃烧器联通;所述燃烧器包括燃料输送器,排烟通道,能源转换输出装置,该排烟通道与碳捕集器连接;所述碳捕集器包括洗涤水导入通道,海水抽取设备,脱碳烟气导出通道,该洗涤水导入通道与海水抽取设备连接,脱碳烟气导出通道通过排气筒连通至大气,海水排出口通过水质恢复器与海水排水管联接,海水排水管的出口连通至海洋水体。
进一步的技术方案是:增氧器包括增加氧气设备,选自深冷式空气液化分离装置,和/或PSA变压吸附装置,和/或膜分离装置。
所述燃烧器是由燃烧化石和/或生物质含碳燃料的锅炉,和/或内燃机构成;所述燃烧器连接的能源转换输出装置,是由汽轮发电机,和/或供热锅炉,和/或推进器构成。
所述的碳捕集器由海水烟气洗涤器构成;所述碳捕集器连接的水质恢复器由水流混合装置构成,以使新鲜海水与酸性海水在与大气隔绝的环境中充分混合。
增氧器通过排氮通道与氮气回收利用装置相连接;该氮气回收利用装置由合成氨和/或氮肥生产装置构成,和/或由化工密封气储存输送装置构成。
一种低碳排放化石燃料发电厂,包括上述用于本发明方法的低碳排放化石能源产生装置技术方案和进一步的技术方案所述的任一技术特征,属于该低碳排放化石能源产生装置。
一种低碳排放化石燃料动力的海洋船舶,包括上述用于本发明方法的低碳排放化石能源产生装置技术方案和进一步的技术方案所述的任一技术特征,属于该低碳排放化石能源产生装置。
本发明的技术原理和效果:
本发明利用二氧化碳是可溶于海水并大量存在于海水中的天然物质,可以在海洋中友好地长期和海量贮存的原理,使海水洗涤化石燃料烟气,溶出烟气中的二氧化碳实现碳捕集,再对溶有烟气中二氧化碳形成的酸性海水调整恢复水质,使pH恢复到允许排往海洋的法律规定值,然后注入到海洋水体实施海洋碳封存。这时海水中的二氧化碳主要转化为安全稳定的碳酸氢根离子形态。
当烟气中二氧化碳浓度较低时,需要洗涤水量较大影响成本效益,所以采用增氧燃烧的方式来提高烟气中的CO 2浓度。本发明增氧燃烧方式可以认为是一种改性优化的富氧燃烧方式,与现有富氧燃烧方式的主要区别是:本发明增氧燃烧方式产生的含碳烟气不压缩,以及供氧浓度和产生的二氧化碳浓度的选择范围较大;同时,本发明方案的碳捕集器兼具烟气脱硫的技术效果。所以,本发明方案比现有富氧燃烧技术方案,至少省略了烟气处理装置(GPU)和FGD装置及其物耗能耗,而且空气分离(ASU)装置不要求制备高纯度氧气,而是综合考虑洗涤水量等总体成本因素,优化设计供氧浓度和产生的二氧化碳浓度,因此本发明增氧燃烧比现有富氧燃烧方案的碳捕集成本大约降低50%~80%,封存成本大约降低2个数量级,而且增氧燃烧能够提高燃烧器的能源转换率约1~3%,以及制氧同时回收利用氮气资源,起到 碳捕集利用与封存即CCUS的功效。
本发明方案利于实现长期安全和生态环境友好的海洋自然碳汇碳库资源利用,产生对大气低碳排放的低成本清洁能源。
附图说明
图1是本发明方法的一种实施步骤示意图。
图2是用于本发明方法的装置的结构示意图。
图3是应用本发明方法和装置方案改造滨海发电厂的实施例示意图。
图4是应用本发明方法的海洋船舶实施例示意图。
附图中的图号标记对像的名称为:
1—增氧器,1.1—进气通道,1.2—送风通道,1.3—排氮通道,1.4—氮气回收利用装置,2—燃烧器,2.1—燃料输送器,2.2—排烟通道,2.3—能源转换输出装置,3—碳捕集器,3.1—洗涤水导入通道,3.2—海水抽取设备,3.3—脱碳烟气导出通道,3.4—排气筒,3.5—海水排出口,3.6—水质恢复器,3.7—海水排水管,3.8—海洋水体,3.9—洋流。
具体实施方式
结合附图和实施例对本发明作进一步说明如下。
实施例1:是本发明方法的一种基本实施例。如附图1所示,实施步骤包括:1)增氧燃烧:增加化石燃料燃烧氛围的氧气浓度,使燃烧产生热能的同时,提高燃烧烟气中的二氧化碳浓度;2)海水洗涤碳捕集:用海水对步骤1)的燃烧烟气进行洗涤,以对烟气进行高脱碳率的碳捕集,产生清洁的脱碳烟气和溶有烟气中二氧化碳的酸性洗涤水;3)水质恢复:用新鲜海水稀释步骤2)生成的酸性洗涤水,使酸性洗涤水的pH恢复到允许排往海洋的法律规定值,成为洗涤排放海水;4)海洋水体碳封存:将步骤3)的洗涤排放海水注入海洋水体,以实现长期安全和海洋生态环境友好的海洋碳封存;5)低碳大气排放:将步骤2)的脱碳烟气排往大气;6)能源输出:使步骤1)增氧燃烧产生的热能转换为应用能源输出。
实施例2:是在实施例1基础上的一组实施例,所述的化石燃料,分别是石油、天然气、可燃冰、生物质燃料、煤炭。本实施例将生物质燃料与普通化石燃料同样作为含碳燃料用于低碳排放能源生产,而生物质燃料的低碳排放燃烧对于气候减缓具有特殊意义。
在实施例1基础上还有一组实施例,是所述的化石燃料,分别是石油和天然气组合,天 然气和可燃冰组合,生物质燃料和煤炭组合。
在实施例1基础上又一组实施例,是所述增加化石燃料燃烧氛围的氧气浓度,是使燃烧氛围气体中氧气所占的体积百分比从空气助燃的氧气比例分别增加到25%~35%,35%~55%,55%~75%,75%~95%。
在实施例1基础上还有一组实施例,是所述提高燃烧烟气中的二氧化碳浓度,烟气中二氧化碳的体积百分比从空气助燃煤炭的二氧化碳比例约15%,分别增加到20%~30%,30%~50%,50%~70%,70%~90%。
在实施例1基础上另一组实施例,是所述提高燃烧烟气中的二氧化碳浓度,烟气中二氧化碳的体积百分比从空气助燃油料的二氧化碳比例约5%,分别增加到10%~20%,20%~40%,40%~70%,70%~90%。
实施例3:是在实施例1基础上的又一种基本实施例:所述的增加化石燃料燃烧氛围的氧气浓度,是使燃烧环境中增加取自于深冷式空气液化分离方法制取的氧气;另一基本实施例是使燃烧环境中增加由PSA式变压吸附方法制取的氧气;还有一实施例是使燃烧环境中增加由膜分离方法制取的氧气。
在实施例1基础上的另一种基本实施例:所述步骤6)使增氧燃烧产生的热能转换为应用能源输出,是通过锅炉产生蒸汽推动汽轮发电机转换为电能输出到电网;另一实施例是增氧燃烧产生的热能,通过内燃机转换为推动船舶推进器的动能;又一实施例是增氧燃烧产生的热能,由供热锅炉转换为热蒸汽和/或热水介质输出。还有一组实施例是使增氧燃烧产生的热能,同时转换为电能和动能及热能介质的应用能源组合。
实施例4:是本发明装置技术方案的一种基本实施例,如附图2所示,它包括增氧器1,燃烧器2,以及碳捕集器3;所述增氧器1包括进气通道1.1,送风通道1.2,排氮通道1.3,该进气通道1.1与大气联通,送风通道1.2与燃烧器2联通;所述燃烧器2包括燃料输送器2.1,排烟通道2.2,能源转换输出装置2.3,该排烟通道2.2与碳捕集器3连接;所述碳捕集器3包括洗涤水导入通道3.1,海水抽取设备3.2,脱碳烟气导出通道3.3,该洗涤水导入通道3.1与海水抽取设备3.2连接,脱碳烟气导出通道3.3通过排气筒3.4连通至大气,海水排出口3.5通过水质恢复器3.6与海水排水管3.7联接,海水排水管3.7的出口连通至海洋水体。
实施例5:是在实施例4基础上的实施例,如附图2,所述的碳捕集器3由海水烟气洗涤器构成;所述碳捕集器3连接的水质恢复器3.6由水流混合装置构成,以使新鲜海水与酸性海水在与大气隔绝的环境中充分混合。
在实施例4基础上的另一组实施例是增氧器包括增加氧气设备,分别选自深冷式空气液化分离装置,和/或PSA变压吸附装置,和/或膜分离装置。
在实施例4基础上还有一组实施例是所述燃烧器分别由燃烧化石和/或生物质含碳燃料的锅炉,和/或内燃机构成。
所述燃烧器连接的能源转换输出装置,是由汽轮发电机,和/或供热锅炉,和/或推进器构成。
实施例6:是在实施例4基础上的实施例,增氧器1通过排氮通道1.3与氮气回收利用装置1.4相连接;该氮气回收利用装置由完整的合成氨生产厂构成。另一实施例的氮气回收利用装置由整套氮肥生产厂构成。还有一实施例的氮气回收利用装置由化工密封气储存输送装置构成。
以上实施例中制取氧气的步骤,是同时回收利用副产物氮气的制取氧气步骤,因此也是一种碳捕集、利用与封存即CCUS实施例。
实施例7:是在实施例4、实施例5和实施例6基础上的一种发电厂改造实施例,如附图3所示,燃烧器为600MW汽轮发电机组配套的超临界燃煤锅炉,燃用煤粉和生物质燃料,改造分二期实施。
一期改造实施例,在锅炉进风通道加装一套增氧器,在出烟通道加装一套海水洗涤碳捕集器;加装的增氧器选自深冷式空气液化分离装置,可使锅炉进风的氧体积浓度,从空气中的约20%增加到约40%,产生的燃烧烟气二氧化碳的体积浓度约为36%;加装的海水洗涤碳捕集器,采用填料塔以降低高度,其布水器高度约为9m;洗涤海水直接利用电厂现有的冷却海水,不另建取排水设施,可实现年捕集封存二氧化碳约30万吨,发电厂的CO 2排放减少约10%,SO 2减少99%。增氧燃烧还使锅炉燃烧效率提高了3%。
二期改造实施例,在一期改造基础上,在锅炉进风通道增加增氧器的规模和出力,在出烟通道扩建海水洗涤碳捕集器,并扩建海水取水泵站。增加的增氧器采用一套PSA变压吸附装置,2套膜分离装置。增加增氧器规模出力后锅炉进风的氧浓度达到约80%,燃烧烟气的二氧化碳浓度约为76%;洗涤海水量增加到约210,000t/h,来自扩建的海水取水泵,洗涤海水经水质恢复装置调整pH值,达到环境管理部门依照法律规定的不低于6.5,然后采用常压管道注入发电厂水质恢复系统近旁的海洋水体;可实现年捕集封存二氧化碳约230万吨,发电厂的CO 2排放减少约80%。
二期改造实施例满足发展氢能源产业的规模化CCS需要。
实施例8:是一组低碳排放化石燃料发电厂的实施例,分别包括实施例4、实施例5、实施例6、实施例7所述低碳排放化石能源产生装置技术特征中的一个或多个技术特征,均属该低碳排放化石能源产生装置。
实施例9:是在实施例4、实施例5和实施例6基础上的一种海洋船舶实施例,如附图4所示,燃烧器2包括1台23MW船用柴油机作为连接推进器的主推发动机,和1台作为辅机的供热锅炉,在发动机和锅炉进气口安装了船用增氧器,尾气通道安装了船用海水洗涤碳捕集器;排水符合MARPOL公约附则VI下MEPC规则,许可直接排注至海洋水体。船舶尾气CO 2减少30~50%(具体数值与船舶航行所在的海水水质和水温有关),SO 2减少99%。增氧燃烧使船用柴油机效率提高了约3.8%。
另一船舶实施例的燃料为LNG,产生的碳排放少于燃煤和燃油,但仍属于需要减少和控制碳排放的化石能源。
实施例10:是一组低碳排放化石燃料动力的海洋船舶的实施例,分别包括实施例4、实施例5、实施例6、实施例9所述低碳排放化石能源产生装置技术特征中的一个或多个技术特征,均属该低碳排放化石能源产生装置。
本发明的权利要求保护范围不限于上述实施例。

Claims (14)

  1. 一种低碳排放化石能源产生方法,其特征在于,所述方法包括如下步骤:
    1)增氧燃烧:增加化石燃料燃烧氛围的氧气浓度,使燃烧产生热能的同时提高燃烧烟气中的二氧化碳浓度;
    2)海水洗涤碳捕集:用海水对步骤1)的燃烧烟气进行洗涤,以对烟气进行高脱碳率的碳捕集,产生清洁的脱碳烟气和溶有烟气中二氧化碳的酸性洗涤水;
    3)水质恢复:用新鲜海水稀释步骤2)生成的酸性洗涤水,使酸性洗涤水的pH恢复到允许排往海洋的法律规定值,成为洗涤排放海水;
    4)海洋水体碳封存:将步骤3)的洗涤排放海水注入海洋水体,以实现长期安全和海洋生态环境友好的海洋碳封存;
    5)低碳大气排放:将步骤2)的脱碳烟气排往大气;
    6)能源输出:使步骤1)增氧燃烧产生的热能转换为应用能源输出。
  2. 根据权利要求1所述的方法,其特征在于,所述的化石燃料包括石油,天然气,可燃冰,生物质,煤炭这类含碳燃料中的一种或多种组合。
  3. 根据权利要求1所述的方法,其特征在于,所述增加化石燃料燃烧氛围的氧气浓度,是使燃烧氛围气体中氧气所占的体积百分比从空气自然氧气比例增加到25%~95%。
  4. 根据权利要求1所述的方法,其特征在于,所述的增加化石燃料燃烧氛围的氧气浓度,是增加取自于深冷式液化空气法,和/或PSA式变压吸附法,和/或膜分离法之类制取氧气步骤制取的氧气在化石燃料燃烧氛围中的浓度。
  5. 根据权利要求1所述的方法,其特征在于,所述步骤4)的洗涤排放海水注入海洋水体,包括采用常压管道注入步骤3)的水质恢复实施地点近旁的海洋水体。
  6. 根据权利要求1所述的方法,其特征在于,所述步骤6)使增氧燃烧产生的热能转换为应用能源输出,包括转换为电能,动能,热能介质等应用能源中的一种或多种组合输出。
  7. 根据权利要求4所述的方法,其特征在于,所述制取氧气的步骤,是同时回收利用副产物氮气的制取氧气步骤。
  8. 一种用于权利要求1所述方法的低碳排放化石能源产生装置,其特征在于,它包括增氧器(1),燃烧器(2),以及碳捕集器(3);所述增氧器(1)包括进气通道(1.1),送风通道(1.2),排氮通道(1.3),该进气通道(1.1)与大气联通,送风通道(1.2)与燃烧器(2)联通;所述燃烧器(2)包括燃料输送器(2.1),排烟通道(2.2),能源转换输出装置(2.3),该排烟通道(2.2)与碳捕集器(3)连接;所述碳捕集器(3)包括洗涤水导入通道(3.1),海水抽取设备(3.2),脱碳烟气导出通道(3.3),该洗涤水导入通道(3.1)与海水抽取设备(3.2)连接,脱碳烟气导出通道(3.3)通过排气筒(3.4)连通至大气,海水排出口(3.5)通过水质恢复器(3.6)与海水排水管(3.7)联接,海水排水管(3.7)的出口连通至海洋水体。
  9. 根据权利要求8所述的装置,其特征在于,增氧器(1)包括增加氧气设备,选自深冷式空气液化分离装置,和/或PSA变压吸附装置,和/或膜分离装置。
  10. 根据权利要求8所述的装置,其特征在于,所述燃烧器(2)是由燃烧化石和/或生物质化石燃料的锅炉,和/或内燃机构成;所述燃烧器(2)连接的能源转换输出装置(2.3),是由汽轮发电机,和/或供热锅炉,和/或推进器构成。
  11. 根据权利要求8所述的装置,其特征在于,所述的碳捕集器(3)由海水烟气洗涤器构成;所述碳捕集器(3)连接的水质恢复器(3.6)由水流混合装置构成,以使新鲜海水与酸性海水在与大气隔绝的环境中充分混合。
  12. 根据权利要求8所述的装置,其特征在于,增氧器(1)通过排氮通道(1.3)与氮气回收利用装置(1.4)相连接;该氮气回收利用装置由合成氨和/或氮肥生产装置构成,和/或由化工密封气储存输送装置构成。
  13. 一种低碳排放化石燃料发电厂,其特征在于,包括如权利要求8~12所述的任一技术特征,属于该低碳排放化石能源产生装置。
  14. 一种低碳排放化石燃料动力海洋船舶,其特征在于,包括如权利要求8~12所述的任一技术特征,属于该低碳排放化石能源产生装置。
PCT/CN2018/092544 2018-06-25 2018-06-25 低碳排放化石能源产生方法及装置 WO2020000121A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2018/092544 WO2020000121A1 (zh) 2018-06-25 2018-06-25 低碳排放化石能源产生方法及装置
EP18924949.3A EP3812033A4 (en) 2018-06-25 2018-10-16 METHOD AND DEVICE FOR GENERATING LOW CARBON ENERGY FROM FOSSILS
SG11202013037XA SG11202013037XA (en) 2018-06-25 2018-10-16 A process and an apparatus for utilizing fossil energy with low carbon emissions
CA3104187A CA3104187A1 (en) 2018-06-25 2018-10-16 A process and an apparatus for utilizing fossil energy with low carbon emissions
PCT/CN2018/110488 WO2020000787A1 (zh) 2018-06-25 2018-10-16 低碳排放化石能源产生方法及装置
JP2020572518A JP2021529080A (ja) 2018-06-25 2018-10-16 低減された炭素排出量で化石エネルギを利用するための方法及び設備
US17/255,066 US20210372615A1 (en) 2018-06-25 2018-10-16 A process and an apparatus for utilizing fossil energy with low carbon emissions
AU2018430238A AU2018430238A1 (en) 2018-06-25 2018-10-16 Method and device for generating low-carbon-emission energy from fossils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092544 WO2020000121A1 (zh) 2018-06-25 2018-06-25 低碳排放化石能源产生方法及装置

Publications (1)

Publication Number Publication Date
WO2020000121A1 true WO2020000121A1 (zh) 2020-01-02

Family

ID=68985290

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/092544 WO2020000121A1 (zh) 2018-06-25 2018-06-25 低碳排放化石能源产生方法及装置
PCT/CN2018/110488 WO2020000787A1 (zh) 2018-06-25 2018-10-16 低碳排放化石能源产生方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110488 WO2020000787A1 (zh) 2018-06-25 2018-10-16 低碳排放化石能源产生方法及装置

Country Status (7)

Country Link
US (1) US20210372615A1 (zh)
EP (1) EP3812033A4 (zh)
JP (1) JP2021529080A (zh)
AU (1) AU2018430238A1 (zh)
CA (1) CA3104187A1 (zh)
SG (1) SG11202013037XA (zh)
WO (2) WO2020000121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117892089A (zh) * 2024-02-02 2024-04-16 数字双碳科技(合肥)有限公司 基于gis的路桥设计碳排放优化评估系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113327180B (zh) * 2021-07-05 2023-09-29 华北电力大学 一种考虑氢能应用的电力系统低碳经济调度方法及系统
US11873991B2 (en) 2022-03-30 2024-01-16 Stena Power & Lng Solutions As Offshore carbon capture and injection method and system
WO2023191634A1 (en) 2022-03-30 2023-10-05 Stena Power & Lng Solutions As Offshore carbon capture and injection method and system
CN115600824B (zh) * 2022-12-09 2023-05-02 国网浙江省电力有限公司金华供电公司 一种碳排放的预警方法及装置、存储介质、电子设备
WO2024140859A1 (zh) * 2022-12-28 2024-07-04 彭斯干 净零碳化石能源生产方法、ccs系统及蓝碳电站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211421A1 (en) * 2010-05-14 2012-08-23 Kyle Self Systems and methods for processing co2
CN106076066A (zh) * 2016-06-11 2016-11-09 彭斯干 海水式碳捕集封存方法及装置
CN106803597A (zh) * 2015-11-26 2017-06-06 彭斯干 零碳排放化石燃料发电方法及装置系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534168A (ja) * 2006-04-27 2009-09-24 スイ、シー・チュン ゼロエミッション装置
JP2014194192A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 船舶における排気ガス浄化システム
US10106430B2 (en) * 2013-12-30 2018-10-23 Saudi Arabian Oil Company Oxycombustion systems and methods with thermally integrated ammonia synthesis
JP6322795B2 (ja) * 2017-03-16 2018-05-16 国立研究開発法人 海上・港湾・航空技術研究所 船舶用熱電発電システム及び船舶

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120211421A1 (en) * 2010-05-14 2012-08-23 Kyle Self Systems and methods for processing co2
CN106803597A (zh) * 2015-11-26 2017-06-06 彭斯干 零碳排放化石燃料发电方法及装置系统
CN106076066A (zh) * 2016-06-11 2016-11-09 彭斯干 海水式碳捕集封存方法及装置
CN106731510A (zh) * 2016-06-11 2017-05-31 彭斯干 海水式碳捕集封存方法及装置
CN107485968A (zh) * 2016-06-11 2017-12-19 彭斯干 海水式碳捕集封存方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117892089A (zh) * 2024-02-02 2024-04-16 数字双碳科技(合肥)有限公司 基于gis的路桥设计碳排放优化评估系统及方法

Also Published As

Publication number Publication date
EP3812033A4 (en) 2022-03-23
EP3812033A1 (en) 2021-04-28
AU2018430238A1 (en) 2021-02-11
SG11202013037XA (en) 2021-02-25
WO2020000787A1 (zh) 2020-01-02
JP2021529080A (ja) 2021-10-28
US20210372615A1 (en) 2021-12-02
CA3104187A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2020000121A1 (zh) 低碳排放化石能源产生方法及装置
AU2017276466B2 (en) Ocean carbon capture and storage method and device
US8728423B2 (en) Method and apparatus for flue gas treatment
CN106401749B (zh) 一种基于igcc的近零排放燃煤发电系统及方法
US20200140770A1 (en) Integrated coal gasification combined power generation process with zero carbon emission
MX2012014458A (es) Combustion estequiometrica de aire enriquecido con recirculacion de gas de escape.
CN111075525A (zh) 一种深海碳封存与发电系统
KR101586105B1 (ko) 이산화탄소를 제거하는 화력 발전소
JP2023113874A (ja) 海洋カーボンサイクルを使用する、浮動海洋カーボンニュートラル発電システム
CN109876590A (zh) 一种火电厂利用lng冷能碳捕集系统及碳捕集方法
US20190153823A1 (en) Process and equipment of fossil fuel power generation with zero carbon emission
Mathieu Mitigation of CO 2 emissions using low and near zero CO 2 emission power plants
WO2017088346A1 (zh) 无碳排放海洋油气能源的生产方法及装备
CN113983484A (zh) 一种燃煤机组耦合可再生能源制备氢基衍生燃料的循环系统及方法
WO2018217109A2 (en) Device and method of dissociating water in a power plant
CN217362588U (zh) 一种新能源驱动的醇-煤可再生燃烧循环系统
WO2024140859A1 (zh) 净零碳化石能源生产方法、ccs系统及蓝碳电站
WO2024154541A1 (ja) ガスタービンコジェネシステム、ガスタービンコジェネシステムの改造方法、および、ガスタービンコジェネシステム用追設ユニット
Castroa et al. CO2 capture from flue gases: a possibility to reduce the CO2 footprint in offshore oil installations
Mborah et al. Removal of carbon dioxide gas from the exhaust gases generated at the Takoradi Thermal Power Station
TW202018174A (zh) 以液態二氧化碳推動水輪機組發電
Danziger Energy and Environmental Technology Inventions
KR20230172646A (ko) 탄소 저감형 수소 혼합연료 공급을 위한 열분해 시스템 및 이를 이용한 연료공급 시스템
ES2439620B1 (es) Proceso para la obtención de energía eléctrica a partir de combustión de carbón, horno de reducción de co2, dos turbinas y un motor de gas
CN116418026A (zh) 一种新能源驱动的醇-煤可再生燃烧循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924842

Country of ref document: EP

Kind code of ref document: A1