WO2017209279A1 - 表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品 - Google Patents

表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品 Download PDF

Info

Publication number
WO2017209279A1
WO2017209279A1 PCT/JP2017/020612 JP2017020612W WO2017209279A1 WO 2017209279 A1 WO2017209279 A1 WO 2017209279A1 JP 2017020612 W JP2017020612 W JP 2017020612W WO 2017209279 A1 WO2017209279 A1 WO 2017209279A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
zinc
conductive substrate
treatment material
alloy
Prior art date
Application number
PCT/JP2017/020612
Other languages
English (en)
French (fr)
Inventor
美保 山内
秀一 北河
良聡 小林
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP17806829.2A priority Critical patent/EP3467152A4/en
Priority to JP2017548493A priority patent/JP6279170B1/ja
Priority to KR1020187034468A priority patent/KR102471172B1/ko
Priority to CN201780023706.1A priority patent/CN109072470A/zh
Publication of WO2017209279A1 publication Critical patent/WO2017209279A1/ja
Priority to US16/206,141 priority patent/US20190169764A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1848Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by electrochemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/04Pins or blades for co-operation with sockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12715Next to Group IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12868Group IB metal-base component alternative to platinum group metal-base component [e.g., precious metal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12882Cu-base component alternative to Ag-, Au-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12889Au-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12896Ag-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24959Thickness [relative or absolute] of adhesive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a surface treatment material, a method for producing the same, and a part formed using the surface treatment material, and in particular, a conductive substrate mainly composed of a base metal having a large ionization tendency and difficult to form a sound plating film.
  • the present invention also relates to a technique for easily forming a surface-treated film composed of at least one metal layer with good adhesion.
  • Copper, copper alloy, iron, iron alloy, etc. from the viewpoint of being inexpensive and relatively excellent in properties to be plated (conductive substrate) used for forming conventional electrical contacts, etc.
  • the metal materials have been widely used. Such a metal material has particularly good conductivity and workability, is relatively easy to obtain, and can be easily coated on the surface, and has a surface with excellent plating adhesion. Therefore, it is still used as a mainstream material for conductive substrates.
  • copper (specific gravity 8.96) and iron (specific gravity 7.87) are materials with a relatively large specific gravity.
  • magnesium (specific gravity 1.74) are increasingly used for materials with relatively low specific gravity.
  • aluminum called light metal has a complicated surface plating method and it is difficult to form a plating film with good adhesion. This is because aluminum tends to form an oxide film called a passive film on its surface, and this oxide film exists in a stable state, and base metal such as aluminum is plated in a wet manner. It is difficult to do this.
  • a base layer such as a nickel layer formed on the surface of an aluminum-based substrate for the purpose of improving plating adhesion, and a coating layer made of a metal (such as tin or silver) for electrical contact, for example,
  • a metal such as tin or silver
  • a zinc-containing solution is used to perform a zinc substitution process called a zincate process, whereby the base material and the plating film (the base layer and the coating layer) are formed.
  • a pretreatment for increasing the adhesion strength was performed (for example, Patent Document 2).
  • Patent Document 3 discloses an electronic component material in which an aluminum alloy is plated, and it was considered that a certain amount or more of a zinc layer is preferably present in order to obtain a sufficient bonding strength. Although it is stated that plating may be performed without forming a zinc layer on the base material, the manufacturing method is not specified. Therefore, the effect obtained when the zinc layer is reduced to the limit or when the zinc layer is not formed has not been studied.
  • Patent Document 4 shows that pretreatment for forming fine etching recesses on the surface of the substrate by etching with an active acid treatment solution is performed, and the adhesion strength is enhanced by the anchor effect by the formed fine etching recesses. Yes.
  • the unevenness such as 5-10 ⁇ m becomes a stress concentration point at the time of deformation, and there is a problem that bending workability deteriorates.
  • a zinc layer formed with a thickness of, for example, about 100 nm is interposed between the substrate and the plating film, Since the main plating layer (plating film) is formed on this zinc layer, when heated, the zinc in the zinc layer diffuses in the main plating layer and further diffuses and appears on the surface of the main plating layer. To do. As a result, a problem of increasing the contact resistance, and further, various problems such as a decrease in wire bonding property and a decrease in solder wettability are caused.
  • electric motors for trains and electric locomotives are being considered to use aluminum windings to reduce the weight, but depending on the part, the temperature reaches 160 ° C, so the heat resistance of the plating applied to the conductor surface Need to be improved.
  • Large bus bars, etc. have a great effect of weight reduction by using aluminum. These are manufactured by welding several parts, but since the vicinity of the welded portion becomes high temperature, plating with higher heat resistance is required.
  • a zinc layer does not exist between the substrate and the plating film. It is desirable to form a zinc layer with a reduced thickness.
  • Patent Document 5 discloses that aluminum or aluminum is used by using a nickel plating solution containing hydrofluoric acid and / or a salt thereof, a nickel salt and water. It is described that the alloy can be electroless nickel plated. However, in the electroless nickel plating, nickel deposition occurs randomly and the lattice mismatch becomes large, so that sufficient adhesion cannot be obtained.
  • a nickel-based plating layer is generally used, and it is mainly formed with the intention of improving adhesion and suppressing zinc diffusion in the zinc layer.
  • the nickel-based plating layer is usually harder than the aluminum-based substrate, if the nickel-based plating layer is too thick in order to suppress the diffusion of zinc, it is bent in the process of manufacturing the terminals.
  • the nickel-based plating layer (coating) cannot follow the deformation of the aluminum-based base material, cracks easily occur, and the corrosion resistance is inferior.
  • bus bars for automobiles are required to be miniaturized, and even if processing such as bending, twisting, shearing, etc. under stricter conditions than before, plating is performed. It is required that no cracks occur.
  • plating is performed for the latest applications that require light weight, such as drones and wearables. It is being considered to use aluminum from copper and steel. It is required that no cracks occur.
  • JP 2014-63662 A JP 2014-47360 A JP 2012-087411 A JP 2002-115086 A JP 2011-99161 A
  • the object of the present invention is to adhere the surface-treated film onto a conductive substrate that is mainly composed of a base metal having a high ionization tendency, such as aluminum and aluminum alloy, and is difficult to form a sound plating film.
  • a conductive substrate that is mainly composed of a base metal having a high ionization tendency, such as aluminum and aluminum alloy, and is difficult to form a sound plating film.
  • a zinc layer especially a zincate treatment layer
  • a thickness of, for example, about 100 nm is interposed between the substrate and the plating film, it can be formed easily and flexibly.
  • Surface treatment material that suppresses deterioration of adhesion, contact resistance, and solder wettability, particularly in a high temperature (for example, 200 ° C.) use environment, without deteriorating properties
  • the object is to provide a part formed using a surface treatment material.
  • the surface treatment film is formed on the conductive substrate mainly composed of base metal in an appropriate layered state, resulting in excellent plating adhesion and good characteristics after plating.
  • the present inventors have found that a surface treatment material exhibiting the above can be provided, and have reached the present invention.
  • the gist configuration of the present invention is as follows.
  • a surface-treated material characterized in that the ratio of the adhesion area to the test area measured by the tape test method specified in JIS H8504: 1999 is 85% or more.
  • Each metal layer constituting the surface treatment film is made of nickel, nickel alloy, cobalt, cobalt alloy, copper, copper alloy, tin, tin alloy, silver, silver alloy, gold, gold alloy, platinum, platinum alloy, It is formed of any one selected from the group consisting of rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium, iridium alloy, palladium and palladium alloy.
  • the surface treatment material according to any one of the above items is formed of any one of the above items.
  • the surface of the conductive substrate is composed of 10 to 500 mL / L of any acid solution selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid and phosphoric acid, and nickel sulfate, nickel nitrate, nickel chloride and nickel sulfamate.
  • an activation treatment solution containing a nickel compound or cobalt compound (as nickel or cobalt metal content) of 0.1 to 500 g / L of cobalt sulfate, cobalt nitrate, cobalt chloride and cobalt sulfamate a treatment temperature of 20 to A method for producing a surface treatment material comprising a first surface activation treatment step of treatment at 60 ° C., a current density of 0.5 to 20 A / dm 2 and a treatment time of 1 to 300 seconds.
  • a zinc-containing thick film layer having a thickness of 100 nm or more is once formed on the surface of the conductive substrate by a zinc substitution method.
  • the method for producing a surface treatment material according to (6) which is characterized in that (8) A terminal formed by using the surface treatment material according to any one of (1) to (5) above. (9) A connector formed using the surface treatment material according to any one of (1) to (5) above. (10) A bus bar formed using the surface treatment material according to any one of (1) to (5) above. (11) A lead frame formed using the surface treatment material according to any one of (1) to (5) above. (12) A medical member formed by using the surface treatment material according to any one of (1) to (5) above.
  • a conductive base which is mainly composed of a base metal having a high ionization tendency and is difficult to form a sound plating film, for example, aluminum or an aluminum alloy, and the conductive A surface treatment film comprising at least one metal layer formed on the substrate, wherein the surface treatment film is a wet plating film and is formed on the entire surface or a part of the conductive substrate.
  • Zinc having a thickness of, for example, about 100 nm between the substrate and the plating film when the ratio of the adhesion area to the test area measured by the tape test method stipulated in 1999 is 85% or more.
  • the properties of the surface treatment film on the surface especially in high temperature (eg 200 ° C) use environment, without degrading the bending workability , Contact resistance and solder wettability can be suppressed, and as a result, the surface treatment material having high long-term reliability while maintaining the properties after the formation of the surface treatment film, its manufacturing method, and the surface treatment material It has become possible to provide various parts formed by using the.
  • FIG. 1 is a schematic cross-sectional view of a surface treatment material according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the surface treatment material according to the second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a surface treatment material according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a surface treatment material according to the fourth embodiment.
  • FIG. 5 is a diagram for explaining a method of performing line analysis from the conductive substrate portion to the surface treatment coating portion using STEM-EDX in the cross-sectional observation of the surface treatment material.
  • FIG. 1 is a schematic cross-sectional view of the surface treatment material of the first embodiment.
  • the illustrated surface treatment material 1 has a conductive substrate 2 and a surface treatment coating 4, and further shows a case where a zinc-containing layer 3 is formed between the conductive substrate 2 and the surface treatment coating 4.
  • the conductive substrate 2 is not particularly limited, but is mainly composed of a base metal having a high ionization tendency, for example, and it is difficult to form a sound plating film using a wet plating method. Al) and aluminum alloys are preferable in that the effects of the present invention can be remarkably exhibited. Furthermore, although the shape of the conductive substrate 2 is shown as an example in the drawing, it may be in the form of a plate, a wire, a bar, a tube, a foil, or the like, and can take various shapes depending on the application.
  • the surface treatment film 4 is formed on the conductive substrate 2 and is composed of at least one metal layer.
  • Each metal layer constituting the surface treatment coating 4 is, for example, nickel (Ni), nickel alloy, cobalt (Co), cobalt alloy, copper (Cu), copper alloy, tin (Sn), tin alloy, silver (Ag), Silver alloy, gold (Au), gold alloy, platinum (Pt), platinum alloy, rhodium (Rh), rhodium alloy, ruthenium (Ru), ruthenium alloy, iridium (Ir), iridium alloy, palladium (Pd) and palladium alloy
  • the metal or alloy can be selected as appropriate according to the purpose of imparting desired properties.
  • nickel or a nickel alloy is used as an intermediate layer on the conductive substrate 2 that has been subjected to at least a first surface activation treatment step described later.
  • 1 or more metal layers made of metal or alloy selected from cobalt, cobalt alloy, copper, copper alloy, silver and silver alloy, and then a coating layer for imparting a function on the intermediate layer
  • metal or alloy selected from tin, tin alloy, silver, silver alloy, gold, gold alloy, platinum, platinum alloy, rhodium, rhodium alloy, ruthenium, ruthenium alloy, iridium, iridium alloy, palladium and palladium alloy A surface treatment material (plating material) having excellent long-term reliability can be obtained by forming a single layer or a plurality of layers of the metal layer.
  • the surface-treated film 4 is a metal having two or more layers including at least a metal layer as an intermediate layer (underlying layer) formed for the purpose of improving adhesion to a substrate and a metal layer as a coating layer that imparts a function.
  • a metal layer as an intermediate layer (underlying layer) formed for the purpose of improving adhesion to a substrate and a metal layer as a coating layer that imparts a function.
  • it consists of layers.
  • a surface treatment coating 4 having excellent corrosion resistance can be provided by forming a gold plating layer as a coating layer that imparts a function.
  • the surface treatment film 4 is a wet plating film.
  • the characteristic structure of this invention exists in forming the surface treatment film 4 with sufficient adhesiveness and simply with respect to the electroconductive base
  • the ratio of the adhesion area to the test area measured by the tape test method specified in JIS H8504: 1999 is 85% or more, and this configuration is adopted.
  • bending processing is performed as compared with a conventional surface treatment material in which a zinc-containing layer (particularly a zincate treatment layer) having a thickness of, for example, about 100 nm is interposed between the substrate 2 and the surface treatment coating 4 which is a plating film.
  • a high temperature e.g. 200 ° C.
  • adhesion it is possible to suppress the contact resistance and solder wettability deteriorates.
  • the conductive substrate 2 particularly a conductive metal 2 which is a base metal having a large ionization tendency, for example, aluminum or an aluminum alloy
  • a substitution process that is, a so-called zincate process with zinc.
  • the thickness of the zinc-containing layer existing between the substrate and the surface treatment coating (plating coating) is, for example, about 100 nm, and zinc in this zinc-containing layer diffuses in the surface treatment coating.
  • the nickel-based plating layer (coating film) will be deformed when the bending process is performed in the terminal manufacturing process. ) Cannot follow, there is a problem that cracks are likely to occur, and the corrosion resistance is also poor.
  • the nickel-based plating layer is formed thin, it is difficult to completely cover the zinc-containing layer due to the formation of a non-uniform plating layer or pinholes, and erosion occurs along the zinc-containing layer in a salt water environment. There was a problem that it proceeded preferentially, and as a result, peeling occurred between the nickel-based plating layer and the substrate.
  • a zinc-containing layer does not exist between the substrate 2 and the surface treatment coating 4, but in the conventional coating formation technique, if there is no zinc-containing layer (particularly a zincate treatment layer), the conductive substrate 2 In particular, it has been difficult to form a surface-treated film (plating film) with good adhesion to the conductive substrate 2 which is a base metal having a large ionization tendency.
  • the present inventors diligently examined, prior to forming the surface treatment film (plating film) 4, a novel first surface activation treatment was performed on the surface of the conductive substrate 2 (for example, an aluminum substrate).
  • the oxide film stably present on the surface of the conductive substrate 2 can be effectively removed without forming a conventional zinc-containing layer (particularly a zincate treatment layer).
  • a surface treatment film eg, nickel plating layer
  • the metal atoms (eg, aluminum atoms) constituting the conductive substrate and the metal atoms (eg, nickel atoms) constituting the surface treatment film are oxygen atoms.
  • the surface treatment film 4 can be easily and easily formed on the conductive substrate 2.
  • the reason why the ratio of the adhesion area to the test area measured by the tape test method stipulated in JIS H8504: 1999 is 85% or more is that when the adhesion area is less than 85%, the zinc-containing layer (especially Not only is the adhesiveness inferior to the conventional surface treatment material on which the zincate treatment layer is formed), but also the adhesion is superior to that of the conventional surface treatment material formed using other plating methods than the zinc zincate treatment method. This is because the superiority of is not remarkable, and deterioration of adhesion, contact resistance and solder wettability under high temperature (for example, 200 ° C.) use environment cannot be sufficiently suppressed.
  • high temperature for example, 200 ° C.
  • most of the oxide film present on the surface of the conductive substrate 2 can be removed by performing the first surface activation treatment step. Since the adhesiveness does not deteriorate so much as it remains partially on the surface, such a case is also included in the scope of the present invention.
  • the recognition that the surface treatment material is “formed on the conductive substrate without the zinc-containing layer” is based on the observation of the cross section of the surface treatment material by STEM-EDX.
  • a line analysis is performed from the portion of the conductive substrate to the portion of the surface treatment film using the surface, and the detected intensity profile of each component of the obtained surface treatment material is observed.
  • the maximum value of the strength ratio of zinc to the main component of the surface-treated film in the specific analysis range that is equal to or higher than the strength of the main component of the conductive substrate is 1/4 or less.
  • FIB processing is performed at each of the ten points. Then, using STEM-EDX, a surface analysis in the range of 100 nm ⁇ 100 nm is performed with a resolution of 1 nm / pixel or more so that the interface between the conductive substrate and the surface treatment film is near the center (FIG. 5 (a ) And FIG. 5 (b)), and further, at the center of the composition mapping image obtained by this, line analysis was performed in the range of 70 nm or more from the conductive substrate side to the surface treatment film side.
  • the zinc content relative to the main component of the surface treatment film is within the range (specific analysis range) in which the strength of the main component of the surface treatment film is equal to or greater than the intensity of the main component of the conductive substrate.
  • Maximum intensity ratio is 1 The number of times exceeding / 4 is counted, and when the number is 0, the surface treatment material is recognized as being formed on the conductive substrate without a zinc-containing layer. Even if the surface treatment material is “formed on the conductive substrate through the zinc-containing layer”, the zinc-containing layer may be present only on a part of the surface of the conductive substrate. (Fig. 2, Fig.
  • the maximum value of the strength ratio of zinc to the main component of the surface treatment coating may be 1/4 or less. Therefore, this measurement was performed at 10 locations within a specific analysis range.
  • the present inventors prior to performing the first surface activation treatment step, perform a second surface activation treatment step using a zinc substitution method on the surface of the conductive substrate, so that the surface of the conductive substrate is formed. Even if a thin zinc-containing layer having a thickness of 50 nm or less is formed on the entire surface or part of the surface and indirectly formed through the zinc-containing layer, the first surface activation treatment step is performed thereafter.
  • the absolute amount of zinc present on the surface of the conductive substrate 2 is small compared to a conventional surface treatment material in which a thick (for example, about 100 nm) zinc-containing layer is interposed, the zinc of the zinc-containing layer is It has also been found that the surface treatment film 4 can be easily and easily formed on the conductive substrate 2 while being prevented from diffusing to the outermost surface.
  • the zinc-containing layer 3 can be formed between the conductive substrate 2 and the surface treatment film 4 as necessary.
  • the thickness of the zinc-containing layer 3 is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 1 nm or more and 15 nm or less.
  • the thickness of the zinc-containing layer 3 is thicker than 50 nm, the absolute amount of zinc present on the surface of the conductive substrate 2 increases, so that zinc diffuses in the surface treatment film 4, When zinc reaches the outermost surface layer of the surface-treated film 4, zinc oxide or the like is likely to be generated, and as a result, contact resistance is increased and solder wettability is easily deteriorated during use, and long-term reliability is impaired. Because it is.
  • the zinc-containing layer 3 does not exist between the conductive substrate 2 and the surface treatment film 4, and even if the zinc-containing layer 3 is present, 1 nm. Most preferably, it is less than.
  • the zinc-containing layer 3 is a layer containing zinc as a main component, and specifically, a layer containing 50 to 100% by mass of zinc.
  • Specific examples of the zinc-containing layer 3 include a zinc layer formed by zinc substitution treatment (zincate treatment), a zinc alloy layer such as a zinc-copper alloy and a zinc-iron alloy, and the like.
  • FIG. 1 shows a case where the zinc-containing layer 3 is uniformly formed over the entire surface of the conductive substrate 2 between the conductive substrate 2 and the surface treatment film 4.
  • 2 and 3 both show a case where the zinc-containing layer 3 is partially formed on the surface of the conductive substrate 2 and the surface of the conductive substrate 2 is not completely covered.
  • FIG. 3 reduces the existence ratio of the zinc-containing layer 3 covering the surface of the conductive substrate 2, This is a case where the zinc-containing layer 3 is formed in the form of islands.
  • the thickness of the zinc-containing layer 3 when the zinc-containing layer 3 is partially formed on the surface of the conductive substrate 2 is the same as that of the surface of the conductive substrate 2. In the present invention, it is necessary to adjust the thickness of the portion corresponding to the zinc-containing layer to 50 nm or less.
  • FIG. 4 shows a case where the zinc-containing layer 3 does not exist between the conductive substrate 2 and the surface treatment film 4 and the surface treatment film 4 is directly formed on the conductive substrate 2. is there.
  • the thickness of the zinc-containing layer 3 is measured by measuring any five points in a collimator diameter of 200 ⁇ m using a fluorescent X-ray measuring device (for example, SFT9400: Hitachi High-Tech (former Seiko Instruments)).
  • the shape of the zinc-containing layer 3 is formed by using a FIB (Focused Ion Beam) device, for example.
  • the interface can be discriminated by directly observing it with a TEM device, for example, by observing at a magnification of 50000 times.
  • aluminum for example, 1000 series aluminum such as A1100 specified in JIS H4000: 2014, and aluminum alloys (for example, specified in JIS H4000: 2014)
  • the electrolytic degreasing step, the second surface activation treatment step (zinc-containing thick film layer formation and removal step), the first surface activation treatment step, and the surface treatment film formation step may be sequentially performed.
  • an electrolytic degreasing step a second surface activation treatment step (zinc-containing layer formation step), a first surface activation treatment step, and Surface treatment film formation Extent it sequentially performed. Also, between the above steps, it is preferable to further carry out the washing step, if necessary.
  • the electrolytic degreasing process is performed by, for example, immersing in an alkaline degreasing bath of 40 to 100 g / L sodium hydroxide (NaOH), using the base material as a cathode, current density of 2.5 to 5.0 A / dm 2 , bath temperature of 60 ° C.
  • a method of cathodic electrolytic degreasing under conditions of time 10 to 60 seconds can be mentioned.
  • the second surface activation treatment step is a step performed using a zinc substitution method (zincate treatment), and when producing a surface treatment material having a cross-sectional layer structure in which no zinc-containing layer exists as shown in FIG. Is a process that can be omitted.
  • the second surface activation treatment step may be performed.
  • the second surface activation treatment step is performed on the zinc-containing thick film layer. It is a process of forming and removing the zinc-containing thick film layer by dissolution.
  • the second surface activation treatment step is performed by forming and partially dissolving the zinc-containing thick film layer. In this case, it is an essential step. Formation of the zinc-containing thick film layer can be performed, for example, according to the zinc replacement bath composition and processing conditions shown in Table 1.
  • a zinc-containing thick film layer having a thickness of 100 nm or more is once formed on the surface of the conductive substrate by a zinc replacement method, and then the zinc-containing thick film layer is formed. It is preferable to dissolve in a range of 50 nm or more to reduce the thickness to a range of 50 nm or less to form the zinc-containing layer or to completely remove it.
  • a zinc-containing layer is not formed by dissolving after forming a zinc-containing thick film layer having a thickness of 100 nm or more. In particular, it is possible to form a thin zinc-containing layer having a thickness of 50 nm or less.
  • the surface treatment film (plating film) to be formed tends to be peeled thereafter, which is not preferable.
  • the upper limit of the thickness of the zinc-containing thick film layer is not particularly limited, but even if it is thicker than 200 nm, the amount of zinc at the time of dissolution is unnecessarily increased, which only increases the cost and processing time. Therefore, the thickness is preferably 200 nm or less.
  • the zinc-containing thick film layer can be dissolved by, for example, immersing the electrolytically degreased base material in an acid solution of 10 to 30% sulfuric acid and adjusting the immersion time.
  • the immersion time is 20 seconds or more and less than 40 seconds, and the thickness is reduced to 30 nm or less. It is preferable to set it to 50 seconds or more and less than 60 seconds in order to reduce the thickness to 15 nm or less, and to completely remove the zinc-containing thick film layer having a thickness of 100 nm, the immersion time Is preferably set to 60 seconds or more. In addition, it is necessary to adjust these conditions suitably according to the state of a plating bath or a base material.
  • the second surface activation treatment step is not limited to the method of partially dissolving and controlling to 50 nm or less after forming the zinc-containing thick film layer using the zinc substitution method as described above.
  • This method can be achieved by various methods such as a method of mechanically polishing and removing after zincate treatment and a method of directly forming the main plating by a dry process such as vapor deposition or sputtering.
  • the first surface activation treatment step After performing the electrolytic degreasing step or after performing the second surface activation treatment step in addition to the electrolytic degreasing step, the first surface activation treatment step is performed.
  • the first surface activation treatment step is a novel activation treatment step different from the conventional activation treatment, and is the most important step among the steps for producing the surface treatment material of the present invention.
  • the zinc-containing layer containing zinc as a main component is not formed by the zincate treatment or the like.
  • the oxide film stably present on the surface of the conductive substrate 2 can be effectively removed, and even if a surface treatment film (for example, nickel plating layer) is formed directly on the conductive substrate, the conductive substrate can be removed.
  • the surface treatment film 4 can be bonded to the conductive substrate. And good adhesion to be formed easily.
  • the surface of the conductive substrate 2 is coated with 10 to 500 ml / L of an acid solution selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid and phosphoric acid, nickel sulfate and nitric acid.
  • an acid solution selected from sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid and phosphoric acid, nickel sulfate and nitric acid.
  • the treatment is preferably performed by using a treatment liquid at a treatment temperature of 20 to 60 ° C., a current density of 0.5 to 20 A / dm 2 and a treatment time of 1 to 300 seconds. By doing so, the reaction on the substrate surface can be limited to the cathode reaction, and a dense film can be formed.
  • a surface treatment film forming step is performed.
  • the surface treatment film is formed of at least one metal layer, and each metal layer can be formed by a wet plating method of electrolytic plating or electroless plating depending on the purpose of imparting characteristics to the surface treatment material.
  • Tables 2 to 11 show nickel (Ni) plating, cobalt (Co) plating, copper (Cu) plating, tin (Sn) plating, silver (Ag) plating, silver (Ag) -tin (Sn) alloy plating, respectively.
  • the thickness is preferably in the range of 0.2 ⁇ m to 2.0 ⁇ m, more preferably 0.2 ⁇ m. It is not less than 1.5 ⁇ m, more preferably not less than 0.2 ⁇ m and not more than 1.0 ⁇ m, and most preferably not less than 0.2 ⁇ m and not more than 0.5 ⁇ m.
  • the thickness of the nickel plating layer is less than 0.2 ⁇ m, it is not possible to sufficiently suppress the diffusion of zinc in a zinc-containing layer having a thickness of 50 nm or less, and the contact resistance and solder wettability at 200 ° C. deteriorate.
  • the thickness exceeds 2.0 ⁇ m, zinc in a zinc-containing layer having a thickness of 50 nm or less becomes difficult to diffuse, and although deterioration of contact resistance and solder wettability at 200 ° C. can be suppressed, This is because bending workability tends to be inferior.
  • the zinc-containing layer By making the zinc-containing layer extremely thin, it is possible to sufficiently suppress the zinc-containing layer from appearing on the material surface due to the diffusion of zinc even when the plating thickness of the nickel layer is made thinner than before. The wettability does not deteriorate.
  • the nickel layer is thin, and there has been a problem that the corrosion proceeds along the zinc-containing layer in a salt water environment due to the formation of a non-uniform plating film or pinholes. By making the thickness extremely small, the nickel layer can be made thin.
  • the production method of the present invention can form a plating film having excellent adhesion to a conductive substrate by performing each of the steps described above, and a zinc-containing layer having a thickness of about 100 nm (particularly a zincate treatment). Suppresses deterioration of adhesion, contact resistance and solder wettability, especially in high temperature (eg 200 ° C) usage environment, without degrading bending workability compared to conventional surface treatment materials with a layer)
  • the surface treatment material which can be manufactured can be manufactured by a simple method.
  • the surface treatment material of the present invention uses lighter aluminum, aluminum alloy or the like instead of conventionally using iron, iron alloy, copper, copper alloy or the like as the base material (conductive base). Terminal, connector, bus bar, lead frame, medical member (eg catheter guide wire, stent, artificial joint, etc.), shield case (eg for electromagnetic wave prevention), coil (eg for motor), accessory (eg necklace, It can be applied to various products such as earrings and rings) and contact switches.
  • the surface activation of the base material is enabled without the conventional thick zinc-containing layer of about 100 nm (particularly the zincate treatment layer) existing between the base material and the surface treatment film.
  • the first surface activation treatment was carried out using 10 to 500 ml / L of an acid solution comprising sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and phosphoric acid, and sulfuric acid.
  • an activation treatment solution containing 0.1 to 500 g / L of nickel compound (as nickel metal) consisting of nickel, nickel chloride and nickel nitrate, treatment temperature 20 to 60 ° C, current density 0.5 to 20 A / dm 2 and The treatment time was 30 seconds.
  • the first surface activation treatment was carried out using an acid solution 10 to 500 ml / L composed of sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and phosphoric acid, and a cobalt compound composed of cobalt sulfate, cobalt chloride, and cobalt nitrate.
  • An activation treatment solution containing 5 g / L (as the cobalt metal content) was used under the conditions of a treatment temperature of 20 to 60 ° C., a current density of 0.5 to 20 A / dm 2 and a treatment time of 30 seconds.
  • the surface treatment film which consists of the metal layer of the 2 layer or 3 layer formed by the thickness shown in Table 12 by the surface treatment film formation process mentioned above was formed, and the surface treatment material was produced.
  • the formation conditions of each metal layer constituting the surface treatment film were the plating conditions shown in Tables 2 to 11.
  • Comparative Example 1 was produced under the same conditions as Invention Example 1 except that the thickness of the zinc-containing layer was 55 nm, and a surface treatment material was produced.
  • Plating adhesion is ⁇ ⁇ '' when plating peeling is not observed and the ratio of the adhesion area in the test area is 100%, ⁇ ⁇ '' when the ratio is 95% or more and less than 100%, the ratio Is 85% or more and less than 95%, ⁇ ⁇ '', when the ratio is 70% or more and less than 85% is ⁇ X '', and when the ratio is less than 70% is ⁇ XX '', In this example, “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” were evaluated as acceptable.
  • the contact resistance shown in Table 14 is “ ⁇ ” when it is 10 m ⁇ or less, “ ⁇ ” when it is over 10 m ⁇ and 50 m ⁇ or less, “ ⁇ ” when it is over 50 m ⁇ and 100 m ⁇ or less, and over 100 m ⁇ . In this example, “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” were evaluated as passing.
  • Solder wettability is prepared by preparing two types of samples for each surface-treated material, with the surface treatment film formed (as it is plated) and after heat treatment at 200 ° C for 24 hours in the atmosphere. The solder wetting time was evaluated using a solder checker (SAT-5100 (trade name, manufactured by Reska Co., Ltd.)). Table 14 shows the evaluation results.
  • the solder wettability shown in Table 14 is based on the following measurement condition details: “ ⁇ ” when the solder wet time is less than 3 seconds, “ ⁇ ” when the solder wet time is less than 3 seconds and less than 5 seconds, 5 The case where it is not less than 10 seconds and not more than 10 seconds is indicated as “ ⁇ ”, and the case where it is not joined even after being immersed for 10 seconds is indicated as “ ⁇ ”. In this example, “ ⁇ ”, “ ⁇ ” and “ ⁇ ” are passed. As evaluated.
  • Solder type Sn-3Ag-0.5Cu Temperature: 250 ° C Specimen size: 10mm x 30mm Flux: Isopropyl alcohol-25% rosin immersion speed: 25mm / sec. Immersion time: 10 seconds Immersion depth: 10mm
  • Example 3 does not perform any of the first surface activation treatment step and the conventional zincate treatment, the adhesion and bending workability are inferior, and the contact resistance and solder wettability at 200 ° C. are also inferior. It was.
  • Conventional Example 4 does not perform the first surface activation treatment, and is treated with a conventional nickel plating solution containing hydrofluoric acid and a nickel salt, so that the adhesion is inferior, and at 200 ° C. Also, adhesion, contact resistance and solder wettability were inferior.
  • Comparative Example 1 was inferior in contact resistance and solder wettability at 200 ° C. because the thickness of the zinc-containing layer formed in the second surface activation treatment step was as thick as 55 nm.
  • bending workability is deteriorated as compared with a conventional surface treatment material in which a zinc layer (zincate treatment layer) having a thickness of, for example, about 100 nm is interposed between a conductive substrate and a plating film.
  • a zinc layer zinc treatment layer
  • a high temperature for example, 200 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)

Abstract

本発明は、曲げ加工性を悪化させることなく、表面処理被膜の表面における特性、特に高温(例えば200℃)使用環境下での接触抵抗および半田濡れ性の劣化を抑制した表面処理材等を提供する。 本発明の表面処理材(1)は、導電性基体(2)と、該導電性基体(2)上に形成された少なくとも1層の金属層からなる表面処理被膜(4)とを有し、前記表面処理被膜(4)が、めっき被膜であり、前記導電性基体(2)上の全面または一部に、亜鉛を主成分とする厚さ50nm以下の亜鉛含有層(3)を介して形成され、または、前記導電性基体(2)上に、前記亜鉛含有層(3)を介さずに形成されたものであり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上である。

Description

表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品
 本発明は、表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品に関し、特にイオン化傾向が大きい卑な金属で主として構成され、健全なめっき被膜の形成が難しいとされる導電性基体上に、少なくとも1層の金属層からなる表面処理被膜を、密着性よく簡便に形成する技術に関する。
 従来の電気接点等を形成するのに用いられる被めっき材料(導電性基体)には、安価であって、しかも比較的特性が優れているという観点から、銅、銅合金、鉄、鉄合金などの金属材料が広く使用されてきた。このような金属材料は、特に導電性や加工性が良好で、入手も比較的容易であり、さらには、その表面上に被覆処理を行うことが容易で、めっき密着性に優れた表面を有することなどから、現在も主流の導電性基体用材料として用いられている。
 しかしながら、銅(比重8.96)や鉄(比重7.87)は比重が比較的大きい材料であることから、例えば車載向けのワイヤーハーネスや航空機の機体などでは、銅や鉄などに代えて、アルミニウム(比重2.70)やマグネシウム(比重1.74)のように比重が比較的小さい材料を適用するケースが増えてきている。
 ところで、金属の中でも軽金属と呼ばれるアルミニウムは、表面をめっきする方法が煩雑であって、しかも密着性の良好なめっき被膜を形成することが難しいとされている。これは、アルミニウムは、その表面に不動態膜と呼ばれる酸化被膜が形成しやすく、この酸化被膜が安定な状態で存在していることや、アルミニウムのような卑な金属では、湿式でめっきを実施することが難しいことなどが要因として挙げられる。
 アルミニウム系基材の表面における酸化被膜の形成を抑制するため、従来から、基材表面を錫などの金属によって被覆して、接触抵抗の維持ないし増加抑制を行うという対策が採られてきた(例えば特許文献1等)。
 また、アルミニウム系基材の表面に、めっき密着性を向上させるなどの目的で形成されるニッケル層などの下地層と、電気接点用の金属(錫、銀など)からなる被覆層とを、例えば湿式めっき法によって順次形成する場合、基材表面に存在する酸化被膜によって、基材表面に、下地層を形成してから、この下地層上に被覆層を形成しても、通常は十分な密着性が得られない。
 このため、従来では、下地層や被覆層の形成前に、亜鉛を含んだ溶液を用いてジンケート処理と呼ばれる亜鉛置換処理を行なうことによって、基材とめっき被膜(下地層および被覆層)との密着強度を高める前処理を行っていた(例えば特許文献2)。
 特許文献3では、アルミニウム合金にめっきが施された電子部品材が示されており、十分な結合力を得るために、亜鉛層は一定量以上存在することが好ましいと考えられていた。基材に対して亜鉛層を形成せずにめっきを行ってもよいと述べられているが、製造方法が明示されていない。したがって、亜鉛層を極限まで減少させた場合、もしくは亜鉛層を形成しない場合に得られる効果について検討されていない。
 また、特許文献4では、活性酸処理液によるエッチングにより基材の表面に微細なエッチング凹部を形成する前処理を行ない、形成した微細なエッチング凹部によるアンカー効果によって密着強度を高めることが示されている。しかし、5-10μmのような凹凸は、変形時の応力集中点となるため、曲げ加工性が悪化する問題があった。
 一般には、アルミニウム基材の表面上にジンケート処理を行ってから形成されためっき被膜においては、基材とめっき被膜との間に、例えば100nm程度の厚さで形成された亜鉛層が介在し、この亜鉛層上に本めっき層(めっき被膜)が形成されているため、加熱されるとその結果、亜鉛層の亜鉛が本めっき層中を拡散し、さらに本めっき層の表層にまで拡散・出現する。その結果、接触抵抗を上昇させてしまうという問題や、さらにはワイヤボンディング性の低下、はんだ濡れ性の低下、様々な問題を引き起こしてしまう。特に、電車や電気機関車のモータは、軽量化のために、巻線のアルミ化が検討されているが、部位によっては、160℃に達するため、導体の表面に施されるめっきの耐熱性の向上が必要である。大型のバスバーなどは、アルミ化による軽量化の効果が大きい。これらは、いくつかの部品を溶接して製造されるが、溶接した箇所の近傍は、高温になるため、より耐熱性の高いめっきが求められている。
 また、近年、ゲリラ豪雨が増加しており、雷を受けた場合に瞬間的に大電流が流れ、そのときのジュール熱による発熱は、180℃以上とも言われている。配電盤などに用いられる導体には、耐熱性が必要である。さらに、自動車のワイヤーハーネスのアルミ化が進んでおり、エンジン周辺や高出力のモータ周辺で、150℃の耐熱が求められている。このような昨今の背景から、加速試験で、200℃で24時間保持した場合にも、密着性の劣化や、接触抵抗の上昇が起きないめっきが求められている。
 さらに、ジンケート処理における亜鉛層の形成状態によっては、その後の本めっきでのコブの発生や、析出異常等のめっき不具合がたびたび発生するケースがあった。
 さらにまた、ドローンやウエアラブルデバイスでは、雨や汗がデバイス内部に入り込む可能性があり、長期信頼性を確保するためにも、高い耐食性が求められる。風力発電のような塩水環境における変圧器のモータやインバータも同様である。しかしながら、亜鉛置換処理後に形成されるめっき層(下地層)を薄く形成すると、不均一なめっき層の形成やピンホールの形成により、亜鉛含有層を完全に被覆することは困難であり、塩水環境において亜鉛含有層に沿って浸食が優先的に進行し、その結果、下地層と基材の間において剥離が生じてしまうという問題がある。
 このため、上述したような問題が生じないようにするにも、基体とめっき被膜との間には、亜鉛層を存在させないことが望ましく、また、亜鉛層の形成が必要な場合には、できるだけ厚さを薄くした亜鉛層を形成することが望ましい。
 亜鉛層を介さずにアルミニウム基材にめっきする手法については、例えば特許文献5には、フッ化水素酸及び/又はその塩、ニッケル塩並びに水を含有するニッケルメッキ液を用いて、アルミニウム又はアルミニウム合金に無電解ニッケルめっきすることができることが記載されている。しかしながら、無電解ニッケルめっきは、ニッケルの析出が無秩序に発生し、格子不整合が大きくなるため、十分な密着性を得ることができなかった。
 また、下地層としては、ニッケル系めっき層を用いる場合が一般的であり、主に密着性の向上と亜鉛層の亜鉛の拡散抑制とを意図して形成される。しかしながら、ニッケル系めっき層は、通常、アルミニウム系基材に比べて硬質であるため、亜鉛の拡散を抑制するためにニッケル系めっき層の厚さを厚くしすぎると、端子を製造する工程で曲げ加工を施した際に、アルミニウム系基材の変形にニッケル系めっき層(被膜)が追従できず、割れなどが生じやすく、耐食性も劣るという問題がある。
 さらに、近年、電子部品等の小型化が進み、より厳しい条件での屈曲性が求められている。例えば、バスバーや電線などをアルミ化した場合、導体の抵抗を合わせるために、断面積を大きくする必要がある。それらの導体を用いて、内側曲げ半径を変えず曲げ加工する場合、断面積が大きい場合の方が、曲げ外側の引張歪みが大きくなってしまい、めっき表面にクラックが入り易くなる。
 また、既にアルミ化がされている分野についても、例えば、自動車用のバスバーでは、小型化が求められており、従来よりも厳しい条件の、曲げ、ねじり、せん断などの加工をしても、めっきにクラックが入らないことが求められている。さらに、ドローンやウェアラブルなど、軽量が求められる最新のアプリケーションについても、銅やスチールからアルミ化していくことが検討されているが、部品の小型化のために、厳しい加工が入っても、めっき表面にクラックが入らないことが求められている。これらの用途に対して、亜鉛の拡散を抑制するために従来用いられてきたニッケル系めっきの厚さでは、割れが生じてしまうという課題も生じてきている。
特開2014-63662号公報 特開2014-47360号公報 特開2012-087411号公報 特開2002-115086号公報 特開2011-99161号公報
 そこで本発明の目的は、特にアルミニウム及びアルミニウム合金のようなイオン化傾向が大きい卑な金属で主として構成され、健全なめっき被膜の形成が難しいとされる導電性基体上に、表面処理被膜を密着性よく簡便に形成でき、しかも、基体とめっき被膜との間に、例えば100nm程度の厚さの亜鉛層(特にジンケート処理層)が介在する従来の表面処理材に比べて、曲げ加工性等の成形性を悪化させることなく、表面処理被膜の表面における特性、特に高温(例えば200℃)使用環境下での、密着性、接触抵抗および半田濡れ性の劣化を抑制した表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品を提供することにある。
 上記問題に対して鋭意検討を行った結果、おもに卑金属からなる導電性基体上への表面処理被膜の形成を、適正な積層状態で行なうことにより、優れためっき密着性およびめっき後の良好な特性を示す表面処理材を提供できることを見出し、本発明に至った。
 すなわち、本発明の要旨構成は以下のとおりである。
(1)導電性基体と、該導電性基体上に形成された少なくとも1層の金属層からなる表面処理被膜とを有する表面処理材であって、前記表面処理被膜が、湿式めっき被膜であり、前記導電性基体上の全面または一部に、亜鉛を主成分とする厚さ50nm以下の亜鉛含有層を介して形成され、または、前記導電性基体上に、前記亜鉛含有層を介さずに形成されたものであり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上であることを特徴とする表面処理材。
(2)導電性基体と、該導電性基体上に形成された少なくとも1層の金属層からなる表面処理被膜とを有する表面処理材であって、前記表面処理材の断面観察にて、STEM-EDXを用いて前記導電性基体の部分から表面処理被膜の部分にわたって線分析を行い、得られた前記表面処理材の各成分の検出強度プロファイルを見て、前記表面処理被膜の主成分の強度が導電性基体の主成分の強度以上となる特定の分析範囲における、表面処理被膜の主成分に対する亜鉛の強度比の最大値が1/4以下となり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上であることを特徴とする表面処理材。
(3)前記導電性基体は、アルミニウムまたはアルミニウム合金であることを特徴とする上記(1)または(2)に記載の表面処理材。
(4)前記表面処理被膜を構成する各金属層は、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、銅合金、錫、錫合金、銀、銀合金、金、金合金、白金、白金合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウム、イリジウム合金、パラジウムおよびパラジウム合金の群から選択されるいずれか1種で形成されたものであることを特徴とする上記(1)~(3)のいずれか1項に記載の表面処理材。
(5)前記表面処理被膜は、2層以上の金属層からなることを特徴とする上記(1)~(4)のいずれか1項に記載の表面処理材。
(6)上記(1)~(5)のいずれか1項に記載の表面処理材の製造方法であって、前記導電性基体上に湿式めっき法によって前記表面処理被膜を形成するに先立ち、前記導電性基体の表面を、硫酸、硝酸、塩酸、フッ酸およびリン酸の中から選択されるいずれかの酸溶液10~500mL/Lと、硫酸ニッケル、硝酸ニッケル、塩化ニッケルおよびスルファミン酸ニッケルからなるニッケル化合物、または硫酸コバルト、硝酸コバルト、塩化コバルトおよびスルファミン酸コバルトからなるコバルト化合物(ニッケルまたはコバルトのメタル分として)0.1~500g/Lとを含有する活性化処理液を使用し、処理温度20~60℃、電流密度0.5~20A/dm2および処理時間1~300秒にて処理する第1表面活性化処理工程を含むことを特徴とする表面処理材の製造方法。
(7)前記第1表面活性化処理工程を行なうに先立ち、前記導電性基体の表面を、亜鉛置換法によって、一旦、100nm以上の厚さをもつ亜鉛含有厚膜層を形成し、その後、前記亜鉛含有厚膜層を、50nm以上の範囲で溶解することで50nm以下の範囲まで減厚して前記亜鉛含有層とするか、または完全に除去する第2表面活性化処理工程をさらに含むことを特徴とする上記(6)に記載の表面処理材の製造方法。
(8)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成される端子。
(9)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成されるコネクタ。
(10)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成されるバスバー。
(11)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成されるリードフレーム。
(12)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成される医療部材。
(13)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成されるシールドケース。
(14)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成されるコイル。
(15)上記(1)~(5)のいずれか1項に記載の表面処理材を用いて形成されるコンタクトスイッチ。
 本発明によれば、導電性基体、特にイオン化傾向が大きい卑な金属で主として構成され、健全なめっき被膜の形成が難しいとされる、例えばアルミニウムまたはアルミニウム合金である導電性基体と、該導電性基体上に形成された少なくとも1層の金属層からなる表面処理被膜とを有する表面処理材であって、前記表面処理被膜が、湿式めっき被膜であり、前記導電性基体上の全面または一部に、亜鉛を主成分とする厚さ50nm以下の亜鉛含有層を介して形成され、または、前記導電性基体上に、前記亜鉛含有層を介さずに形成されたものであり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上であることによって、基体とめっき被膜との間に、例えば100nm程度の厚さの亜鉛含有層(特にジンケート処理層)が介在する従来の表面処理材に比べて、曲げ加工性を悪化させることなく、表面処理被膜の表面における特性、特に高温(例えば200℃)使用環境下での密着性、接触抵抗および半田濡れ性の劣化を抑制することができ、その結果、表面処理被膜形成後の特性を維持しつつ、長期信頼性が高い表面処理材、およびその製造方法、ならびに表面処理材を用いて形成される種々の部品の提供が可能になった。
図1は、本発明に従う第1実施形態である表面処理材の概略断面図である。 図2は、第2実施形態である表面処理材の概略断面図である。 図3は、第3実施形態である表面処理材の概略断面図である。 図4は、第4実施形態である表面処理材の概略断面図である。 図5は、表面処理材の断面観察にて、STEM-EDXを用いて導電性基体の部分から表面処理被膜の部分にわたって線分析を行う方法を説明するための図である。
 次に、本発明に従う実施形態を、図面を参照しながら以下で説明する。
 図1は、第1実施形態の表面処理材を概略断面で示したものである。
 図示の表面処理材1は、導電性基体2と表面処理被膜4とを有しており、さらに導電性基体2および表面処理被膜4の間には、亜鉛含有層3を形成した場合を示す。
(導電性基体)
 導電性基体2は、特に限定するものではないが、例えばイオン化傾向が大きい卑な金属で主として構成され、なかでも湿式めっき法を用いて健全なめっき被膜の形成が難しいとされる、例えばアルミニウム(Al)、アルミニウム合金であることが、本発明の効果を顕著に奏することができる点で好ましい。さらに、導電性基体2の形状は、図面においては条での例を示しているが、板、線、棒、管、箔などの形態でもよく、用途によって様々な形状を採ることができる。
(表面処理被膜)
 表面処理被膜4は、導電性基体2上に形成され、少なくとも1層の金属層からなっている。
 表面処理被膜4を構成する各金属層は、例えばニッケル(Ni)、ニッケル合金、コバルト(Co)、コバルト合金、銅(Cu)、銅合金、錫(Sn)、錫合金、銀(Ag)、銀合金、金(Au)、金合金、白金(Pt)、白金合金、ロジウム(Rh)、ロジウム合金、ルテニウム(Ru)、ルテニウム合金、イリジウム(Ir)、イリジウム合金、パラジウム(Pd)およびパラジウム合金の中から、所望の特性付与目的に応じて適宜選択される金属または合金で形成することができる。例えば表面処理被膜4を中間層(下地層)と被覆層とで構成する場合、後述する第1表面活性化処理工程を少なくとも行った前記導電性基体2上に、中間層として、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、銅合金、銀および銀合金の中から選択される金属または合金からなる金属層を1層以上形成し、その後、中間層上に、機能を付与するための被覆層として、錫、錫合金、銀、銀合金、金、金合金、白金、白金合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウム、イリジウム合金、パラジウムおよびパラジウム合金の中から選択される金属または合金からなる金属層を単層ないしは複数層を形成することで、長期信頼性の優れた表面処理材(めっき材)を得ることができる。表面処理被膜4を構成する金属層の層数としては特に制限はなく、必要に応じて適宜選択することができる。特に表面処理被膜4は、基体に対する密着性向上等の目的で形成される中間層(下地層)としての金属層と、機能を付与する被覆層としての金属層とを少なくとも含む2層以上の金属層からなっていることが好ましい。例えば中間層としてニッケル層を形成後、機能を付与する被覆層として金めっき層を形成することで、耐食性に優れた表面処理被膜4を提供することができる。また、表面処理被膜4は、湿式めっき被膜である。
(本発明の特徴的な構成)
 そして、本発明の特徴的な構成は、表面処理被膜4を導電性基体2に対し密着性よくかつ簡便に形成することにあり、より具体的には、表面処理被膜4が、湿式めっき被膜であり、導電性基体2上の全面または一部に、亜鉛を主成分とする厚さ50nm以下の亜鉛含有層3を介して形成され、または、前記導電性基体上に、前記亜鉛含有層を介さずに形成されたものであり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合を85%以上とすることにあり、この構成を採用することによって、基体2と、めっき被膜である表面処理被膜4との間に、例えば100nm程度の厚さの亜鉛含有層(特にジンケート処理層)が介在する従来の表面処理材に比べて、曲げ加工性等の成形性を悪化させることなく、表面処理被膜の表面における特性、特に高温(例えば200℃)使用環境下での、密着性、接触抵抗および半田濡れ性の劣化を抑制することができる。
 ところで、導電性基体2、特にイオン化傾向が大きい卑な金属である、例えばアルミニウムまたはアルミニウム合金である導電性基体2は、常法として亜鉛によって置換処理、いわゆるジンケート処理を行うのが一般的である。従来のジンケート処理では、基材と表面処理被膜(めっき被膜)との間に存在する亜鉛含有層の厚さが例えば100nm程度であり、この亜鉛含有層の亜鉛が、表面処理被膜中を拡散し、さらに表面処理被膜の表層にまで拡散・出現すると、例えば電気接点として用いられる場合は、接触抵抗を上昇させてしまうという問題や、さらにはワイヤボンディング性の低下、はんだ濡れ性の低下、耐食性の低下など、様々な問題を引き起こし、結果として、表面処理材の特性が使用によって劣化して長期信頼性が損なわれるケースがあった。
 また、亜鉛の拡散を抑制するためにニッケル系めっき層の厚さを厚くしすぎると、端子を製造する工程で曲げ加工を施した際に、アルミニウム系基材の変形にニッケル系めっき層(被膜)が追従できず、割れなどが生じやすく、耐食性も劣るという問題があった。
 さらに、ニッケル系めっき層を薄く形成すると、不均一なめっき層の形成やピンホールの形成により、亜鉛含有層を完全に被覆することは困難であり、塩水環境において亜鉛含有層に沿って侵食が優先的に進行し、その結果、ニッケル系めっき層と基材の間において剥離が生じてしまうという問題があった。
 このため、基体2と表面処理被膜4との間に亜鉛含有層を存在させないことが望ましいが、従来の被膜形成技術では、亜鉛含有層(特にジンケート処理層)が存在しないと、導電性基体2、特にイオン化傾向が大きい卑な金属である導電性基体2に対して密着性の良好な表面処理被膜(めっき被膜)を形成することが難しいとされていた。
 そこで、本発明者らが鋭意検討を行なったところ、表面処理被膜(めっき被膜)4を形成するに先立ち、導電性基体2(例えばアルミニウム基材)の表面に、新規の第1表面活性化処理工程を行なうことによって、従来の亜鉛含有層(特にジンケート処理層)を形成しなくても、導電性基体2の表面に安定して存在する酸化被膜を有効に除去することができるため、導電性基体上に直接、表面処理被膜(例えばニッケルめっき層)を形成しても、導電性基体を構成する金属原子(例えばアルミニウム原子)と表面処理被膜を構成する金属原子(例えばニッケル原子)が酸素原子を介さず直接結合できる結果、表面処理被膜4を導電性基体2に対し密着性よくかつ簡便に形成できることを見出した。
 また、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上とした理由は、前記密着面積が85%未満だと、亜鉛含有層(特にジンケート処理層)を形成した従来の表面処理材に比べて密着性が劣るだけではなく、亜鉛ジンケート処理法以外の他のめっき法を用いて形成した従来の表面処理材に比べても、密着性の優位性が顕著ではなくなり、高温(例えば200℃)使用環境下での、密着性、接触抵抗および半田濡れ性の劣化も十分に抑制できなくなるからである。
 なお、本発明では、第1表面活性化処理工程を行なうことによって、導電性基体2の表面に存在する酸化被膜の大半は除去することができるが、一部の酸化皮膜が導電性基体2の表面に部分的に残存している程度であれば密着性がさほど悪化しないことから、このような場合も本発明の範囲内に含まれる。
 なお、本発明において、表面処理材が「前記導電性基体上に、前記亜鉛含有層を介さずに形成されたもの」であるとの認定は、表面処理材の断面観察にて、STEM-EDXを用いて前記導電性基体の部分から表面処理被膜の部分にわたって線分析を行い、得られた前記表面処理材の各成分の検出強度プロファイルを見て、前記表面処理被膜の主成分の強度が導電性基体の主成分の強度以上となる特定の分析範囲における、表面処理被膜の主成分に対する亜鉛の強度比の最大値が1/4以下となるときに行なうこととする。具体的には、例えば、表面処理材の断面観察にて、導電性基体上の任意の点において、50μm間隔で一直線上に並ぶ5点を異なる2箇所において定め、その各10点においてFIB加工を行った後、STEM-EDXを用いて、1nm/pixel以上の解像度で、導電性基体と表面処理被膜の界面が中心付近となるように100nm×100nmの範囲の面分析を行い(図5(a)および図5(b)参照)、さらに、これによって得られた組成マッピング像の中心部において、導電性基体側から表面処理被膜側まで70nm以上の範囲で線分析を行い、それにより得られた表面処理材の各成分の検出強度プロファイルにおいて、表面処理被膜の主成分の強度が導電性基体の主成分の強度以上となる範囲(特定の分析範囲)で、表面処理被膜の主成分に対する亜鉛の強度比の最大値が1/4超えとなる回数を数え、その回数が0回の場合を、導電性基体上に亜鉛含有層を介さずに形成された表面処理材であると認定することとする。なお、表面処理材が「前記導電性基体上に、前記亜鉛含有層を介して形成されたもの」であっても亜鉛含有層が導電性基体表面の一部のみに存在している場合があり(図2、図3)、この場合には、亜鉛含有層が存在しない範囲において線分析を行うと表面処理被膜の主成分に対する亜鉛の強度比の最大値が1/4以下となる可能性があるため、本測定は特定の分析範囲内の10箇所で行うこととした。
 また、本発明者らは、第1表面活性化処理工程を行なうに先立ち、前記導電性基体の表面を、亜鉛置換法を用いた第2表面活性化処理工程を行なって、導電性基体上の全面または一部に、厚さが50nm以下と薄い亜鉛含有層を形成し、この亜鉛含有層を介して間接的に形成した場合であっても、その後、第1表面活性化処理工程を行なうことによって、厚い(例えば100nm程度)亜鉛含有層が介在する従来の表面処理材に比べて、導電性基体2の表面に存在する亜鉛の絶対量が少ないため、亜鉛含有層の亜鉛が表面被覆層の最表面に拡散するのが抑制されるとともに、表面処理被膜4を導電性基体2に対し密着性よくかつ簡便に形成できることも見出した。
(亜鉛含有層)
 上述したように本発明では、亜鉛含有層3は、必要に応じて導電性基体2と表面処理被膜4との間に形成することができる。ただし、亜鉛含有層3の厚さは、50nm以下とすることが好ましく、より好ましくは30nm以下であり、さらに好ましくは1nm以上15nm以下とすることが好ましい。これは、亜鉛含有層3の厚さが50nmより厚く形成されていると、導電性基体2の表面に存在する亜鉛の絶対量が多くなるため、表面処理被膜4中を亜鉛が拡散し、さらに亜鉛が表面処理被膜4の最表層にまで達することによって亜鉛酸化物等が生じやすくなり、これによって、接触抵抗の上昇や、半田濡れ性の劣化が使用中に生じやすくなり、長期信頼性が損なわれるからである。なお、本発明では、長期信頼性を維持する観点から、導電性基体2と表面処理被膜4との間には亜鉛含有層3が存在しないことが好ましく、亜鉛含有層3が存在しても1nm未満であることが最も好ましい。
 また、亜鉛含有層3は、亜鉛を主成分として含有する層であり、具体的には亜鉛を50~100質量%含有する層である。亜鉛含有層3としては、具体的には、亜鉛置換処理(ジンケート処理)により形成される亜鉛層、亜鉛-銅合金や亜鉛-鉄合金のような亜鉛合金層などが挙げられる。
 図1~図4に示す表面処理材は、本発明の幾つかの実施形態を示したものである。
 図1は、導電性基体2と表面処理被膜4との間に、亜鉛含有層3を導電性基体2の表面全体にわたって均一に形成した場合を示したものである。また、図2および図3はいずれも、亜鉛含有層3を導電性基体2の表面に部分的に形成し、導電性基体2の表面が完全に被覆されていない場合を示したものであって、図2が、導電性基体2の表面を被覆する亜鉛含有層3の存在割合を大きくした場合、図3が、導電性基体2の表面を被覆する亜鉛含有層3の存在割合を小さくし、亜鉛含有層3を島状に点在させて形成した場合である。なお、図2および図3に示す実施形態のように、亜鉛含有層3を導電性基体2の表面に部分的に形成した場合における亜鉛含有層3の厚さは、導電性基体2の表面に部分的に存在する亜鉛含有層に相当する部分で測定したときの厚さとし、本発明では、この亜鉛含有層に相当する部分の厚さが50nm以下に調整することが必要である。さらに、図4は、導電性基体2と表面処理被膜4との間に亜鉛含有層3が存在せず、表面処理被膜4が導電性基体2上に直接形成されている場合を示したものである。なお、亜鉛含有層3の厚さの測定は、蛍光X線による測定装置(例えばSFT9400:日立ハイテク社(旧セイコーインスツル社製)によって、コリメータ径200μmにおける任意の5点を測定して、その平均値を算出することにより行なった。なお、亜鉛含有層3の形状がどのような形態にて形成されているかについては、例えばFIB(Focused Ion Beam)装置を使用して断面試料を作製後、界面についてTEM装置により、例えば倍率50000倍にて観察することによって直接観察することによって判別することが出来る。
(表面処理材の製造方法)
 次に、本発明に従う表面処理材の製造方法におけるいくつかの実施形態を以下で説明する。
 例えば図4に示す断面層構造をもつ表面処理材を製造するには、アルミニウム(例えばJIS H4000:2014で規定されているA1100などの1000系のアルミニウム、およびアルミニウム合金(例えばJIS H4000:2014で規定されているA6061などの6000(Al-Mg-Si)系合金)の基材である板材、棒材または線材に対し、電解脱脂工程、第1表面活性化処理工程および表面処理被膜形成工程、または、電解脱脂工程、第2表面活性化処理工程(亜鉛含有厚膜層形成および除去工程)、第1表面活性化処理工程および表面処理被膜形成工程を順次行なえばよく、また、例えば図1~図3に示す断面層構造をもつ表面処理材を製造するには、前記基材に対し、電解脱脂工程、第2表面活性化処理工程(亜鉛含有層形成工程)、第1表面活性化処理工程および表面処理被膜形成工程を順次行なえばよい。また、上記各工程の間には、必要に応じて水洗工程をさらに行なうことが好ましい。
(電解脱脂工程)
 電解脱脂工程は、例えば40~100g/Lの水酸化ナトリウム(NaOH)のアルカリ脱脂浴中に浸漬し、前記基材を陰極とし、電流密度2.5~5.0A/dm2、浴温60℃、処理時間10~60秒の条件で陰極電解脱脂する方法が挙げられる。
(第2表面活性化処理工程)
 第2表面活性化処理工程は、亜鉛置換法(ジンケート処理)を用いて行なう工程であって、図4に示すように亜鉛含有層が存在しない断面層構造をもつ表面処理材を製造する場合には、省略することができる工程である。なお、図4に示す表面処理材を製造する場合であっても、第2表面活性化処理工程を行なってもよいが、その場合、第2表面活性化処理工程は、亜鉛含有厚膜層の形成と、溶解による亜鉛含有厚膜層の除去とを行う工程である。また、図1~3に示すように亜鉛含有層が存在する表面処理材を製造する場合には、第2表面活性化処理工程は、亜鉛含有厚膜層の形成および一部溶解によって亜鉛含有層の形成を行なう工程であり、この場合には必須の工程となる。
 亜鉛含有厚膜層の形成は、例えば表1に示す亜鉛置換浴組成および処理条件によって行うことができる。
Figure JPOXMLDOC01-appb-T000001
 第2表面活性化処理工程は、例えば、導電性基体の表面を、亜鉛置換法によって、一旦、100nm以上の厚さをもつ亜鉛含有厚膜層を形成し、その後、前記亜鉛含有厚膜層を、50nm以上の範囲で溶解することで50nm以下の範囲まで減厚して前記亜鉛含有層とするか、または完全に除去することが好ましい。なお、本発明の第2表面活性化処理工程のように、100nm以上の亜鉛含有厚膜層を形成した後に溶解して亜鉛含有層を形成するのではなく、単に亜鉛置換処理を短時間で行うことでも50nm以下の薄い亜鉛含有層を形成することも可能であるが、処理時間が短いとその後、形成される表面処理被膜(めっき被膜)の剥離が発生しやすくなるため好ましくない。なお、亜鉛含有厚膜層の厚さの上限は、特に限定はしないが、200nmを超えて厚くしても、溶解させる際の亜鉛量が無駄に多くなり、コストアップや処理時間が長くなるだけであることから、200nm以下にすることが好ましい。
 亜鉛含有厚膜層の溶解は、電解脱脂した前記基材を、例えば10~30%硫酸の酸溶液に浸漬し、浸漬時間を調整することによって行うことができる。例えば、100nmの厚さの亜鉛含有厚膜層を50nm以下の厚さまで減厚して亜鉛含有層を形成する場合には浸漬時間を20秒以上40秒未満、30nm以下まで減厚するには40秒以上50秒未満、15nm以下まで減厚するには50秒以上60秒未満に設定することが好ましく、また、100nmの厚さの亜鉛含有厚膜層を完全に除去する場合には、浸漬時間を60秒以上に設定することが好ましい。なお、これらの条件はめっき浴や基材の状態によって適宜調整する必要がある。
 なお、第2表面活性化処理工程は、上述したように亜鉛置換法を用いて亜鉛含有厚膜層を形成した後に一部溶解して50nm以下にまで制御する方法だけには限定されず、その他の方法として、例えばジンケート処理後に機械的に研磨して除去する方法、蒸着やスパッタリングなどのドライプロセスで直接本めっきを形成する方法など、様々な手法で達成することができる。
(第1表面活性化処理工程)
 電解脱脂工程を行った後、または電解脱脂工程に加えて第2表面活性化処理工程を行った後に、第1表面活性化処理工程を行なう。第1表面活性化処理工程は、従来の活性化処理とは異なる新規な活性化処理工程であって、本発明の表面処理材を製造する工程の中で最も重要な工程である。
 すなわち、従来の被膜形成技術では、亜鉛含有層(特にジンケート処理層)が存在しないと、特にイオン化傾向が大きい卑な金属である導電性基体2に対して密着性の良好な表面処理被膜(めっき被膜)を形成することが難しいとされていたが、本発明では、第1表面活性化処理工程を行なうことによって、ジンケート処理等により、亜鉛を主成分とする亜鉛含有層を形成しなくても、導電性基体2の表面に安定して存在する酸化被膜を有効に除去することができ、導電性基体上に直接、表面処理被膜(例えばニッケルめっき層)を形成しても、導電性基体を構成する金属原子(例えばアルミニウム原子)と表面処理被膜を構成する金属原子(例えばニッケル原子)が酸素原子を介さずに直接結合できる結果、表面処理被膜4を導電性基体2に対し密着性よくかつ簡便に形成できる。
 第1表面活性化処理工程は、導電性基体2の表面を、硫酸、硝酸、塩酸、フッ酸およびリン酸の中から選択されるいずれかの酸溶液10~500ml/Lと、硫酸ニッケル、硝酸ニッケル、塩化ニッケルおよびスルファミン酸ニッケルからなるニッケル化合物、または硫酸コバルト、硝酸コバルト、塩化コバルトおよびスルファミン酸コバルトからなるコバルト化合物(ニッケルまたはコバルトのメタル分として)0.1~500g/Lとを含有する活性化処理液を使用し、処理温度20~60℃、電流密度0.5~20A/dm2および処理時間1~300秒にて処理することによって行うことが好ましい。このようにすることで、基材表面における反応をカソード反応に限定し、緻密な被膜を形成することができる。
(表面処理被膜形成工程)
 第1表面活性化処理工程を行った後に、表面処理被膜形成工程を行う。
 表面処理被膜の形成は、少なくとも1層の金属層で構成され、各金属層は、表面処理材に特性を付与する目的に応じて、電解めっきまたは無電解めっきの湿式めっき法によって行うことができる。表2~表11に、それぞれニッケル(Ni)めっき、コバルト(Co)めっき、銅(Cu)めっき、錫(Sn)めっき、銀(Ag)めっき、銀(Ag)-錫(Sn)合金めっき、銀(Ag)-パラジウム(Pd)合金めっき、金(Au)めっき、パラジウム(Pd)めっきおよびロジウム(Rh)めっきにより金属層を形成する際のめっき浴組成およびめっき条件を例示する。なお、表面処理被膜を構成する金属層、特に下地(金属)層としてニッケルめっき層を形成する場合には、厚さを0.2μm以上2.0μm以下の範囲とすることが好ましく、より好ましくは0.2μm以上1.5μm以下、さらに好適には0.2μm以上1.0μm以下、最も好ましくは0.2μm以上0.5μm以下とする。ニッケルめっき層の厚さが0.2μm未満の場合には、厚さ50nm以下の亜鉛含有層の亜鉛が拡散するのを十分に抑制することができず、200℃における接触抵抗および半田濡れ性が劣化する傾向があり、また、2.0μm超えの場合には、厚さ50nm以下の亜鉛含有層の亜鉛が拡散しにくくなり、200℃における接触抵抗および半田濡れ性の劣化を抑制することができるものの、曲げ加工性が劣る傾向があるからである。亜鉛含有層を極めて薄くすることで、ニッケル層のめっき厚を従来より薄くした場合でも、亜鉛含有層の亜鉛の拡散による材料表面への表出を十分に抑制することができ、接触抵抗および半田濡れ性が劣化しない。また、従来は、ニッケル層が薄く、不均一なめっき被膜の形成やピンホールの形成により、塩水環境においては亜鉛含有層に沿って腐食が進行してしまうという問題があったが、亜鉛含有層を極めて薄くすることにより、ニッケル層を薄くすることが可能となった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本発明の製造方法は、上述した各工程を行なうことによって、導電性基体に対し密着性に優れためっき被膜を形成することができ、しかも、100nm程度の厚さの亜鉛含有層(特にジンケート処理層)が介在する従来の表面処理材に比べて、曲げ加工性を悪化させることなく、特に高温(例えば200℃)使用環境下での、密着性、接触抵抗および半田濡れ性の劣化を抑制することができる表面処理材を簡便な方法で製造することができる。
 本発明の表面処理材は、基材(導電性基体)として、従来では鉄、鉄合金、銅、銅合金などを使用していたのに代えて、より軽量なアルミニウム、アルミニウム合金などを使用することができ、端子、コネクタ、バスバー、リードフレーム、医療部材(例えばカテーテル用ガイドワイヤー、ステント、人工関節等)、シールドケース(例えば電磁波防止用)、コイル(例えばモータ用)、アクセサリ(例えばネックレス、イヤリング、指輪等)、コンタクトスイッチなどの各種製品に適用することができる。これは、従来の100nm程度の厚い亜鉛含有層(特にジンケート処理層)を基材と表面処理被膜との間に存在させることなしに、基材の表面活性化を可能にしたことにより、従来の鉄、鉄合金、銅、銅合金からなる製品群と同じ使用環境でも耐えうる構成になったためであり、特に軽量化を必要とされる自動車用途のワイヤーハーネスや航空宇宙用途の筐体など、様々な製品において使用できる。
 尚、上述したところは、この発明のいくつかの実施形態を例示したにすぎず、特許請求の範囲において種々の変更を加えることができる。
 次に、この発明に従う表面処理材を試作し、性能評価を行なったので、以下で説明する。
(発明例1~21)
 表12に示すアルミニウム系基材(サイズ0.2mm×30mm×30mm)上に、上述した条件で電気脱脂工程を行い、その後、発明例1~4、6~11および15~20については、上述した第2表面活性化処理を構成するジンケート処理を表1に示す亜鉛置換処理条件によって、亜鉛含有厚膜層を表12に示す厚さで形成した後に一部溶解して、亜鉛含有層を表12に示す厚さで形成する。発明例5、12~14および21については、第2表面活性化処理は行わない(亜鉛含有層を形成しない。)。次に、発明例1~21(発明例14を除く。)については、第1表面活性化処理を、硫酸、硝酸、塩酸、フッ酸、リン酸からなる酸溶液10~500ml/Lと、硫酸ニッケル、塩化ニッケル、硝酸ニッケルからなるニッケル化合物(ニッケルのメタル分として)0.1~500g/Lを含有する活性化処理液を使用し、処理温度20~60℃、電流密度0.5~20A/dm2および処理時間30秒の条件で行った。また、発明例14については、第1表面活性化処理を、硫酸、硝酸、塩酸、フッ酸、リン酸からなる酸溶液10~500ml/Lと、硫酸コバルト、塩化コバルト、硝酸コバルトからなるコバルト化合物(コバルトのメタル分として)5g/Lを含有する活性化処理液を使用し、処理温度20~60℃、電流密度0.5~20A/dm2および処理時間30秒の条件で行った。その後、上述した表面処理被膜形成工程によって、表12に示す厚さで形成した2層又は3層の金属層からなる表面処理被膜を形成し、表面処理材を作製した。なお、表面処理被膜を構成する各金属層の形成条件については、表2~表11に示すめっき条件により行なった。
(比較例1)
 比較例1は、亜鉛含有層の厚さが55nmと厚いことを除いて発明例1と同じ条件で製造し、表面処理材を作製した。
(従来例1~4)
 従来例1~4は、表13に示すアルミニウム基材(サイズ0.2mm×30mm×30mm)上に、上述した条件で電気脱脂工程を行い、その後、従来例1および2については、従来の亜鉛置換処理(ジンケート処理)を行なうことによって、亜鉛含有層を表12に示す厚さで形成する。なお、従来例3については、従来の亜鉛置換処理(ジンケート処理)を行なわず、従来例4は、表13に示すフッ化水素酸及びニッケル塩を含有するニッケルめっき液で浸漬処理した。その後、従来例1~4は、いずれも第1表面活性化処理を行うことなく、上述した表面処理被膜形成工程によって、表12に示す厚さで形成した2層の金属層からなる表面処理被膜を形成し、表面処理材を作製した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
(評価方法)
<STEM-EDXによる線分析>
 基材上の任意の点において、50μm間隔で一直線上に並ぶ5点を異なる2箇所において定め、その各10点においてFIB加工を行った。FIB加工後、STEM-EDX(日本電子製 JEM-ARM200 Thermal FEで球面収差補正を行ったSTEM)を用いて、1nm/pixel以上の解像度で、導電性基体と表面処理被膜の界面が中心付近となるように100nm×100nmの範囲の面分析を行った。さらに、これによって得られた組成マッピング像の中心部において、導電性基体側から表面処理被膜側まで70nm以上の範囲で線分析を行い、それにより得られた表面処理材の各成分の検出強度プロファイルにおいて、表面処理被膜の主成分の強度が導電性基体の主成分の強度以上となる範囲で、表面処理被膜の主成分に対する亜鉛の強度比の最大値が1/4超えとなる回数を数え、その結果を表12に示した。
<基材に対する密着性>
 基材に対する密着性は、めっき上がり品について剥離試験を行い、接触抵抗測定およびめっきの密着性を調べた。剥離試験は、JIS H8504:1999に規定されるテープ試験方法に基づき試験した。表14に評価結果を示す。なお、表14に示す密着性は、作製した表面処理材ごとに、表面処理被膜形成まま(めっきまま)の状態と、大気中で200℃、24時間の熱処理を施した後の状態の2種類のサンプルを作製し、剥離試験を行った。めっき密着性は、めっき剥離が見られず、試験面積に占める密着面積の割合が100%である場合を「◎」、前記割合が95%以上100%未満である場合を「○」、前記割合が85%以上95%未満である場合を「△」、前記割合が70%以上85%未満である場合を「×」、そして、前記割合が70%未満である場合を「××」とし、本実施例では、「◎」、「○」および「△」を合格として評価した。
<接触抵抗の測定方法>
 接触抵抗は、作製した表面処理材ごとに、表面処理被膜形成まま(めっきまま)の状態と、大気中で200℃、24時間の熱処理を施した後の状態の2種類のサンプルを作製し、4端子法を用いて、初期および熱処理後の接触抵抗測定を行った。測定条件は、Agプローブ半径R=2mm、荷重0.1Nの条件下で10mA通電時の抵抗値を10回測定して平均値を算出した。表14に評価結果を示す。なお、表14に示す接触抵抗は、10mΩ以下である場合を「◎」、10mΩ超え50mΩ以下である場合を「○」、50mΩ超え100mΩ以下である場合を「△」、そして、100mΩを超える場合を「×」とし、本実施例では、「◎」、「○」および「△」を合格として評価した。
<はんだ濡れ性>
 はんだ濡れ性は、作製した表面処理材ごとに、表面処理被膜形成まま(めっきまま)の状態と、大気中で200℃、24時間の熱処理を施した後の状態の2種類のサンプルを作製し、ソルダーチェッカー(SAT-5100(商品名、(株)レスカ製))を用いてはんだ濡れ時間を評価した。表14にその評価結果を示す。なお、表14に示すはんだ濡れ性は、測定条件詳細を以下の条件とし、はんだ濡れ時間が3秒未満である場合を「◎」、3秒以上5秒未満である場合を「○」、5秒以上10秒未満である場合を「△」、そして、10秒浸漬しても接合しなかった場合を「×」とし、本実施例では、「◎」、「○」および「△」を合格として評価した。
半田の種類:Sn-3Ag-0.5Cu
温度:250℃
試験片サイズ:10mm×30mm
フラックス:イソプロピルアルコール-25%ロジン
浸漬速度:25mm/sec.
浸漬時間:10秒
浸漬深さ:10mm
<曲げ加工性>
 曲げ加工性は、各試料について、曲げ加工半径0.5mmにてV曲げ試験を圧延筋(圧延方向)に対して直角方向に実施した後、その頂上部をマイクロスコープ(VHX200:キーエンス社製)にて観察倍率200倍で観察を行っい、評価を行なった。表14にその評価結果を示す。表14に示す曲げ加工性は、全く割れが認められなかった場合を「◎」、割れではないがしわが発生している場合を「○」、軽微な割れが生じている場合を「△」、そして、比較的大きな割れが生じたものを「×」とし、本実施例では、「◎」、「○」および「△」を合格として評価した。
Figure JPOXMLDOC01-appb-T000014
 表14に示す結果から、発明例1~21はいずれも、基材に対する密着性が良好であり、200℃における接触抵抗および半田濡れ性の劣化も抑制されており、さらに曲げ加工性も良好であり、特に発明例3~5、14~16、18および21は、いずれの性能ともバランスよく優れているのがわかる。
 これに対し、従来例1は、第1表面活性化処理工程を行っておらず、しかも従来のジンケート処理で厚さが110nmと厚い亜鉛含有層を形成しているため、200℃における接触抵抗および半田濡れ性が劣っていた。また、従来例2は、従来例1に比べて下地層としてのニッケルめっき層を厚く形成したため、200℃における接触抵抗および半田濡れ性の劣化は抑制されているものの、曲げ加工性が劣っている。さらに、従来例3は、第1表面活性化処理工程および従来のジンケート処理のいずれの処理も行っていないため、密着性および曲げ加工性が劣るとともに、200℃における接触抵抗および半田濡れ性も劣っていた。さらにまた、従来例4は、第1表面活性化処理を行わず、従来のフッ化水素酸及びニッケル塩を含有するニッケルめっき液で処理しているため、密着性が劣り、また、200℃における、密着性、接触抵抗および半田濡れ性も劣っていた。加えて、比較例1は、第2表面活性化処理工程で形成した亜鉛含有層の厚さが55nmと厚いため、200℃における接触抵抗および半田濡れ性が劣っていた。
 本発明によれば、導電性基体とめっき被膜との間に、例えば100nm程度の厚さの亜鉛層(ジンケート処理層)が介在する従来の表面処理材に比べて、曲げ加工性を悪化させることなく、表面処理被膜の表面における特性、特に高温(例えば200℃)使用環境下での、密着性、接触抵抗および半田濡れ性の劣化を抑制することができ、その結果、表面処理被膜形成後の特性を維持しつつ、長期信頼性が高い表面処理材、およびその製造方法、ならびに表面処理材を用いて形成される種々の部品の提供が可能になった。
 1、1A、1B、1C 表面処理材
 2 導電性基体(または基材)
 3 亜鉛含有層
 4 表面処理被膜

Claims (15)

  1.  導電性基体と、該導電性基体上に形成された少なくとも1層の金属層からなる表面処理被膜とを有する表面処理材であって、
     前記表面処理被膜が、湿式めっき被膜であり、前記導電性基体上の全面または一部に、亜鉛を主成分とする厚さ50nm以下の亜鉛含有層を介して形成され、または、前記導電性基体上に、前記亜鉛含有層を介さずに形成されたものであり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上であることを特徴とする表面処理材。
  2.  導電性基体と、該導電性基体上に形成された少なくとも1層の金属層からなる表面処理被膜とを有する表面処理材であって、
     前記表面処理材の断面観察にて、STEM-EDXを用いて前記導電性基体の部分から表面処理被膜の部分にわたって線分析を行い、得られた前記表面処理材の各成分の検出強度プロファイルを見て、前記表面処理被膜の主成分の強度が導電性基体の主成分の強度以上となる特定の分析範囲における、表面処理被膜の主成分に対する亜鉛の強度比の最大値が1/4以下となり、かつ、JIS H8504:1999に規定されるテープ試験方法によって測定された、試験面積に占める密着面積の割合が85%以上であることを特徴とする表面処理材。
  3.  前記導電性基体は、アルミニウムまたはアルミニウム合金であることを特徴とする請求項1または2に記載の表面処理材。
  4.  前記表面処理被膜を構成する各金属層は、ニッケル、ニッケル合金、コバルト、コバルト合金、銅、銅合金、錫、錫合金、銀、銀合金、金、金合金、白金、白金合金、ロジウム、ロジウム合金、ルテニウム、ルテニウム合金、イリジウム、イリジウム合金、パラジウムおよびパラジウム合金の群から選択されるいずれか1種で形成されたものであることを特徴とする請求項1~3のいずれか1項に記載の表面処理材。
  5.  前記表面処理被膜は、2層以上の金属層からなることを特徴とする請求項1~4のいずれか1項に記載の表面処理材。
  6.  請求項1~5のいずれか1項に記載の表面処理材の製造方法であって、
     前記導電性基体上に湿式めっき法によって前記表面処理被膜を形成するに先立ち、
     前記導電性基体の表面を、
     硫酸、硝酸、塩酸、フッ酸およびリン酸の中から選択されるいずれかの酸溶液10~500mL/Lと、硫酸ニッケル、硝酸ニッケル、塩化ニッケルおよびスルファミン酸ニッケルからなるニッケル化合物、または硫酸コバルト、硝酸コバルト、塩化コバルトおよびスルファミン酸コバルトからなるコバルト化合物(ニッケルまたはコバルトのメタル分として)0.1~500g/Lとを含有する活性化処理液を使用し、処理温度20~60℃、電流密度0.5~20A/dm2および処理時間1~300秒にて処理する第1表面活性化処理工程を含むことを特徴とする表面処理材の製造方法。
  7.  前記第1表面活性化処理工程を行なうに先立ち、
     前記導電性基体の表面を、亜鉛置換法によって、一旦、100nm以上の厚さをもつ亜鉛含有厚膜層を形成し、その後、前記亜鉛含有厚膜層を、50nm以上の範囲で溶解することで50nm以下の範囲まで減厚して前記亜鉛含有層とするか、または完全に除去する第2表面活性化処理工程をさらに含むことを特徴とする請求項6に記載の表面処理材の製造方法。
  8.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成される端子。
  9.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成されるコネクタ。
  10.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成されるバスバー。
  11.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成されるリードフレーム。
  12.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成される医療部材。
  13.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成されるシールドケース。
  14.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成されるコイル。
  15.  請求項1~5のいずれか1項に記載の表面処理材を用いて形成されるコンタクトスイッチ。
PCT/JP2017/020612 2016-06-03 2017-06-02 表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品 WO2017209279A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17806829.2A EP3467152A4 (en) 2016-06-03 2017-06-02 SURFACE TREATMENT MATERIAL, MANUFACTURING METHOD AND COMPONENT FROM A MATERIAL FOR TREATING SURFACES
JP2017548493A JP6279170B1 (ja) 2016-06-03 2017-06-02 表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品
KR1020187034468A KR102471172B1 (ko) 2016-06-03 2017-06-02 표면 처리재 및 그 제조 방법 및 표면 처리재를 이용하여 형성한 부품
CN201780023706.1A CN109072470A (zh) 2016-06-03 2017-06-02 表面处理材料及其制造方法和使用表面处理材料而形成的元件
US16/206,141 US20190169764A1 (en) 2016-06-03 2018-11-30 Surface-treated material, method for producing the surface-treated material, and component formed by using the surface-treated material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016112181 2016-06-03
JP2016-112181 2016-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/206,141 Continuation US20190169764A1 (en) 2016-06-03 2018-11-30 Surface-treated material, method for producing the surface-treated material, and component formed by using the surface-treated material

Publications (1)

Publication Number Publication Date
WO2017209279A1 true WO2017209279A1 (ja) 2017-12-07

Family

ID=60478666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020612 WO2017209279A1 (ja) 2016-06-03 2017-06-02 表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品

Country Status (6)

Country Link
US (1) US20190169764A1 (ja)
EP (1) EP3467152A4 (ja)
JP (1) JP6279170B1 (ja)
KR (1) KR102471172B1 (ja)
CN (1) CN109072470A (ja)
WO (1) WO2017209279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183198A (ja) * 2018-04-03 2019-10-24 日本エレクトロプレイテイング・エンジニヤース株式会社 ロジウムリンめっき被膜および積層体材料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560455B2 (ja) * 2016-12-27 2019-08-14 古河電気工業株式会社 表面処理材及びその製造方法、並びにこの表面処理材を用いて作製した部品
JP6535136B2 (ja) * 2016-12-27 2019-06-26 古河電気工業株式会社 表面処理材およびこれを用いて作製した部品
JP6615350B2 (ja) * 2016-12-27 2019-12-04 古河電気工業株式会社 表面処理材およびこれを用いて作製した部品
US20230090510A1 (en) * 2020-02-25 2023-03-23 Sumitomo Electric Industries, Ltd. Metal material and method for manufacturing metal material
CN111778496B (zh) * 2020-07-14 2022-04-19 赤壁市聚茂新材料科技有限公司 锡合金活化铜层镀镍的活化剂和镀镍方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104895A (ja) * 1989-09-18 1991-05-01 Toshiba Corp 電気めっき方法
JPH03236493A (ja) * 1989-12-28 1991-10-22 Toyota Central Res & Dev Lab Inc アルミニウム系材料への電気めっき方法
JPH0748681A (ja) * 1992-07-15 1995-02-21 Nippon Tokushu Arumaito Kogyo Kk 無電解メッキと電気メッキを併用したメッキ方法
JP2000087293A (ja) * 1998-09-17 2000-03-28 Furukawa Electric Co Ltd:The Niめっきアルミ基複合材製電子機器用ベース板およびその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB138967A (en) * 1919-01-17 1920-02-26 Charles Alfred Bolton Improvements in electro plating
FR1378164A (fr) * 1963-09-24 1964-11-13 Aluminium Francais Procédé pour le recouvrement électrolytique de l'aluminium
FR2730245B1 (fr) * 1995-02-02 1997-03-14 Pechiney Aluminium Procede de revetement de pieces de vehicules automobiles en aluminium ou alliage d'aluminium
US6080447A (en) * 1998-05-14 2000-06-27 Enthone-Omi, Inc. Low etch alkaline zincate composition and process for zincating aluminum
JP2002115086A (ja) 2000-10-11 2002-04-19 Hiroshima Pref Gov アルミニウムまたはアルミニウム合金のメッキ方法
JP3520285B1 (ja) * 2002-10-25 2004-04-19 Fcm株式会社 アルミニウム安定化積層体
CN101098771A (zh) * 2005-01-19 2008-01-02 阿勒里斯铝业科布伦茨有限公司 电镀和预处理铝工件的方法
US20060157352A1 (en) * 2005-01-19 2006-07-20 Corus Aluminium Walzprodukte Gmbh Method of electroplating and pre-treating aluminium workpieces
TWI431150B (zh) * 2007-01-12 2014-03-21 Uyemura C & Co Ltd 鋁或鋁合金之表面處理方法
CN101024889A (zh) * 2007-01-19 2007-08-29 康顺发 铝制品的电镀方法
JP4605409B2 (ja) * 2008-08-21 2011-01-05 上村工業株式会社 アルミニウム又はアルミニウム合金の表面処理方法
CN101368285A (zh) * 2008-08-28 2009-02-18 尼尔金属(苏州)有限公司 一种铝及铝合金基材上镀铜的工艺方法及其产品
JP5385683B2 (ja) * 2009-05-22 2014-01-08 矢崎総業株式会社 コネクタ端子
JP2011099161A (ja) 2009-10-09 2011-05-19 Tosoh Corp ニッケルメッキ液
JP5546369B2 (ja) * 2010-06-25 2014-07-09 千住金属工業株式会社 蓄電デバイス用電極、その製造方法及びその接続方法
CN101914795B (zh) * 2010-07-30 2011-09-28 福建师范大学 一种控制镀镍铝极耳上镀层颗粒粒径的方法
JP4918621B1 (ja) 2010-09-24 2012-04-18 神鋼リードミック株式会社 電子部品材
CN102071446B (zh) * 2011-03-01 2012-05-02 无锡新大中薄板有限公司 可焊性铝卷材连续电镀工艺
BR112014005863A2 (pt) * 2011-09-13 2017-04-04 Monnaie Royale Canadienne/Royal Canadian Mint alumínio zincado
KR101324443B1 (ko) * 2011-10-17 2013-10-31 이병록 광학필름 생산용 가이드롤의 표면처리 방법
JP2014047360A (ja) 2012-08-29 2014-03-17 Auto Network Gijutsu Kenkyusho:Kk コネクタ端子及びコネクタ端子用材料
JP5692192B2 (ja) 2012-09-21 2015-04-01 株式会社オートネットワーク技術研究所 コネクタ端子の製造方法およびコネクタ端子用材料の製造方法
CN105274545B (zh) * 2015-11-25 2017-10-20 天津航空机电有限公司 一种铝合金的电镀或化学镀的前处理方法及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104895A (ja) * 1989-09-18 1991-05-01 Toshiba Corp 電気めっき方法
JPH03236493A (ja) * 1989-12-28 1991-10-22 Toyota Central Res & Dev Lab Inc アルミニウム系材料への電気めっき方法
JPH0748681A (ja) * 1992-07-15 1995-02-21 Nippon Tokushu Arumaito Kogyo Kk 無電解メッキと電気メッキを併用したメッキ方法
JP2000087293A (ja) * 1998-09-17 2000-03-28 Furukawa Electric Co Ltd:The Niめっきアルミ基複合材製電子機器用ベース板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467152A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183198A (ja) * 2018-04-03 2019-10-24 日本エレクトロプレイテイング・エンジニヤース株式会社 ロジウムリンめっき被膜および積層体材料
JP7068899B2 (ja) 2018-04-03 2022-05-17 日本エレクトロプレイテイング・エンジニヤース株式会社 ロジウムリンめっき被膜および積層体材料

Also Published As

Publication number Publication date
JP6279170B1 (ja) 2018-02-14
JPWO2017209279A1 (ja) 2018-06-14
KR20190013784A (ko) 2019-02-11
CN109072470A (zh) 2018-12-21
EP3467152A4 (en) 2019-12-04
EP3467152A1 (en) 2019-04-10
KR102471172B1 (ko) 2022-11-25
US20190169764A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6279170B1 (ja) 表面処理材およびその製造方法ならびに表面処理材を用いて形成した部品
JP6560455B2 (ja) 表面処理材及びその製造方法、並びにこの表面処理材を用いて作製した部品
JP6615350B2 (ja) 表面処理材およびこれを用いて作製した部品
JP6452912B1 (ja) めっき線棒材及びその製造方法、並びにこれを用いて形成されたケーブル、電線、コイル及びばね部材
JP2016166396A (ja) 銀めっき付き銅端子材及び端子
JP6535136B2 (ja) 表面処理材およびこれを用いて作製した部品
WO2019022188A1 (ja) 錫めっき付銅端子材及び端子並びに電線端末部構造
TWI693304B (zh) 鍍覆線棒
JP2018104821A (ja) 表面処理材及びこれを用いて作製した部品
JP2019114447A (ja) 圧縮撚線導体およびその製造方法
JP2020128575A (ja) コネクタ用端子材、コネクタ用端子及びコネクタ用端子材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548493

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034468

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806829

Country of ref document: EP

Effective date: 20190103