WO2017209216A1 - 難溶性薬物の微粒子を含有する医薬組成物の製造方法 - Google Patents

難溶性薬物の微粒子を含有する医薬組成物の製造方法 Download PDF

Info

Publication number
WO2017209216A1
WO2017209216A1 PCT/JP2017/020357 JP2017020357W WO2017209216A1 WO 2017209216 A1 WO2017209216 A1 WO 2017209216A1 JP 2017020357 W JP2017020357 W JP 2017020357W WO 2017209216 A1 WO2017209216 A1 WO 2017209216A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
soluble drug
sugar
drug
poorly soluble
Prior art date
Application number
PCT/JP2017/020357
Other languages
English (en)
French (fr)
Inventor
陽平 山添
俊貴 山岡
見二 岩田
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to EP17806767.4A priority Critical patent/EP3466411A4/en
Priority to US16/304,830 priority patent/US20200315968A1/en
Priority to JP2018520979A priority patent/JP7219617B2/ja
Publication of WO2017209216A1 publication Critical patent/WO2017209216A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • A61K31/10Sulfides; Sulfoxides; Sulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/64Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds

Definitions

  • the present invention relates to a method for producing a pharmaceutical composition containing fine particles of a poorly soluble drug.
  • the present invention also relates to a pharmaceutical composition containing fine particles of a poorly soluble drug and an oral pharmaceutical composition containing the pharmaceutical composition.
  • a wet pulverization technique has been widely used as a method for forming a fine particle of a poorly soluble drug.
  • a poorly water-soluble pharmaceutical is pulverized to 10 ⁇ m or less, and then uniformly dispersed in a binding solution, and the suspension is converted into sugar and / or sugar alcohol flowing in a fluidized bed granulation dryer.
  • a method of spraying and granulating is disclosed.
  • Non-Patent Document 1 discloses that a suspension of hydroxypropyl cellulose (HPC), sodium lauryl sulfate (SDS), and water for miconazole and itraconazole was wet-ground using a high-energy bead mill, A method is disclosed in which mannitol or crystalline cellulose is added to and mixed with an average particle size (volume basis) of about 200 to 800 nm, and the suspension is pulverized by spray drying or freeze drying.
  • HPC hydroxypropyl cellulose
  • SDS sodium lauryl sulfate
  • Non-Patent Document 2 glibenclamide was dissolved in a solvent together with a dispersant (dioctylsodium sulfosuccinate) and then spray-dried, and then sodium lauryl sulfate (SDS) and water were added as starting materials.
  • the obtained suspension is wet-pulverized with a high-pressure homogenizer, mannitol is added to and mixed with the wet-pulverized liquid (average drug particle size: about 200 nm), and the suspension is stirred and granulated, spray-dried or freeze-dried.
  • a method for powdering is disclosed.
  • Patent Document 1 discloses redispersion of drug fine particles in a composition in which the solidified composition is again dispersed (redispersed) in water, and the particle size distribution of the drug fine particles before and after solidification is compared. Sexual results are not shown.
  • the preparation produced by the technique disclosed in Patent Document 1 has a large amount of sugar and / or sugar alcohol added to the drug, and the amount of the preparation taken is reduced by increasing the size and reducing the drug content when tableted. There is concern about the increase.
  • Non-Patent Document 1 discloses that in a system using the poorly soluble drug itraconazole, the solidified composition is redispersed in water again, and the particle size distribution of the drug fine particles before and after solidification is compared.
  • Non-Patent Document 2 the solidified composition is tableted with various additives (crospovidone, magnesium stearate, light silicic anhydride, lactose hydrate), and the pH of the tablet is 7.4 phosphate buffer. The dissolution property to the liquid is evaluated.
  • Dissolution superiority or inferiority is discussed depending on the amount of mannitol added and the manufacturing method, but the results on the redispersibility of the drug fine particles in the composition are not shown, and the dissolution improvement effect at the same level as the wet milling liquid It is not evaluated in that point.
  • the problem to be solved by the present invention is to provide a pharmaceutical composition of a poorly soluble drug excellent in redispersibility.
  • the present invention relates to the following (1) to (12).
  • a method for producing a pharmaceutical composition containing fine particles of a poorly soluble drug comprising mixing a sugar or sugar alcohol with a dispersion of a nanoparticle of a poorly soluble drug and granulating the resulting mixed liquid.
  • the present invention is a method for producing a pharmaceutical composition containing fine particles of a poorly soluble drug, in which a sugar or sugar alcohol is mixed with a dispersion of nanoparticles of a poorly soluble drug and the resulting mixed liquid is granulated.
  • the poorly soluble drug is a term indicating solubility in the 16th revised Japanese Pharmacopoeia, and is extremely soluble, easily soluble, slightly soluble, slightly soluble, hardly soluble, extremely difficult to dissolve, and hardly soluble. Of those that are, it means drugs that are classified as slightly soluble, slightly difficult to dissolve, difficult to dissolve, very difficult to dissolve, or hardly soluble.
  • Examples of the poorly soluble drug include, but are not limited to, probucol, mefenamic acid, fenofibrate, flurbiprofen, cinnarizine, nifedipine, and glibenclamide.
  • a nanoparticle dispersion of a poorly soluble drug can be prepared by a known method capable of forming a dispersion.
  • a poorly soluble drug is added to the dispersion medium to obtain a coarsely dispersed coarse dispersion, and a dispersion of the poorly soluble drug nanoparticles may be obtained by wet pulverization. Then, it may be added to a dispersion medium to obtain a dispersion of a poorly soluble drug nanoparticle.
  • the poorly soluble drug nanoparticles in the dispersion are preferably poorly soluble drug nanoparticles obtained by wet pulverization.
  • the apparatus used for wet pulverization is not particularly limited, and examples thereof include a high-pressure homogenizer and a mill.
  • the dispersion medium used for dispersing the poorly soluble drug is not particularly limited, but water or a water-soluble solvent such as a lower alcohol is preferably used, and it is preferable to use purified water. .
  • the concentration of the poorly soluble drug in the dispersion is not particularly limited, but is, for example, 30% or less, preferably 20% or less in terms of mass ratio to the dispersion.
  • the poorly soluble drug is present as nanoparticles in the dispersion.
  • D50 is preferably 2 ⁇ m or less, and more preferably 0.05 to 1 ⁇ m.
  • D50 means a diameter in which the larger side and the smaller side are equivalent when the powder is divided into two by a certain particle size, and is also called a median diameter.
  • D50 is a particle size that is 50% cumulatively in the particle size distribution.
  • D10, D50, and D90 can be measured by the methods described in the examples.
  • the dispersion may contain a surfactant and / or a polymer as a component other than the poorly soluble drug from the viewpoint of enhancing the dispersibility of the poorly soluble drug.
  • the surfactant and / or polymer is not particularly limited, and examples thereof include polysorbate 80 (Tween 80), sodium lauryl sulfate (SDS), Poroxamer, hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP), Examples include hypromellose (HPMC), methylcellulose (MC), and polyvinyl alcohol (PVA).
  • Tween 80, SDS, or HPC is preferably used as the surfactant and / or polymer.
  • a surfactant and / or polymer may be added to the dispersion medium, and the poorly soluble drug may be added to the solution or suspension. It is also possible to add a poorly soluble drug in the dispersion medium and then add a surfactant and / or polymer.
  • the mass ratio of the hardly soluble drug to the surfactant and / or the polymer in the dispersion is determined as follows.
  • the surfactant / polymer is preferably 1/1/1 to 1 / 0.05 / 0.05, more preferably 1 / 0.1 / 0.3.
  • Sugar or sugar alcohol is mixed with the dispersion of the hardly soluble drug nanoparticles to obtain a mixed solution containing the hardly soluble drug nanoparticles and the sugar or sugar alcohol.
  • the sugar or sugar alcohol is not particularly limited, and examples thereof include lactose, mannitol, erythritol, xylitol, sorbitol, and sucrose.
  • D-form may be used or L-form may be used.
  • the sugar or sugar alcohol is preferably at least one selected from erythritol, xylitol, sorbitol, and sucrose from the viewpoint of redispersibility, and is at least one selected from erythritol, xylitol, and sucrose. It is more preferable to use sucrose.
  • using at least one sugar or sugar alcohol is synonymous with using one sugar or sugar alcohol, or using two or more sugars or sugar alcohols.
  • a sugar or sugar alcohol other than mannitol can be used, and a sugar or sugar alcohol other than lactose can be used in the present invention.
  • the amount of sugar or sugar alcohol added to a poorly soluble drug can be reduced.
  • the sugar or sugar alcohol may be mixed directly with the dispersion of the hardly soluble drug nanoparticles, or may be mixed as a solution of the sugar or sugar alcohol.
  • the method for mixing sugar or sugar alcohol is not particularly limited. Further, in the present invention, in order to obtain a mixed solution by mixing a dispersion of a slightly soluble drug nanoparticle with a dispersion of a hardly soluble drug nanoparticle, a dispersion of a hardly soluble drug nanoparticle is mixed with the solution of the sugar or sugar alcohol. It does not exclude doing.
  • Sugar or sugar alcohol can be mixed as a solution of sugar or sugar alcohol, but the solvent of sugar or sugar alcohol is not particularly limited, and a water-soluble solvent such as water or lower alcohol is preferably used. It is preferable to use purified water.
  • the concentration of the sugar or sugar alcohol in the solution is not particularly limited.
  • the mass ratio of the poorly soluble drug to the sugar or sugar alcohol in the mixed solution is preferably 1/20 to 1/3, preferably 1/10 to 1/3, as the poorly soluble drug / (sugar or sugar alcohol). It is more preferable.
  • the mass ratio of the poorly soluble drug and the sugar or sugar alcohol in the mixed solution approximates the mass ratio in the pharmaceutical composition of the fine particles of the poorly soluble drug after granulation.
  • the mass ratio of the poorly soluble drug and the sugar or sugar alcohol in the mixed solution may be the mass ratio of the poorly soluble drug and the sugar or sugar alcohol in the pharmaceutical composition of the fine particle of the hardly soluble drug as it is.
  • the mass ratio of the poorly soluble drug and the sugar or sugar alcohol in the pharmaceutical composition of the fine particles of the poorly soluble drug is regarded as the mass ratio of the poorly soluble drug and the sugar or sugar alcohol in the mixed solution.
  • Necessary granulating components may be added to the mixed solution.
  • a necessary granulating component a well-known known granulating component can be used.
  • a pharmaceutical composition containing fine particles of a poorly soluble drug is produced.
  • the granulation method of the mixed liquid containing the hardly soluble drug nanoparticles and at least sugar or sugar alcohol and a known granulation method can be adopted.
  • the present invention suppresses aggregation of finely divided poorly soluble drugs in the granulation process by the coexistence of sugar or sugar alcohol in a mixed solution containing nanoparticles of poorly soluble drugs used for granulation. By finding out to get.
  • a pharmaceutical composition of a poorly soluble drug can be produced without losing the effect of increasing the specific surface area of the poorly soluble drug existing as nanoparticles.
  • the granulation method used in the present invention examples include wet granulation methods such as fluidized bed granulation method and stirring granulation method, and fluidized bed granulation method is preferably used.
  • the mixed solution may be dried by an oven or the like to remove moisture to obtain a dried sample.
  • moisture content as a pharmaceutical composition is included.
  • the content of the poorly soluble drug in the pharmaceutical composition containing fine particles of the poorly soluble drug is not particularly limited, but is, for example, 20% by mass ratio with respect to the pharmaceutical composition, and 10% or less. Preferably there is.
  • a sugar or sugar alcohol is mixed with a dispersion of poorly soluble drug nanoparticles by wet pulverization, and the resulting mixed solution is granulated.
  • the method is a method for producing a pharmaceutical composition containing fine particles of a poorly soluble drug (however, mannitol is excluded as a sugar or sugar alcohol). It is preferable to mix, and it is preferable to perform granulation by fluidized bed granulation.
  • the pharmaceutical composition is preferably obtained as a granule.
  • the granule may be a pharmaceutical composition obtained by fluid bed granulation.
  • the pharmaceutical composition obtained by the production method of the present invention is a particle excellent in redispersibility.
  • a poorly soluble drug and a sugar or sugar alcohol coexist in a dispersion of nanoparticles of a poorly soluble drug to form a pharmaceutical composition
  • the sugar or sugar alcohol is referred to as a carrier (hereinafter referred to as “MF”. "Is an abbreviation for Matrix Former.)
  • MF carrier
  • Matrix Former an abbreviation for Matrix Former.
  • the poorly soluble drug nanoparticles do not aggregate in MF and can remain dispersed (immobilized). It is considered excellent in dispersibility.
  • the excellent redispersibility can be considered as follows.
  • the sugar or sugar alcohol in the droplets temporarily reaches a saturated dissolved state immediately before solidification of the mixed solution containing the hardly soluble drug nanoparticles and sugar or sugar alcohol.
  • the viscosity of the saturated solution droplet affects the mobility of the poorly soluble drug nanoparticles contained in the droplet, and the lower the saturated solution viscosity of the sugar or sugar alcohol, the lower the mobility of the nanoparticles. It is considered that the agglomeration is more likely to occur, and the higher the saturated solution viscosity of the sugar or sugar alcohol is, the less the mobility is. However, it is considered that factors other than the saturated solution viscosity also have an influence. When sugar or sugar alcohol having a low saturated solution viscosity is used, redispersibility is improved by increasing the amount added, and a desired aggregation suppressing effect can be obtained.
  • the pharmaceutical composition obtained in the present invention can be made into an oral pharmaceutical composition by a conventional method.
  • the oral pharmaceutical composition is not particularly limited as long as it is a preparation that can be administered orally, but in particular, it may be in the form of powder, fine granules, granules, tablets, or capsules. It is preferably an agent or a granule, and is suitably used as a tablet or a capsule.
  • the pharmaceutical composition obtained in the present invention preferably a granule may be filled in a capsule together with other additives as necessary, and may be used as a pharmaceutical composition for oral administration of the present invention, and obtained in the present invention.
  • a pharmaceutical composition preferably a granule may be mixed and / or granulated with other additives as necessary, to form a tablet as a pharmaceutical composition for oral administration of the present invention.
  • the granule obtained in the present invention may be used as it is, or may be a granule mixed with granules of other additives as necessary.
  • an excipient filler, a disintegrating agent, a lubricant agent, etc.
  • examples of the excipient include lactose, sucrose, starch, crystalline cellulose, D-mannitol, D-sorbitol, starch derivatives (such as corn starch), cellulose derivatives, carbonates, phosphates, sulfates and the like.
  • examples of the disintegrant include crospovidone, croscarmellose sodium, carboxymethyl starch sodium, and low-substituted hydroxypropylcellulose.
  • lubricant examples include magnesium stearate, calcium stearate, talc, glyceryl monostearate, and light anhydrous silicic acid.
  • additives for example, colorants and fragrances may be optionally added. Each additive may be used alone or in combination of two or more.
  • the particle size / particle size distribution of the poorly soluble drug when the aggregation of the poorly soluble drug nanoparticles in the solid preparation process is achieved and the resulting pharmaceutical composition is redispersed is
  • excellent properties such as improved dissolution resulting from the nanoparticulate formation can be made into a solid formulation. It can be demonstrated even after This property is also achieved when capsules and granules are formed.
  • the excellent redispersibility of the pharmaceutical composition is maintained even after tableting the pharmaceutical composition obtained by the present invention.
  • Example 1 Probucol was put into a previously prepared aqueous hydroxypropylcellulose (HPC-L, Nippon Soda) aqueous solution and roughly dispersed with a homogenizer (12,000 rpm, 2 minutes) to prepare a dispersion.
  • the obtained dispersion liquid is put into a high-pressure shear wet pulverizer (microfluidizer, POWREC), and processed by wet pulverization at a processing pressure: 207 MPa, processing time: batch processing for 30 times.
  • a dispersion liquid (hereinafter referred to as “nanosuspension”) was prepared.
  • sucrose was added to purified water and stirred to prepare an aqueous sucrose solution as an MF aqueous solution.
  • Nano suspension and sucrose aqueous solution were mixed and stirred to prepare a mixed solution.
  • the obtained mixed solution was separated into another container, dried in an oven (90 ° C., 60 to 120 minutes), water was removed, and a dry sample was prepared as a pharmaceutical composition.
  • Example 1 A dry sample (without MF) was prepared in the same manner as in Example 1 except that the nano suspension of probucol was placed in another container, mixed with purified water, and a mixed solution obtained by stirring was prepared.
  • Example 2 Using a combined fluidized bed fine particle coating / granulating device (SFP-1 type, POWREC), crystalline cellulose (particles) (CP-102, Asahi Kasei Chemicals), which is a core granule, is introduced into the device can body.
  • the nano-suspension of Probucol obtained in Example 1 was sprayed on the core granules (intake air volume; 40 to 42 m 3 / min, intake air temperature; 70 ° C., spray liquid flow rate; 10.3 to 11.4 g / min, Spray air flow rate: 25 L / min, rotor rotation speed: 1000 to 1003 min ⁇ 1 ). After spraying, while rotating the rotor at a low speed (300 min ⁇ 1 ), drying was performed for 5 minutes to prepare a layered pharmaceutical composition (without MF).
  • SFP-1 type, POWREC a combined fluidized bed fine particle coating / granulating device
  • CP-102 Asahi Kasei Chemicals
  • Test Example 1 Paying attention to the particle size distribution (D10, D50, D90) of the nanoparticulate drug, add the obtained dry sample or layered pharmaceutical composition to purified water for the particle size distribution of the nanosuspension drug before solidification Then, by comparing the particle size distribution of the drug in the obtained redispersion liquid, the redispersibility of the drug nanoparticles in the solidified preparation was evaluated, and the aggregation suppression effect due to the inclusion of MF was evaluated.
  • the particle size distributions of the nanosuspension before solidification, the redispersion of the dried sample obtained in Example 1 and Comparative Example 1, and the redispersion of the layered pharmaceutical composition obtained in Comparative Example 2 were measured by laser diffraction It was measured using a scattering type particle size distribution measuring device (Microtrac, Nikkiso). Purified water was used as the dispersion medium, and the measurement was performed in a circulating manner. About the dry sample obtained in Example 1 and Comparative Example 1, 5 mL of purified water was added to the dry sample containing about 8 mg of probucol and stirred for 120 minutes to prepare a redispersion. For the layering pharmaceutical composition obtained in Comparative Example 2, 5 mL of purified water was added to about 160 mg (equivalent to about 8 mg as probucol) of the layering pharmaceutical composition, and stirred for 120 minutes to prepare a redispersion. .
  • Sucrose as MF was added to purified water and stirred to prepare an aqueous sucrose solution as an MF aqueous solution.
  • Various drug nanosuspensions and an aqueous sucrose solution were mixed and stirred to prepare a mixed solution.
  • the obtained mixed solution was separated into another container, dried in an oven (90 ° C., 60 to 120 minutes), water was removed, and a dry sample was prepared as a pharmaceutical composition.
  • Test Example 2 Compared to the particle size distribution of the nanosuspension drug before solidification, the obtained dry sample is added to purified water, and the particle size distribution of the drug in the obtained redispersion liquid is compared. The redispersibility of the nanoparticles was evaluated, and the aggregation suppression effect due to the inclusion of MF was evaluated. The D50 of each nanosuspension drug before solidification was about 0.20 ⁇ m. It was carried out in the same manner as in Test Example 1 except that purified water was added so that the drug concentration at the time of redispersion was 20 mg / mL, and the redispersion liquid was prepared by mixing by inverting 5 times.
  • Example 8 A nanosuspension was prepared in the same manner as in Example 2 except that fenofibrate, mefenamic acid or flurbiprofen was used as the drug.
  • the particle size distribution of the drug was about 0.20 ⁇ m as D50.
  • Sucrose as an MF and a binder for granulation (HPC-SSL) were added to purified water and stirred to prepare an aqueous sucrose solution as an aqueous MF solution.
  • HPC-SSL binder for granulation
  • Various drug nanosuspensions and aqueous sucrose solutions were mixed and stirred to prepare drug solution binders.
  • a chemical binder was sprayed on the granulated component (lactose hydrate) (intake air volume; 0.1 to 0.2 m 3 / min, intake air Temperature: 75-85 ° C., spray liquid flow rate: 1.2-2.5 g / min, spray air pressure: 0.15 MPa). After spraying, drying was performed to prepare a pharmaceutical composition.
  • the obtained pharmaceutical composition is added to purified water and compared with the particle size distribution of the drug in the obtained redispersion liquid.
  • the redispersibility of the drug nanoparticles was evaluated, and the aggregation suppression effect due to the inclusion of MF was evaluated. It was carried out in the same manner as in Test Example 1 except that 2 mL of purified water was added to about 500 mg (corresponding to 10 mg as a drug) of the pharmaceutical composition, and a redispersion liquid was prepared by mixing by inverting 5 times.
  • the pharmaceutical composition containing MF shows a remarkably small particle size distribution, and the aggregation of drug nanoparticles in the process of solid formulation is suppressed, It was shown that the drug has excellent redispersibility.
  • D50 at the time of redispersion by MF addition was about 0.20 ⁇ m, which was almost the same as that of nanospreading before solidification, indicating very high redispersibility. .
  • Example 11 to 15 A pharmaceutical composition was prepared in the same manner as in Example 8 except that various sugars or sugar alcohols were used as MF.
  • Test Example 4 Compared to the particle size distribution of the drug in the nanosuspension before solidification, the obtained pharmaceutical composition is added to purified water and compared with the particle size distribution of the drug in the obtained redispersion liquid. The redispersibility of the drug nanoparticles was evaluated, and the effect of suppressing aggregation by the type of MF was evaluated in the same manner as in Test Example 3.
  • the pharmaceutical composition containing D-mannitol, erythritol, xylitol, sorbitol or sucrose as MF shows a value with a remarkably small particle size distribution compared to the pharmaceutical composition not containing MF (Comparative Example 9). It was shown that the aggregation of drug nanoparticles during the process was suppressed and the drug redispersibility was excellent.
  • Test Example 5 Compared to the particle size distribution of the drug in the nanosuspension before solidification, the obtained pharmaceutical composition is added to purified water and compared with the particle size distribution of the drug in the obtained redispersion liquid. The redispersibility of the drug nanoparticles was evaluated, and the effect of suppressing aggregation by the amount of MF added was evaluated in the same manner as in Test Example 3.
  • Example 19 The pharmaceutical composition obtained in Example 8, crystalline cellulose (CEORUS PH-702, Asahi Kasei Chemicals) and croscarmellose sodium (Ac-di-sol, FMC) were manually mixed (100 times) in a glass bottle. Thereafter, magnesium stearate (Parteck LUB MST, Merck) was added and mixed by hand (100 times) to obtain granules for tableting. Tableting granules are weighed to 220 mg per tablet, and are tableted with a tableting pressure of 3 kN using an 8 mm ⁇ square flat tableting machine and a simple tableting machine (HANDTAB200, Ichihashi Seiki). A tablet was prepared (Example 19).
  • Test Example 6 The dissolution of the model drug (fenofibrate) bulk powder, pharmaceutical composition (Example 8, Comparative Example 9 and Comparative Example 12) and tablet (Example 19) was evaluated. An amount equivalent to 9 mg of the active ingredient was taken, 500 mL of 0.05% Tween 80 aqueous solution was used as a test solution, and the test was performed at 50 revolutions per minute by the paddle method. After starting 5, 10, 15, 30, 60, 90, and 120 minutes, 5 mL of the eluate was taken and filtered through a membrane filter manufactured by Cellulose Acetate having a pore size of 0.2 ⁇ m or less. Except for 4 mL of the first filtrate, the next filtrate was used as a sample solution.
  • the dissolution of the drug substance was 1 ⁇ g / mL or less even at 120 minutes, and the dissolution was very low.
  • the pharmaceutical composition (Comparative Example 12) obtained by the usual pharmaceutical formulation and production method showed an elution property of about 4 ⁇ g / mL at 30 minutes, and an improvement in the dissolution property was observed. . It is considered that the formulation improved the wettability of fenofibrate and improved dissolution.
  • the pharmaceutical composition containing no MF is a pharmaceutical composition obtained by the usual pharmaceutical formulation and production method. A profile equivalent to that of (Comparative Example 12) was shown.
  • Example 19 the dissolution concentration at the initial stage of the dissolution test was determined based on the rate of disintegration of the tablet in the dissolution vessel. Although the value was lower than that of the composition, the dissolution concentration increased with disintegration of the tablet, and the tablet using sucrose as the MF (Example 19) also had the pharmaceutical composition (Example 8) at 30 minutes. Equivalent dissolution was shown.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本発明は、難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、得られた混合液を造粒することを含む、難溶性薬物の微粒子を含有する医薬組成物の製造方法を提供する。

Description

難溶性薬物の微粒子を含有する医薬組成物の製造方法
 本発明は、難溶性薬物の微粒子を含有する医薬組成物の製造方法に関する。また、本発明は、難溶性薬物の微粒子を含有する医薬組成物、該医薬組成物を含有する経口用医薬組成物にも関する。
 難溶性薬物の生体への吸収性を改善する方法として、薬物の微粒子化が挙げられる。これは、薬物をナノオーダーまたはナノオーダーに近いオーダーのサイズにまで微粒子化することで、比表面積を飛躍的に上昇させ、その結果として、溶解速度を向上させることを期待したアプローチである。薬物のナノ粒子化は、食事による吸収性への影響が緩和されることも知られており、難溶性薬物の動態面の改善に対する有用な手法として期待されている。
 難溶性薬物の微粒子化手法として湿式粉砕技術が広く用いられている。
 特許文献1には、難水溶性医薬品を10μm以下に粉砕した後に、結合液中に均一に分散させ、その懸濁液を流動層造粒乾燥機で流動している糖および/または糖アルコールに対し、噴霧、造粒させる方法が開示されている。
 非特許文献1には、ミコナゾールとイトラコナゾールについて、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム(SDS)、および水からなる懸濁液を、高エネルギービーズミルで湿式粉砕し、その湿式粉砕液(薬物の平均粒子径(体積基準) 約200~800nm)にマンニトールまたは結晶セルロースを添加、混合し、その懸濁液をスプレードライまたは凍結乾燥により粉末化する方法が開示されている。
 非特許文献2には、グリベンクラミドについて、予め分散剤(ジオクチルソジウムスルホサクシネート)とともに溶媒に溶解し、その後スプレードライ処理した薬物を出発原料として、ラウリル硫酸ナトリウム(SDS)、および水を加えて得られた懸濁液を高圧ホモジナイザーにより湿式粉砕し、その湿式粉砕液(薬物の平均粒子径 約200nm)にマンニトールを添加、混合し、その懸濁液を撹拌造粒、スプレードライまたは凍結乾燥により粉末化する方法が開示されている。
特開平7-126154号公報
International Journal of Pharmaceutics 443(2013),209-220 European Journal of Pharmaceutical Sciences 49(2013),565-577
 しかし、特許文献1には、固体化後の組成物を再び水に分散(再分散)させ、固体化前後での薬物微粒子の粒度分布を比較するような、組成物中の薬物微粒子の再分散性に関する結果は示されていない。また、特許文献1に開示される技術により製造された製剤は、薬物に対する糖および/または糖アルコールの添加量が多く、錠剤化した際の大型化や薬物含有量が低くなることにより服用製剤量の増加が懸念される。
 非特許文献1には、難溶性薬物イトラコナゾールを用いた系では、固体化後の組成物を再び水に再分散させ、固体化前後での薬物微粒子の粒度分布を比較し、固体化後の組成物は良好な再分散性を示した。一方、結晶セルロースを添加した懸濁液から得られた粉末や、凍結乾燥法により得られた粉末、難溶性薬物ミコナゾールを用いた系では、期待した再分散性は得られておらず、薬物適性や製造法といった汎用性の面で課題があるといえる。
 非特許文献2には、固体化後の組成物について、種々の添加剤(クロスポビドン、ステアリン酸マグネシウム、軽質無水ケイ酸、乳糖水和物)とともに錠剤化し、その錠剤のpH7.4リン酸緩衝液に対する溶出性を評価している。マンニトールの添加量や製造方法により、溶出性の優劣が議論されているが、組成物中の薬物微粒子の再分散性に関する結果は示されておらず、湿式粉砕液と同等レベルの溶出性改善効果という点では評価されていない。
 本発明が解決しようとする課題は、再分散性に優れる難溶性薬物の医薬組成物を提供することである。
 本発明者らが鋭意検討した結果、難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、得られた混合液を造粒することにより、再分散性に優れる難溶性薬物の医薬組成物とすることができることを見出し、本発明を完成した。
 本発明は以下の(1)~(12)に関する。
(1)
 難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、得られた混合液を造粒することを含む、難溶性薬物の微粒子を含有する医薬組成物の製造方法。
(2)
 糖または糖アルコールが、エリスリトール、キシリトール、ソルビトール、およびスクロースから選択される少なくとも1種である、(1)に記載の製造方法。
(3)
 糖または糖アルコールが、エリスリトール、キシリトール、およびスクロースから選択される少なくとも1種である、(1)に記載の製造方法。
(4)
 難溶性薬物のナノ粒子が、湿式粉砕して得られた難溶性薬物のナノ粒子である、(1)~(3)のいずれかに記載の製造方法。
(5)
 ナノ粒子の粒度分布(D50)が、2μm以下である、(1)~(4)のいずれかに記載の製造方法。
(6)
 造粒が、湿式造粒法である、(1)~(5)のいずれかに記載の製造方法。
(7)
 難溶性薬物のナノ粒子の分散液が、界面活性剤および/または高分子を含有する、(1)~(6)のいずれかに記載の製造方法。
(8)
 糖または糖アルコールの水溶液を混合する、(1)~(7)のいずれかに記載の製造方法。
(9)
 (1)~(8)のいずれかに記載の製造方法により得られる難溶性薬物の微粒子を含有する医薬組成物。
(10)
 顆粒である、(9)に記載の医薬組成物。
(11)
 (9)又は(10)に記載の難溶性薬物の微粒子を含有する医薬組成物と、添加剤とを含有する経口用医薬組成物。
(12)
 錠剤、カプセル剤、または顆粒剤である、(11)に記載の経口用医薬組成物。
 本発明によれば、再分散性に優れる難溶性薬物の医薬組成物を提供することができる。
 本発明は、難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、得られた混合液を造粒する、難溶性薬物の微粒子を含有する医薬組成物の製造方法である。
 本発明において、難溶性薬物とは、第16改正日本薬局方における溶解性を示す用語において、極めて溶けやすい、溶けやすい、やや溶けやすい、やや溶けにくい、溶けにくい、極めて溶けにくい、ほとんど溶けないとされているもののうち、やや溶けやすい、やや溶けにくい、溶けにくい、極めて溶けにくい、またはほとんど溶けないに分類される薬物を意味する。
 難溶性薬物としては、特に限定されるものではないが、例えば、プロブコール、メフェナム酸、フェノフィブラート、フルルビプロフェン、シンナリジン、ニフェジピン、およびグリベンクラミド等が挙げられる。
 本発明において、難溶性薬物のナノ粒子の分散液は、分散液とすることができる公知の方法により調製することができる。
 難溶性薬物を分散媒に添加して、粗分散させた粗分散液を得、湿式粉砕により、難溶性薬物のナノ粒子の分散液を得てもよく、あらかじめ、難溶性薬物を乾式粉砕してから、分散媒に添加して、難溶性薬物のナノ粒子の分散液を得てもよい。
 分散液中の難溶性薬物のナノ粒子は、湿式粉砕して得られた難溶性薬物のナノ粒子であることが好ましい。
 湿式粉砕に用いる装置としては、特に限定されるものではないが、例えば、高圧ホモジナイザーおよびミル等が挙げられる。
 難溶性薬物を分散させるために用いる分散媒としては、特に限定されるものではないが、水または低級アルコール等の水溶性溶媒が好ましく用いられ、水、中でも、精製水を用いることが好適である。
 難溶性薬物の分散液中の濃度は、特に限定されるものではないが、分散液に対する質量比で、例えば、30%以下であり、20%以下であることが好ましい。
 本発明において、難溶性薬物は、分散液中においてナノ粒子として存在する。
 分散液中の難溶性薬物の粒度分布は、D50が2μm以下であることが好ましく、0.05~1μmであることがより好ましい。
 本発明において、D50とは、粉体をある粒子径で2つに分けたとき、それより大きい側とそれより小さい側が等量となる径を意味し、メディアン径ともいわれる。
 D50は、粒度分布において、累積で50%となる粒子径である。
 本発明においては、D10、D50、およびD90は実施例に記載する方法により測定することができる。
 分散液には、難溶性薬物の分散性を高める観点で、難溶性薬物以外の他の成分として、界面活性剤および/または高分子を含んでいてもよい。
 界面活性剤および/または高分子としては、特に限定されるものではないが、例えば、ポリソルベート80(Tween80)、ラウリル硫酸ナトリウム(SDS)、Poroxamer、ヒドロキシプロピルセルロース(HPC)、ポリビニルピロリドン(PVP)、ヒプロメロース(HPMC)、メチルセルロース(MC)、およびポリビニルアルコール(PVA)等が挙げられる。
 本発明においては、界面活性剤および/または高分子として、Tween80、SDS、またはHPCが好ましく用いられる。
 難溶性薬物のナノ粒子の分散液を調製する場合に、分散媒中に、界面活性剤および/または高分子を添加し、その溶液または懸濁液に対して、難溶性薬物を添加してもよく、分散媒中に、難溶性薬物を添加してから、界面活性剤および/または高分子を添加してもよい。
 難溶性薬物のナノ粒子の分散液が、界面活性剤および/または高分子を含む場合、分散液中における、難溶性薬物と、界面活性剤および/または高分子の質量比は、難溶性薬物/界面活性剤/高分子として、1/1/1~1/0.05/0.05であることが好ましく、1/0.1/0.3であることがより好ましい。
 難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合して、難溶性薬物のナノ粒子と糖または糖アルコールを含む混合液を得る。
 糖または糖アルコールとしては、特に限定されるものではないが、例えば、乳糖、マンニトール、エリスリトール、キシリトール、ソルビトール、およびスクロース等が挙げられる。
 糖または糖アルコールは、D体を用いてもよく、L体を用いてもよい。また、任意の成分比のDL混合物を用いてもよい。
 糖または糖アルコールとしては、再分散性の観点から、エリスリトール、キシリトール、ソルビトール、およびスクロースから選択される少なくとも1種であることが好ましく、エリスリトール、キシリトール、およびスクロースから選択される少なくとも1種であることがより好ましく、スクロースを用いることが好適である。
 本発明において、少なくとも1種の糖または糖アルコールを用いるとは、糖または糖アルコールを1種用いてもよく、2種以上の糖または糖アルコールを用いてもよいことと同義である。
 糖または糖アルコールとして、マンニトール以外の糖または糖アルコールを用いることができ、また、乳糖以外の糖または糖アルコールを本発明においては用いることができる。
 本発明において、例えば、エリスリトール、キシリトール、ソルビトール、およびスクロース等を用いることにより、難溶性薬物に対する糖または糖アルコールの添加量を減らすことができる。
 糖または糖アルコールは、難溶性薬物のナノ粒子の分散液に対して、直接混合してもよく、糖または糖アルコールの溶液として混合してもよく、難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合する方法は、特に限定されない。また、本発明において、難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、混合液を得るにあたり、糖または糖アルコールの溶液に、難溶性薬物のナノ粒子の分散液を混合することを排除するものではない。
 糖または糖アルコールは、糖または糖アルコールの溶液として混合することができるが、糖または糖アルコールの溶媒としては、特に限定されるものではなく、水または低級アルコール等の水溶性溶媒が好ましく用いられ、水、中でも、精製水を用いることが好適である。
 糖または糖アルコールの溶液中の濃度は、特に限定されるものではない。
 混合液における難溶性薬物と糖または糖アルコールの質量比は、難溶性薬物/(糖または糖アルコール)として、1/20~1/3であることが好ましく、1/10~1/3であることがより好ましい。
 糖または糖アルコールの含有量を、難溶性薬物1質量部に対して、20質量部以下とすることにより、錠剤の小型化や薬物の高含量化させることができる。
 混合液中の難溶性薬物と糖または糖アルコールの質量比は、造粒後における難溶性薬物の微粒子の医薬組成物中の質量比と近似する。したがって、混合液中の難溶性薬物と糖または糖アルコールの質量比が、そのまま難溶性薬物の微粒子の医薬組成物中の難溶性薬物と糖または糖アルコールの質量比であってよい。逆に、本発明においては、難溶性薬物の微粒子の医薬組成物中の難溶性薬物と糖または糖アルコールの質量比を、混合液中の難溶性薬物と糖または糖アルコールの質量比としてみなすことができる。
 混合液には、必要な造粒成分を添加してもよい。必要な造粒成分としては、汎用されている公知の造粒成分を使用することができる。
 混合液を造粒することにより、難溶性薬物の微粒子を含有する医薬組成物を製造する。
 難溶性薬物のナノ粒子と、糖または糖アルコールを少なくとも含む混合液の造粒方法は特に限定されるものではなく、公知の造粒方法を採用することができる。
 本発明は、造粒に用いられる難溶性薬物のナノ粒子を含む混合液中に、糖または糖アルコールが共存することにより、造粒過程で、微粒子化された難溶性薬物同士の凝集を抑制し得ることを見出したことによる。
 ナノ粒子として存在する難溶性薬物の比表面積の増大効果が失われることなく、難溶性薬物の医薬組成物を製造することができる。
 本発明において用いられる造粒方法としては、例えば、流動層造粒法および撹拌造粒法等の湿式造粒法が挙げられ、流動層造粒法が好適に用いられる。
 また、難溶性薬物の微粒子を含有する医薬組成物として、オーブン等により混合液の乾燥を行って、水分を除去して、乾燥試料を得てもよい。本発明においては、医薬組成物として、混合液の乾燥を行って、水分を除去して得られる乾燥試料を含む。
 難溶性薬物の微粒子を含有する医薬組成物中の、難溶性薬物の含有量は、特に限定されるものではないが、医薬組成物に対する質量比で、例えば、20%であり、10%以下であることが好ましい。
 本発明の難溶性薬物の微粒子を含有する医薬組成物の製造方法は、湿式粉砕による難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、得られた混合液を造粒する、難溶性薬物の微粒子を含有する医薬組成物の製造方法(ただし、糖または糖アルコールとしてマンニトールは除く。)であることが好ましく、糖または糖アルコール水溶液を添加して難溶性薬物のナノ粒子と混合することが好適であり、また、造粒を流動層造粒により行うことが好適である。本発明においては、医薬組成物は、好適には、顆粒として得られる。顆粒は、流動層造粒によって得られる医薬組成物であってよい。
 本発明の製造方法により得られる医薬組成物は、再分散性に優れた粒子である。
 難溶性薬物のナノ粒子の分散液中で、難溶性薬物と糖または糖アルコールとが共存し、医薬組成物とした場合において、糖または糖アルコールが担体(以下、「MF」と称す。「MF」は、マトリックスフォーマー(Matrix Former)の略称である。)として機能して、MF中に難溶性薬物のナノ粒子が凝集せず、分散したまま存在(固定化)することができるため、再分散性に優れていると考えられる。
 本発明の製造方法により得られる医薬組成物において、再分散性に優れるのは以下の理由によるものと考えることができる。
 糖または糖アルコールの飽和溶液粘度が高いほど、得られる医薬組成物における再分散時の粒子径(D50またはD90)が小さくなり、高い再分散性(すなわち高い凝集抑制効果)を示す傾向が認められた。造粒時において、難溶性薬物のナノ粒子と糖または糖アルコールを含有する混合液は、固形化する直前に、液滴中の糖または糖アルコールが一時的に飽和溶解状態に到達すると考えられる。この飽和溶解状態の液滴の粘度が、液滴中に包含される難溶性薬物のナノ粒子の運動性に影響すると考えられ、糖または糖アルコールの飽和溶液粘度が低いほど、ナノ粒子の運動性が高いため凝集しやすく、糖または糖アルコールの飽和溶液粘度が高いほど運動性が低いため凝集しにくくなったと考えられる。ただし、飽和溶液粘度以外の要因も影響しているとも考えられる。
 飽和溶液粘度が低い糖または糖アルコールを用いる場合には、添加量を増加させることで再分散性が改善し、所望の凝集抑制効果が得られる。
 本発明において得られる医薬組成物は、常法により経口用医薬組成物とすることができる。
 経口医薬組成物としては、経口投与できる製剤であれば、特に限定されるものではないが、中でも、散剤、細粒剤、顆粒剤、錠剤、またはカプセル剤の形状であってよく、錠剤、カプセル剤、または顆粒剤であることが好ましく、錠剤またはカプセル剤として好適に用いられる。
 本発明において得られる医薬組成物、好適には顆粒を必要により他の添加剤等とともにカプセルに充填して、本発明の経口投与用医薬組成物としてのカプセル剤としてもよく、本発明において得られる医薬組成物、好適には顆粒を必要により他の添加剤等とともに混合および/または造粒して本発明の経口投与用医薬組成物としての錠剤としてもよい。
 本発明において得られる顆粒を、そのまま顆粒剤としてもよく、必要により他の添加剤の顆粒と混合した顆粒剤としてもよい。
 添加剤としては、特に限定されるものではないが、例えば、賦形剤、崩壊剤、および滑沢剤等が挙げられる。
 賦形剤としては、例えば、乳糖、白糖、デンプン、結晶セルロース、D-マンニトール、D-ソルビトール、デンプン誘導体(コーンスターチ等)、セルロース誘導体、炭酸塩、リン酸塩、および硫酸塩等が挙げられる。
 崩壊剤としては、例えば、クロスポビドン、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、および低置換度ヒドロキシプロピルセルロース等が挙げられる。
 滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、モノステアリン酸グリセリン、および軽質無水ケイ酸等が挙げられる。
 添加剤として、さらに、例えば、着色剤および香料等を任意に加えてもよい。
 それぞれの添加剤は、各種1種で用いてもよく、2種以上を組み合わせ用いてもよい。
 本発明においては、固形製剤化過程での難溶性薬物のナノ粒子同士の凝集抑制を達成し、得られた医薬組成物を再分散した時の難溶性薬物の粒子径/粒度分布が、固形製剤化前の難溶性薬物のナノ粒子の分散液における難溶性薬物の粒子径/粒度分布と同等レベルを維持することで、ナノ粒子化により得られる溶出性改善などの優れた特性を、固形製剤化した後も発揮可能である。この特性は、カプセル剤や顆粒剤とした場合にも達成される。また、本発明により得られた医薬組成物を錠剤化した後も、医薬組成物の優れた再分散性は維持される。
 本発明を実施例および比較例を挙げて具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
(実施例1)
 プロブコールを予め調製したヒドロキシプロピルセルロース(HPC-L、日本曹達)水溶液に投入し、ホモジナイザー(12,000rpm、2分)で粗分散させて分散液を調製した。得られた分散液を高圧せん断式湿式粉砕機(マイクロフルイダイザー、パウレック)に投入し、処理圧力;207MPa、処理時間;バッチ式処理30回に相当する時間で、湿式粉砕を行って、ナノ粒子を含む分散液(以下、「ナノサスペンジョン」と称す)を調製した。ナノサスペンジョンの組成は、プロブコール/ヒドロキシプロピルセルロース=10質量部/1質量部とした。
 MFとして、スクロースを精製水に添加、撹拌し、MF水溶液として、スクロース水溶液を調製した。
 ナノサスペンジョンと、スクロース水溶液を混合、撹拌し、混合溶液を調製した。混合溶液の組成は、プロブコール/スクロース=1質量部/15質量部とした。
 得られた混合溶液を別の容器に取り分け、オーブンによる乾燥(90℃、60~120分)を行い、水分を除去し、医薬組成物として、乾燥試料を調製した。
(比較例1)
 プロブコールのナノサスペンジョンを別の容器に取り分け、精製水と混合し、撹拌して得られた混合溶液を調製した以外は、実施例1と同様に行って、乾燥試料(MFなし)を調製した。
(比較例2)
 複合型流動層微粒子コーティング・造粒装置(SFP-1型、パウレック)を用いて、装置缶体に核顆粒である結晶セルロース(粒)(CP-102、旭化成ケミカルズ)を投入し、結晶セルロースの核顆粒に対し、実施例1で得られたプロブコールのナノサスペンジョンをスプレーした(吸気風量;40~42m/min、吸気温度;70℃、スプレー液流量;10.3~11.4g/min、スプレーエア流量;25L/min、ローター回転速度;1000~1003min-1)。スプレー後、低速(300min-1)でのローター回転を行いながら、5分間の乾燥を行い、レイヤリング医薬組成物(MFなし)を調製した。
(試験例1)
 ナノ粒子化された薬物の粒度分布(D10、D50、D90)に着目し、固形化前のナノサスペンジョンの薬物の粒度分布に対し、得られた乾燥試料またはレイヤリング医薬組成物を精製水に添加し、得られた再分散液の薬物の粒度分布を比較することで、固形化後の製剤における薬物ナノ粒子の再分散性を評価し、MFを含むことによる凝集抑制効果の評価を行った。
 固形化前のナノサスペンジョン、実施例1および比較例1で得られた乾燥試料の再分散液、および比較例2で得られたレイヤリング医薬組成物の再分散液の粒度分布を、レーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を使用して測定した。分散媒には精製水を使用し、循環式で測定を行った。実施例1および比較例1で得られた乾燥試料については、プロブコール約8mgを含む乾燥試料に対し、精製水5mLを加え、120分間撹拌して、再分散液を調製した。比較例2で得られたレイヤリング医薬組成物については、レイヤリング医薬組成物約160mg(プロブコールとして約8mg相当)に対し、精製水5mLを加え、120分間撹拌して、再分散液を調製した。
 通常の処方/製造法による製剤化と同等である比較例1で得られた乾燥試料および比較例2で得られたレイヤリング医薬組成物を再分散させたときの薬物の粒度分布は、製剤化前のナノサスペンジョンの薬物の粒度分布と比較して、顕著に増大した結果を示し、製剤化前後での薬物同士の凝集が認められた。これに対して、MFとしてスクロースを含む実施例1で得られた乾燥試料は、薬物の凝集の改善が認められた。
表1 実施例1および比較例1~2の処方
Figure JPOXMLDOC01-appb-T000001
表2 実施例1および比較例1~2の粒度分布
Figure JPOXMLDOC01-appb-T000002
(実施例2~7)
 ジルコニア容器に種々の薬物(フェノフィブラート、ニフェジピン、グリベンクラミド、フルルビプロフェン、シンナリジンまたはメフェナム酸)を秤量し、次いで所定の濃度で調製したヒドロキシプロピルセルロース(HPC-SSL、日本曹達)/Tween80(和光純薬)水溶液を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕を行い、その後、精製水を添加、希釈し、ジルコニアボールをスクリーン除去し、ナノサスペンジョンを調製した。ナノサスペンジョンの組成は、薬物/HPC-SSL/Tween80=10質量部/3質量部/1質量部とした。
 いずれのナノサスペンジョンにおいても、薬物の粒度分布は、D50として、約0.20μmであった。
 MFとしてスクロースを精製水に添加、撹拌し、MF水溶液として、スクロース水溶液を調製した。
 種々の薬物のナノサスペンジョンと、スクロース水溶液を混合、撹拌し、混合溶液を調製した。混合溶液の組成は、薬物/スクロース=1質量部/10質量部とした。
 得られた混合溶液を別の容器に取り分け、オーブンによる乾燥(90℃、60~120分)を行い、水分を除去し、医薬組成物として、乾燥試料を調製した。
(比較例3~8)
 種々の薬物のナノサスペンジョンと、スクロース水溶液を混合せず、混合溶液を調製しなかった、すなわち種々の薬物のナノサスペンジョンを別の容器に取り分け、オーブンによる乾燥(90℃、60~120分)のみを行った以外は、それぞれ、実施例2~7と同様に行って、乾燥試料(MFなし)を調製した。
(試験例2)
 固形化前のナノサスペンジョンの薬物の粒度分布に対し、得られた乾燥試料を精製水に添加し、得られた再分散液の薬物の粒度分布を比較することで、固形化後の製剤における薬物ナノ粒子の再分散性を評価し、MFを含むことによる凝集抑制効果の評価を行った。固形化前のナノサスペンジョンの各薬剤におけるD50はいずれも約0.20μmであった。
 再分散時の薬物濃度が20mg/mLとなるように精製水を加え、5回転倒混和して再分散液を調製した以外は、試験例1と同様にして行った。
 いずれの薬物においても、MFを含まない乾燥試料に対し、MFを含む乾燥試料では、薬物の再分散性の向上が認められた。フルルビプロフェンでは特に顕著な凝集抑制効果が示された。また、ニフェジピンやグリベンクラミドでは、MF添加により再分散時のD50が、固形化前のナノサスペンジョンとほぼ同じ約0.20μmとなる結果を得た。
表3 実施例2~7および比較例3~8の処方
Figure JPOXMLDOC01-appb-T000003
表4 実施例2~7および比較例3~8の粒度分布
Figure JPOXMLDOC01-appb-T000004
(実施例8~10)
 薬物として、フェノフィブラート、メフェナム酸またはフルルビプロフェンを用いた以外は、実施例2と同様にして、ナノサスペンジョンを調製した。
 いずれのナノサスペンジョンにおいても、薬物の粒度分布は、D50として、約0.20μmであった。
 MFとしてスクロースと、造粒用結合剤(HPC-SSL)を精製水に添加、撹拌し、MF水溶液として、スクロース水溶液を調製した。
 種々の薬物のナノサスペンジョンと、スクロース水溶液を混合、撹拌し、薬液バインダーを調製した。薬液バインダーの組成は、薬物/スクロース=1質量部/10質量部とした。
 流動層造粒機(FL-Labo、フロイント産業)を用いて、造粒成分(乳糖水和物)に対し、薬液バインダーをスプレーした(吸気風量;0.1~0.2m/min、吸気温度;75~85℃、スプレー液流量;1.2~2.5g/min、スプレーエア圧力;0.15MPa)。スプレー後、乾燥を行い、医薬組成物を調製した。
(比較例9~11)
 種々の薬物のナノサスペンジョンと、造粒用結合剤(HPC-SSL)のみを精製水に添加、撹拌し得られた造粒用結合剤水溶液とを混合し、撹拌し、薬液バインダーとした以外は、それぞれ、実施例8~10と同様に行って、医薬組成物(MFなし)を調製した。
(試験例3)
 固形化前のナノサスペンジョンの薬物の粒度分布に対し、得られた医薬組成物を精製水に添加し、得られた再分散液の薬物の粒度分布と比較することで、固形化後の製剤における薬物ナノ粒子の再分散性を評価し、MFを含むことによる凝集抑制効果の評価を行った。
 医薬組成物の約500mg(薬物として10mg相当)に対し、精製水2mLを加え、5回転倒混和して再分散液を調製した以外は、試験例1と同様にして行った。
 いずれの薬物においても、MFを含まない医薬組成物に対し、MFを含む医薬組成物では、顕著に粒度分布が小さい値を示し、固形製剤化過程での薬物ナノ粒子同士の凝集が抑制され、薬物の再分散性に優れることが示された。メフェナム酸およびフルルビプロフェンでは、MF添加により再分散時のD50が、固形化前のナノスペンジョンとほぼ同じ約0.20μmとなる結果を得られ、非常に高い再分散性が示された。
表5 実施例8~10および比較例9~11の処方
Figure JPOXMLDOC01-appb-T000005
表6 実施例8~10および比較例9~11の粒度分布
Figure JPOXMLDOC01-appb-T000006
(実施例11~15)
 MFとして種々の糖または糖アルコールを用いる以外は、実施例8と同様に行って、医薬組成物を調製した。
(試験例4)
 固形化前のナノサスペンジョンの薬物の粒度分布に対し、得られた医薬組成物を精製水に添加し、得られた再分散液の薬物の粒度分布と比較することで、固形化後の製剤における薬物ナノ粒子の再分散性を評価し、MFの種類による凝集抑制効果の評価を、試験例3と同様にして行った。
 MFとしてD-マンニトール、エリスリトール、キシリトール、ソルビトールまたはスクロースを含む医薬組成物では、MFを含まない医薬組成物(比較例9)と比較して、顕著に粒度分布が小さい値を示し、固形製剤化過程での薬物ナノ粒子同士の凝集が抑制され、薬物の再分散性に優れることが示された。
表7 実施例11~14および実施例8の処方
Figure JPOXMLDOC01-appb-T000007
表8 実施例11~14および実施例8の粒度分布
Figure JPOXMLDOC01-appb-T000008
(実施例15~18)
 MFとして乳糖水和物またはスクロースを用い、薬液バインダーの組成を、乳糖水和物を用いた系では、薬物/MF=1質量部/10質量部または1質量部/20質量部とし、スクロースを用いた系では、薬物/MF=1質量部/1質量部、1質量部/3質量部または1質量部/10質量部とする以外は、実施例8と同様に行って、医薬組成物を調製した。
(試験例5)
 固形化前のナノサスペンジョンの薬物の粒度分布に対し、得られた医薬組成物を精製水に添加し、得られた再分散液の薬物の粒度分布と比較することで、固形化後の製剤における薬物ナノ粒子の再分散性を評価し、MFの添加量による凝集抑制効果の評価を、試験例3と同様にして行った。
 MFとして乳糖水和物を含む医薬組成物では、薬物/MF=1質量部/20質量部の比率において再分散性が改善し、固形製剤化過程における凝集抑制効果が認められた。
 MFとしてスクロースを含む医薬組成物では、MFの添加量を代えても凝集抑制効果が示された。
表9 実施例15~18および実施例8の処方
Figure JPOXMLDOC01-appb-T000009
表10 実施例15~18および実施例8の粒度分布
Figure JPOXMLDOC01-appb-T000010
(実施例19)
 実施例8で得られた医薬組成物と、結晶セルロース(CEORUS PH-702、旭化成ケミカルズ)およびクロスカルメロースナトリウム(Ac-di-sol、FMC)とをガラス瓶内で手混合(100回)した。その後ステアリン酸マグネシウム(Parteck LUB MST、メルク)を添加し、手混合(100回)することで、打錠用顆粒とした。
 打錠用顆粒を1錠当たり220mgとなるように秤量し、8mmφの隅角平形状の打錠杵と簡易錠剤成型機(HANDTAB200、市橋精機)を用いて、3kNの打錠圧で製錠し、錠剤を調製した(実施例19)。
(比較例12)
 HPC-SSL、Tween80およびソルビトールを溶解させた造粒用バインダーを、流動層造粒機(FL-Labo、フロイント産業)を用いて、造粒成分である薬物(フェノフィブラート)の未粉砕原薬および乳糖水和物に対しスプレー添加し、乾燥させることで医薬組成物(通常顆粒)を得た(比較例12)。
(試験例6)
 モデル薬物(フェノフィブラート)原末、医薬組成物(実施例8、比較例9および比較例12)および錠剤(実施例19)について、溶出性を評価した。主薬9mg相当量をとり、試験液に0.05% Tween80水溶液500mLを用い、パドル法により、毎分50回転で試験を行った。溶出試験開始5、10、15、30、60、90分および120分後、溶出液5mLをとり、孔径0.2μm以下のCellulose Acetate製のメンブランフィルターでろ過した。初めのろ液4mLを除き、次のろ液を試料溶液とした。溶出液を採取した後、別に新たな試験液5mLをとり、容器内の試験液に加えた。別に、定量用の主薬を約10mgを精密に量り、水/アセトニトリル混液(1:1)に溶かし、10分間の超音波照射を行ったのち、正確に100mLとした。この液10mLを正確に量り、水/アセトニトリル混液(1:1)を加えて正確に50mLとし、標準溶液とした。試料溶液および標準溶液10μLずつを正確にとり、液体クロマトグラフィーにより試験を行い、それぞれの液のフェノフィブラートのピーク面積から溶出濃度を測定した。試験例数はn=1~2とした。
 薬物原末の溶出性は、120分時点でも1μg/mL以下であり溶出性は非常に低かった。この薬物原末に対し、通常の製剤処方および製造法で得られた医薬組成物(比較例12)では、30分時点で約4μg/mLの溶出性を示し、溶出性の向上が認められた。製剤化により、フェノフィブラートの濡れ性が改善し、溶出性の向上が得られたと考えられる。薬物原末をナノサスペンジョン化し、その後固形製剤化させた医薬組成物の溶出性について、MFを含まない医薬組成物(比較例9)では、通常の製剤処方および製造法で得られた医薬組成物(比較例12)と同等のプロファイルを示した。これらに対し、MFとしてスクロースを用いた医薬組成物(実施例8)については、5分時点での溶解濃度が約6μg/mLに達し、通常の製剤処方および製造法で得られた医薬組成物(比較例12)よりも高い溶出性を示し、薬物をナノ粒子化したことによる溶出性改善効果が示唆された。
 さらに、実施例8で得られた医薬組成物を製錠した錠剤(実施例19)の溶出性については、溶出ベッセル中での錠剤の崩壊時間を律速として、溶出試験初期の溶解濃度が、医薬組成物よりも低い値を示したが、錠剤崩壊に伴い、溶解濃度は上昇し、MFとしてスクロースを用いた錠剤(実施例19)についても、30分時点では医薬組成物(実施例8)と同等の溶出性を示した。
表11 実施例8および19ならびに比較例9および12の処方
Figure JPOXMLDOC01-appb-T000011
表12 実施例8および19ならびに比較例9および12の溶解試験における溶解濃度
Figure JPOXMLDOC01-appb-T000012

Claims (12)

  1.  難溶性薬物のナノ粒子の分散液に、糖または糖アルコールを混合し、得られた混合液を造粒することを含む、難溶性薬物の微粒子を含有する医薬組成物の製造方法。
  2.  糖または糖アルコールが、エリスリトール、キシリトール、ソルビトール、およびスクロースから選択される少なくとも1種である、請求項1に記載の製造方法。
  3.  糖または糖アルコールが、エリスリトール、キシリトール、およびスクロースから選択される少なくとも1種である、請求項1に記載の製造方法。
  4.  難溶性薬物のナノ粒子が、湿式粉砕して得られた難溶性薬物のナノ粒子である、請求項1~3のいずれか1項に記載の製造方法。
  5.  ナノ粒子の粒度分布(D50)が、2μm以下である、請求項1~4のいずれか1項に記載の製造方法。
  6.  造粒が、湿式造粒法である、請求項1~5のいずれか1項に記載の製造方法。
  7.  難溶性薬物のナノ粒子の分散液が、界面活性剤および/または高分子を含有する、請求項1~6のいずれか1項に記載の製造方法。
  8.  糖または糖アルコールの水溶液を混合する、請求項1~7のいずれか1項に記載の製造方法。
  9.  請求項1~8のいずれか1項に記載の製造方法により得られる難溶性薬物の微粒子を含有する医薬組成物。
  10.  顆粒である、請求項9に記載の医薬組成物。
  11.  請求項9又は10に記載の難溶性薬物の微粒子を含有する医薬組成物と、添加剤とを含有する経口用医薬組成物。
  12.  錠剤、カプセル剤、または顆粒剤である、請求項11に記載の経口用医薬組成物。
     
PCT/JP2017/020357 2016-05-31 2017-05-31 難溶性薬物の微粒子を含有する医薬組成物の製造方法 WO2017209216A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17806767.4A EP3466411A4 (en) 2016-05-31 2017-05-31 METHOD FOR PRODUCING A PHARMACEUTICAL COMPOSITION CONTAINING LOW-SOLUBLE DRUG MICROPARTICLES
US16/304,830 US20200315968A1 (en) 2016-05-31 2017-05-31 Method for producing pharmaceutical composition containing fine particles of poorly soluble drug
JP2018520979A JP7219617B2 (ja) 2016-05-31 2017-05-31 難溶性薬物の微粒子を含有する医薬組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109393 2016-05-31
JP2016-109393 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017209216A1 true WO2017209216A1 (ja) 2017-12-07

Family

ID=60477558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020357 WO2017209216A1 (ja) 2016-05-31 2017-05-31 難溶性薬物の微粒子を含有する医薬組成物の製造方法

Country Status (4)

Country Link
US (1) US20200315968A1 (ja)
EP (1) EP3466411A4 (ja)
JP (1) JP7219617B2 (ja)
WO (1) WO2017209216A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208725A1 (ja) * 2018-04-25 2019-10-31 富士フイルム株式会社 医薬組成物及び医薬組成物の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366613A (ja) * 1989-08-04 1991-03-22 Tanabe Seiyaku Co Ltd 難溶性薬物の超微粒子化法
JPH07126154A (ja) 1993-10-29 1995-05-16 Terumo Corp 難水溶性医薬品含有医薬製剤
JP2012528171A (ja) * 2009-05-27 2012-11-12 アルカーメス ファーマ アイルランド リミテッド ナノ粒子活性物質組成物におけるフレーク状凝集の軽減
WO2014119667A1 (ja) * 2013-01-30 2014-08-07 沢井製薬株式会社 カンデサルタンシレキセチル含有医薬組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459206B2 (ja) * 2014-04-25 2019-01-30 ユーハ味覚糖株式会社 高吸収型ユビキノール製剤
JP6348024B2 (ja) * 2014-09-03 2018-06-27 株式会社ファンケル 水分散性の良いシリマリン含有組成物
JP2016084294A (ja) * 2014-10-23 2016-05-19 富士フイルム株式会社 エラグ酸分散組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366613A (ja) * 1989-08-04 1991-03-22 Tanabe Seiyaku Co Ltd 難溶性薬物の超微粒子化法
JPH07126154A (ja) 1993-10-29 1995-05-16 Terumo Corp 難水溶性医薬品含有医薬製剤
JP2012528171A (ja) * 2009-05-27 2012-11-12 アルカーメス ファーマ アイルランド リミテッド ナノ粒子活性物質組成物におけるフレーク状凝集の軽減
WO2014119667A1 (ja) * 2013-01-30 2014-08-07 沢井製薬株式会社 カンデサルタンシレキセチル含有医薬組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CEORUS PH-702", ASAHI KASEI CHEMICALS CORPORATION
"Japanese Pharmacopoeia"
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 49, 2013, pages 565 - 577
INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 443, 2013, pages 209 - 220
See also references of EP3466411A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208725A1 (ja) * 2018-04-25 2019-10-31 富士フイルム株式会社 医薬組成物及び医薬組成物の製造方法
JPWO2019208725A1 (ja) * 2018-04-25 2021-04-22 富士フイルム株式会社 医薬組成物及び医薬組成物の製造方法

Also Published As

Publication number Publication date
EP3466411A1 (en) 2019-04-10
EP3466411A4 (en) 2020-01-15
JPWO2017209216A1 (ja) 2019-03-28
JP7219617B2 (ja) 2023-02-08
US20200315968A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6932746B2 (ja) エンザルタミドの製剤
CN101636150B (zh) 难水溶性医疗用有机化合物微粒子的制造方法
JP4884975B2 (ja) 微粒子含有組成物およびその製造方法
JP2011063611A (ja) シロスタゾール製剤
JP7124107B2 (ja) 多孔性シリカ粒子組成物
BRPI0608113A2 (pt) agregado de celulose porosa, método para produzir o mesmo, e, composição de compactação
KR20120101439A (ko) 프로페인-1-설폰산 {3-〔5-(4-클로로-페닐)-1h-피롤로〔2,3-b〕피리딘-3-카보닐〕-2,4-다이플루오로-페닐}-아마이드 조성물 및 그의 용도
JP4748839B2 (ja) シロスタゾール製剤
BRPI0620185A2 (pt) formulaÇço farmacÊutica, tabletes, e, processo para a preparaÇço de uma formulaÇço farmacÊutica
AU2011244020A1 (en) Method for preparing pharmaceutical compositions intended for oral administration comprising one or more active ingredients and the compositions comprising same
EA019374B1 (ru) Композиция телмисартана и способ ее получения
JP7219617B2 (ja) 難溶性薬物の微粒子を含有する医薬組成物の製造方法
WO1997033571A1 (fr) Preparation d'ecadotril a microdispersion et liberation rapides
WO2019208725A1 (ja) 医薬組成物及び医薬組成物の製造方法
CN104721827A (zh) 一种难溶性抗真菌药物固体分散体及其制备方法
WO2004103346A1 (en) Pharmaceutical compositions of acitretin
KR101730865B1 (ko) 레바프라잔-함유 나노입자를 포함하는 경구투여용 약학 조성물 및 그의 제조방법
JP2005255619A (ja) 昇華性活性成分および多孔質セルロース粒子含有固形製剤組成物
CN102988339A (zh) 一种非诺贝特纳米结晶粉末的制备方法及其应用
CN111214442B (zh) 一种阿哌沙班共微粉化物
JP2002037727A (ja) 脂溶性薬物を配合した速崩性固形製剤及びその製造方法
JP5359061B2 (ja) 製剤用核粒子
WO1999020277A1 (fr) Composition medicamenteuse a dissolution rapide
US20220000784A1 (en) Spherical beads for use in producing pharmaceutically active pellets
JP6451310B2 (ja) 固形医薬組成物及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806767

Country of ref document: EP

Effective date: 20190102