WO2017206692A1 - 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途 - Google Patents

具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途 Download PDF

Info

Publication number
WO2017206692A1
WO2017206692A1 PCT/CN2017/083948 CN2017083948W WO2017206692A1 WO 2017206692 A1 WO2017206692 A1 WO 2017206692A1 CN 2017083948 W CN2017083948 W CN 2017083948W WO 2017206692 A1 WO2017206692 A1 WO 2017206692A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
weight
group
organic amine
salt
Prior art date
Application number
PCT/CN2017/083948
Other languages
English (en)
French (fr)
Inventor
毕戈华
毕玉遂
Original Assignee
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东理工大学 filed Critical 山东理工大学
Priority to KR1020187025917A priority Critical patent/KR20190004693A/ko
Priority to JP2019514163A priority patent/JP6800320B2/ja
Priority to KR1020217006852A priority patent/KR102346512B1/ko
Priority to RU2018146942A priority patent/RU2708457C1/ru
Priority to US16/306,031 priority patent/US20190152899A1/en
Priority to EP17805637.0A priority patent/EP3466924A4/en
Priority to AU2017275049A priority patent/AU2017275049B2/en
Priority to CA3025030A priority patent/CA3025030C/en
Publication of WO2017206692A1 publication Critical patent/WO2017206692A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/04Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reaction of ammonia or amines with olefin oxides or halohydrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/10Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with one amino group and at least two hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/12Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic the nitrogen atom of the amino group being further bound to hydrocarbon groups substituted by hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/26Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring
    • C07C271/28Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring to a carbon atom of a non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/60Preparation of compounds having groups or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/32Compounds having groups or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • C07C53/06Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/14Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • C08G18/165Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22 covered by C08G18/18 and C08G18/24
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1825Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2045Heterocyclic amines; Salts thereof containing condensed heterocyclic rings
    • C08G18/2063Heterocyclic amines; Salts thereof containing condensed heterocyclic rings having two nitrogen atoms in the condensed ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4883Polyethers containing cyclic groups containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6614Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6622Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2115/00Oligomerisation
    • C08G2115/02Oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/50Compositions for coatings applied by spraying at least two streams of reaction components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/204Ternary blends of expanding agents of chemical foaming agent and physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the present invention relates to an organic amine salt compound having an anion as a CO 2 donor and its use as a foaming agent, and more particularly to provide an anion having not only a CO 2 donor but also a hydroxyalkyl group or a hydroxyalkyl group.
  • foam materials such as polyurethane foam or PVC foam or polystyrene foam.
  • polyurethane rigid foam As a new polymer material, polyurethane rigid foam is light in quality, high in strength and has very low thermal conductivity. It is a high-quality thermal insulation material widely used in refrigerating and heat preservation, especially chemical weapons refrigerating and heat preservation, building energy saving, solar energy, Industries such as automobiles and refrigerators, such as refrigerators and freezers.
  • the most important raw material in the production of polyurethane rigid foams is a blowing agent. At present, these blowing agents are all chlorofluorocarbons except cyclopentane. Due to their destruction of the ozone layer, governments have already signed the "Montreal Protocol" international convention to restrict and phase out and ban such products. China is also a signatory to the agreement for production and use.
  • HCFC-141b difluorodichloroethane
  • cyclopentane the second-generation chlorofluorocarbon blowing agent HCFC-141b (monofluorodichloroethane) and cyclopentane.
  • the developed countries such as Europe and the United States have already banned the use of HCFC-141b.
  • the Chinese government will The consumption of HCFC-141b is frozen at the consumption level in 2009 and 2010. In 2015, it eliminated 20% of the consumption, and promised to completely ban production and use until 2025.
  • the developed countries in Europe and America use the third.
  • blowing agents pentafluoropropane (HFC-245fa) and pentafluorobutane (HFC-365) have high GWP (greenhouse effect potential), so Europe and the United States will be banned before 2019 The use of third generation blowing agents.
  • Honeywell has developed a fourth-generation physical foaming agent, chlorotrifluoropropene (LBA), but the product is expensive, and ODP (potential value for damage to the ozone layer) is zero, but GWP More than 1, it is relatively environmentally friendly than the third generation.
  • these physical foaming agents other than cyclopentane still can not meet the environmental requirements, because they contain chlorine and fluorine, they will be eliminated.
  • the prior art discloses direct use of CO 2 as a polyurethane blowing agent, but in view of the escape of CO 2 gas and its poor solubility in the raw material MDI and polyester polyol and/or polyether polyol, the CO 2 gas is The foaming composition is not uniformly dispersed, and the foaming process is not easily controlled.
  • the prior art discloses directly using a small amount of water as a polyurethane blowing agent, but in view of the hydrogen bonding of water molecules and the poor solubility of water in polyester polyols and/or polyether polyols, water molecules are microscopically Drop form exists in foaming In compositions such as polyether polyol components, local overreaction and foaming are caused in the foamed material. If water is used as the blowing agent, more urea bonds are contained in the polyurethane foam, which greatly affects the strength and thermal insulation properties of the foam. In addition, if the amount of water used as a blowing agent is slightly increased, the performance and dimensional stability of the polyurethane foam are significantly affected. If water is the sole blowing agent, the polyurethane foam will suffer from shrinkage, scorching, and insequential heat insulation.
  • the foaming agent for example, water
  • the foaming agent in the prior art cannot be dispersed into the foaming composition at the molecular level, thereby causing uneven distribution of cells and uneven size of the cells, ultimately affecting the foamed material.
  • the object of the present invention is to provide a polyurethane foaming agent and a process for the preparation thereof which are free of chlorofluorocarbons and which do not destroy the atmospheric ozone layer.
  • a foaming material such as a polyurethane foam or a PVC foamed material or a polystyrene foamed material.
  • the novel organic amine salt compound is suitable as a foaming agent. It produces CO 2 gas during the foaming process.
  • the inventors of the present application have unexpectedly found that an anion having a -n valence as a CO 2 donor is easily decomposed to produce CO 2 gas at an elevated temperature, even when foaming is carried out at a lower temperature, as described below.
  • the anion having a -n valence as a CO 2 donor can be activated by an NCO group contained in an isocyanate monomer such as MDI and TDI to rapidly release CO 2 gas.
  • the foaming agent can be sufficiently dissolved in the foaming raw material (such as polyether polyol or polyester polyol) or has good mutual solubility with the foaming raw material, and the present invention
  • the blowing agent can be uniformly dispersed in the foaming composition to uniformly foam, the distribution of cells in the polyurethane foam is relatively uniform, and the size of the cells is relatively uniform.
  • the blowing agent compound of the present invention contains a hydroxyl group and/or an amino group
  • the decomposition product produced after the decomposition of the blowing agent releases CO 2 still contains a hydroxyl group and/or an amino group
  • the molecular weight of the decomposition product is low, they are Suitable as a chain extender or crosslinker to react with isocyanate to form a polymer, and when the molecular weight of the decomposition products is relatively high (for example, the number average molecular weight is 100-3000), they can replace a part of the polyester polyol in the foaming composition.
  • Alcohol or polyether polyols for example, based on prior art foaming compositions, suitably reduce the amount of polyester polyol or polyether polyol.
  • Those skilled in the art can calculate the amount of the blowing agent of the present invention and the polyester polyol and/or poly according to the average hydroxyl value of the blowing agent of the present invention and the average hydroxyl value of the polyester polyol or the polyether polyol.
  • the amount of ether polyol used in particular, in the process of foaming using a polyol and a polyisocyanate, if the organic amine salt compound of the present invention is used as a foaming agent, the organic amine salt compound serves both as a "foaming point" and as a "chain extension point". "and / or "crosslinking point” significantly enhances the mechanical strength and mechanical strength of the cells, and the obtained polyurethane foam has good dimensional stability. Therefore, the present invention has been completed based on the above three aspects.
  • an anion as a CO 2 donor means an anion capable of decomposing to release CO 2 upon heating or during foaming.
  • an organic amine salt compound or an organic amine salt compound mixture having the following general formula (I):
  • a n- is one or more selected from the group consisting of:
  • R a is a C 1 -C 26 hydrocarbon group optionally substituted by a hydroxy group or an amino group or a halogen (preferably a C 1 -C 10 hydrocarbon group, more preferably C a 1- C 3 hydrocarbyl group, a C 1 -C 26 acyl group (preferably a C 1 -C 10 acyl group, more preferably a C 1 -C 2 acyl group);
  • R b is a C 1 -C 16 alkylene group optionally substituted by a hydroxy group or an amino group or a halogen (preferably a C 2 -C 10 alkylene group, more preferably a C 2 -C 6 alkylene group such as -CH 2 -CH 2 -), R b ' is a trivalent C 2 -C 20 hydrocarbyl group optionally substituted by a hydroxy group or an amino group or a halogen (more preferably a trivalent C 3 -C 15 alkylene group such as -CH 2 -CH(CH 2 -)- CH 2 -etc);
  • R' is H, a C 1 -C 26 hydrocarbon group optionally substituted by a hydroxy group or an amino group or a halogen (preferably a C 1 -C 10 hydrocarbon group, more preferably a C 1 -C 3 hydrocarbon group), a C 1 -C 26 acyl group ( Preferred is a C 1 -C 10 acyl group, more preferably a C 1 -C 7 acyl group; or
  • R c is a C 1 -C 26 alkylene group (preferably a C 2 -C 10 alkylene group, more preferably a C 2 -C 6 alkylene group) optionally substituted by a hydroxy group or an amino group or a halogen;
  • R 1 , R 2 , R 3 or R 4 are independently selected from: H, R, a C 1 -C 7 aliphatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen (preferably a C 1 -C 4 alkyl group) a C 3 -C 7 cycloaliphatic hydrocarbon group (such as cyclobutyl or cyclohexyl) optionally substituted by a hydroxy group or an amino group or a halogen, or a C 6 -C 10 aromatic hydrocarbon group optionally substituted by a hydroxy group or an amino group or a halogen group (preferably phenyl or methylphenyl);
  • R 1 , R 2 , R 3 or R 4 is an R group (ie, an NR group) bonded to the N atom, or the formula ( The compound of I) has at least one R group bonded to N (ie, at least one NR group);
  • R group is selected from one or more of the following groups:
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, optionally a C 1 -C 7 aliphatic hydrocarbon group substituted with a hydroxyl group or an amino group or a halogen, a C 3 -C 7 cycloaliphatic hydrocarbon group optionally substituted by a hydroxyl group or an amino group or a halogen (such as a cyclobutyl group or a cyclohexyl group), or, optionally, A C 6 -C 10 aromatic hydrocarbon group (such as phenyl or methylphenyl) substituted with a hydroxyl group or an amino group or
  • the compound of the formula (I) has at least one of the above R groups.
  • the R group is the same or different from the C 1 -C 7 aliphatic hydrocarbon group (preferably C 1 -C 4 alkyl) optionally substituted by hydroxy or amino or halogen, optionally substituted by hydroxy or amino or halogen a C 3 -C 7 cycloaliphatic hydrocarbon group (such as cyclobutyl or cyclohexyl), or a C 6 -C 10 aromatic hydrocarbon group (preferably phenyl or methylphenyl) optionally substituted by a hydroxy group or an amino group or a halogen.
  • C 1 -C 7 aliphatic hydrocarbon group preferably C 1 -C 4 alkyl
  • a C 3 -C 7 cycloaliphatic hydrocarbon group such as cyclobutyl or cyclohexyl
  • a C 6 -C 10 aromatic hydrocarbon group preferably phenyl or methylphenyl
  • the - + NR 3 R 4 H group means a -NR 3 R 4+ H group
  • the - + NR 3 H- group means a -NR 3 ( + H)- group
  • the organic amine B has ⁇ m (e.g., m to m + 3) primary, secondary, and/or tertiary amine groups, and optionally has a quaternary ammonium group.
  • CH 3 CH 2 + NH 2 H ie, ethylamine cation, CH 3 CH 2 NH 2 + H
  • B 1+ CH 3 CH 2 + NH 2 H or CH 3 CH 2 NH 2 + H
  • m 1
  • B ethylamine.
  • the primary, secondary and/or tertiary amine group is selected from the group consisting of a -NR 3 R 4 group and a -NR 3 - group.
  • the organic amine compound B is an organic amine having from m to m + 3 primary, secondary and/or tertiary amine groups, and optionally having a quaternary ammonium group.
  • the organic amine compound B has 2 to 200 carbon atoms (preferably 3 to 50, more preferably 3-20, more preferably 3-12) organic amine compounds. Typically, it has the R groups described above.
  • an organic amine compound B or an organic amine compound having ⁇ m (for example, m to m + 3) primary, secondary and/or tertiary amine groups and optionally having a quaternary ammonium group B, combined with m + H ions, becomes B m+ .
  • a n- is a combination or mixture of two or more of the above anions selected from (a) to (h), and/or B m+ is a combination or mixture of two or more of the above organic amine cations,
  • the compound of formula (I) is a mixture.
  • p B m+ may be the same or different, or p B may be the same or different.
  • p B m+ are different, or p B are different.
  • the invention therefore also provides a blowing agent comprising an organic amine salt compound or an organic amine salt compound mixture having the general formula (I) or a mixture of an organic amine salt compound or an organic amine salt compound having the general formula (I) composition.
  • a n- is one or more selected from the group consisting of: (a), (c), (d), (e), (f); or (h) .
  • a single A n- having a valence of +2 or +3 can form a salt with one or more B m+ , respectively.
  • a single organic amine ion B m+ having a plurality of -N + R 3 R 4 H groups and/or -N + R 3 H- groups can form a salt with one or more A n- .
  • the decomposition temperature is generally above 100 ° C, for example the melting point of ammonium formate is as high as 116 ° C.
  • ammonium formate or formic acid organic amine salts are used as polyurethane blowing agents, they are found to become unstable upon exposure to isocyanates such as MDI because ammonium formate or formic acid organic amine salts react with NCO groups. An unstable anhydride group is formed, and then the carbon dioxide is quickly released, and carbon monoxide is also released.
  • R a O-COO - is an anion or acid radical formed from a hydrocarbyl hydrocarbon ester such as methyl hydrogen carbonate or hydrogencarbonate.
  • (f) - OOC-N(R 1 )-R b -N(R 2 )-COO - or R b '(-N(R 1 )-COO - ) 3 are respectively derived from an alkylene bis(carbamic acid) Or an anion or acid radical formed by an alkylene tris(carbamic acid).
  • (h) - OOC-OR c O-COO - is an anion or an acid radical formed from an alkylene dicarbonate such as ammonium ethylene dicarbonate NH 4 OOC-OCH 2 CH 2 O-COONH 4 .
  • R 1 , R 2 , R 3 and R 4 are independently selected from: H, R, a C 1 -C 4 aliphatic hydrocarbon group optionally substituted by a hydroxy group or an amino group or a halogen (for example methyl or ethyl or propyl), A cyclobutyl or cyclohexyl group optionally substituted by a hydroxy group or an amino group or a halogen, or a phenyl group or a methylphenyl group optionally substituted by a hydroxy group or an amino group or a halogen.
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, a C 1 -C 3 aliphatic hydrocarbon group optionally substituted by hydroxy or amino or halogen, optionally substituted by hydroxy or amino or halogen. a C 3 -C 6 cycloaliphatic hydrocarbon group, or a C 6 -C 7 aromatic hydrocarbon group (such as phenyl or methylphenyl) optionally substituted by a hydroxy group or an amino group or a halogen.
  • R 1a , R 2a , R 3a or R 4a are each independently selected from: H, methyl or ethyl optionally substituted by hydroxy or amino or halogen, or optionally substituted by hydroxy or amino or halogen. Or a isopropyl group, a cyclohexyl group optionally substituted by a hydroxy group or an amino group or a halogen, or a phenyl group or a methylphenyl group optionally substituted by a hydroxy group or an amino group or a halogen.
  • R 1a , R 2a , R 3a or R 4a are each independently selected from the group consisting of: H, methyl, chloromethyl, bromomethyl, ethyl, cyclohexyl, or phenyl.
  • the organic amine salt compound of the formula (I) contains an alcohol amine compound or an alcohol amine compound residue. That is, the organic amine salt compound of the formula (I) is one or more organic amine salt compounds having an anion A n- as a CO 2 donor and containing an alcohol amine compound or an alcohol amine compound residue.
  • a n- is selected from one or more of the following anions:
  • R' is H, a C 1 -C 26 hydrocarbyl group optionally substituted by a hydroxy or amino group or a halogen (preferably a C 1 -C 10 hydrocarbyl group, more preferably a methyl group, an ethyl group, a propyl group), C 1 -C 26 An acyl group (preferably a C 1 -C 10 acyl group, more preferably a formyl group, an acetyl group or a propionyl group).
  • an amino group and/or an amine group in the ammonia or organic amine compound B (i.e., -N + R 3 R 4 H group and/or -N + R 3 H- group) 50-100% of the is neutralized by the anion A n- , that is, the salt formation ratio of the amino group and/or the amine group is 50-100%.
  • 65-100% of the amino and/or amine groups in the ammonia or organic amine compound B are neutralized by the anion A n- .
  • 75-100% of the amino group and/or the amine group in the ammonia or organic amine compound B is neutralized by the anion A n- .
  • 75-90% of the amino and/or amine groups in the ammonia or organic amine compound B are neutralized by the anion A n- .
  • the pH of the compound of the formula (I) is generally from 7.5 to 10, preferably from pH 7.8 to 9.5, more preferably from pH 8 to 9.
  • amino or/or amine groups in ammonia or organic amine compound B ie, -N + R 3 R 4 H groups and/or -N + R 3 H- groups
  • anion A At the time of n- neutralization, the compound of the formula (1) is relatively stable at this time.
  • the organic amine compound B having an NR group is formed by being substituted with at least one of the above R groups on at least one N atom of the organic amine compound (M).
  • R 1 and R 2 are H, more preferably R 1 is H and R 2 is an H or R group (for example hydroxyethyl or hydroxypropyl or hydroxychloropropyl).
  • the organic amine compound (M) that is, the organic amine compound (M) having at least one NH (i.e., NH covalent bond or H having at least one N bond, is an active hydrogen), is selected from the group consisting of Organic amine compounds in the following:
  • C 1 -C 24 hydrocarbyl amines such as methylamine, ethylamine, propylamine, butylamine, amylamine, hexylamine, heptylamine, octylamine, mercaptoamine, mercaptoamine, Dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, tetracosylamine, unsubstituted or substituted (eg halogen substituted) aniline, not a substituted or substituted (e.g., halogen substituted) benzylamine, cyclohexylamine, methylcyclohexylamine, cyclohexylmethylamine, N-methylcyclohexylamine or N-methylbenzylamine, and the like;
  • primary amines such as methylamine, ethylamine, propylamine, butylamine
  • Di(C 1 -C 16 hydrocarbyl)amines (secondary amines, ie monoamines having a secondary amine group), such as dimethylamine, diethylamine, methylethylamine, dipropylamine, A Propylamine, ethylpropylamine, dibutylamine, ethylbutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, dinonylamine , bis(dodecyl)amine, di(tetradecyl)amine, di(hexadecyl)amine, di(octadecyl)amine, di(octadecyl)amine or di (twenty Tetraalkyl)amine, etc.;
  • a C 2 -C 14 alkylene diamine optionally substituted with a hydroxy group on a C 2 -C 14 alkylene group (wherein the two amine groups are each independently a primary or secondary amino group), such as ethylenediamine, N -methylethylenediamine, N,N'-dimethylethylenediamine, 1,3-propanediamine, N-methyl, N'ethyl-1,3-propanediamine, butanediamine (including Various isomers such as 1, 2 or 1,3- or 1,4-butanediamine), pentamethylenediamine (including various isomers), hexamethylenediamine (including various isomers), 3 - hydroxymethyl-hexanediamine, heptanediamine (including various isomers), 3-hydroxymethyl-heptanediamine, octanediamine (including various isomers), 3,5-dihydroxyoctyl Diamine, decanediamine (including various isomers), decanediamine (including various isomers),
  • a C 4 -C 16 polyalkylene polyamine optionally substituted with a hydroxy group on a C 2 -C 14 alkylene group, such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, five Ethylene hexamine, dipropylene triamine, tripropylene tetramine, tetrapropylene pentamine, pentapropylene hexamine, dibutylene triamine, tributylene tetramine, tetrabutyl pentamine , triethylenediamine, dimethyldiethyltriamine, tris(2-hydroxy-1,3-propylene)tetramine or tetrakis(2-hydroxy-1,3-propylene)pentamine; Wait;
  • organic triamines having four primary amino groups or optionally substituted C 5 -C 18 hydroxy four organic amines such as 1,3 ,5-triamino-cyclohexane, 1,3,5-tris(aminoethyl)-cyclohexane, 1,3,5-tris(aminopropyl)-1,3,5-hexahydrotriazine , 1,3,5-tris(methylaminopropyl)-1,3,5-hexahydrotriazine, or, melamine, pentaerythritol, etc.; or
  • C 2 -C 10 alcohol amines such as monoethanolamine, diethanolamine, monopropanolamine, dipropanolamine, monoisopropanolamine, diisopropanolamine, monobutanolamine, or dibutanolamine, etc. .
  • (M) is selected from the group consisting of:
  • Ethylenediamine N-methyl-ethylenediamine, N,N'-dimethylethylenediamine, 1,3-propanediamine, N-methyl, N'ethyl-1,3-propanediamine , butanediamine (including various isomers such as 1, 2 or 1,3- or 1,4-butanediamine), pentamethylenediamine (including various isomers), hexamethylenediamine (including various Isomer), 3-hydroxymethyl-hexanediamine, p or m-phenylenediamine, 3,3'-dichloro-4,4'-diphenylmethanediamine (MOCA), or piperazine;
  • MOCA 3,3'-dichloro-4,4'-diphenylmethanediamine
  • Diethylenetriamine, triethylenetetramine, or tetraethylenepentamine Diethylenetriamine, triethylenetetramine, or tetraethylenepentamine
  • Monoethanolamine monopropanolamine, monoisopropanolamine, or monobutanolamine.
  • B m+ is m - (for example 2-10, such as 3, 4, 5) -N + R 3 R 4 H in addition to the +1 valent ammonium ion ( + NH 4 )
  • the group and/or the organic amine ion of the -N + R 3 H- group ie, B m+ is not a +1 valent ammonium ion ( + NH 4 ), ie, when B is not ammonia
  • the compound B is
  • the above organic amine compound (M) is used as a starting material or as an initiator with an epoxide such as ethylene oxide, propylene oxide, epichlorohydrin, epibromohydrin, butylene oxide, or epoxy chloride.
  • epoxide such as ethylene oxide, propylene oxide, epichlorohydrin, epibromohydrin, butylene oxide, or epoxy chloride.
  • a n- is any one of (a), (b), (c), (d), (e), (f) or (h) and B m+ is m (for example 2 10, such as 3, 4, 5) -N + R 3 R 4 H groups and / or -N + R 3 H- groups of organic amine ions (ie, B m + is not +1 valence ammonium Ionic ( + NH 4 ), ie when B is not ammonia), the compound (I) is in a solvent (preferably a protic solvent or an alcohol solvent such as water), optionally in a catalyst (eg ammonia, or In the presence of an organic amine such as ethylamine, diethylamine or triethylamine, selected from (a), (b), (c), (d), (e), (f) or (h) An ammonium salt formed by one or more anions with ammonia (for example, ammonium carbamate, hydroxyalkyl or hydroxyalkyl alkoxy substitute
  • the solvent described herein is selected from one or more of the following, but is not limited to: methanol, ethanol, ethylene glycol, ethylene glycol, polyethylene glycol having a molecular weight of less than 400, and polypropylene glycol having a molecular weight of less than 300. , glycerin, glycerol formate or water.
  • a n- is (a) R 1 R 2 N-COO - anion and B m+ is a +1 valent ammonium ion ( + NH 4 )
  • the compound (I) is R 1 R 2 N-COO - + NH 4 , wherein one or both of R 1 or R 2 is the above R group.
  • R 1 R 2 N-COO - + NH 4 already have an R group and, therefore, can also be used directly as a compound of the formula (I) or as a blowing agent, of course, these compounds R 1 R 2 N-COO - + NH 4 may also be further reacted with the above epoxide to obtain a compound of the formula (I) having an alcohol amine compound or an alcohol amine residue in the cationic portion.
  • n- is (g) anion and B m+ is having m (for example 2-10, such as 3, 4, 5)-N + R 3 R 4 H groups and/or -N + R
  • the organic amine ion of the 3 H-group (ie, B m+ is not a +1 valent ammonium ion ( + NH 4 ), ie, when B is not ammonia)
  • the compound (I) is passed through the orthoformate compound In a solvent, preferably a protic solvent, or an alcoholic solvent, such as water, optionally in the presence of a catalyst such as aqueous ammonia, or an organic amine such as ethylamine, diethylamine or triethylamine, and It is formed by carrying out a hydrolysis reaction in the presence of an organic amine M of an organic alcohol amine or a compound B which is an organic alcohol amine having at least one of the above NR groups and water.
  • a solvent preferably a protic solvent, or an
  • the water is present in an amount sufficient to hydrolyze at least two ester groups of the orthoformate compound, more preferably, the water is present in an amount sufficient to hydrolyze the three ester groups of the orthoformate compound.
  • the hydrolysis catalyst of orthoformate is generally a basic compound, preferably an organic amine.
  • the organic amine compound B having at least one of the above NR groups is an ammonia or an organic amine compound (M) as described above and an epoxy as described above Compounds (such as ethylene oxide, propylene oxide, epichlorohydrin, epibromohydrin, butylene oxide (including various isomers such as 1,2-butylene oxide, 2,3-epoxy) Butane), epoxy chlorobutane (including various isomers such as 1,2-epoxy-4-chlorobutane, 2,3-epoxy-1-chlorobutane) or styrene oxide, and Prepared by carrying out a reaction of a mixture of any two or more of them.
  • M organic amine compound
  • the average value of q (i.e., the degree of polymerization of the epoxide) is as defined above.
  • the average value of q can be selected according to the specific application of the polyurethane foam.
  • a thermally insulating polyurethane foam in particular a closed cell polyurethane foam, from the foaming efficiency, the odor of the blowing agent, the thermal insulation properties and the cell size stability, and the size of the finished polyurethane foam.
  • the orthoformate compound is one or more selected from the group consisting of the original tris(C 1 -C 8 )alkyl esters, preferably the original tris(C 1 -C 7 )alkyl esters.
  • trimethyl orthoformate, triethyl orthoformate, methyldiethyl orthoformate, tripropyl orthoformate, methyldipropyl orthoformate, tributyl orthoformate, triphenyl orthoformate Ester, tribenzyl orthoformate, diethyl acetyl orthoformate, ethyl acetyl orthoformate, tri(ethylene glycol) orthoformate, tris(diethylene glycol) orthoformate, original Tris(triethylene glycol) formate, tris(tetraethylene glycol) orthoformate, tris(polyethylene glycol (degree of polymerization 5-10)) ester, tris(propylene glycol) orthoformate, orthoformic acid Tris(dipropy
  • the solvent used in the hydrolysis of the orthoformate is selected from one or more of the following, but is not limited to: methanol, ethanol, ethylene glycol, ethylene glycol, polyethylene glycol having a molecular weight of less than 400.
  • the compound or compound mixture of the formula (I) has a water content of from 0 to 40% by weight, preferably from 5 to 35% by weight, more preferably from 10 to 30% by weight, still more preferably from 15 to 25% by weight.
  • the compound or mixture of compounds of the formula (I) contains from 25 to 95% by weight, preferably from 27 to 90% by weight, preferably from 30 to 85% by weight, preferably from 40 to 80% by weight, more preferably from 45 to 75% by weight.
  • a salt of an alcohol amine for example monoethanolamine and/or monopropanolamine
  • a salt of a glycolamine for example diethanolamine and/or dipropanolamine
  • the compound or mixture of compounds of formula (I) contains from 15 to 90% by weight, preferably from 17 to 88% by weight, preferably from 20 to 85% by weight, preferably 25-80% by weight, more preferably 30-70% by weight of monoolamine (for example monoethanolamine and/or monopropanolamine) and two Alcoholamines (for example diethanolamine and/or dipropanolamine) (ie the sum of the two: monoalcoholamine + glycolamine), based on the total weight of the compound of formula (I) or a mixture of compounds.
  • the present invention also provides a process for preparing an organic amine salt compound having an anion as a CO 2 donor, or wherein A n- is (a), (b), (c) a method of the compound of the above formula (I), wherein the anion of any one or more of (d), (e), (f) or (h) comprises a first raw material and a second raw material
  • the reaction is carried out in a solvent, preferably a protic solvent or an alcohol solvent such as water, optionally in the presence of a catalyst such as aqueous ammonia or an organic amine such as ethylamine, diethylamine or triethylamine.
  • the first starting material is one or more selected from the group consisting of:
  • HO-COONH 4 ie ammonium bicarbonate
  • R a O-COONH 4 or an organic amine compound (M) salt of R a O-COOH
  • the second starting material is one or more selected from the group consisting of:
  • R 1 , R 2 , R a , R b , R b ', R c are as defined above
  • R 1a , R 2a , R 3a or R 4a are as defined above
  • the organic amine compound (M) is as above Defined.
  • the molar ratio of the first raw material to the second raw material is generally 1:1.3-5. It is preferably 1:1.5 to 4.5, more preferably 1:1.6-4, for example 1:1.5 to 1:3.
  • the first starting material is one or more selected from the group consisting of:
  • + MH means a cation formed by combining an organic amine M with one or more hydrogen ions (H + ).
  • the second starting material is one or more selected from the group consisting of:
  • the present invention also provides for the preparation of an anion wherein A n- is any one or more of (a), (b), (c), (d), (e), (f) or (h)
  • a process for a compound of formula (I), which process comprises: in a solvent, preferably a protic solvent, optionally in a catalyst (for example aqueous ammonia, or an organic amine such as ethylamine, diethylamine or triethylamine)
  • a catalyst for example aqueous ammonia, or an organic amine such as ethylamine, diethylamine or triethylamine
  • an ammonium salt formed from one or more anions selected from (a), (b), (c), (d), (e), (f) or (h) with ammonia eg Ammonium carbamate, ammonium carbamate, ammonium carbonate, ammonium formate or ammonium hydrogencarbonate substituted with a hydroxyalkyl or hydroxyalkyl
  • a method comprising two steps of pre-addition and post-neutralization comprises: first, ammonia or one or more of the above An organic amine compound (M), and the above epoxide as a second raw material (for example, ethylene oxide, propylene oxide, epichlorohydrin, epibromohydrin, butylene oxide (including various isomeric Such as 1,2-butylene oxide, 2,3-butylene oxide, epoxy chlorobutane (including various isomers such as 1,2-epoxy-4-chlorobutane, 2,3 -epoxy-1-chlorobutane) or a styrene oxide, and a mixture of any two or more of them, and then reacting the resulting compound with the corresponding acid of the precursor belonging to the anion A n- (ie, One or more acid compounds (for example, CO2, carbamic acid,
  • the present invention also provides a method of preparing an orthoformic acid organic amine salt compound having an anion as a CO 2 donor, or preparing an anion wherein A n- is (g) a method of a compound of formula (I), the method comprising: a orthoformate compound in a solvent, preferably a protic solvent or an alcohol solvent, such as water, optionally in a catalyst (eg, aqueous ammonia, or an organic amine, Hydrolysis in the presence of, for example, ethylamine, diethylamine or triethylamine, and in the presence of an organic amine M belonging to an organic alcohol amine or a compound B belonging to an organic alcohol amine having at least one of the above NR groups and water reaction.
  • the water is present in an amount sufficient to hydrolyze at least two ester groups of the orthoformate compound, more preferably, the water is present in an amount sufficient to hydrolyze the three ester groups of the orthoformate
  • the compound B belonging to the organic amine having at least one of the above-mentioned NR groups is derived from ammonia or the above-described organic amine compound (M) and an epoxide (for example, ethylene oxide, propylene oxide, epichlorohydrin, epibromopropane, butylene oxide (including various isomers such as 1,2-butylene oxide, 2,3-butylene oxide) , epoxy chlorobutane (including various isomers such as 1,2-epoxy-4-chlorobutane, 2,3-epoxy-1-chlorobutane) or styrene oxide, and any of them Two or more mixtures are prepared by carrying out the reaction.
  • M organic amine compound
  • an epoxide for example, ethylene oxide, propylene oxide, epichlorohydrin, epibromopropane, butylene oxide (including various isomers such as 1,2-butylene oxide, 2,3-butylene oxide) , epoxy chlorobutane
  • q is the average value (i.e., the degree of polymerization of the epoxide) as defined above.
  • the molar ratio of the ammonia or organic amine compound (M) to the epoxide is preferably from 1.3 to 7, more preferably from 1.5 to 4. More preferably, it is 1.5-3.
  • the compound of the formula (I) wherein A n- is (g) is suitable as a blowing agent for the preparation of a heat-insulating polyurethane foam.
  • the present invention also provides a process for producing a compound of the formula (I) wherein A n- is an anion represented by (g), the method comprising: ammonia or one or more of the above organic amine compounds (M), Reacting with an epoxide as a second starting material to prepare an organic amine compound B having at least one of the above NR groups (i.e., at least one N-bonded R group); then, the orthoformate compound is in a solvent (preferably a protic solvent or an alcohol solvent such as water), optionally in the presence of a catalyst such as aqueous ammonia or an organic amine such as ethylamine, diethylamine or triethylamine, and in the form of an organic alcohol amine
  • a solvent preferably a protic solvent or an alcohol solvent such as water
  • a catalyst such as aqueous ammonia or an organic amine such as ethylamine, diethylamine or triethylamine
  • the hydrolysis reaction is carried
  • the orthoformate compound is one or more selected from the group consisting of the original tris(C 1 -C 8 )alkyl esters, preferably the original tris(C 1 -C 7 )alkyl esters.
  • the original tris(C 1 -C 8 )alkyl esters preferably the original tris(C 1 -C 7 )alkyl esters.
  • the R group in the orthoformate conforms to the characteristics of (1a), (2a) or (3a).
  • the solvent is selected from one or more of the following: methanol, ethanol, ethylene glycol, propylene glycol, polyethylene glycol having a molecular weight of less than 400, polypropylene glycol having a molecular weight of less than 300, formamide, glycerin Glycerol formate Ester or water, or DMF.
  • an organic amine salt compound or compound mixture having an anion as a CO 2 donor obtained by the methods of the second and third embodiments described above.
  • the compound or mixture of compounds contains from 25 to 95% by weight, preferably from 27 to 90% by weight, preferably from 30 to 85% by weight, preferably from 40 to 80% by weight, more preferably from 45 to 75% by weight, of a monoalcoholamine (for example monoethanolamine and / Or a salt of a monopropanolamine and a salt of a glycolamine such as diethanolamine and/or dipropanolamine (i.e., the sum of the weights of the two salts) based on the total weight of the compound or mixture of compounds.
  • a monoalcoholamine for example monoethanolamine and / Or a salt of a monopropanolamine and a salt of a glycolamine such as diethanolamine and/or dipropanolamine (i.e., the sum of the weights of the two salts) based on the total weight
  • the compound or mixture of the compounds contains from 15 to 90% by weight, preferably from 17 to 88% by weight, preferably from 20 to 85% by weight, preferably from 25 to 80% by weight, more preferably from 30 to 70% by weight, of the monoolamine (for example monoethanolamine) And/or monopropanolamine) and a glycolamine (for example diethanolamine and/or dipropanolamine) (ie the sum of the weights of the two alcoholamines), based on the total weight of the compound or mixture of compounds.
  • the monoolamine for example monoethanolamine
  • monopropanolamine for example diethanolamine and/or dipropanolamine
  • a glycolamine for example diethanolamine and/or dipropanolamine
  • an organic amine salt compound having the formula (I), and an organic having an anion as a CO 2 donor obtained by the methods of the second and third embodiments described above
  • an amine salt compound as a foaming agent, especially as a polyurethane foaming agent, a polystyrene foaming agent or a polyvinyl chloride foaming agent.
  • foaming agent especially as a polyurethane foaming agent, a polystyrene foaming agent or a polyvinyl chloride foaming agent.
  • the present invention provides the use of the foaming agent of the present invention as a polystyrene foaming agent or a polyvinyl chloride foaming agent, wherein A n- is one or more selected from the group consisting of:
  • R 1 R 2 N-COO - wherein R 1 and R 2 are each independently hydrogen, methyl, ethyl, H(OCH 2 CH 2 ) q -, H(OCH 2 CH(CH 3 )) q -, H(OCH(CH 3 )CH 2 ) q -, H(OCH 2 CH(C 6 H 5 )) q -, H(OCH(C 6 H 5 )CH 2 ) q -, H(OCH 2 CH(CH 2 Cl)) q -, H(OCH(CH 2 Cl)CH 2 ) q - or H(OCH 2 CH(CBr 3 )) q -;
  • ammonium formate melting point 116 ° C
  • formic acid organic amine M salt it is generally considered that they are not suitable for polyurethane foaming.
  • the inventors of the present application have unexpectedly discovered through extensive research work that when ammonium formate (melting point 116 ° C) or formic acid organic amine M salt is contacted with an isocyanate group, it can react with an NCO group to form an unstable acid anhydride, and then rapidly Divided carbon dioxide gas and carbon monoxide.
  • ammonium formate and an epoxide when ammonium formate and an epoxide are used to prepare a compound of the formula (I), it is preferred to first react with formic acid and aqueous ammonia to obtain an aqueous solution of ammonium formate, and then add a small amount of an organic amine (for example, methylamine, two Methylamine or trimethylamine, ethylamine or diethylamine), dehydrated by heating or concentrated under reduced pressure or concentrated in vacuo (for example, such that the water content is from 7 to 15% by weight, for example, about 10% by weight), and then epoxide is introduced ( The reaction is carried out as ethylene oxide and/or propylene oxide to obtain a formic acid amine salt (I).
  • an organic amine for example, methylamine, two Methylamine or trimethylamine, ethylamine or diethylamine
  • dehydrated by heating or concentrated under reduced pressure or concentrated in vacuo for example, such that the water
  • a catalyst such as methylamine, dimethylamine, an alcohol amine or other amine catalyst may be used.
  • Bimetallic catalysts classes, or pressurized heating.
  • At least one alcohol amine compound (which is an organic amine compound (M) having at least one N-H) selected from the following alcohol amine compounds:
  • C 2 -C 12 alcohol amines such as monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, tripropanolamine, monoisopropanolamine, diisopropanolamine, triisopropanol Amine, monobutanolamine, dibutanolamine, or tributylamineamine,
  • foaming agent especially as a polyurethane foaming agent, a polystyrene foaming agent or a polyvinyl chloride foaming agent.
  • foaming agent especially as a polyurethane foaming agent, a polystyrene foaming agent or a polyvinyl chloride foaming agent.
  • a polyurethane foaming agent or used in a polyurethane foaming composition are not preferred because it or their pH is generally below 8, even below 7.5, and even below 7.1.
  • organic amine salt compounds (Ia) When used in the preparation of thermally insulating polyurethane foams, especially in closed-cell polyurethane foams, from foaming efficiency, blowing agent odor, thermal insulation properties and cell size stability, and dimensional stability of polyurethane foams It is considered that these organic amine salt compounds (Ia) (not prepared by in situ reaction of an organic amine compound (M) with an epoxide) are not preferred.
  • ammonium formate is more miscible with the polymer polyol, that is, ammonium formate can be directly dissolved in the polymer polyol, so that ammonium formate can be directly used as a polyurethane foaming agent
  • the present application also provides the use of ammonium formate as a blowing agent, especially as a polyurethane blowing agent.
  • ammonium formate contains a small amount (for example, 0.5 to 15% by weight, such as 1 to 8% by weight, more preferably 2 to 6% by weight) of an organic amine such as methylamine, dimethylamine, trimethylamine or monoethanolamine, the ammonium formate aqueous solution does not crystallize. ,precipitation.
  • the foaming agent of the present invention i.e., the compound of the formula (I) or the organic amine salt compound having an anion as a CO 2 donor obtained by the method of the second or third embodiment described above
  • the pH of the blowing agent of the present invention is 7.5-10, preferably pH 7.8-9.5, more preferably pH 8-9, without additional or additional addition of a basic compound
  • the alkali metal or alkaline earth metal is present in an amount of from 0 to 200 ppm by mass, preferably less than 150 ppm, more preferably less than 100 ppm, more preferably less than 50 ppm, still more preferably less than 20 ppm, still more preferably less than 10 ppm, still more preferably less than 5 ppm, Most preferably it is below the detection limit or is 0 ppm
  • the content of water or the content of water present as a solvent is 0-40% by weight, preferably 5 to 35% by weight, more preferably 10 to 30% by weight, still more preferably 15
  • the thermal decomposition temperature is between 36-120 ° C and releases CO 2 gas upon decomposition; some types of blowing agents of the invention having a higher decomposition temperature become non-contact with NCO groups too stable, capable of decomposing at between 45-70 deg.] C to release CO 2; 5) preferably, the present invention is a blowing agent containing per molecule At least one R group, the R group, for example HOCH 2 CH 2 -, HOCH 2 CH (CH 3) -, HOCH (CH 3) CH 2 -, HOCH 2 CH (C 6 H 5) -, HOCH ( C 6 H 5 )CH 2 -, HOCH 2 CH(CH 2 Cl)-, HOCH(CH 2 Cl)CH 2 -, HOCH 2 CH(CBr 3 )- or HOCH(CBr 3 )CH 2 -; further preferably,
  • the blowing agent of the present invention comprises a plurality of (preferably 2-5, such as 2 or 3) compounds having the formula (
  • blowing agents of the present invention comprise one or more alcohol amine compounds and generally contain water.
  • the compound of formula (I) contains from 1.5 to 5 R groups per molecule on average.
  • the R group is HOCH 2 CH 2 -, HOCH 2 CH(CH 3 )-, HOCH(CH 3 )CH 2 -, HOCH 2 CH(C 6 H 5 )-, HOCH (C 6 H 5 )CH 2 -, HOCH 2 CH(CH 2 Cl)-, HOCH(CH 2 Cl)CH 2 -, HOCH 2 CH(CBr 3 )- or HOCH(CBr 3 )CH 2 -.
  • the present invention further provides a polyurethane foaming composition
  • a polyurethane foaming composition comprising: 0.01 to 100% by weight of the compound of the above formula (I) (or by the second and third above) An organic amine salt compound having an anion as a CO 2 donor obtained by the method of the embodiment); 0-50% by weight of a physical foaming agent; 0-5 wt% of water, and 0.0-99.99% by weight of a polymerization Polyol; wherein the weight percentage is based on the total weight of the polyurethane foaming composition.
  • the foaming composition of the present invention contains a total of from 0.5 to 4% by weight of water, more preferably from 0.8 to 2.5% by weight, still more preferably from 1 to 2.2% by weight of water.
  • the foaming composition further comprises: a foam stabilizer, a catalyst, a flame retardant, and the like.
  • a foam stabilizer e.g., a foam stabilizer, a catalyst, a flame retardant, and the like.
  • the polymer polyol is selected from the group consisting of polyether polyols, polyester polyols, polyether-polyester polyols, polycarbonate diols, polycarbonate-polyester polyols, polycarbonate-polyether polyols , polybutadiene polyol or polysiloxane polyol.
  • the polymer polyol generally has an average functionality of from 2 to 16, preferably from 2.5 to 10, more preferably from 3 to 8.
  • the physical blowing agent is selected from at least one of the group consisting of n-pentane, isopentane, cyclopentane, other alkanes having a boiling point in the range of 0-100 ° C, HCFC-141b, HFC-245fa, HFC-365mfc, LBA, FEA-1100, other chlorofluorocarbons, methyl formate having a boiling point in the range of 0-100 °C.
  • the foaming compositions of the present invention are clear or clear. This indicates that the blowing agent of the present invention is dissolved or uniformly dispersed in the polymer polyol.
  • the polyurethane foaming composition of the present invention (commonly referred to as "white material") has the following characteristics: 1.
  • An alcohol amine salt or an alcohol amine compound for example, a compound of the formula (I) releases CO 2 after thermal decomposition, while residual alcohol Amine compound); 2, transparent or clear; 3.
  • the peak decomposition temperature is generally Is between 45-65 ° C; 4, when the foaming composition (ie "white material") is contacted or mixed with isocyanate or polyisocyanate (such as MDI or TDI), the mixed material is instantaneous (for example, 0.2-4 seconds, Such as 1-2 seconds) become milky white.
  • the material rapidly becomes milky white, accompanied by a rapid expansion of the volume, but the process is not the actual initiation of the foam, after which the material begins to rise.
  • water or water and a physical foaming agent are used as the foaming agent, the foaming whitening and lifting are simultaneously performed and are delayed.
  • the foaming composition (“white material”) may contain a small amount of water as a co-blowing agent, since the compound of the general formula (I) of the present invention preferentially decomposes to release CO 2 , that is, preferentially foaming, Therefore, the addition of a small amount of water does not affect the foaming process or affect the properties of the finished polyurethane foam.
  • the polyurethane foaming composition of the present invention contains a compound of the formula (I) wherein A n- is (f) HCOO - (formate), it is preferred that the polyurethane of the present invention is produced.
  • the foam composition (commonly known as “white material”) contains 1-5 weights of water. The aim is to reduce the amount of carbon monoxide (CO) released during the foaming process.
  • the present invention also provides a polyurethane foam material which is formed by reacting the above-described polyurethane foaming composition with a polyisocyanate monomer (such as MDI or TDI) and/or an isocyanate-terminated prepolymer.
  • a polyisocyanate monomer such as MDI or TDI
  • an isocyanate-terminated prepolymer such as MDI or TDI
  • the weight ratio of the polyurethane foaming composition to the polyisocyanate monomer and/or the isocyanate-terminated prepolymer is, for example, in the range of from 0.5:1 to 2:1, preferably from 0.5:1 to 1:1.
  • the weight ratio is such that the equivalent ratio of the active hydrogen of the foaming composition to the -NCO group contained in the polyisocyanate monomer and/or the isocyanate-terminated prepolymer is from 0.6 to 1.2:1, more preferably 0.7. -0.9:1, ie a slight excess of NCO relative to active hydrogen.
  • the invention also provides the use of polyurethane foam for polyurethane spraying, refrigerator and freezer insulation, container Insulation, building insulation board, color steel plate, cold storage board, pipeline insulation, LNG transportation insulation, etc.
  • the organic amine salt compound of formula (I) has at least two active hydrogens, for example 2-10, preferably 3-6.
  • the active hydrogen is present in the form of a primary amine group, a secondary amine group or a hydroxyl group. Therefore, the organic amine salt compound of the formula (I) is capable of releasing CO 2 to participate in foaming, is also involved in chain extension and/or crosslinking, and enhances the strength (ie, mechanical strength and/or mechanical strength) of the cells, so that The obtained polyurethane foam has good dimensional stability.
  • the density of the polyurethane foam is less than 25 kg/m 3
  • the polyurethane foam obtained by using the whole water as a foaming agent in the prior art has a severe shrinkage phenomenon, but the general formula (I) of the present invention is used.
  • the polyurethane foam obtained by using the compound as a foaming agent (this foam is made in a laboratory-made square mold by hand stirring) has excellent dimensional stability, especially at ambient conditions or room temperature for at least 5 months. In the case of time, there is almost no visible shrinkage.
  • the finished foam prepared by the present invention (density ⁇ 25 kg/m 3 ) is placed at room temperature (23 ⁇ 2 ° C) for 5 months, polyurethane
  • the shrinkage ratio (length dimension change rate ⁇ L or width dimension change rate ⁇ w or thickness dimension change rate ⁇ r ) of the foam is generally less than 7%, more preferably less than 5%, further preferably less than 3%, even more preferably Less than 1%.
  • organic amine salt compound of the formula (I) of the present invention can be specifically designed according to various application fields of the polyurethane foam to be prepared.
  • the foaming composition of the present invention (commonly referred to as "white material") is used to prepare a polyurethane foam which is used as a heat insulating material for a refrigerator, a refrigerator, a refrigerated container or a refrigerated truck, or a soft rebound such as high rebound and low rebound.
  • a polyurethane foam in the reaction for preparing a compound of the formula (I) wherein A n- is (a) to (f) or (h), the molar ratio of the first raw material to the second raw material is generally 1:1.3. -3.5, preferably 1:1.5-3.
  • the foaming composition of the present invention (commonly referred to as "white material") is used for spray coating
  • the molar ratio of the first raw material to the second raw material is generally 1:2.8-5, preferably 1:3 to 4.5, more preferably 1:3.3-4.
  • the reaction temperature for preparing the compound of the formula (I) is between 0 and 200 ° C, for example 10 ° C, 20 ° C, 30 ° C, 40 ° C, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 130 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C and 190 ° C.
  • the pressure of the reaction is between 0.1 and 1.5 MPa, such as 0.3 MPa, 0.6 MPa, 0.9 MPa and 1.2 MPa.
  • the reaction time is between 0.5 and 20 hours, for example, 0.5 hours, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours.
  • the decomposition temperature of the compound of the formula (I) of the present invention is generally between 45 and 120 ° C, preferably between 50 and 70 ° C, or its decomposition temperature is between 45 and 70 ° C when exposed to isocyanate.
  • a n- [B m+ ] p may also be represented by a chemical formula or a formula ABp. They are alcohol amine salt compounds. They therefore appear in the form of ionic compounds in the presence of water.
  • the compound of the formula (I) according to the invention or the blowing agent of the invention has a suitable decomposition temperature or has a suitable decomposition temperature when contacted with isocyanate, on the one hand stable at room temperature, and on the other hand in polyurethane foaming During the process, when the foaming reaction system is heated, the carbon dioxide gas can be released at a reasonable speed, so that the foamed material has desirable properties such as distribution density of cells and size uniformity of cells.
  • the compound of the formula (I) of the present invention has a solubilizing group, that is, an R group, and the compound (I) can be uniformly dissolved or distributed at a molecular level in a polymer polyol such as a polyether polyol and/or a polyester polyol.
  • a polymer polyol such as a polyether polyol and/or a polyester polyol.
  • PVC polyvinyl chloride
  • PS polystyrene
  • the compound of the formula (I) of the present invention has an alcohol amine residue or has an alcohol amine compound, and the decomposition product, that is, the alcohol amine compound produced after the decomposition of the blowing agent (I) releases CO 2 still contains at least two Active hydrogens, which are suitable as chain extenders and/or crosslinkers, the compounds of the formula (I) according to the invention are distinguished both as "foaming points” and as “chain extension points” and/or “crosslinking points”
  • the mechanical strength and mechanical strength of the cells, the obtained polyurethane foam has good dimensional stability, and the polyurethane foam finished product has almost no shrinkage observed after being placed for several months or even one year, without collapse or sputum. Bubble phenomenon. Especially after being placed at a higher temperature (e.g., 40-60 ° C) for a longer period of time (for example, 10 days), it still has good dimensional stability.
  • the compound of the formula (I) of the present invention is not easily volatilized, does not contain metal ions (metal ions are corrosive to metal substrates), and all or most of them replace chlorofluorocarbon foaming agents, and therefore, for environmental protection. It is of great significance and the foaming effect is significantly better than that of the foaming agents used in the prior art.
  • the thermal insulation properties of the foam can be significantly improved as compared with the use of cyclopentane alone.
  • a chlorofluorocarbon such as HCFC-141b, HFC-245fa or HFC-365mfc as a blowing agent
  • the thermal insulation properties of the foam can be significantly improved as compared with the use of the chlorofluorocarbon alone.
  • a specific polyether polyol which is preferably miscible or miscible with the relevant blowing agent is usually selected around a blowing agent or a specific chlorofluorocarbon blowing agent, and the blowing agent of the present invention is used without selecting a specific one.
  • Polyether polyols or polyester polyols have a wide range of utility, and various types of polyester polyols and/or polyether polyols can be used in the foaming composition.
  • the foaming agent of the present invention has an amine group and itself has an autocatalytic function, which can reduce the use of the polyurethane foaming catalyst, and can at least reduce the use of the pre-catalyst or even eliminate the pre-catalyst.
  • the polyurethane foaming agent provided by the invention does not contain chlorofluorocarbon, the ODP (potential value of damage to the ozone layer) is 0, and the GWP (greenhouse effect potential value) is equal to 1, which is the most environmentally friendly.
  • Polyurethane foaming agent has excellent performance and excellent low temperature performance. It has a thermal conductivity of about 20% lower than the best physical foaming agent tested at minus 160 degrees Celsius. This excellent property can be used for long distance natural gas.
  • the insulation of the transport pipe, another characteristic is the ring
  • the mixed use of pentane can greatly reduce the thermal conductivity of the foam. This excellent thermal insulation performance can greatly reduce the power consumption of equipment such as refrigerator freezer.
  • the polyurethane foaming agent provided by the invention can replace all existing physical foaming agents containing halogen elements, and meets the production application of the polyurethane material.
  • the dimensional change rate or shrinkage ratio of the polyurethane foam prepared by using the foaming agent of the present invention or the compound of the general formula (I) as a foaming agent (this foam is produced by using a manual stirring in a laboratory-made square mold) ⁇ 4.5%, preferably ⁇ 1.5%, more preferably ⁇ 0.5% (according to the Chinese national standard GB/T 8811-2008, the placement time may be as required in the standard, or even, the placement time is 5 months).
  • the thermal conductivity w/m ⁇ k (10 ° C) is between 0.01900 and 0.02200, preferably between 0.01910 and 0.02150.
  • the thermal conductivity of prior art polyurethane foams at this density is generally above 0.02200, more typically above 0.02300. Further, in this density range, the compressive strength of the foam of the present invention is in the range of 110-220 KPa, preferably 150-200 Kpa.
  • Figure 1 is an infrared spectrum of the product of Example A-3.
  • Figure 2 is an infrared spectrum of the product of Example A-4.
  • Figure 3 is an infrared spectrum of the product of Example B-6.
  • Example 4 is a scanning electron micrograph (SEM) of the foam of Example 4.
  • Figure 5 is a SEM of the comparative foam 4-1 of Example 4.
  • Figure 6 is a SEM of the reference foam 4-2 of Example 4.
  • Figure 7 is a SEM of the comparative foam 4-3 of Example 4.
  • Figure 8 is a SEM of the reference foam 4-4 of Example 4.
  • Figure 9 is a SEM of the foam of Example 16.
  • 10, 12 and 14 are photographs showing the appearance of a polyurethane foam using Compound A-4 as a foaming agent of the present invention.
  • Figure 11, Figure 13, and Figure 15 are photographs of the appearance of a comparative polyurethane foam foamed with water.
  • Figure 16 is a SEM of the polystyrene foam of Example 34.
  • the conventional polyether polyols and polyester polyols used in the preparation of polyurethane foams or in foaming compositions are selected from the following varieties: polyethers 4110, 450, 400A, MN500, SU380, SA380, 403, SA460, G350; polyester CF6320, DM2003, YD6004, AKS7004, CF6255.
  • the commonly used catalyst is selected from: 33LV (A-33): 33% solution of triethylenediamine in dipropylene glycol, N,N-dimethylethanolamine, N,N-dimethylbenzylamine, 70% bis(dimethylamine) Dipropylene glycol solution of ethyl ethyl ether, 70% potassium octoate in diethylene glycol solution, dibutyltin dilaurate, PT303, PT304, potassium acetate, PC-8 (N,N-dimethylcyclohexylamine), PC-5, PC-41, triethanolamine, JXP-508, JXP-509, TMR-2, TMR-3, TMR-4.
  • Common flame retardants TCPP, TCEP, DMMP, ammonium chloride, aluminum hydroxide powder, DM1201, DM1301, tetrabromophthalic anhydride diol.
  • Commonly used silane surfactants DC8545, AK-158, AK-8805, AK-8812, AK-8809, AK-8818, AK-8860, DCI990, DC5188, DC6070, DC3042, DC3201.
  • Non-silane surfactant LK-221, LK-443.
  • SAFETY INSTRUCTION In the present invention, where it is involved in the use of an epoxy compound, for safety reasons, the reaction must be carried out under an inert gas (such as nitrogen or argon) before and after the reactants are added to the reactor to prevent explosion. . Further, in the case of adding ethylene oxide, for the sake of safety, it is preferred to add it to the reactor in portions, and the propylene oxide may be added to the reactor at one time or in batches.
  • the reactor is typically a pressure reactor equipped with a cooling unit unless otherwise stated.
  • the properties of the foam were tested in accordance with the Chinese National Standard GB/T 26689-2011 (rigid polyurethane foam for refrigerators and freezers).
  • the size of the sample is typically 10*10*2.5 cm.
  • the thermal conductivity is carried out in accordance with GB/T 10294-2008 or GB/T 10295-2008.
  • the average temperature is 10 ° C, and the temperature difference between the hot and cold plates is 15 to 20 ° C.
  • the apparent (core) density was tested in accordance with GB/T 6343-2009.
  • Low temperature dimensional stability is tested according to GB/T 8811-2008 at -30 °C ⁇ 2 °C.
  • the compressive strength was tested in accordance with GB/T 8813-2008.
  • the closed cell ratio (ie, the percentage of closed cell volume) was tested in accordance with GB/T 10799-2008.
  • Control the feed rate of propylene oxide to control the pressure in the reactor not higher than 0.6MPa slowly increase the temperature under constant stirring, and control the temperature to react at 70 ° C for 15 hours, the reaction is completed, and slowly reduce the temperature to 50 ° C.
  • the content of alkali metal and alkaline earth metal ions was measured by an atomic absorption spectrophotometer (Seiko Instruments, Inc.; SAS/727) to be below the detection limit.
  • Compound A-1 is a transparent or clear liquid which is stable at room temperature or under ambient conditions and is suitable as polyamine.
  • the ester foaming agent which is compared with the basic characteristics of HFC-245fa, LBA and pentafluorobutane, is as follows:
  • the GWP greenhouse effect potential
  • the decomposition temperature is relatively high, overcoming some low boiling point (less than 20 ° C) physical blowing agents such as HFC-245fa, LBA.
  • Many disadvantages such as pentafluorobutane, such as GWP is much larger than 1, lower boiling point, and more volatile, while the compound A-1 of the present invention has a GWP equal to 1, a relatively high boiling point, is not volatile, and an ODP (destruction of the ozone layer).
  • the potential value is 0, does not destroy the atmospheric ozone layer; it is not volatile and easy to transport and store.
  • the temperature is 45-70 ° C
  • the pressure is stirred under 0.6 MPa for 5 hours, then the temperature is lowered to 50 ° C, the unnecessary water is removed under reduced pressure at 600 mHg (for example, the water content is less than 30 wt%), and the temperature is lowered to below 40 ° C.
  • Compound A-2 was obtained.
  • Liquid chromatography analysis and gas chromatography analysis indicated that Compound A-3 was a mixture containing various alcohol amines. The water content was 21.5 wt%. The infrared spectrum is shown in Figure 1.
  • Example A-5 (preferred by the present invention)
  • Example A-6 (preferred by the present invention)
  • Liquid chromatography analysis and gas chromatography analysis indicated that Compound B-1 was a mixture containing various alcohol amines.
  • the content of alkali metal and alkaline earth metal ions was measured by an atomic absorption spectrophotometer (Seiko Instruments, Inc.; SAS/727) to be below the detection limit.
  • Example C-1 was repeated except that 15 kg of propylene oxide was used instead of 12 kg of ethylene oxide, and propylene oxide was not added to the reactor in batches, but was added in one portion.
  • Compound C-2 was obtained.
  • the above compounds C-1, C-2 and C-3 immediately release carbon dioxide gas upon contact with the isocyanate, and also emit a small amount of carbon monoxide gas, overcoming the disadvantages of a general physical blowing agent such as methyl formate.
  • the compound C-4, C-5 or C-6 immediately emits carbon dioxide gas upon contact with the isocyanate, and also emits a small amount of carbon monoxide gas, overcoming the disadvantages of the general physical blowing agent.
  • the isocyanate compound first reacts with the NCO group to form a less stable carbonic anhydride.
  • the inventors have unexpectedly discovered that when compound D-1 is mixed with a polyether polyol and/or a polyester polyol, for example, a foaming composition ("white material") is formulated, compound D-1 dissolved in the white material
  • the decomposition temperature can be increased to 45-65 °C. This allows the compound D-1 to have a suitable decomposition temperature and, therefore, is suitable for use in polyurethane foaming.
  • the composition was foamed, and then 95.5 parts of isocyanate MDI (PM200, Yantai Wanhua Chemical Group Co., Ltd.) was added thereto, and the mixture was uniformly stirred and foamed to obtain a polyurethane foam.
  • MDI isocyanate
  • the sample was taken, and after cutting with a blade, the cell was observed by magnifying 100 times with SEM. As shown in Figure 4, the cell diameter was 205 microns.
  • Example 4 As a comparison, this Example 4 was repeated except that 5 parts by weight of water and 12 parts by weight of cyclopentane (1:2.4 by weight) were used as a foaming agent to obtain a comparative foam 4-1; as shown in Fig. 5, The cell diameter was 396 microns.
  • Example 4 was repeated except that the compound A-4 of the present invention and cyclopentane (1:1.5 by weight) were used as a foaming agent to obtain a reference foam 4-2; as shown in Fig. 6, the cell diameter was It is 306 microns.
  • this Example 4 was repeated except that water + LBA + cyclopentane (1:1:1 by weight) was used as a blowing agent to obtain Comparative Foam 4-3, as shown in Fig. 7, the cell diameter was 495 microns.
  • This Example 4 was repeated except that the compound A-4, LBA and cyclopentane (1:1.2:1.3 by weight) of the present invention were used as a foaming agent to obtain a reference foam 4-4, as shown in Fig. 8, The pore diameter is 335 microns.
  • the foam appears fine, uniform, and dense, and the number of cells per unit area is significantly larger. It can be seen from Fig. 5 and Fig. 7 that the diameter of the cells is obviously uneven, and the number of cells per unit area is significantly less.
  • test data in each of the above lists is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model, and is a manually prepared free foam sample.
  • the shrinkage rate (dimension change rate) is measured according to the Chinese national standard GB/T 8811-2008, but the placement time is 5 months. The same below.
  • the product of the embodiment 4 is fine, uniform and compact. As shown in FIG. 4, it has good heat insulation performance and can meet various performance requirements in the field of refrigerators and freezers.
  • the product of Example 5 is capable of meeting various performance requirements in polyurethane pipe insulation.
  • the product of Example 6 is very fine, uniform and compact, and can meet the requirements of various performances of LNG (liquefied natural gas) conveying cold preservation applications.
  • the product of Example 7 can meet the various performance requirements of the polyurethane insulation board.
  • the product of Example 8 can meet various performance requirements of polyurethane color steel plates and cold storage plates.
  • Examples 12-20 were repeated as in Examples 2-10, except that the blowing agent was as shown in Table 2.
  • test data in each of the above lists is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model, and is a manually prepared free foam sample.
  • the product of Example 14 has good thermal insulation properties and can meet various performance requirements in the field of refrigerators and freezers.
  • the product of Example 15 is capable of meeting various performance requirements in polyurethane pipe insulation.
  • the foam product of Example 16 appears to be more delicate, uniform, and dense, as shown in Fig. 9, and therefore, it can meet various performance requirements of LNG (liquefied natural gas) conveying cold preservation applications.
  • the product of Example 17 can meet the various performance requirements of the polyurethane insulation board.
  • the product of Example 18 can meet various performance requirements of polyurethane color steel sheets and cold storage sheets.
  • Examples 24-26 were repeated as in Examples 21-23, except that the blowing agent was as shown in Table 2.
  • test data in each of the above lists is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model, and is a manually prepared free foam sample.
  • Example 28 was repeated except that only 15 parts by weight of cyclopentane was used as the blowing agent.
  • test data in each of the above lists is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model, and is a manually prepared free foam sample.
  • test data in each of the above lists is the test data made by the foam samples prepared by the conventional foaming box and the self-made foaming model, and is a manually prepared free foam sample.
  • CT refers to the time of launch
  • GT refers to the drawing time
  • the reactivity of the white material in the above white material system of CFA-CP is basically unchanged, and it is generally considered that it can be placed at room temperature for more than half a year after being placed at 50 ° C for 51 days.
  • the thermal conductivity value of the foam prepared by mixing CFA-CP is also stable.
  • the following is a sample prepared by sampling at different time intervals (the same conditions as in Example 9) and the thermal conductivity of the foam. Tested, the results are as follows:
  • Example 5 we configured a white material prepared entirely using CFA in a conventional white material formulation and allowed to stand at room temperature for 3 months. The white matter activity and the thermal conductivity of the foam were measured every other month. The results are as follows:
  • the TFT in the table refers to the peeling time of the crust.
  • Example 5 The above Example 5 was repeated, but the amount of the blowing agent was changed to 15 parts by weight of the compound A-4, and at the same time, the above Example 5 was repeated as a comparison, but only water was used as the foaming agent, and the respective white materials were separately prepared and For the respective foam materials, it was observed whether the stability of the change of the two foam materials with time was changed with the same density of the obtained foam materials.
  • the preparation time was April 16, 2015, and the density was 22 kg/m 3 .
  • Figure 10 and Figure 12 show the initial appearance of the foam of the present invention
  • Figures 11 and 13 show the foam prepared by using water as a foaming agent. Initial appearance.
  • Figure 14 is the product of the present invention, the appearance and size of the product has almost no change
  • Figure 15 shows that the comparative sample has shrunk, polyurethane experts believe that when the foam density
  • the problem of shrinkage in the case of foaming with water at about 25 kg/m 3 is unavoidable, which is the biggest difference between CFA and water.
  • water foaming is used in the field of building exterior wall spraying, etc. The foam will shrink over time and the thermal conductivity will deteriorate.
  • the temperature of each section of the extruder is: a section of 85 ° C ⁇ 95 ° C, two sections of 95 ° C ⁇ 105 ° C, three sections, 105 ° C ⁇ 115 ° C, four sections 115 ° C ⁇ 125 ° C; The temperature is from 125 ° C to 130 ° C; the screw rotation speed is from 5 rpm to 9 rpm
  • each section of the extruder is: 145 °C ⁇ 150 °C, two sections 155 °C ⁇ 165 °C, three sections, 175 °C ⁇ 185 °C, four sections 180 °C ⁇ 195 ° C; mold temperature 195 ° C ⁇ 205 ° C; screw speed of 5 rpm ⁇ 9 rpm.
  • the obtained profile had a specific gravity of 0.55 g/cm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

具有以下通式(I)的有机胺盐化合物: An-[Bm+]p (I)式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1,2或3; Bm+是或包含:铵离子和/或有机胺B阳离子;其中m=1-10;式(AA)和其中An-是选自于下列阴离子中的一种或多种:(a)氨基甲酸根;(b)碳酸根;(c)甲酸根;(d)碳酸氢根;(e)有机单碳酸根;(f)有机多氨基甲酸根,式(g)或式(J)或(h)有机多碳酸根,该通式(I)化合物具有至少一个是与N原子连接的羟烷基,即具有醇胺残基。它可作为聚氨酯发泡剂、聚苯乙烯发泡剂或聚氯乙烯发泡剂。

Description

具有作为CO2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途 技术领域
本发明涉及具有作为CO2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途,更具体地说,提供不仅具有作为CO2给体的阴离子而且具有羟烷基或羟烷基烷氧基基团作为增溶基团或C2-C14烃基(如2-氯乙基、3-氯丙基或苯乙基)作为增溶基团的新型有机胺盐类化合物,及其在发泡材料如聚氨酯泡沫体或PVC发泡材料或聚苯乙烯发泡等材料中的应用。
技术背景
聚氨酯硬泡作为一种高分子新材料,其质量轻、强度高并具有极低的热导率,是优质的绝热保温材料,广泛应用于冷藏保温、尤其化学武器冷藏保温、建筑节能、太阳能、汽车、冰箱冰柜等家电等产业。聚氨酯硬泡生产中最重要的原料是发泡剂。目前这些发泡剂除了环戊烷以外都是含氯氟烃物质,由于它们对大气臭氧层的破坏所以各国政府早已签订了“蒙特利尔协定书”的国际公约,限制和逐步淘汰、禁止该类产品的生产和使用,中国也是该协定书的签约国。
目前中国还在使用的是第二代含氯氟烃发泡剂HCFC-141b(一氟二氯乙烷)和环戊烷,欧美等发达国家早已禁止使用HCFC-141b,中国政府2013年就将HCFC-141b的消费量冻结在2009年和2010年的消费水平上,2015年淘汰冻结20%的消费量,并承诺提前至2025年完全禁止生产和使用,目前欧美等发达国家使用的是第三代发泡剂五氟丙烷(HFC-245fa)和五氟丁烷(HFC-365),第二、三代发泡剂的GWP(温室效应潜能值)都很高,因此欧美将在2019年以前禁止第三代发泡剂的使用。为此美国霍尼韦尔公司又开发出了第四代物理发泡剂一氯三氟丙烯(LBA),但该产品价格昂贵,ODP(对臭氧层的破坏的潜能值)虽然为零,但GWP大于1,比第三代相对环保。总之除了环戊烷以外的这些物理发泡剂仍然满足不了环保要求,因为都含氯氟元素,都将被淘汰。
现有技术公开了直接将CO2作为聚氨酯发泡剂,但是,鉴于CO2气体的逃逸和它在原料MDI和聚酯多元醇和/或聚醚多元醇中的溶解度不好,使得CO2气体在发泡组合物中无法均匀地分散,并且发泡过程不容易控制。
另外,现有技术公开了直接将少量的水作为聚氨酯发泡剂,但是,鉴于水分子的氢键作用和水在聚酯多元醇和/或聚醚多元醇中的溶解度不好,水分子以微滴的形式存在于发泡 组合物(如聚醚多元醇组分)中,在发泡材料中造成局部过度反应和发泡。如果用水作为发泡剂,则在聚氨酯泡沫材料中包含较多的脲键,大大影响泡沫材料的强度和绝热性能。此外,如果作为发泡剂的水的用量稍稍提高,则会显著影响到聚氨酯泡沫体的性能和尺寸稳定性。如果将水作为唯一的发泡剂,则聚氨酯泡沫体会遭遇收缩、焦烧和绝热性能差的问题(shrinkage,scorching,inadequate heat insulation)。
总之,现有技术中的发泡剂(例如水)无法以分子水平被分散到发泡组合物中,从而造成泡孔的分布不均匀和泡孔的尺寸不均匀,最终影响到发泡材料的强度性能和绝热性质。
发明内容
为克服现有技术中存在的缺点,本发明的发明目的是提供一种聚氨酯发泡剂及其制备方法,不含氯氟烃,不会破坏大气臭氧层。
本发明的目的是提供不仅具有作为CO2给体的阴离子而且具有羟烷基或羟烷基烷氧基基团作为增溶基团或C2-C14烃基(如2-氯乙基、3-氯丙基或苯乙基)作为增溶基团的新型有机胺盐类化合物,及其在发泡材料如聚氨酯泡沫体或PVC发泡材料或聚苯乙烯发泡材料中的应用。
该新型有机胺盐类化合物适合作为发泡剂。它在发泡过程中产生CO2气体。本申请的发明人意外地发现,作为CO2给体的具有-n价的阴离子在升高的温度下容易分解产生CO2气体,甚至在较低的温度下进行发泡时,下面所述的作为CO2给体的具有-n价的阴离子能够被异氰酸酯单体如MDI和TDI所含的NCO基团激活,快速释放出CO2气体。另外,由于具有增溶基团,使得发泡剂能够充分溶于发泡原料(如聚醚多元醇或聚酯多元醇)中或与发泡原料之间有很好的互溶性,本发明的发泡剂能够均匀地分散于发泡组合物中以便均匀地发泡,在聚氨酯泡沫体中泡孔的分布也比较均匀,并且泡孔的尺寸比较均匀。另外,本发明的发泡剂化合物含有羟基和/或氨基,在该发泡剂分解释放出CO2之后所产生的分解产物仍然含有羟基和/或氨基,当分解产物的分子量较低时,它们适合作为扩链剂或交联剂与异氰酸酯发生反应形成聚合物,而当分解产物的分子量较高(例如数均分子量为100-3000)时,它们可替代发泡组合物中的一部分聚酯多元醇或聚醚多元醇,例如在现有技术的发泡组合物的基础上适当减少聚酯多元醇或聚醚多元醇的用量。本领域的技术人员能够根据本发明所述的发泡剂的平均羟值以及聚酯多元醇或聚醚多元醇的平均羟值来计算本发明发泡剂的用量和聚酯多元醇和/或聚醚多元醇的用量。尤其,在采用多元醇和多异氰酸酯进行发泡的过程中,如果采用本发明的有机胺盐类化合物作为发泡剂,则,有机胺盐类化合物既作为“发泡点”又作为“扩链点”和/或“交联点”,显著增强了泡孔的力学强度和机械强度,所获得的聚氨酯 泡沫体具有良好的尺寸稳定性。因此,基于上述三个方面,完成了本发明。
在本申请中,“作为CO2给体的阴离子”是指在加热的情况下或在发泡过程中能够分解而释放出CO2的阴离子。
根据本发明的第一个实施方案,提供具有以下通式(I)的有机胺盐化合物或有机胺盐化合物混合物:
An-[Bm+]p    (I)
式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1,2或3;
Bm+是或包含:+1价的铵离子(+NH4)和/或具有m个的-+NR3R4H基团和/或-+NR3H-基团(即,具有m个的与+H结合以形成阳离子的伯胺、仲胺和/或叔胺基团)的一种或多种有机胺B的阳离子(即由一种或多种有机胺B形成的阳离子),简称有机胺阳离子;其中m=1-10,如1、2、3、4、5、6、7、8、9或10个;
Figure PCTCN2017083948-appb-000001
其中An-是选自于下列阴离子中的一种或多种:
(a)氨基甲酸根:R1R2N-COO-
(b)碳酸根:CO3 2-
(c)甲酸根:HCOO-
(d)碳酸氢根:HO-COO-
(e)有机(基)单碳酸根:RaO-COO-,其中Ra是任选被羟基或氨基或卤素取代的C1-C26烃基(优选C1-C10烃基,更优选C1-C3烃基)、C1-C26酰基(优选C1-C10酰基,更优选C1-C2酰基);
(f)有机(基)多氨基甲酸根:-OOC-N(R1)-Rb-N(R2)-COO-,或Rb'(-N(R1)-COO-)3
式中,Rb是任选被羟基或氨基或卤素取代的C1-C16亚烃基(优选C2-C10亚烃基、更优选C2-C6亚烃基,如-CH2-CH2-),Rb'是任选被羟基或氨基或卤素取代的三价C2-C20烃基(更优选三价C3-C15亚烃基,如-CH2-CH(CH2-)-CH2-等);
(g)
Figure PCTCN2017083948-appb-000002
(即HC(OR’)O2 2-),或
Figure PCTCN2017083948-appb-000003
(即HCO3 3-),
式中,R’是H、任选被羟基或氨基或卤素取代的C1-C26烃基(优选C1-C10烃基,更优选C1-C3烃基)、C1-C26酰基(优选C1-C10酰基,更优选C1-C7酰基);或
(h)有机(基)多碳酸根:-OOC-ORcO-COO-
式中,Rc是任选被羟基或氨基或卤素取代的C1-C26亚烃基(优选C2-C10亚烃基、更优选C2-C6亚烃基);
其中,R1,R2,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基(优选C1-C4烷基),任选被羟基或氨基或卤素取代的C3-C7环脂族烃基(如环丁基或环己基),或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基(优选苯基或甲基苯基);
前提条件是:在上述通式(I)的化合物中R1,R2,R3或R4中至少一个是与N原子连接的R基团(即N-R基团),或所述通式(I)的化合物具有至少一个与N键接的R基团(即至少一个N-R基团);
其中该R基团选自于下列基团中的一种或多种:
(1a)H[OCH(R1a)CH(R2a)]q-,例如H(OCH2CH2)q-、H(OCH2CH(CH3))q-、H(OCH(CH3)CH2)q-、H(OCH2CH(C6H5))q-、H(OCH(C6H5)CH2)q-、H(OCH2CH(CH2Cl))q-、H(OCH(CH2Cl)CH2)q-或H(OCH2CH(CBr3))q-;
(2a)H[OCH(R1a)CH(R2a)CH(R3a)]q-;或
(3a)H[OCH(R1a)CH(R2a)CH(R3a)CH(R4a)]q-;
其中q的值或平均值是q=1-50,优选1-20,更优选1-5,更优选q=1-4,更优选q=1-3,特别优选q=1-2.5,更特别优选q=1.5-2.0,按q的平均值计算,或q是5-50,更优选10-20;R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基(如环丁基或环己基),或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基(如苯基或甲基苯基)。
即,通式(I)化合物具有至少一个上述R基团。在本申请中,优选
Figure PCTCN2017083948-appb-000004
R基团与下列基团相同或不同:任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基(优选C1-C4烷基),任选被羟基或氨基或卤素取代的C3-C7环脂族烃基(如环丁基或环己基),或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基(优选苯基或甲基苯基)。
在本申请中,-+NR3R4H基团是指-NR3R4+H基团,-+NR3H-基团是指-NR3(+H)-基团。一般,有机胺B具有≥m个(例如m至m+3个)的伯胺、仲胺和/或叔胺基团,和任选地具有季铵基团。举例来说,CH3CH2 +NH2H(即乙胺阳离子,CH3CH2NH2 +H)是由乙胺与一个+H离子相结合所形成的,这里B1+=CH3CH2 +NH2H或CH3CH2NH2 +H,m=1,B=乙胺。在上式中,伯胺、仲胺和/或叔胺基团选自于-NR3R4基团和-NR3-基团。
有机胺类化合物B是具有m至m+3个的伯胺、仲胺和/或叔胺基团,和任选地具有季铵基团的有机胺类。优选,有机胺类化合物B具有2-200个碳原子(优选3-50个、更优选 3-20个、更优选3-12个)的有机胺化合物。一般,它具有以上所述的R基团。
在本申请中,有机胺类化合物B,或具有≥m个(例如m至m+3个)的伯胺、仲胺和/或叔胺基团和任选地具有季铵基团的有机胺类化合物B,与m个+H离子相结合而变成了Bm+
优选的是,An-是选自于(a)-(h)中的两种以上的上述阴离子的结合或混合物,和/或Bm+是两种以上的上述有机胺阳离子的结合或混合物,因此,通式(I)化合物是一种混合物。
本申请中,p个Bm+可相同或不同,或p个B可相同或不同。优选的是,p个Bm+不同,或p个B不同。
本发明因此还提供一种发泡剂,它包括具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物或由具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物所组成。
另外,提供一种实施方案,其中An-是选自于下列阴离子中的一种或多种:(a)、(c)、(d)、(e)、(f);或(h)。
一般,在通式(I)中,具有+2或+3价的单个An-能够分别与一个或多个Bm+成盐。而,具有多个的-N+R3R4H基团和/或-N+R3H-基团的单个有机胺离子Bm+能够与一个或多个An-成盐。
对于(c)HCOO-而言,甲酸铵或甲酸有机胺盐本身是比较稳定的化合物,分解温度一般高于100℃,例如甲酸铵的熔点高达116℃。然而,当将甲酸铵或甲酸有机胺盐用作聚氨酯发泡剂时,发现它们在接触到异氰酸酯(如MDI)时却变得不稳定,原因是甲酸铵或甲酸有机胺盐与NCO基团反应生成了不稳定的酸酐基团,然后迅速分解放出二氧化碳,同时也放出一氧化碳。
同理,下列阴离子在接触到异氰酸酯(如MDI)时也变得不稳定:(e)RaO-COO-;(f)-OOC-N(R1)-Rb-N(R2)-COO-或Rb'(-N(R1)-COO-)3;或(h)-OOC-ORcO-COO-
优选,(e)RaO-COO-是由碳酸氢烃基酯(例如碳酸氢甲酯或碳酸氢乙酯)所形成的阴离子或酸根。
优选,(f)-OOC-N(R1)-Rb-N(R2)-COO-或Rb'(-N(R1)-COO-)3分别是由亚烃基二(氨基甲酸)或亚烃基三(氨基甲酸)所形成的阴离子或酸根。
优选,(h)-OOC-ORcO-COO-,是由亚烃基二碳酸(例如亚乙基二碳酸铵NH4OOC-OCH2CH2O-COONH4)所形成的阴离子或酸根。
优选,例如,当通式(I)化合物作为发泡剂用于制备绝热型的聚氨酯泡沫材料时,尤其闭孔型的聚氨酯泡沫材料时,从发泡效率、发泡剂的气味、绝热性能和泡孔尺寸稳定性以及聚氨酯泡沫体成品的尺寸稳定性考虑,q=1-5,更优选q=1-4,更优选q=1-3,特别优选 q=1-2.5,更特别优选q=1.5-2.0,按q的平均值计算。因此,更优选的是,B是两种以上化合物的混合物。更优选的是,B中包含至少一个N-H基团(N-H共价键,即,与N连接的H)。
R1,R2,R3和R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C4脂肪族烃基(例如甲基或乙基或丙基),任选被羟基或氨基或卤素取代的环丁基或环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基。
优选,R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C3脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C6环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C7芳族烃基(如苯基或甲基苯基)。
更优选,R1a、R2a、R3a或R4a各自独立地选自:H,甲基或任选被羟基或氨基或卤素取代的乙基,或任选被羟基或者氨基或卤素取代的丙基或异丙基,任选被羟基或氨基或卤素取代的环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基。
更优选,R1a、R2a、R3a或R4a各自独立地选自:H,甲基,氯甲基,溴甲基,乙基,环己基,或,苯基。
一般来说,通式(I)的有机胺盐化合物含有醇胺化合物或醇胺化合物残基。也就是说,通式(I)的有机胺盐化合物是具有作为CO2给体的阴离子An-并且含有醇胺化合物或醇胺化合物残基的一种或多种有机胺盐化合物。
优选,An-是选自于下列阴离子中的一种或多种:
(a)R1R2N-COO-;其中R1和R2各自独立地是氢、甲基、乙基、羟甲基、羟乙基或羟丙基;
(b)CO3 2-
(c)HCOO-
(d)HO-COO-;或
(g)
Figure PCTCN2017083948-appb-000005
(即HC(OR’)O2 2-),或
Figure PCTCN2017083948-appb-000006
(即HCO3 3-),
式中,R’是H、任选被羟基或氨基或卤素取代的C1-C26烃基(优选C1-C10烃基,更优选甲基、乙基、丙基)、C1-C26酰基(优选C1-C10酰基,更优选甲酰基、乙酰基或丙酰基)。
在本申请中,“任选地”表示进行或不进行,表示取代或不取代。“任选的”表示有或没有。
一般,在通式(I)的化合物中,氨或有机胺化合物B中的氨基和/或胺基(即-N+R3R4H基团和/或-N+R3H-基团)的50-100%被阴离子An-中和,也就是说,氨基和/或胺基的成盐率为50-100%。优选,氨或有机胺化合物B中的氨基和/或胺基的65-100%被阴离子An-中和。更优选,氨或有机胺化合物B中的氨基和/或胺基的75-100%被阴离子An-中和。更优选,氨或有机胺化合物B中的氨基和/或胺基的75-90%被阴离子An-中和。
通式(I)化合物的pH一般为7.5-10,优选,为pH 7.8-9.5,更优选pH 8-9。例如,当氨或有机胺化合物B中的氨基和/或胺基(即-N+R3R4H基团和/或-N+R3H-基团)的50-95%被阴离子An-中和时,此时通式(1)化合物是相对稳定的。
当氨或有机胺化合物B中的氨基和/或胺基的100%被阴离子An-中和时,则通式(I)变成了以下通式:
Figure PCTCN2017083948-appb-000007
在本申请中,为了简单起见,具有m个(其中m=1-10个,如1、2、3、4、5、6、7、8、9或10个)的-N+R3R4H基团和/或-N+R3H-基团的有机胺离子可以认为是+m价的有机胺离子。
优选,对于具有m个(例如m=2-10,如3、4、5个)的-N+R3R4H基团和/或-N+R3H-基团的有机胺离子(Bm+),其中化合物B是由具有至少一个(优选至少两个)N-H共价键(即具有至少一个与N键接的活性氢)的有机胺类化合物(M)作为起始原料所形成的。即,在B或Bm+中的N-R基团是通过在所述有机胺类化合物(M)的至少一个N原子上被上述一个或多个R基团所取代而形成的。即,化合物B是具有N-R基团(或N-H共价键)的有机胺类化合物。优选,具有N-R基团的有机胺类化合物B是通过在所述有机胺类化合物(M)的至少一个N原子上被上述一个或多个R基团所取代而形成的。
优选的是,R1和R2中至少一个是H,更优选R1是H和R2是H或R基团(例如羟乙基或羟丙基或羟基氯丙基)。
优选,有机胺类化合物(M),即,具有至少一个N-H(即,N-H共价键或具有至少一个与N键接的H,为活性氢)的有机胺类化合物(M),是选自于下列这些中的有机胺类化合物:
C1-C24烃基胺类(伯胺类),例如甲胺,乙胺,丙胺,丁基胺,戊基胺,己基胺,庚基胺,辛基胺,壬基胺,癸基胺,十二烷基胺,十四烷基胺,十六烷基胺,十八烷基胺,二十烷基胺,二十四烷基胺,未取代或取代(如卤素取代)的苯胺,未取代或取代(如卤素取代)的苄基胺,环己基胺,甲基环己基胺,环己基甲基胺,N-甲基环己基胺或N-甲基苄胺,等等;
二(C1-C16烃基)胺类(仲胺类,即具有一个仲胺基的单胺类),例如二甲胺,二乙基胺, 甲基乙基胺,二丙基胺,甲基丙基胺,乙基丙基胺,二丁基胺,乙基丁基胺,二戊基胺,二己基胺,二庚基胺,二辛基胺,二壬基胺,二癸基胺,二(十二烷基)胺,二(十四烷基)胺,二(十六烷基)胺,二(十八烷基)胺,二(二十烷基)胺或二(二十四烷基)胺,等等;
任选在C2-C14亚烃基上被羟基取代的C2-C14亚烃基二胺类(其中两个胺基各自独立地是伯胺基或仲胺基),例如乙二胺,N-甲基乙二胺,N,N’-二甲基乙二胺,1,3-丙二胺,N-甲基,N’乙基-1,3-丙二胺,丁二胺(包括各种异构体,如1,2或1,3-或1,4-丁二胺),戊二胺(包括各种异构体),己二胺(包括各种异构体),3-羟甲基-己二胺,庚二胺(包括各种异构体),3-羟甲基-庚二胺,辛二胺(包括各种异构体),3,5-二羟基辛二胺,壬二胺(包括各种异构体),癸二胺(包括各种异构体),3,6-二羟基癸二胺,十二烷二胺,十四烷二胺,p或m-苯二胺,3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA),或哌嗪,等等;
任选在C2-C14亚烃基上被羟基取代的C4-C16多亚烷基多胺类,例如二亚乙基三胺,三亚乙基四胺,四亚乙基五胺,五亚乙基六胺,二亚丙基三胺,三亚丙基四胺,四亚丙基五胺,五亚丙基六胺,二亚丁基三胺,三亚丁基四胺,四亚丁基五胺,三亚乙基二胺,二甲基二乙基三胺,三(2-羟基-1,3-亚丙基)四胺或四(2-羟基-1,3-亚丙基)五胺;等;
具有三个伯胺基的任选被羟基取代的C3-C18有机三胺类或具有四个伯胺基的任选被羟基取代的C5-C18有机四胺类,例如1,3,5-三氨基-环己烷,1,3,5-三(氨基乙基)-环己烷,1,3,5-三(氨基丙基)-1,3,5-六氢化三嗪,1,3,5-三(甲基胺丙基)-1,3,5-六氢化三嗪,或,三聚氰胺,季戊四胺,等等;或
C2-C10醇胺类,例如一乙醇胺,二乙醇胺,一丙醇胺,二丙醇胺,单异丙醇胺,二异丙醇胺,单丁醇胺,或二丁醇胺,等。
更优选的是,(M)选自于:
甲胺,乙胺,丙胺,丁基胺,戊基胺,己基胺,未取代或取代(如卤素取代)的苯胺,未取代或取代(如卤素取代)的苄基胺,环己基胺,或甲基环己基胺;
二甲胺,二乙基胺,甲基乙基胺,二丙基胺,或甲基丙基胺;
乙二胺,N-甲基-乙二胺,N,N’-二甲基乙二胺,1,3-丙二胺,N-甲基,N’乙基-1,3-丙二胺,丁二胺(包括各种异构体,如1,2或1,3-或1,4-丁二胺),戊二胺(包括各种异构体),己二胺(包括各种异构体),3-羟甲基-己二胺,p或m-苯二胺,3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA),或哌嗪;
二亚乙基三胺,三亚乙基四胺,或四亚乙基五胺;
1,3,5-三氨基-环己烷,1,3,5-三(氨基乙基)-环己烷,1,3,5-三(氨基丙基)-1,3,5-六氢化三嗪, 1,3,5-三(甲基胺丙基)-1,3,5-六氢化三嗪,或,三聚氰胺,季戊四胺;
一乙醇胺,一丙醇胺,一异丙醇胺,或单丁醇胺。
一般来说,当Bm+是除+1价的铵离子(+NH4)之外的具有m个(例如2-10个,如3、4、5个)的-N+R3R4H基团和/或-N+R3H-基团的有机胺离子时(即,Bm+不是+1价的铵离子(+NH4),即,当B不是氨时),化合物B是由上述有机胺类化合物(M)作为起始原料或作为引发剂与环氧化物(如环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,和它们中任何两种或多种的混合物)进行反应所形成的。
另外,当An-是(a)、(b)、(c)、(d)、(e)、(f)或(h)中的任何一种并且Bm+是具有m个(例如2-10个,如3、4、5个)的-N+R3R4H基团和/或-N+R3H-基团的有机胺离子时(即,Bm+不是+1价的铵离子(+NH4),即,当B不是氨时),所述化合物(I)是在溶剂(优选质子性溶剂或醇类溶剂,例如水)中,任选地在催化剂(例如氨水,或有机胺类,如乙胺,二乙胺或三乙胺)存在下,由选自于(a)、(b)、(c)、(d)、(e)、(f)或(h)中的一种或多种阴离子与氨形成的铵盐(例如氨基甲酸铵,羟烷基或羟烷基烷氧基取代的氨基甲酸铵(R1R2N-COO-+NH4),碳酸铵(CO3 2-(+NH4)2),碳酸氢铵或甲酸铵,和它们中的两种或多种的混合物)或与上述一种或多种有机胺化合物(M)形成的有机胺盐(例如氨基甲酸有机胺盐,羟烷基或羟烷基烷氧基取代的氨基甲酸有机胺盐,碳酸有机胺盐、碳酸氢有机胺盐、甲酸有机胺盐,和它们中的两种或多种的混合物),与环氧化物(如环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷或苯乙烯氧化物,和它们中任何两种或多种的混合物)进行反应所形成的。一般,这里所述的溶剂选自下列这些中的一种或多种,但不限于:甲醇、乙醇、乙二醇、乙二醇、分子量小于400的聚乙二醇、分子量小于300的聚丙二醇、甘油、甲酸甘油酯或水。
另外,当An-是(a)R1R2N-COO-阴离子并且Bm+是+1价的铵离子(+NH4)时,所述化合物(I)是R1R2N-COO-+NH4,其中R1或R2中一个或两个是上述的R基团。这些化合物R1R2N-COO- +NH4已经具有R基团,因此,也可直接用作通式(I)化合物或用作发泡剂,当然,这些化合物R1R2N-COO-+NH4也可进一步与上述环氧化物进行反应,获得在阳离子部分中具有醇胺化合物或醇胺残基的通式(I)化合物。
一般,当An-是(g)阴离子并且Bm+是具有m个(例如2-10个,如3、4、5个)-N+R3R4H基团和/或-N+R3H-基团的有机胺离子时(即,Bm+不是+1价的铵离子(+NH4),即,当B不是氨时),所述化合物(I)是通过原甲酸酯类化合物在溶剂(优选质子性溶剂、或醇类溶剂,例如水)中,任选地在催化剂(例如氨水,或有机胺类,如乙胺,二乙胺或三乙胺)存在下,并且 在属于有机醇胺类的有机胺M或具有至少一个上述N-R基团的属于有机醇胺类的化合物B和水的存在下进行水解反应所形成的。优选的是,所述水的存在量足以使得原甲酸酯类化合物的至少两个酯基发生水解,更优选,水的存在量足以使得原甲酸酯类化合物的三个酯基发生水解。原甲酸酯的水解催化剂一般是碱性化合物,优选有机胺。优选,具有至少一个上述N-R基团(即,至少一个与N键接的R基团)的有机胺类化合物B是由氨或以上所述的有机胺化合物(M)与以上所述的环氧化物类(例如环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷(包括各种异构体如1,2-环氧丁烷,2,3-环氧丁烷)、环氧氯丁烷(包括各种异构体如1,2-环氧-4-氯丁烷,2,3-环氧-1-氯丁烷)或苯乙烯氧化物,和它们中任何两种或多种的混合物)进行反应所制备的。在该R基团中,q的平均值(即环氧化物的聚合度)如以上所定义。q的平均值能够根据聚氨酯泡沫材料的具体应用来选择。优选,当用于制备绝热型的聚氨酯泡沫材料时,尤其闭孔型的聚氨酯泡沫材料时,从发泡效率、发泡剂的气味、绝热性能和泡孔尺寸稳定性以及聚氨酯泡沫体成品的尺寸稳定性考虑,q=1-5,更优选q=1.2-4.5,更优选q=1.3-4,特别优选q=1.5-3.5,按q的平均值计算。
优选地,原甲酸酯类化合物是选自下列这些化合物中的一种或多种:原甲三(C1-C8)烃基酯类,优选原甲三(C1-C7)烃基酯类,例如,原甲酸三甲酯、原甲酸三乙酯、原甲酸甲基二乙基酯、原甲酸三丙酯、原甲酸甲基二丙基酯、原甲酸三丁酯、原甲酸三苯基酯、原甲酸三苄基酯、乙酰基原甲酸二乙基酯、乙酰基原甲酸乙基甲基酯、原甲酸三(乙二醇)酯、原甲酸三(二乙二醇)酯、原甲酸三(三乙二醇)酯、原甲酸三(四乙二醇)酯、原甲酸三(聚乙二醇(聚合度=5-10))酯、原甲酸三(丙二醇)酯、原甲酸三(二丙二醇)酯、原甲酸三(三丙二醇)酯、原甲酸三(四丙二醇)酯、原甲酸三(聚丙二醇(聚合度=5-10))酯。
优选,原甲酸酯的水解过程中所使用的溶剂选自下列这些中的一种或多种,但不限于:甲醇、乙醇、乙二醇、乙二醇、分子量小于400的聚乙二醇、分子量小于300的聚丙二醇、甲酰胺、甘油、甲酸甘油酯或水。
在本申请中,优选的是:通式(I)的化合物或化合物混合物中水的含量为0-40wt%,优选5-35wt%,更优选10-30wt%,更优选15-25wt%。相应地,在本申请中,通式(I)的化合物或化合物混合物含有25-95wt%,优选27-90wt%,优选30-85wt%,优选40-80wt%,更优选45-75wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺和/或二丙醇胺)的盐(即两者之和:单醇胺的盐+二醇胺的盐),基于通式(I)的化合物或化合物混合物的总重量;或者,通式(I)的化合物或化合物混合物含有15-90wt%,优选17-88wt%,优选20-85wt%,优选25-80wt%,更优选30-70wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)和二 醇胺(例如二乙醇胺和/或二丙醇胺)(即两者之和:单醇胺+二醇胺),基于通式(I)的化合物或化合物混合物的总重量。
为了制备上述通式(I)的化合物,可采用多种制备方法来制备它们。仅仅作为举例,下面分别描述几种代表性的制备方法。
根据本发明的第二个实施方案,本发明还提供制备具有作为CO2给体的阴离子的有机胺盐类化合物的方法,或制备其中An-是(a)、(b)、(c)、(d)、(e)、(f)或(h)中的任何一种或多种的阴离子的以上所述通式(I)的化合物的方法,该方法包括第一原料与第二原料在溶剂(优选质子性溶剂或醇类溶剂,例如水)中,任选地在催化剂(例如氨水,或有机胺类,如乙胺,二乙胺或三乙胺)存在下,进行反应,其中第一原料是选自于下列这些化合物中的一种或多种:
R1R2N-COONH4,或R1R2N-COOH的有机胺类化合物(M)盐,
(NH4)2CO3,或碳酸有机胺类化合物(M)盐,
HCOONH4,或甲酸有机胺类化合物(M)盐,
HO-COONH4(即碳酸氢铵),或有机胺类化合物(M)的碳酸氢盐,
RaO-COONH4,或RaO-COOH的有机胺类化合物(M)盐,
NH4OOC-N(R1)-Rb-N(R2)-COONH4,Rb'(-N(R1)-COO)3(NH4)3,HOOC-N(R1)-Rb-N(R2)-COOH的有机胺类化合物(M)盐,或Rb'(-N(R1)-COOH)3的有机胺类化合物(M)盐,或
NH4OOC-ORcO-COONH4,HOOC-ORcO-COOH的有机胺类化合物(M)盐;
第二原料是选自于下列这些化合物中的一种或多种:
Figure PCTCN2017083948-appb-000008
或苯乙烯氧化物(styrene oxide);
其中R1,R2,Ra,Rb,Rb',Rc如以上所定义,R1a、R2a、R3a或R4a如以上所定义,和有机胺类化合物(M)如以上所定义。
优选,在制备其中An-是(a)-(f)或(h)的通式(I)的化合物的反应中,第一原料与第二原料的摩尔比一般是1:1.3-5,优选1:1.5-4.5,更优选1:1.6-4,例如1:1.5至1:3。
优选,第一原料是选自于下列这些化合物中的一种或多种:
氨基甲酸铵,氨基甲酸有机胺M(简称氨基甲酸胺),胺基甲酸铵(R1R2N-COO-+NH4),胺基甲酸有机胺M盐(即,R1R2N-COOH与M形成的盐,简称胺基甲酸胺),碳酸铵,碳 酸有机胺M盐(即,H2CO3与M形成的盐,简称碳酸胺),甲酸铵,甲酸有机胺M盐(即,甲酸与M形成的盐,简称甲酸胺),碳酸氢铵,碳酸氢有机胺M盐(即,M的碳酸氢盐,简称碳酸氢胺),RaO-COONH4,RaO-COOH的M盐,NH4OOC-N(R1)-Rb-N(R2)-COONH4,Rb'(-N(R1)-COONH4)3,HOOC-N(R1)-Rb-N(R2)-COOH的M盐,Rb'(-N(R1)-COOH)3的M盐,NH4OOC-ORcO-COONH4,HOOC-ORcO-COOH的有机胺M盐,其中M是以上所述的有机胺类化合物(M)。
在本申请中,+MH是指有机胺M与一个或多个氢离子(H+)相结合所形成的阳离子。
优选,第二原料是选自于下列这些化合物中的一种或多种:
环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷(包括各种异构体如1,2-环氧丁烷,2,3-环氧丁烷)、环氧氯丁烷(包括各种异构体如1,2-环氧-4-氯丁烷,2,3-环氧-1-氯丁烷)或苯乙烯氧化物。
优选,本发明还提供制备其中An-是(a)、(b)、(c)、(d)、(e)、(f)或(h)中的任何一种或多种的阴离子的通式(I)的化合物的方法,该方法包括:在溶剂(优选质子性溶剂)中,任选地在催化剂(例如氨水,或有机胺类,如乙胺,二乙胺或三乙胺)存在下,由选自于(a)、(b)、(c)、(d)、(e)、(f)或(h)中的一种或多种阴离子与氨形成的铵盐(例如氨基甲酸铵,在氨基上被羟烷基或羟烷基烷氧基取代的氨基甲酸铵,碳酸铵,甲酸铵或碳酸氢铵,和它们中的两种或多种的混合物)或与上述一种或多种有机胺化合物(M)形成的有机胺盐(例如氨基甲酸有机胺M盐,在氨基上被羟烷基或羟烷基烷氧基取代的氨基甲酸有机胺M盐,碳酸有机胺M盐、甲酸有机胺M盐或碳酸氢有机胺M盐,和它们中的两种或多种的混合物)作为第一原料,与作为第二原料的以上所述环氧化物(例如环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷(包括各种异构体如1,2-环氧丁烷,2,3-环氧丁烷)、环氧氯丁烷(包括各种异构体如1,2-环氧-4-氯丁烷,2,3-环氧-1-氯丁烷)或苯乙烯氧化物,和它们中任何两种或多种的混合物)进行反应。或者,作为一种替代方法,可采用包括预先加成和后中和两个步骤的方法,即,上述的制备通式(I)的化合物的方法包括:首先,氨或上述一种或多种有机胺化合物(M),与作为第二原料的以上所述环氧化物(例如环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷(包括各种异构体如1,2-环氧丁烷,2,3-环氧丁烷)、环氧氯丁烷(包括各种异构体如1,2-环氧-4-氯丁烷,2,3-环氧-1-氯丁烷)或苯乙烯氧化物,和它们中任何两种或多种的混合物)进行反应,然后,所得化合物与属于阴离子An-的前驱体的相应酸(即,能够生成选自于(a)-(g)中的一种或多种阴离子的一种或多种酸化合物(例如CO2,氨基甲酸,或甲酸)进行中和反应。优选,中和到pH不低于7.5,更优选不低于7.8,更优选不低于8。
根据本发明的第三个实施方案,本发明本发明还提供制备具有作为CO2给体的阴离子的原甲酸有机胺盐类化合物的方法,或制备其中An-是(g)表示的阴离子的通式(I)的化合物的方法,该方法包括:原甲酸酯类化合物在溶剂(优选质子性溶剂或醇类溶剂,例如水)中,任选地在催化剂(例如氨水,或有机胺类,如乙胺,二乙胺或三乙胺)存在下,并且在属于有机醇胺类的有机胺M或具有至少一个上述N-R基团的属于有机醇胺类的化合物B和水的存在下进行水解反应。优选的是,所述水的存在量足以使得原甲酸酯类化合物的至少两个酯基发生水解,更优选,水的存在量足以使得原甲酸酯类化合物的三个酯基发生水解。
优选,具有至少一个上述N-R基团(即,至少一个与N键接的R基团)的属于有机胺类的化合物B是由氨或以上所述的有机胺化合物(M)与环氧化物(例如环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷(包括各种异构体如1,2-环氧丁烷,2,3-环氧丁烷)、环氧氯丁烷(包括各种异构体如1,2-环氧-4-氯丁烷,2,3-环氧-1-氯丁烷)或苯乙烯氧化物,和它们中任何两种或多种的混合物)进行反应所制备的。在该R基团中,q是平均值(即环氧化物的聚合度),如以上所定义。在制备其中An-是(g)表示的阴离子的通式(I)的化合物时,氨或有机胺化合物(M)与环氧化物的摩尔比优选是1.3-7,更优选1.5-4,更优选1.5-3。其中An-是(g)的该通式(I)的化合物适合作为发泡剂用于制备绝热型的聚氨酯泡沫材料。也就是说,本发明还提供制备其中An-是(g)表示的阴离子的通式(I)的化合物的方法,该方法包括:氨或上述一种或多种有机胺化合物(M),与作为第二原料的环氧化物进行反应,制备具有至少一个上述N-R基团(即,至少一个与N键接的R基团)的有机胺类化合物B;然后,原甲酸酯类化合物在溶剂(优选质子性溶剂或醇类溶剂,例如水)中,任选地在催化剂(例如氨水,或有机胺类,如乙胺,二乙胺或三乙胺)存在下,并且在属于有机醇胺类的有机胺M或具有至少一个上述N-R基团的属于有机醇胺类的化合物B和水的存在下进行水解反应。优选的是,所述水的存在量足以使得原甲酸酯类化合物的至少两个酯基发生水解,更优选,水的存在量足以使得原甲酸酯类化合物的三个酯基发生水解。
优选地,原甲酸酯类化合物是选自下列这些化合物中的一种或多种:原甲三(C1-C8)烃基酯类,优选原甲三(C1-C7)烃基酯类,例如,原甲酸三甲酯、原甲酸三乙酯、原甲酸甲基二乙基酯、原甲酸三丙酯、原甲酸甲基二丙基酯、原甲酸三丁酯、原甲酸三苯基酯、原甲酸三苄基酯、乙酰基原甲酸二乙基酯、乙酰基原甲酸乙基甲基酯、原甲酸二乙二醇酯、原甲酸丙二醇酯、原甲酸聚乙二醇酯、或者原甲酸酯中的R基团符合(1a)、(2a)或(3a)的特征。
优选,在本申请中,溶剂选自下列这些中的一种或多种:甲醇、乙醇、乙二醇、丙二醇、分子量小于400的聚乙二醇、分子量小于300的聚丙二醇、甲酰胺、甘油、甲酸甘油 酯或水,或DMF。
根据本发明的第四个实施方案,提供由上述第二个和第三个实施方案的方法所获得的具有作为CO2给体的阴离子的有机胺盐类化合物或化合物混合物。优选的是:该化合物或该化合物混合物含有25-95wt%,优选27-90wt%,优选30-85wt%,优选40-80wt%,更优选45-75wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺和/或二丙醇胺)的盐(即两种盐的重量之和),基于化合物或化合物混合物的总重量。或者,优选的是,该化合物或该化合物混合物含有15-90wt%,优选17-88wt%,优选20-85wt%,优选25-80wt%,更优选30-70wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)和二醇胺(例如二乙醇胺和/或二丙醇胺)(即两种醇胺的重量之和),基于化合物或化合物混合物的总重量。
根据本发明的第五个实施方案,提供具有通式(I)的有机胺盐化合物,和由上述第二个和第三个实施方案的方法所获得的具有作为CO2给体的阴离子的有机胺盐类化合物,作为发泡剂的用途,尤其作为聚氨酯发泡剂、聚苯乙烯发泡剂或聚氯乙烯发泡剂的用途。上述这些化合物在本申请中可以简称本发明发泡剂。
另外,本发明提供了本发明的发泡剂作为聚苯乙烯发泡剂或聚氯乙烯发泡剂的用途,其中An-是选自于下列阴离子中的一种或多种:
(a)R1R2N-COO-;其中R1和R2各自独立地是氢、甲基、乙基、H(OCH2CH2)q-、H(OCH2CH(CH3))q-、H(OCH(CH3)CH2)q-、H(OCH2CH(C6H5))q-、H(OCH(C6H5)CH2)q-、H(OCH2CH(CH2Cl))q-、H(OCH(CH2Cl)CH2)q-或H(OCH2CH(CBr3))q-;
(b)CO3 2-;或
(d)HO-COO-
另外,鉴于甲酸铵(熔点116℃)或甲酸有机胺M盐的分解温度较高,人们通常认为它们不适合用于聚氨酯发泡。但是,本申请的发明人经过大量的研究工作意外地发现,当甲酸铵(熔点116℃)或甲酸有机胺M盐接触到异氰酸酯基团时可与NCO基团反应生成不稳定的酸酐,然后迅速分解放出二氧化碳气体和一氧化碳。
在本申请中,当使用甲酸铵和环氧化物制备通式(I)化合物时,优选的是,首先由甲酸与氨水进行反应获得甲酸铵水溶液,然后添加少量的有机胺(例如甲胺、二甲胺或三甲胺、乙基胺或二乙基胺),加热脱水或减压浓缩或真空浓缩(例如使得水含量为7-15wt%为止,例如10wt%左右),然后通入环氧化物(如环氧乙烷和/或环氧丙烷)进行反应,获得甲酸醇胺盐(I)。这里,少量的有机胺(例如甲胺、二甲胺或三甲胺、乙基胺或二乙基胺)的添加,能够使得当甲酸醇胺盐(I)用于配制发泡组合物(“白料”)时防止在发泡组合物(“白料”)发生结晶、沉 淀现象。
在本申请中,当碳酸氢氨作为第一原料与第二原料进行反应来制备通式(I)化合物时,可使用催化剂,例如甲胺,二甲胺,醇胺类,其它胺类催化剂,双金属催化剂类(类),或采用加压加热。
另外,由选自于下列这些醇胺类化合物中的至少一种醇胺化合物(它们是具有至少一个N-H的有机胺类化合物(M)):
C2-C12醇胺类,例如一乙醇胺,二乙醇胺,三乙醇胺,一丙醇胺,二丙醇胺,三丙醇胺,单异丙醇胺,二异丙醇胺,三异丙醇胺,单丁醇胺,二丁醇胺,或三丁醇胺,
用属于阴离子An-的前驱体的相应酸进行中和所形成的以下通式(Ia)的有机胺盐化合物
An-[Bm+]p    (Ia)
也可直接作为发泡剂,尤其作为聚氨酯发泡剂、聚苯乙烯发泡剂或聚氯乙烯发泡剂。上述这些化合物在本申请中可以简称本发明发泡剂。聚氨酯发泡剂或用于聚氨酯发泡组合物中。当然,通式(Ia)的这些化合物发泡剂不是优选的,因为,它或它们的pH值一般低于8,甚至低于7.5,更甚至低于7.1。当用于制备绝热型的聚氨酯泡沫材料时,尤其闭孔型的聚氨酯泡沫材料时,从发泡效率、发泡剂的气味、绝热性能和泡孔尺寸稳定性以及聚氨酯泡沫体的尺寸稳定性综合考虑,这些有机胺盐化合物(Ia)(不是就地(in situ)通过有机胺类化合物(M)与环氧化物反应所制备)不是优选的。
另外,本申请的发明人意外地发现,甲酸铵与聚合物多元醇的混溶性比较好,即甲酸铵能够直接溶于聚合物多元醇中,因此甲酸铵能够直接用作聚氨酯发泡剂,因此,本申请还提供了甲酸铵作为发泡剂的用途,尤其作为聚氨酯发泡剂。当甲酸铵中含有少量(例如0.5-15wt%,如1-8wt%,更优选2-6wt%)的有机胺例如甲胺、二甲胺、三甲胺或一乙醇胺时,甲酸铵水溶液不发生结晶、沉淀。
本发明发泡剂(即,通式(I)的化合物,或由上述第二个或第三个实施方案的方法所获得的具有作为CO2给体的阴离子的有机胺盐类化合物)具有以下特征:1)在不另外或不额外添加碱性化合物的情况下,本发明发泡剂的pH值在7.5-10,优选,为pH 7.8-9.5,更优选pH 8-9之间;2)碱金属或碱土金属的含量为0-200ppm(质量),优选低于150ppm,更优选低于100ppm,更优选低于50ppm,更优选低于20ppm,更优选低于10ppm,更优选低于5ppm,最优选为低于检测极限或为0ppm;3)水的含量或作为溶剂而存在的水的含量为0-40wt%,优选5-35wt%,更优选10-30wt%,更优选15-25wt%;4)热分解温度是在36-120℃之间并且在分解时释放出CO2气体;其中分解温度较高的某些类型的本发明发泡剂物在接 触到NCO基团时变得不太稳定,能够在45-70℃之间分解而释放出CO2;5)优选的是,本发明发泡剂每个分子含有至少1个R基团,该R基团例如是HOCH2CH2-、HOCH2CH(CH3)-、HOCH(CH3)CH2-、HOCH2CH(C6H5)-、HOCH(C6H5)CH2-、HOCH2CH(CH2Cl)-、HOCH(CH2Cl)CH2-、HOCH2CH(CBr3)-或HOCH(CBr3)CH2-;进一步优选,本发明发泡剂包含多种(优选2-5种,如2或3种)具有通式(I)的化合物并且平均每分子含有1.5-5个R基团,该R基团例如是HOCH2CH2-、HOCH2CH(CH3)-、HOCH(CH3)CH2-、HOCH2CH(C6H5)-、HOCH(C6H5)CH2-、HOCH2CH(CH2Cl)-、HOCH(CH2Cl)CH2-、HOCH2CH(CBr3)-或HOCH(CBr3)CH2-;6)本发明发泡剂中的所有N原子当中的30-100%、优选50%-100%、更优选70%-100%、更优选85%-100%具有N-H共价键;7)在本发明发泡剂中,通式(I)化合物和水的总含量是基于总重量的70-100%,更一般是80-99.999%,更一般是85-99.0%(含有溶剂,并允许含有少量的非金属杂质);8、用红外光谱分析,某些本发明发泡剂具有在2932-2970cm-1范围的仲胺盐N-H的伸缩振动单峰,在1555-1566cm-1范围的仲胺盐N-H的弯曲振动单峰,另外,在3200-3400cm-1范围的强而宽的氢键结合的OH伸缩振动峰,表明发泡剂中既具有羟基,仲胺基,同时含有水。因此,本发明发泡剂包含一种或多种醇胺化合物并且一般含有水。
更优选,通式(I)的化合物平均每分子含有1.5-5个R基团。
在本申请中,优选,该R基团是HOCH2CH2-、HOCH2CH(CH3)-、HOCH(CH3)CH2-、HOCH2CH(C6H5)-、HOCH(C6H5)CH2-、HOCH2CH(CH2Cl)-、HOCH(CH2Cl)CH2-、HOCH2CH(CBr3)-或HOCH(CBr3)CH2-。
根据本发明的第六个实施方案,本发明还提供聚氨酯发泡组合物,它包含:0.01-100重量%的以上所述的通式(I)化合物(或由上述第二个和第三个实施方案的方法所获得的具有作为CO2给体的阴离子的有机胺盐类化合物);0-50重量%的物理发泡剂;0-5重量%的水,和0.0-99.99重量%的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量。优选,它包含:0.1-80重量%(更优选1-70wt%,更优选3-60wt%,更优选5-50wt%,更优选7-40wt%,如10wt%,15wt%)的以上所述的通式(I)化合物;0-40重量%的物理发泡剂;0-4重量%的水,和20.0-99.9重量%(更优选30-99wt%,更优选40-97wt%,更优选50-95wt%,更优选60-93wt%,如90wt%或85wt%)的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量。优选的是,本发明的发泡组合物含有总共0.5-4wt%的水,更优选0.8-2.5wt%,更优选1-2.2wt%的水。
优选,所述的发泡组合物进一步包含:泡沫稳定剂、催化剂和阻燃剂等。这些助剂是 聚氨酯领域中常用的。
优选,聚合物多元醇选自:聚醚多元醇、聚酯多元醇、聚醚-聚酯多元醇、聚碳酸酯二醇、聚碳酸酯-聚酯多元醇、聚碳酸酯-聚醚多元醇、聚丁二烯多元醇或聚硅氧烷多元醇。聚合物多元醇的平均官能度一般为2-16,优选为2.5-10,更优选3-8。
优选,所述物理发泡剂选自下组中的至少一种:正戊烷,异戊烷,环戊烷,沸点在0-100℃范围内的其它烷烃,HCFC-141b,HFC-245fa,HFC-365mfc,LBA,FEA-1100,沸点在0-100℃范围内的其它氟氯烃,甲酸甲酯。
一般,本发明的发泡组合物是透明的或澄清的。这表明本发明发泡剂溶解或均匀分散在聚合物多元醇中。
本发明的聚氨酯发泡组合物(俗称“白料”)具有以下特征:1、包含醇胺盐或醇胺化合物(例如,通式(I)的化合物在热分解之后释放CO2,同时残留醇胺类化合物);2、透明或澄清;3、在加热(例如40-80℃的温度)的情况下或在添加酸(无机酸或有机酸)的情况下释放出CO2,峰值分解温度一般是在45-65℃之间;4、当发泡组合物(即“白料”)与异氰酸酯或多异氰酸酯(例如MDI或TDI)接触或混合时,混合的物料瞬间(例如0.2-4秒,如1-2秒)变乳白色。本发明中,物料迅速变乳白色,伴随有体积快速膨胀现象,但此过程并非泡沫的真正起发,之后物料才开始起发。相对而言,采用水,或采用水与物理发泡剂作为发泡剂时,泡沫乳白和起发是同时进行的并且都是延迟发生的。
尽管在本发明中,发泡组合物(“白料”)可包含少量的水作为助发泡剂,但是,由于本发明的通式(I)化合物优先分解释放CO2,即优先发泡,因此,少量水的添加不影响发泡过程或不影响聚氨酯泡沫体成品的性能。
当本发明的聚氨酯发泡组合物(俗称“白料”)中包含其中An-是(f)HCOO-(甲酸根)的通式(I)化合物时,优选的是,本发明的聚氨酯发泡组合物(俗称“白料”)包含1-5重量的水。目的是减少在发泡过程中释放出的一氧化碳(CO)的量。
本发明还提供聚氨酯泡沫材料,其通过以上所述的聚氨酯发泡组合物与多异氰酸酯单体(如MDI或TDI)和/或异氰酸酯封端的预聚物进行混合后发生反应而形成。一般,所述聚氨酯发泡组合物与多异氰酸酯单体和/或异氰酸酯封端的预聚物的重量比是,例如在0.5:1-2:1范围内,优选在0.5:1-1:1的范围内。优选,所述的重量比应该使得发泡组合物的活性氢与多异氰酸酯单体和/或异氰酸酯封端的预聚物中所含-NCO基团的当量比为0.6-1.2:1,更优选0.7-0.9:1,即NCO相对于活性氢稍过量。
本发明还提供聚氨酯泡沫材料的用途,其用于聚氨酯喷涂、冰箱及冰柜保温、集装箱 保温、建筑保温板、彩钢板、冷库板、管道的保温、LNG输送保温等。
优选,通式(I)的有机胺盐化合物具有至少两个活性氢,例如2-10个,优选3-6个。所述活性氢是以伯胺基、仲胺基或羟基的形式存在。因此,通式(I)的有机胺盐化合物既能够释放出CO2以参与发泡,又参与扩链和/或交联,增强泡孔的强度(即力学强度和/或机械强度),使得所获得的聚氨酯泡沫体具有良好的尺寸稳定性。尤其,当聚氨酯泡沫体的密度<25kg/m3时,一般认为,现有技术采用全水作为发泡剂获得的聚氨酯泡沫体会有严重的收缩现象,但是,用本发明的通式(I)化合物作为发泡剂所获得的聚氨酯泡沫体(此泡沫体为采用手工搅拌在实验室自制方模中制作)则具有优异的尺寸稳定性,尤其在环境条件或室温条件下放置至少5个月的时间的情况下几乎没有肉眼可见的收缩现象。例如,按照中国国家标准GB/T 8811-2008,只是放置时间有变化,本发明制备的成品泡沫材料(密度<25kg/m3)在室温(23±2℃)条件下放置5个月,聚氨酯泡沫体的收缩率(长度尺寸变化率εL或宽度尺寸变化率εw或厚度尺寸变化率εr)一般低于7%、更优选低于5%、进一步优选低于3%、甚至更优选低于1%。
本发明的通式(I)的有机胺盐化合物,能够根据所要制备的聚氨酯泡沫材料的各种应用领域来进行特定的设计。
例如,当本发明的发泡组合物(俗称“白料”)用于制备用作冰箱、冷柜、冷藏集装箱或冷藏车的绝热材料的聚氨酯泡沫材料或是高回弹、低回弹等软质聚氨酯泡沫材料时,在制备其中An-是(a)-(f)或(h)的通式(I)的化合物的反应中,第一原料与第二原料的摩尔比一般是1:1.3-3.5,优选1:1.5-3。另外,当本发明的发泡组合物(俗称“白料”)用于喷涂施工时,第一原料与第二原料的摩尔比一般是1:2.8-5,优选1:3-4.5,更优选1:3.3-4。
优选地,制备通式(I)化合物的反应温度是在0-200℃之间,例如10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、130℃、150℃、160℃、170℃、180℃和190℃。反应的压力是0.1-1.5MPa之间,例如0.3MPa、0.6MPa、0.9MPa和1.2MPa。反应时间为0.5-20小时之间,例如0.5小时,1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时、10小时、11小时、12小时、13小时、14小时、15小时。
本发明的通式(I)化合物的分解温度一般是在45-120℃之间,优选50-70℃之间,或者,当接触到异氰酸酯时它的分解温度是在45-70℃之间。
在本申请中,An-[Bm+]p也可以表示为化学式或通式ABp。它们是醇胺盐化合物。因此在水的存在下它们呈现为离子化合物的形式。
本发明的有益技术效果或优点
1、本发明的通式(I)化合物或本发明发泡剂具有合适的分解温度,或当接触到异氰酸酯时具有合适的分解温度,一方面在室温下贮存稳定,另一方面在聚氨酯发泡过程中当发泡反应体系升温时能够以合理的速度释放二氧化碳气体,以使得发泡材料具有理想的性能,如泡孔的分布密度,泡孔的尺寸均匀性。
2、本发明的通式(I)化合物具有增溶基团即R基团,该化合物(I)能够以分子水平均匀地溶解或分布在聚合物多元醇如聚醚多元醇和/或聚酯多元醇,或聚氯乙烯(PVC)树脂或聚苯乙烯(PS)树脂中,确保发泡的均匀性,避免局部过度发泡。
3、本发明的通式(I)化合物具有醇胺残基或具有醇胺化合物,在该发泡剂(I)分解释放出CO2之后所产生的分解产物即醇胺化合物仍然含有至少两个活性氢,它们适合作为扩链剂和/或交联剂,本发明的通式(I)化合物既作为“发泡点”又作为“扩链点”和/或“交联点”,显著增强了泡孔的力学强度和机械强度,所获得的聚氨酯泡沫体具有良好的尺寸稳定性,聚氨酯泡沫体成品在放置几个月、甚至1年之后肉眼几乎没有观察到收缩现象,无塌泡或瘪泡现象。尤其在较高的温度(如40-60℃)下放置较长时间例如(10天)之后仍然具有良好的尺寸稳定性。
4、本发明的通式(I)化合物不容易挥发,不含金属离子(金属离子对金属基材有腐蚀性),并且全部或大部分替代氯氟烃发泡剂,因此,对于环境保护而言具有重要的意义,并且发泡的效果明显优于现有技术中使用其它发泡剂时的发泡效果。
5、当与环戊烷混合用作发泡剂时,与单独使用环戊烷相比,能够显著提高泡沫材料的绝热性能。当与氯氟烃如HCFC-141b,HFC-245fa或HFC-365mfc混合用作发泡剂时,与单独使用氯氟烃相比,能够显著提高泡沫材料的绝热性能。目前,通常围绕发泡剂或特定的氯氟烃发泡剂来选择与相关发泡剂互溶性或混溶性较好的特定聚醚多元醇,而使用本发明的发泡剂,无需选择特定的聚醚多元醇或聚酯多元醇,实用范围广泛,在发泡组合物中能够使用各种类型的聚酯多元醇和/或聚醚多元醇。
6、本发明的发泡剂具有胺基,本身具有自催化功能,能够减少聚氨酯发泡催化剂的使用,至少能够减少前期催化剂的使用或甚至能够省去前期催化剂。
7、与现有技术相比,本发明提供的聚氨酯发泡剂不含氯氟元素,ODP(对臭氧层的破坏的潜能值)为0,GWP(温室效应潜能值)等于1,是最环保的聚氨酯发泡剂,性能比较优良,低温性能极其优良,经检测在零下160摄氏度情况下的导热系数比现有最好的物理发泡剂低20%左右,这一优良的特性可用于天然气长距离运输管道的保温,另一特性是与环 戊烷混合使用可以大幅度降低泡沫材料的导热系数,这一优良的保温性能可以大幅度降低冰箱冰柜等设备的耗电量。本发明提供的聚氨酯发泡剂可替代现有的所有含卤素元素的物理发泡剂,满足聚氨酯材料的生产应用。
8、用本发明发泡剂或通式(I)化合物作为发泡剂所制备的聚氨酯泡沫材料(此泡沫体为采用手工搅拌在实验室自制方模中制作)的尺寸变化率或收缩率≤4.5%,优选≤1.5%,更优选≤0.5%(按照中国国家标准GB/T 8811-2008,放置时间可按照该标准中所要求,或甚至,放置时间为5个月)。另外,例如在34-42Kg/m3的泡沫体密度下,导热系数w/m·k(10℃)是在0.01900-0.02200之间,优选是在0.01910-0.02150之间。而现有技术的聚氨酯泡沫体在此密度下的导热系数一般高于0.02200,更通常是高于0.02300。另外,在此密度范围内,本发明泡沫体的压缩强度是在110-220Kpa范围,优选150-200Kpa范围。
附图说明
图1是实施例A-3的产品的红外光谱图。
图2是实施例A-4的产品的红外光谱图。
图3是实施例B-6的产品的红外光谱图。
图4是实施例4的泡沫体的扫描电子显微镜照片(SEM)。
图5是重复实施例4的对比泡沫体4-1的SEM。
图6是重复实施例4的参考泡沫体4-2的SEM。
图7是重复实施例4的对比泡沫体4-3的SEM。
图8是重复实施例4的参考泡沫体4-4的SEM。
图9是实施例16的泡沫体的SEM。
图10、图12和图14为本发明的采用化合物A-4作为发泡剂的聚氨酯泡沫体的外观照片。
图11、图13和图15为用水发泡的对比聚氨酯泡沫体的外观照片。
图16为实施例34的聚苯乙烯泡沫材料的SEM。
具体实施方式
下面结合实施例对本发明做进一步的描述。
在本申请中,用于制备聚氨酯泡沫体或用于发泡组合物中的常用聚醚多元醇和聚酯多元醇选自下列品种:聚醚4110、450、400A、MN500、SU380、SA380、403、SA460、G350;聚酯CF6320、DM2003、YD6004、AKS7004、CF6255。常用催化剂选自:33LV(A-33):33%三乙烯二胺的二丙二醇溶液、N,N-二甲基乙醇胺、N,N-二甲基苄胺、70%双(二甲胺 基乙基)醚的二丙二醇溶液、70%辛酸钾于二乙二醇溶液、二月桂酸二丁基锡、PT303、PT304、醋酸钾、PC-8(N,N-二甲基环己胺)、PC-5、PC-41、三乙醇胺、JXP-508、JXP-509、TMR-2、TMR-3、TMR-4。常用阻燃剂:TCPP、TCEP、DMMP、氯化铵、氢氧化铝粉末、DM1201、DM1301、四溴苯酐二醇。常用硅烷表面活性剂:DC8545、AK-158、AK-8805、AK-8812、AK-8809、AK-8818、AK-8860、DCI990、DC5188、DC6070、DC3042、DC3201。非硅烷表面活性剂:LK-221,LK-443。
安全说明:在本发明中凡是涉及使用环氧化合物的情况,为了安全起见,在将反应物加入反应器之前和之后必须经过惰性气体(如氮气或氩气)处理和保护下进行反应,防止爆炸。另外,对于加入环氧乙烷的情况,为了安全起见,优选的是分批加入反应器中,而环氧丙烷可以一次性加入反应器中,也可以分批。反应器一般为装有冷却设备的压力反应器,除非另有说明。
在实施例中根据中国国家标准GB/T 26689-2011(冰箱、冰柜用硬质聚氨酯泡沫塑料)测试泡沫体的各项性能。样品的尺寸一般为10*10*2.5cm。
导热系数按照GB/T 10294-2008或GB/T 10295-2008进行。平均温度为10℃,冷热板温差15~20℃。表观(芯)密度按照GB/T 6343-2009测试。低温尺寸稳定性按照GB/T 8811-2008,在-30℃±2℃下测试。压缩强度按照GB/T 8813-2008进行测试。闭孔率(即闭孔体积百分率)按照GB/T 10799-2008进行测试。
A)从氨基酸铵盐或氨基甲酸有机胺(M)盐制备通式(I)化合物
实施例A-1
将1.4吨的氨基甲酸铵(分子量78.07)、0.7吨的乙二醇、0.9吨的水加入到带有冷却水夹套的不锈钢高压反应釜(在下面的其它实施例中简称反应器)中,开动搅拌器,使得氨基甲酸铵慢慢溶解(不一定完全溶解),用氮气吹扫反应器,然后封闭反应器并开动搅拌,通入总共1.7吨的环氧丙烷(分子量58.08,沸点34℃),控制环氧丙烷的加料速度以便控制反应器内的压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在70℃以下反应15小时,反应完成,慢慢降低温度到50℃后控制真空度在600毫米汞柱以下(优选低于500mmHg)慢慢脱除不必要的水(例如达到低于20wt%的水含量),然后放掉真空,降温到40℃以下后放出反应物,获得化合物A-1。粘度200厘泊,pH=9,化合物A-1的分解温度为45-70℃(从45℃开始极其缓慢地分解,峰值分解温度为57-62℃)。用原子吸收分光光度计(Seiko Instruments,Inc.;SAS/727)测定碱金属和碱土金属离子的含量为低于检测极限。
化合物A-1是一种在室温下或在环境条件比较稳定的透明或澄清液体,适合作为聚氨 酯发泡剂,它与HFC-245fa、LBA、五氟丁烷的基本特性对比如下表:
  化合物A-1 HFC245fa 五氟丁烷 LBA
ODP 0 0 0 0
GWP 1 1030.01 793.98 5.00
沸点(℃) 45℃开始慢分解 15.3 40.2 19.3
从上表可以看出,化合物A-1的GWP(温室效应潜能值)等于1,分解温度比较高,克服了某些低沸点(低于20℃的)物理发泡剂如HFC-245fa、LBA、五氟丁烷等的很多缺点,如GWP远大于1、沸点比较低、易挥发,而本发明化合物A-1的GWP等于1、沸点比较高、不易挥发,并且ODP(对臭氧层的破坏的潜能值)为0,不会破坏大气臭氧层;不易挥发便于运输和存储。
实施例A-2
将1.4吨的氨基甲酸铵、0.7吨的乙二醇、0.9吨的水加入到带有冷却夹套的不锈钢反应器中,开动搅拌,使得氨基甲酸铵慢慢溶解(不一定完全溶解),反应体系经氮气处理和保护后加热升温,控制温度为45-70℃,控制压力不超过0.6MPa,然后分批地慢慢地加入总计1.3吨的环氧乙烷(分子量44.05),加完后控制温度45-70℃,压力在0.6MPa以下搅拌反应5小时,然后降温到50℃,600mHg下减压下脱除不必要的水(例如达到低于30wt%的水含量),降温到40℃以下后放出产物,获得化合物A-2。粘度大约250,pH=9,化合物A-2的分解温度在45-70℃范围。
实施例A-3(本发明优选)
将1kg的氨基甲酸铵、1kg的水加入到反应器中,在搅拌下溶解(允许存在不溶解的氨基甲酸铵),然后加入2kg的环氧丙烷到透明的石英玻璃反应器中,开动搅拌,在不断搅拌下慢慢升温,控温在50-60℃之间,压力不高于0.6MPa条件下进行反应,当反应进行到大约2小时时突然出现了奇妙的现象:混浊、不透明的混合物瞬间变成透明或澄明溶液,继续反应8小时,然后降温到50℃,在真空度为600毫米汞柱以下脱出不必要的水,降温到40℃以下后放出产物。反应时间确保反应按照摩尔比完成。获得化合物A-3。粘度200厘泊,pH=9.1,分解温度在45-70℃范围。液相色谱分析以及气相色谱分析,表明化合物A-3是包含多种醇胺的混合物。水含量为21.5wt%。红外光谱图如图1所示。
实施例A-4(本发明优选)
将1吨的氨基甲酸铵、1吨的水加入到带有冷却水夹套的不锈钢压力反应釜中,在搅拌下溶解(允许存在不溶解的氨基甲酸铵),用氮气吹扫反应器,然后分批加入2.2吨的环 氧丙烷到反应器中,然后封闭反应器,开动搅拌,在不断搅拌下慢慢升温,控温在45-70℃之间,压力不高于0.6MPa条件下反应10小时,然后降温到50℃,在真空度为600毫米汞柱以下脱出不必要的水,降温到40℃以下后放出产物。获得化合物A-4。粘度200厘泊,pH=9,分解温度在45-70℃范围。液相色谱分析以及气相色谱分析,均表明化合物A-4是包含多种醇胺的混合物。红外光谱图如图2所示。
实施例A-5(本发明优选)
将7kg的碳酸铵和7kg的氨基甲酸铵、12kg的水加入到反应器中,在搅拌下溶解(允许存在不溶解的氨基甲酸铵和碳酸铵),然后再分批加入30kg的环氧丙烷,在不断搅拌下慢慢升温,控温在45-70℃之间,控制压力不高于0.6MPa,反应10小时,然后降温到50℃,控温在50℃以下,真空度为600毫米汞柱以下脱出不必要的水,降温到40℃以下后放掉真空、放出产物,即获得化合物A-5。粘度大约200厘泊,pH=9,分解温度在45-70℃范围。
实施例A-6(本发明优选)
将16kg的氨基甲酸一乙醇胺盐、10kg的水加入到反应器中,用氮气清扫反应器,搅拌溶解,分批加入12kg的环氧丙烷到反应器中,开动搅拌,控制压力不高于0.6MPa,在不断搅拌下慢慢升温,当温度升高到70℃时控温反应5小时,然后降低温度到50℃以下,控制真空度600毫米汞柱以下脱除不必要的水,降温到40℃以下后放掉真空、放出产物,即可获得化合物A-6。粘度230厘泊。pH=9。分解温度在45-70℃范围。
实施例A-7
将20kg的氨基甲酸二亚乙基三胺盐、10kg的水加入到反应器中,搅拌溶解,在搅拌下,控制压力不高于0.6MPa,温度在45-70℃之间,分批加入15kg的环氧丙烷到反应器中,加完环氧丙烷后控温反应5小时,然后降温到50℃下,真空度在600毫米汞柱以下减压下脱除不必要的水,降温到40℃以下后放掉真空、放出产物即可获得化合物A-7。粘度大约350厘泊。pH=9,分解温度在45-70℃范围。
实施例A-8
将1吨的氨基甲酸铵(分子量78.07)、1吨的水加入到反应器中,在搅拌下溶解(允许存在不溶解的氨基甲酸铵),然后加入2.8吨的环氧氯丙烷(即,表氯醇或3-氯-1,2-环氧丙烷,分子量92.52,沸点117.9℃)到反应器中,开动搅拌,在不断搅拌下慢慢升温,控温在45-70℃之间,压力不高于0.6MPa条件下反应10小时,然后降温到50℃,在真空度为600毫米汞柱以下脱出不必要的水,降温到40℃以下后放出产物。获得化合物A-8。粘度450厘泊,pH=9,分解温度在45-70℃范围。
实施例A-9
将0.65吨的碳酸铵和0.65吨的氨基甲酸铵、1.2吨的水加入到反应器中,在搅拌下溶解(允许存在不溶解的氨基甲酸铵和碳酸铵),然后再加入3.6吨的苯乙烯氧化物(styrene oxide,分子量120.15),在不断搅拌下慢慢升温,控温在45-70℃之间,控制压力不高于0.6MPa,反应10小时,然后降温到50℃,控温在50℃以下,真空度为600毫米汞柱以下脱出不必要的水,降温到40℃以下后放掉真空、放出产物,即获得化合物A-9。粘度大约460厘泊,pH=9,分解温度在45-70℃范围。
B)制备具有CO3 2-阴离子的通式(I)化合物
实施例B-1
将14kg的碳酸铵(分子量96)、6kg的乙二醇和8kg的水加入到反应器中,开动搅拌,使得碳酸铵慢慢溶解(不一定完全溶解),加入20kg的环氧丙烷,开动搅拌,控制压力不高于0.6MPa,在不断搅拌下慢慢升温,控温在70℃以下反应12小时,反应完成,慢慢降低温度到50℃后控制真空度在600毫米汞柱以下慢慢脱除不必要的水,然后放掉真空,降温到40℃以下后放出反应物,获得化合物获得化合物B-1。粘度大约300厘泊,pH=9,化合物B-1的分解温度为45-70℃。液相色谱分析以及气相色谱分析,表明化合物B-1是包含多种醇胺的混合物。用原子吸收分光光度计(Seiko Instruments,Inc.;SAS/727)测定碱金属和碱土金属离子的含量为低于检测极限。
实施例B-2
将1.4吨的碳酸铵、1吨的水加入到带有冷却夹套的不锈钢压力反应釜中,搅拌溶解(允许存在不溶解的碳酸铵),用氮气吹扫,然后密封反应釜,在不断搅拌下,控制温度在45-70℃之间,控制压力不高于0.6MPa,将1.3吨的环氧乙烷分批加入到反应器中,加完后控温反应4小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水,降温到40℃以下后放掉真空、放出产物即可。获得化合物B-2。粘度300厘泊。pH=9.1。分解温度在45-70℃。液相色谱分析以及气相色谱分析,表明化合物B-2是包含多种醇胺的混合物。
实施例B-3
将20kg的碳酸铵、18kg的水加入到透明的石英玻璃反应器中,搅拌溶解(允许存在不溶解的碳酸铵),在不断搅拌下,控制温度在45-70℃之间,控制压力不高于0.6MPa,将45kg的环氧丙烷加入到反应器中,加完后控温反应,当反应进行到大约2小时左右时突然出现了奇妙的现象:混浊、不透明的混合物瞬间变成透明或澄明溶液,继续反应8小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水,降温到40℃以下后放 掉真空、放出产物即可。获得化合物B-3。粘度大约为250厘泊。pH=9.1。分解温度在45-70℃。
实施例B-4
将20kg的氨水(浓度25wt%)加入到反应器中,开动搅拌,控制压力不高于0.6MPa,温度不超过120℃,分批加入16kg的环氧乙烷,加完后控温反应1小时。反应完成后降温到室温后减压蒸除不必要的水,通入4kg的二氧化碳(分子量44)至pH值为8左右,控温在80℃以下,反应完成后降温到室温即可。获得化合物B-4。粘度为大约400厘泊。分解温度在45-75℃范围。
实施例B-5
将20kg的氨水(浓度25wt%)、5kg的乙二醇加入到反应器中,开动搅拌,控制压力不高于0.6MPa,温度不超过120℃,分批加入20kg的环氧丙烷,加完后控温反应2小时。反应完成后降温到室温后减压蒸除不必要的水,通入5kg的二氧化碳至pH值为8左右,控温在80℃以下,反应完成后降温到室温即可。获得化合物B-5。粘度为大约450厘泊。分解温度在45-75℃范围。
实施例B-6
将10kg的重量份的二乙烯三胺(分子量103.17)、15kg的水加入到反应器中,开动搅拌,控制压力不高于0.6MPa,温度不超过120℃,分批加入15kg的环氧丙烷,加完后控温反应1小时。反应完成后降温到室温后减压蒸除不必要的水,通入6kg的二氧化碳至pH值为8左右,控温在80℃以下,反应完成后降温到室温即可。获得化合物B-6。粘度为大约500厘泊。分解温度在45-70℃范围。红外谱图如图3所示。
实施例B-7
将10kg的乙二胺(分子量60.12)、15kg的水加入到反应器中,开动搅拌,控制压力不高于0.6MPa,温度不超过120℃,分批加入10kg的环氧乙烷(分子量44.05),加完后控温反应1小时。反应完成后降温到室温后减压蒸除不必要的水,通入5kg的二氧化碳至pH值为8为止,控温在80℃以下,反应完成后降温到室温即可。获得化合物B-7。粘度为大约500厘泊。分解温度在45-70℃范围。
C)制备具有甲酸根(HCOO-)的通式(I)化合物
实施例C-1
将15kg的甲酸铵、1kg的甲胺催化剂,10kg的水、5kg的乙二醇加入到反应器中,开动搅拌,控制压力不高于0.5MPa,控温在120℃以下,将12kg的环氧乙烷分批加入到反应器中,反应5小时。反应完成后降温,然后控制真空度为600毫米汞柱以下,温度100℃ 以下减压脱除不必要的水,去掉真空,降温到50℃以下后放出产品即可。获得化合物C-1。粘度为大约200厘泊,pH=8.5,分解温度高于100℃。
实施例C-2
重复实施例C-1,只是使用15kg的环氧丙烷代替12kg的环氧乙烷,并且环氧丙烷不是分批次加入反应器中,而是一次性加入其中。获得化合物C-2。粘度为大约350厘泊,pH=8.6,分解温度高于100℃。
实施例C-3
将10kg的甲酸甲酯、10kg的甲酸乙酯、13kg的氨水(浓度25wt%)、35kg的二乙醇胺加入到反应器中,开动搅拌,控制压力不高于0.5MPa,在不断搅拌下慢慢升温,当温度升高到100℃时控温反应15小时。反应完成后降温,然后控制真空度为600毫米汞柱以下,温度100℃以下减压脱除甲醇和乙醇,去掉真空,降温到50℃以下放出产品后。获得化合物C-3。粘度大约为400厘泊,pH=9,分解温度高于100℃。
上述化合物C-1、C-2和C-3在与异氰酸酯接触时立即放出二氧化碳气体,同时也放出少量一氧化碳气体,克服了一般物理发泡剂如甲酸甲酯的缺点。
实施列C-4(不属于通式(I)化合物)
将24kg的氨水(浓度25wt%)加入到反应器中,控制温度在100℃以下,在不断搅拌下将20kg的甲酸(浓度85wt%)慢慢滴加到氨水中,加完后保温反应1小时,然后控制真空度为600毫米汞柱以下,温度100℃以下减压脱除不必要的水。获得化合物C-4。粘度大约为150厘泊,pH=9.5,分解温度高于100℃。
实施例C-5(不属于通式(I)化合物)
将23kg的氨水(浓度25wt%)、1.5kg的二甲胺加入到反应器中,控制温度在100℃以下,在不断搅拌下将20kg的甲酸(浓度85wt%)慢慢滴加到氨水中,加完后保温反应1小时,然后控制真空度为600毫米汞柱以下,温度100℃以下减压脱除不必要的水,去掉真空,降温到50℃以下后放出产品获得化合物C-5。粘度大约为150厘泊,pH=9.2,分解温度高于100℃。
实施例C-6(不属于通式(I)化合物)
将23kg的氨水(浓度25wt%)、1.5kg的甲胺加入到反应器中,控制温度在100℃以下,在不断搅拌下将20kg的甲酸(浓度85wt%)慢慢滴加到氨水中,加完后保温反应1小时,然后控制真空度为600毫米汞柱以下,温度100℃以下减压脱除不必要的水(例如可以达到10wt%左右的水含量),去掉真空,降温到50℃以下后放出产品。获得化合物C-6,未发生 结晶,可能是所添加的甲胺干扰了其结晶。粘度大约为150厘泊,pH=9,分解温度高于100℃。
化合物C-4、C-5或C-6在与异氰酸酯接触时立即发出二氧化碳气体,同时也放出少量一氧化碳气体,克服了一般物理发泡剂的缺点。
虽然化合物C-1至C-6甚至在高于110℃下不分解,但是,发明人经过实验发现,在聚氨酯发泡过程中这些能够容易地分解而释放出CO2,原因可能是当接触到异氰酸酯化合物时首先与NCO基团反应生成了不太稳定的碳酸酐。
D)制备具有碳酸氢根(HO-COO-)的通式(I)化合物
实施例D-1
将10kg的碳酸氢铵(分子量79.06)、9.0kg的水和1kg乙二胺加入到透明的石英玻璃反应器中,搅拌溶解(允许存在不溶解的碳酸氢铵),密封反应器,然后在不断搅拌下,控制温度在45-65℃之间,控制压力不高于0.6MPa,将20kg的环氧丙烷分批加入到反应器中,加完后控温反应10小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水,降温到40℃以下后放掉真空、放出产物即可。获得化合物D-1。粘度大约为250厘泊。pH=8,分解温度在36-42℃。
发明人意外地发现,当将化合物D-1与聚醚多元醇和/或聚酯多元醇混合,例如配制发泡组合物(“白料”)时,溶解在白料中的化合物D-1的分解温度能够提高至45-65℃。这使得化合物D-1具有合适的分解温度,因此,适合用于聚氨酯发泡。
E)制备具有碳酸单烃基酯(RbO-COO-)阴离子的通式(I)化合物
实施例E-1
将10kg的碳酸氢甲酯的铵盐(分子量93)、9.0kg的水和1kg乙二胺加入到透明的石英玻璃反应器中,搅拌溶解(允许存在不溶解的铵盐),密封反应器,然后在不断搅拌下,控制温度在45-65℃之间,控制压力不高于0.6MPa,将20kg的环氧丙烷分批加入到反应器中,加完后控温反应10小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水,降温到40℃以下后放掉真空、放出产物即可。获得化合物E-1。粘度大约为350厘泊。pH=8,分解温度在42℃-60℃。
F)制备具有-OOC-N(R1)-Ra-N(R2)-COO-或Ra'(-N(R1)-COO-)3阴离子的通式(I)化合物
实施例F-1
将10kg的NH4OOC-NH-(CH2)5-NH-COO NH4(分子量182)、9.0kg的水加入到透明的石英玻璃反应器中,搅拌溶解(允许存在不溶解的铵盐),密封反应器,然后在不断搅拌下,控制温度在45-55℃之间,控制压力不高于0.6MPa,将20kg的环氧丙烷分批加入到反应器 中,加完后控温反应10小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水,降温到40℃以下后放掉真空、放出产物即可。获得化合物F-1。粘度大约为600厘泊。pH=9,分解温度在45℃-70℃。
实施例F-2
将12kg的具有下式的苯-1,3,5-三(氨基甲酸铵)(分子量306):
Figure PCTCN2017083948-appb-000009
和9.0kg的水加入到透明的石英玻璃反应器中,搅拌溶解(允许存在不溶解的铵盐),密封反应器,然后在不断搅拌下,控制温度在45-60℃之间,控制压力不高于0.6MPa,将20kg的环氧丙烷分批加入到反应器中,加完后控温反应10小时,然后降温到50℃,控制真空在600mHg以下减压下脱除不必要的水,降温到40℃以下后放掉真空、放出产物即可。获得化合物F-2。粘度大约为510厘泊。pH=9.6。分解温度在45℃-70℃。
G)制备具有原甲酸根阴离子的通式(I)化合物
实施例G-1
将15kg的原甲酸三乙酯、20kg的二乙醇胺、10kg的水加入到反应器中,开动搅拌,控制压力不高于0.1MPa,在不断搅拌下慢慢升温,当温度升高到80℃时控温反应10小时。反应完成后降温到50℃,然后控制真空度为600毫米汞柱以下,温度50℃以下减压脱除乙醇,降温到40℃以下放出产品后即得化合物G-1,粘度大约为500厘泊,pH=8.0,分解温度在45-70℃。
实施例G-2
将15kg的原甲酸三甲酯、2.0kg的乙二醇、10kg的水、6.0kg的乙二胺加入到反应器中,开动搅拌,控制压力不高于0.1MPa,在不断搅拌下慢慢升温,当温度升高到70℃时控温反应5小时。反应完成后降温,然后控制真空度为600毫米汞柱以下,温度50℃以下减压脱甲醇,去掉真空,降温到40℃以下放出产品后即可得化合物G-2,粘度大约温250厘泊,pH=8.3,分解温度45-70℃。
实施例G-3
将15kg的原甲酸三乙酯、13kg的一乙醇胺、7.0kg的水加入到反应器中,开动搅拌,在不断搅拌下慢慢升温,控温在100℃以下反应8小时。反应完成后降温,然后控制真空度为600毫米汞柱以下,温度50℃以下减压脱除乙醇,去掉真空,降温到50℃以下放出产 品后即得到了其中原甲酸三乙酯的两个酯基发生水解的化合物G-3。粘度大约300厘泊,pH=8.1,分解温度45-70℃。
实施例G-4
将20kg的原甲酸乙二醇酯、11kg的二乙醇胺、10kg的氨水加入到反应器中,开动搅拌,在不断搅拌下慢慢升温,控温不超过100℃下反应8小时。反应完成后降温,然后控制真空度为600毫米汞柱以下,温度50℃以下减压脱除不必要的水,去掉真空,降温到40℃以下放出产品后即可得化合物G-4。粘度大约500厘泊,pH=8,分解温度45-70℃。
应用实施例
实施例1
将8重量份的作为发泡剂的由以上实施例A-1制备的化合物A-1、50重量份的聚醚多元醇4110(由山东省滨州市的滨化集团生产)、1重量份的泡沫稳定剂DC3201(美国空气化工公司生产)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司生产)和2重量份催化剂A33(33LV,美国空气化工公司生产)混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200,烟台万华化学集团股份有限公司),经搅拌均匀后发泡制得聚氨酯泡沫材料。
实施例2
将8重量份的作为发泡剂的由以上实施例A-2制备的化合物A-2、30重量份的聚醚多元醇4110、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)和1重量份的泡沫稳定剂DC3201、12.5重量份的阻燃剂TCPP和2重量份催化剂A33混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例3
20重量份的作为发泡剂的化合物A-3、2重量份的泡沫稳定剂DC3201、0.5重量份的催化剂二月桂酸二丁基锡、0.5重量份的催化剂PC-5(美国空气化工),1重量份的催化剂PC-8(美国空气化工),1重量份的催化剂PT304(美国空气化工),1重量份的催化剂A33,40重量份的阻燃剂TCPP、20重量份的聚醚多元醇4110、10重量份的AKS7004(AEKYUNG PETROCHEMICAL CO.,LTD KOREA)、10重量份的MN500(山东蓝星东大化工有限责任公司,羟值mgKOH/g:330-350)和10重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司),均匀混合后以50kg用量,经喷涂机与异氰酸酯MDI(PM200)按照体积比1:1-1.6(即“白料”与MDI的体积比)喷涂制备聚氨酯泡沫材料。
实施例4
将7重量份作为发泡剂的化合物A-4、1重量份的催化剂PC-41(美国空气化工)、0.5重量份的催化剂PC-8(美国空气化工)、环戊烷13重量份,2重量份的泡沫稳定剂DC8545(美国空气化工)加入到50重量份的聚醚多元醇2010(江苏省海安石油化工厂生产,)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司)和25重量份的聚醚多元醇SA460(山东一诺威聚氨酯股份有限公司)的混合物中混合均匀,获得透明的发泡组合物(简称“白料”),然后在其中加入148.2份异氰酸酯MDI(PM200),经搅拌均匀后注入发泡模具中发泡制得带皮聚氨酯泡沫材料。
取样品,用刀片切片后利用SEM放大100倍观察泡孔。如图4中所示,泡孔直径为205微米。
作为对比,重复本实施例4,只是5重量份水和12重量份的环戊烷(1:2.4重量比)用作发泡剂,获得对比泡沫体4-1;如图5中所示,泡孔直径为396微米。
另外,重复本实施例4,只是本发明化合物A-4和环戊烷(1:1.5重量比)用作发泡剂,获得参考泡沫体4-2;如图6中所示,泡孔直径为306微米。作为对比,重复本实施例4,只是水+LBA+环戊烷(1:1:1重量比)用作发泡剂,获得对比泡沫体4-3,如图7中所示,泡孔直径为495微米。重复本实施例4,只是本发明化合物A-4、LBA和环戊烷(1:1.2:1.3重量比)用作发泡剂,获得参考泡沫体4-4,如图8中所示,泡孔直径是335微米。
从图4、图6和图8中可以看出,泡沫体显得细腻、均匀、致密,单位面积内泡孔数量明显的多。从图5、图7中可以看出,泡孔的直径明显不均匀,单位面积内泡孔数量明显偏少。
实施例5
将6重量份的作为发泡剂的化合物A-5、1重量份的泡沫稳定剂DC3201(美国空气化工)30重量份的聚醚多元醇4110(山东滨州市滨化集团)、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)、0.5重量份催化剂PC-41(美国空气化工),混合均匀后获得发泡组合物,然后在其中加入85重量份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例6
将20重量份的作为发泡剂的化合物A-6、50重量份的聚醚多元醇2010(江苏省海安石油化工厂生产)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司生产)和25重量份的聚醚多元醇SA460(山东一诺威聚氨酯股份有限公司)、0.5重量份的催化剂 PC-41(美国空气化工)、0.5重量份的催化剂PC-8(美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入175份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫材料。
实施例7
将4重量份的作为发泡剂的化合物A-7、10重量份HFC-365mfc,11重量份的聚醚多元醇4110(山东滨州滨化集团)、39重量份的聚酯多元醇DM2003(广东德美精细化工有限公司)、1.5重量份的泡沫稳定剂DC3201(美国空气化工)和1重量份的催化剂JXP-508(美国空气化工)、0.6重量份的催化剂JXP-509(美国空气化工)、1.5质量分的催化剂K-15(美国空气化工)混合均匀后获得发泡组合物,25重量份的阻燃剂TCPP然后在其中加入155重量份的异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例8
将4重量份的作为发泡剂的化合物A-1、10重量份HFC-365mfc,15重量份的聚醚多元醇4110(山东滨州滨化集团)、35重量份的聚酯多元醇DM2003(广东德美精细化工有限公司)、1.5重量份的泡沫稳定剂DC3201和0.5重量份的催化剂PC-8(美国空气化工)、0.5重量份的催化剂PC-41(美国空气化工)混合均匀后获得发泡组合物、25重量份的阻燃剂TCPP,然后在其中加入160份的异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫材料。
实施例9
将7重量份的作为发泡剂的化合物A-3、1重量份的催化剂PC-41(美国空气化工)、0.5重量份的催化剂PC-8(美国空气化工)、环戊烷13重量份,2重量份的泡沫稳定剂DC8545(美国空气化工)加入到50重量份的聚醚多元醇2010(江苏省海安石油化工厂生产)、25重量份的聚醚多元醇SA380(山东)和25重量份的聚醚多元醇SA460(山东一诺威聚氨酯股份有限公司)的混合物中混合均匀,然后在其中加入150份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例10
将5重量份的作为发泡剂的化合物A-2、8重量份HFC-365mfc、30重量份的聚醚多元醇4110(山东滨州滨化集团)、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)和1重量份的泡沫稳定剂DC3201(美国空气化工)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司)和1重量份催化剂A33(33LV,美国空气化工)、1重量份的催化剂PC-41(美国空气化工)混合均匀后获得发泡组合物,然后在其中加入102份异氰酸酯MDI(PM200), 经搅拌均匀后发泡制得聚氨酯泡沫。
表1:聚氨酯泡沫体的性能
Figure PCTCN2017083948-appb-000010
说明:以上各个列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
其中收缩率(尺寸变化率)按照中国国家标准GB/T 8811-2008测量,只是放置时间为5个月。下同。
其中实施例4的产品显得细腻、均匀、致密,如图4所示,具有良好的绝热性能,能够满足冰箱及冰柜领域的各种性能的要求。实施例5的产品能够满足聚氨酯管道保温中各种性能的要求。实施例6的产品显得非常细腻、均匀、致密,能够满足LNG(液化天然气)输送保冷应用各种性能的要求。实施例7的产品能够满足聚氨酯保温板材各种性能的要求。实施例8的产品能够满足聚氨酯彩钢板、冷库板的各种性能的要求。
实施例11
将7重量份的作为发泡剂的由以上实施例B-1制备的化合物B-1、50重量份的聚醚多元醇4110(山东滨州市滨化集团)、1重量份的泡沫稳定剂DC3201(美国空气化工)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司)和2重量份催化剂A33(33LV,美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入95.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫材料。
实施例12-20
实施例12-20分别重复实施例2-10,只是发泡剂如表2中所示。
表2:聚氨酯泡沫体的性能
Figure PCTCN2017083948-appb-000011
说明:以上各个列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
其中实施例14的产品具有良好的绝热性能,能够满足冰箱及冰柜领域的各种性能的要求。实施例15的产品能够满足聚氨酯管道保温中各种性能的要求。实施例16的泡沫产品显得更加细腻、均匀、致密,如图9所示,因此,它能够满足LNG(液化天然气)输送保冷应用各种性能的要求。实施例17的产品能够满足聚氨酯保温板材各种性能的要求。实施例18的产品能够满足聚氨酯彩钢板、冷库板的各种性能的要求。
实施例21
将4重量份的作为发泡剂的由以上实施例C-1制备的化合物C-1、50重量份的聚醚多元醇4110、1重量份的泡沫稳定剂DC3201、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司)和1重量份催化剂A33(33LV,美国空气化工)、1重量份的催化剂PC-41(美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入104.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例22
将4重量份的作为发泡剂的由以上实施例C-2制备的化合物C-2、30重量份的聚醚多元醇4110、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)、12.5重量份的阻 燃剂TCPP(江苏雅克化工有限公司)、1重量份的泡沫稳定剂DC3201(美国空气化工)、0.5重量份催化剂PC-8(美国空气化工)、1重量份催化剂PC-41(美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例23
将3.5重量份的由以上实施例C-3制备的化合物C-3、2重量份的泡沫稳定剂DC3201(美国空气化工)、1重量份催化剂PC-8(美国空气化工)、1重量份催化剂PC-41(美国空气化工)、13重量份环戊烷、加入到50重量份的聚醚多元醇2010(江苏省海安石油化工厂)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司生产)和25重量份的聚醚多元醇SA460(生产厂家山东一诺威聚氨酯股份有限公司生产)的混合物中混合均匀混合均匀后获得透明的发泡组合物,然后在其中加入145份异氰酸酯MDI(PM200),经搅拌均匀后注入发泡模具中发泡制得带皮聚氨酯泡沫。
实施例24-26
实施例24-26分别重复实施例21-23,只是发泡剂如表2中所示。
表3:聚氨酯泡沫体的性能
Figure PCTCN2017083948-appb-000012
说明:以上各个列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
实施例27
将17重量份的作为发泡剂的由以上实施例D-1制备的化合物D-1、100重量份的聚醚多元醇4110(山东滨州滨化集团)、2重量份的泡沫稳定剂DC3201(美国空气化工)和2重量份催化剂A33(33LV)、2重量份的催化剂PC-41(美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入160份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯 泡沫。
实施例28
将25重量份的化合物E-1、50重量份的聚醚多元醇2010(江苏省海安石油化工厂生产)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司生产)和25重量份的聚醚多元醇SA460(山东一诺威聚氨酯股份有限公司)、2重量份的泡沫稳定剂DC3201(美国空气化工)、0.5重量份催化剂PC-8(美国空气化工)、1重量份催化剂PC-41(美国空气化工)混合均匀后获得透明的发泡组合物,然后在其中加入155份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例29
将15重量份的化合物F-1、10重量份环戊烷、2重量份的泡沫稳定剂DC3201(美国空气化工)、1重量份催化剂PC-8(美国空气化工)、1.5重量份催化剂PC-41(美国空气化工)加入到50重量份的聚醚多元醇2010(江苏省海安石油化工厂)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司生产)和25重量份的聚醚多元醇SA460(生产厂家山东一诺威聚氨酯股份有限公司生产)中混合均匀后获得透明的发泡组合物,然后在其中加入150份异氰酸酯MDI(PM200),经搅拌均匀后注入发泡模具中发泡制得带皮聚氨酯泡沫。
对比例1
重复实施例28,只是仅仅采用15重量份的环戊烷作为发泡剂。
表4:聚氨酯泡沫体的性能
Figure PCTCN2017083948-appb-000013
说明:以上各个列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
实施例30
将12重量份的作为发泡剂的由以上实施例G-1制备的化合物G-1、50重量份的聚醚多元醇4110、1重量份的泡沫稳定剂DC3201、12.5重量份的阻燃剂TCPP(江苏雅克化工有 限公司)和1重量份催化剂A33(33LV,美国空气化工)、1重量份的催化剂PC-41(美国空气化工)混合均匀后获得发泡组合物,然后在其中加入104.5份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例31
将7.5重量份的作为发泡剂的由以上实施例G-2制备的化合物G-2、30重量份的聚醚多元醇4110、20重量份的聚酯多元醇CF6320(江苏富盛新材料有限公司)、12.5重量份的阻燃剂TCPP(江苏雅克化工有限公司)、1重量份的泡沫稳定剂DC3201(美国空气化工)、0.5重量份催化剂PC-8(美国空气化工)、1重量份催化剂PC-41(美国空气化工)混合均匀后获得发泡组合物,然后在其中加入份异氰酸酯MDI(PM200),经搅拌均匀后发泡制得聚氨酯泡沫。
实施例32
将9重量份的由以上实施例G-3制备的化合物G-3、2重量份的泡沫稳定剂DC3201(美国空气化工)、1重量份催化剂PC-8(美国空气化工)、1重量份催化剂PC-41(美国空气化工)、13重量份环戊烷、加入到50重量份的聚醚多元醇2010(江苏省海安石油化工厂)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司生产)和25重量份的聚醚多元醇SA460(生产厂家山东一诺威聚氨酯股份有限公司生产)的混合物中混合均匀混合均匀后获得发泡组合物,然后在其中加入145份异氰酸酯MDI(PM200),经搅拌均匀后注入发泡模具中发泡制得带皮聚氨酯泡沫。
实施例33
将9.5重量份的由以上实施例G-4制备的化合物G-4、2重量份的泡沫稳定剂DC3201(美国空气化工)、1重量份催化剂PC-8(美国空气化工)、1重量份催化剂PC-41(美国空气化工)、13重量份环戊烷、加入到50重量份的聚醚多元醇2010(江苏省海安石油化工厂)、25重量份的聚醚多元醇SA380(山东一诺威聚氨酯股份有限公司生产)和25重量份的聚醚多元醇SA460(生产厂家山东一诺威聚氨酯股份有限公司生产)的混合物中混合均匀混合均匀后获得发泡组合物,然后在其中加入145份异氰酸酯MDI(PM200),经搅拌均匀后注入发泡模具中发泡制得带皮聚氨酯泡沫。
表5:聚氨酯泡沫体的性能
Figure PCTCN2017083948-appb-000014
Figure PCTCN2017083948-appb-000015
说明:以上各个列表中的检测数据是采用常规发泡箱和自制发泡模型制备的泡沫样品所做的检测数据,是手工制备的自由泡样品。
本发明的化学发泡剂(简称CFA)的性能
1、发泡组合物(简称白料)的贮存稳定性以及发泡性能测试
①.CFA-CP(环戊烷的简称)混合使用制备白料的稳定性测试
我们按照用于冰箱的白料的参数配置了CFA-CP混合体系的白料(以上实施例9中的白料),白料在50℃烘箱内放置后测定白料活性,每隔几天取样测定白料的反应活性,实验结果如下表5:
表5:白料的反应活性
日期 反应时间(s)
2015.8.28 CT:9 GT:55
2015.8.29 CT:9 GT:55
2015.8.31 CT:8 GT:54
2015.9.3 CT:9 GT:55
2015.9.6 CT:8 GT:56
2015.9.12 CT:9 GT:54
2015.9.14 CT:9 GT:53
2015.9.16 CT:8 GT:56
2015.9.18 CT:9 GT:55
2015.9.21 CT:8 GT:54
2015.9.24 CT:9 GT:56
2015.9.28 CT:9 GT:54
2015.10.5 CT:9 GT:56
2015.10.9 CT:10 GT:54
2015.10.15 CT:9 GT:55
2015.10.19 CT:9 GT:56
表中CT是指起发时间;GT是指拉丝时间。
由上表看出,CFA-CP在上述白料体系中随着时间的变化白料的反应活性基本不变,50℃下放置51天后一般认为在常温下可放置半年以上。
除了反应活性外,CFA-CP混合后制备的泡沫材料导热系数值也是稳定的,以下是按照不同时间间隔取样后制备成泡沫材料(与实施例9中相同条件)并对泡沫材料导热系数等指标进行了测试,结果如下:
日期 密度kg/m3 导热系数(10℃)λw/m·k
2015.8.28 35 0.01917
2015.9.12 35 0.01923
2015.9.24 35 0.01906
2015.10.15 35 0.01911
从表中看出,同一种白料放置时间虽然不同,但发泡的密度没有变化,说明发泡效率不变,导热系数基本上也没有变化。
②.仅仅使用CFA作为发泡剂所制备的白料的稳定性实验
与实施例5中相同,我们按照常规白料配方配置了完全使用CFA制备的白料在室温下放置3个月,每隔一个月取样测定白料活性和泡沫的导热系数,测定结果如下:
日期 反应时间 导热系数(10℃)λw/m·k
2013.11.27 CT:9 GT:25 TFT:32 0.02085
2014.1.24 CT:9 GT:24 TFT:32 0.02123
2014.2.26 CT:9 GT:24 TFT:35 0.02093
2014.3.27 CT:9 GT:25 TFT:36 0.02140
表中TFT是指结皮脱粘时间。
由上表可以看出,本发明CFA在以上白料体系中随着时间的变化反应活性和导热系数保持稳定。
③低密度下CFA自由泡和水发泡的稳定性对比
重复以上实施例5,但是发泡剂的用量改变为15重量份的化合物A-4,同时,作为对比,重复以上实施例5,但是仅仅采用水作为发泡剂,分别制备各自的白料和各自的泡沫材料,在所获得的泡沫材料的密度相同的情况下观察两种泡沫材料随时间的变化稳定性是否改变。制备时间为2015年4月16日,密度同为22kg/m3,图10和图12为本发明泡沫体的初始外观,图11和图13为采用水作为发泡剂所制备的泡沫体的初始外观。放置到2015年9月29日,共五个月,观察泡沫的外观,图14为本发明产品,外观和尺寸几乎没有变 化,而图15为对比样品已经萎缩,聚氨酯行内专家认为,当泡沫密度在25kg/m3左右时用水发泡的情况下缩泡问题是不可避免的,这是CFA和水的最大区别。换句话说,水发泡用于建筑外墙喷涂等领域将随着时间的变化泡沫材料收缩,导热系数变坏。
其它应用
1、本发明的发泡剂在聚苯乙烯发泡材料的制备中的应用
实施例34
将100重量份的聚苯乙烯树脂粉料,6重量份的本发明发泡剂B-1,平均粒度175微米的碳酸钙,0.3重量份的硬脂酸锌,0.3重量份的色粉(伟昌牌,深圳市伟昌颜料有限公司生产)投入混合机在30-40℃范围的温度下进行混合,获得聚苯乙烯发泡组合物,然后利用单螺杆挤出机(螺杆的长径比在28:1)挤出成型,挤出机的各段温度为:一段85℃~95℃,二段95℃~105℃,三段,105℃~115℃,四段115℃~125℃;模具温度125℃~130℃;螺杆转速为5rpm~9rpm。所获得的型材的表观密度为587kg/m3。SEM照片如图16所示(放大100倍)。从照片可以看出,泡孔的直径比较均匀。
2、本发明的发泡剂在聚氯乙烯发泡材料的制备中的应用
实施例35
将85重量份的PVC树脂,5重量份的本发明发泡剂A-1,0.5重量份的聚乙烯蜡,平均粒度175微米的碳酸钙,0.3重量份的硬脂酸锌,0.3重量份的色粉(伟昌牌,深圳市伟昌颜料有限公司生产)投入混合机在30-40℃范围的温度下进行混合,获得聚氯乙烯发泡组合物,然后利用单螺杆挤出机(螺杆的长径比在28:1)挤出成型,挤出机的各段温度为:一段145℃~150℃,二段155℃~165℃,三段,175℃~185℃,四段180℃~195℃;模具温度195℃~205℃;螺杆转速为5rpm~9rpm。所获得的型材的比重为0.55g/cm3

Claims (36)

  1. 具有以下通式(I)的有机胺盐化合物:
    An- [Bm+]p   (I)
    式中,An-是作为CO2给体的具有-n价的阴离子,其中n=1,2或3;
    Bm+是或包含:+1价的铵离子和/或具有m个的-+NR3R4H基团和/或-+NR3H-基团的一种或多种有机胺B的阳离子;
    其中m=1-10,优选m=1-5;
    Figure PCTCN2017083948-appb-100001
    其中An-是选自于下列阴离子中的一种或多种:
    (a)氨基甲酸根:R1R2N-COO-
    (b)碳酸根:CO3 2-
    (c)甲酸根:HCOO-
    (d)碳酸氢根:HO-COO-
    (e)有机单碳酸根:RaO-COO-,其中Ra是任选被羟基或氨基或卤素取代的C1-C26烃基(优选C1-C10烃基,更优选C1-C3烃基),或C1-C26酰基(优选C1-C10酰基,更优选C1-C2酰基);
    (f)有机多氨基甲酸根:-OOC-N(R1)-Rb-N(R2)-COO-,或Rb'(-N(R1)-COO-)3
    式中,Rb是任选被羟基或氨基或卤素取代的C1-C16亚烃基(优选C2-C10亚烃基、更优选C2-C6亚烃基),Rb'是任选被羟基或氨基或卤素取代的三价C2-C20烃基(更优选三价C3-C15亚烃基);
    (g)
    Figure PCTCN2017083948-appb-100002
    式中,R’是H、任选被羟基或氨基或卤素取代的C1-C26烃基(优选C1-C10烃基,更优选C1-C3烃基),或C1-C26酰基(优选C1-C10酰基,更优选C1-C7酰基);或
    (h)有机多碳酸根:-OOC-ORcO-COO-
    式中,Rc是任选被羟基或氨基或卤素取代的C1-C26亚烃基(优选C2-C10亚烃基、更优 选C2-C6亚烃基);
    其中,R1,R2,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基(优选C1-C4烷基),任选被羟基或氨基或卤素取代的C3-C7环脂族烃基(如环丁基或环己基),或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基(优选苯基或甲基苯基);
    前提条件是:在上述通式(I)的化合物中R1,R2,R3或R4中至少一个是与N原子连接的R基团,或所述通式(I)的化合物具有至少一个与N键接的R基团;
    其中该R基团选自于下列基团中的一种或多种:
    (1a)H[OCH(R1a)CH(R2a)]q-,例如H(OCH2CH2)q-、H(OCH2CH(CH3))q-、H(OCH(CH3)CH2)q-、H(OCH2CH(C6H5))q-、H(OCH(C6H5)CH2)q-、H(OCH2CH(CH2Cl))q-、H(OCH(CH2Cl)CH2)q-或H(OCH2CH(CBr3))q-;
    (2a)H[OCH(R1a)CH(R2a)CH(R3a)]q-;或
    (3a)H[OCH(R1a)CH(R2a)CH(R3a)CH(R4a)]q-;
    其中q的值或平均值是q=1-50;R1a、R2a、R3a或R4a各自独立地选自:H,任选被羟基或氨基或卤素取代的C1-C7脂肪族烃基,任选被羟基或氨基或卤素取代的C3-C7环脂族烃基,或,任选被羟基或氨基或卤素取代的C6-C10芳族烃基。
  2. 根据权利要求1所要求的化合物,其中q=1-20,更优选1-5,更优选q=1-4,更优选q=1-3,特别优选q=1-2.5,更特别优选q=1.5-2.0,按q的平均值计算,或q是5-50,更优选10-20。
  3. 根据权利要求1或2所要求的化合物,其中有机胺B具有m至m+3个的伯胺、仲胺和/或叔胺基团,和任选地具有季铵基团。
  4. 根据权利要求1-3中任何一项所述的化合物,其中An-是选自(a)-(h)中的两种以上的所述阴离子的结合或混合物,和/或Bm+是两种以上的上述有机胺阳离子的结合或混合物。
  5. 根据权利要求1-4中任何一项所述的化合物,其中R1,R2,R3或R4独立地选自:H,R,任选被羟基或氨基或卤素取代的C1-C4脂肪族烃基,任选被羟基或氨基或卤素取代的环丁基或环己基,或,任选被羟基或氨基或卤素取代的苯基或甲基苯基;更优选,R1a、R2a、R3a或R4a各自独立地选自:H,甲基或任选被羟基或氨基或卤素取代的乙基,或任选被羟基或者氨基或卤素取代的丙基或异丙基,任选被羟基或氨基或卤素取代的环己基,或,任 选被羟基或氨基或卤素取代的苯基或甲基苯基。
  6. 根据权利要求5所述的化合物,其中R1a、R2a、R3a或R4a各自独立地选自:H,甲基,氯甲基,溴甲基,乙基,环己基,或,苯基。
  7. 根据权利要求1-6中任何一项所述的化合物,其中An-是选自于下列阴离子中的一种或多种:
    (a)R1R2N-COO-;其中R1和R2各自独立地是氢、甲基、乙基、羟甲基、羟乙基或羟丙基;
    (b)CO3 2-
    (c)HCOO-
    (d)HO-COO-;或
    (g)
    Figure PCTCN2017083948-appb-100003
    (即HC(OR’)O2 2-),或
    Figure PCTCN2017083948-appb-100004
    (即HCO3 3-),
    式中,R’是H、任选被羟基或氨基或卤素取代的C1-C10烃基(更优选甲基、乙基、丙基)、或C1-C10酰基(更优选甲酰基、乙酰基或丙酰基)。
  8. 根据权利要求1-7中任何一项所述的化合物,其中R1和R2中至少一个是H,更优选R1是H和R2是H或R基团。
  9. 根据权利要求1-8中任何一项所述的化合物,它的pH为7.5-10,优选7.8-9.5,更优选pH8-9;和/或它的碱金属和碱土金属的含量为0-200ppm(质量),更优选低于100ppm,更优选低于10ppm,最优选为低于检测极限或为0ppm。
  10. 根据权利要求1-9中任何一项所述的化合物,它的水的含量为0-40wt%,优选5-35wt%,更优选10-30wt%,更优选15-25wt%;和/或,通式(I)的化合物平均每分子含有1.5-5个R基团;
    进一步优选的是:
    通式(I)的化合物或化合物混合物含有25-95wt%,优选27-90wt%,优选30-85wt%,优选40-80wt%,更优选45-75wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺和/或二丙醇胺)的盐,基于通式(I)的化合物或化合物混合物的总重量;和/或
    在通式(I)的化合物或化合物混合物中,具有一个R基团的通式(I)化合物(例如单醇胺盐)与具有两个R基团的通式(I)化合物(例如二醇胺盐)的摩尔比是1:0至1:2.5,优选1:0.3至1:2, 优选1:0.5至1:1;和/或
    通式(I)的化合物或化合物混合物含有15-90wt%,优选17-88wt%,优选20-85wt%,优选25-80wt%,更优选30-70wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)和二醇胺(例如二乙醇胺和/或二丙醇胺),基于通式(I)的化合物或化合物混合物的总重量。
  11. 制备权利要求1-10中任何一项的通式(I)的化合物的方法,其中An-是(a)、(b)、(c)、(d)、(e)、(f)或(h)中的任何一种或多种的阴离子,该方法包括第一原料与第二原料在溶剂中,任选地在催化剂存在下,进行反应,其中第一原料是选自于下列这些化合物中的一种或多种:
    R1R2N-COONH4,或R1R2N-COOH的有机胺类化合物(M)盐,
    (NH4)2CO3,或碳酸有机胺类化合物(M)盐,
    HCOONH4,或甲酸有机胺类化合物(M)盐,
    HO-COONH4,或有机胺类化合物(M)的碳酸氢盐,
    RaO-COONH4,或RaO-COOH的有机胺类化合物(M)盐,
    NH4OOC-N(R1)-Rb-N(R2)-COONH4,Rb'(-N(R1)-COO)3(NH4)3,HOOC-N(R1)-Rb-N(R2)-COOH的有机胺类化合物(M)盐,或Rb'(-N(R1)-COOH)3的有机胺类化合物(M)盐;或
    NH4OOC-ORcO-COONH4,HOOC-ORcO-COOH的有机胺类化合物(M)盐;
    第二原料是选自于下列这些环氧化物中的一种或多种:
    Figure PCTCN2017083948-appb-100005
    或苯乙烯氧化物;
    其中所述的有机胺类化合物(M)是选自下列这些中的有机胺类化合物:
    C1-C24烃基胺类;
    二(C1-C16烃基)胺类;
    任选在C2-C14亚烃基上被羟基取代的C2-C14亚烃基二胺类;
    任选在C2-C14亚烃基上被羟基取代的C4-C16多亚烷基多胺类;
    具有三个伯胺基的任选被羟基取代的C3-C18有机三胺类或具有四个伯胺基的任选被羟基取代的C5-C18有机四胺类;或
    C2-C10醇胺类。
  12. 根据权利要求11所述的方法,其中该环氧化物是:环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,和它们中任何两种或多种的混合物。
  13. 制备权利要求1-10中任何一项的通式(I)的化合物的方法,其中An-是阴离子(g),该方法包括:原甲酸酯类化合物在溶剂中,任选地在催化剂存在下,并且在属于有机醇胺类的有机胺M或具有至少一个上述N-R基团的属于有机醇胺类的化合物B和水的存在下进行水解反应;其中,所述水的存在量足以使得原甲酸酯类化合物的至少两个酯基发生水解,更优选,水的存在量足以使得原甲酸酯类化合物的三个酯基发生水解;
    其中有机胺类化合物B是有机胺类化合物(M)作为起始原料或作为引发剂与环氧化物进行反应所形成的,该环氧化物选自于下列这些环氧化物中的一种或多种:
    Figure PCTCN2017083948-appb-100006
    或苯乙烯氧化物。
  14. 根据权利要求13所述的方法,其中所述环氧化物是:环氧乙烷、环氧丙烷、环氧氯丙烷、环氧溴丙烷、环氧丁烷、或环氧氯丁烷或苯乙烯氧化物,和它们中任何两种或多种的混合物。
  15. 由权利要求11或12所述的方法制备的化合物;进一步优选的是:
    该化合物含有25-95wt%,优选27-90wt%,优选30-85wt%,优选40-80wt%,更优选45-75wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺和/或二丙醇胺)的盐,基于化合物的总重量,或者,该化合物含有15-90wt%,优选17-88wt%,优选20-85wt%,优选25-80wt%,更优选30-70wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)和二醇胺(例如二乙醇胺和/或二丙醇胺),基于化合物的总重量。
  16. 由权利要求13或14所述的方法制备的化合物;进一步优选的是:
    该化合物含有25-95wt%,优选27-90wt%,优选30-85wt%,优选40-80wt%,更优选45-75wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)的盐和二醇胺(例如二乙醇胺和/或二丙醇胺)的盐,基于化合物的总重量,或者,该化合物含有15-90wt%,优选17-88wt%,优选20-85wt%,优选25-80wt%,更优选30-70wt%的单醇胺(例如单乙醇胺和/或单丙醇胺)和二醇胺(例如二乙醇胺和/或二丙醇胺),基于化合物的总重量。
  17. 一种发泡剂,它包括根据权利要求1-10中任何一项所述的具有通式(I)的有机胺盐 化合物或有机胺盐化合物混合物,或由根据权利要求1-10中任何一项所述的具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物所组成。
  18. 一种发泡剂,它包括根据权利要求15的化合物和/或根据权利要求16的化合物。
  19. 根据权利要求17或18所述的发泡剂,它作为聚氨酯发泡剂、聚苯乙烯发泡剂或聚氯乙烯发泡剂。
  20. 根据权利要求1-10中任何一项所述的具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物作为聚氨酯发泡剂、聚苯乙烯发泡剂或聚氯乙烯发泡剂的用途。
  21. 根据权利要求1-10中任何一项所述的具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物作为聚苯乙烯发泡剂或聚氯乙烯发泡剂的用途,其中An-是选自于下列阴离子中的一种或多种:
    (a)R1R2N-COO-;(b)CO3 2-;或(d)HO-COO-
  22. 以下通式(Ia)的有机胺盐化合物作为聚氨酯发泡剂、聚苯乙烯发泡剂或聚氯乙烯发泡剂的用途:
    An- [Bm+]p   (Ia)
    其中该化合物是由选自于下列这些醇胺类化合物中的至少一种醇胺化合物:
    C2-C12醇胺类,例如一乙醇胺,二乙醇胺,三乙醇胺,一丙醇胺,二丙醇胺,三丙醇胺,单异丙醇胺,二异丙醇胺,三异丙醇胺,单丁醇胺,二丁醇胺,或三丁醇胺,
    和任选的氨水利用属于阴离子An-的前驱体的相应酸进行中和所形成的。
  23. 甲酸铵用作聚氨酯发泡剂的用途。
  24. 根据权利要求23所述的用途,其中甲酸铵为水溶液的形式并且含有0.5-15wt%(优选1-8wt%)的有机胺,后者包括但不限于:甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺或一乙醇胺。
  25. 聚氨酯发泡组合物,它包含:
    0.01-100重量%的根据权利要求1-10中任何一项所述的具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物,或根据权利要求15的化合物或根据权利要求16的化合物;
    0-50重量%的物理发泡剂;
    0-5重量%的水,和
    0.0-99.99重量%的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量。
  26. 根据权利要求25所述的聚氨酯发泡组合物,它包含:
    0.1-80重量%(更优选1-70wt%,更优选3-60wt%,更优选5-50wt%,更优选7-40wt%,如10wt%,15wt%)的根据权利要求1-10中任何一项所述的具有通式(I)的有机胺盐化合物或有机胺盐化合物混合物,或根据权利要求15的化合物或根据权利要求16的化合物;
    0-40重量%的物理发泡剂;
    0-4重量%的水,和
    20.0-99.9重量%(更优选30-99wt%,更优选40-97wt%,更优选50-95wt%,更优选60-93wt%,如90wt%或85wt%)的聚合物多元醇;其中,所述重量百分比基于聚氨酯发泡组合物的总重量。
  27. 根据权利要求25或26所述的聚氨酯发泡组合物,它含有总共0.5-4wt%的水,更优选0.8-2.5wt%,更优选1-2.2wt%的水。
  28. 根据权利要求25-27中任何一项所述的聚氨酯发泡组合物,它还包含:泡沫稳定剂、聚氨酯催化剂和阻燃剂。
  29. 根据权利要求25-28中任何一项所述的聚氨酯发泡组合物,其中聚合物多元醇选自:聚醚多元醇、聚酯多元醇、聚醚-聚酯多元醇、聚碳酸酯二醇、聚碳酸酯-聚酯多元醇、聚碳酸酯-聚醚多元醇、聚丁二烯多元醇或聚硅氧烷多元醇。
  30. 根据权利要求25-29中任何一项所述的聚氨酯发泡组合物,其中发泡组合物是透明的或澄清的。
  31. 根据权利要求25-30中任何一项所述的聚氨酯发泡组合物,它具有以下特征:1)包含醇胺盐或醇胺化合物;2)透明或澄清;3)在加热的情况下或在添加酸的情况下释放出CO2;4)当发泡组合物与异氰酸酯或多异氰酸酯接触或混合时,混合形成的物料在0.2-4秒(优选1-2秒)内变乳白色。
  32. 根据权利要求31所述的聚氨酯发泡组合物,其中混合形成的物料变乳白色,伴随有体积快速膨胀现象,但此过程并非泡沫的真正起发,之后物料才开始起发。
  33. 聚氨酯泡沫材料,其通过25-32中任何一项所述的聚氨酯发泡组合物与多异氰酸酯单体和/或异氰酸酯封端的预聚物进行混合后发生反应而形成。
  34. 根据权利要求33所述的聚氨酯泡沫材料,其中所述聚氨酯发泡组合物与多异氰酸酯单体和/或异氰酸酯封端的预聚物的用量比(wt)是在0.5:1-2:1范围内,优选在0.5:1-1:1的范围内。
  35. 根据权利要求33或34所述的聚氨酯泡沫材料,其中在34-42Kg/m3的泡沫体密度 下,导热系数w/m·k(10℃)是在0.01900-0.02200之间,优选是在0.01910-0.02150之间。
  36. 根据权利要求33-35中任何一项所述的聚氨酯泡沫材料,它的尺寸变化率或收缩率≤4.5%,优选≤1.5%,更优选≤0.5%;尤其在放置5个月之后。
PCT/CN2017/083948 2016-06-02 2017-05-11 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途 WO2017206692A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020187025917A KR20190004693A (ko) 2016-06-02 2017-05-11 이산화탄소 도너로 사용되는 음이온을 갖는 유기 아민염류 화합물 및 그것의 발포제로서의 용도
JP2019514163A JP6800320B2 (ja) 2016-06-02 2017-05-11 Co2ドナーとしてのアニオンを有する有機アミン塩類化合物及びそれが発泡剤としての用途
KR1020217006852A KR102346512B1 (ko) 2016-06-02 2017-05-11 이산화탄소 도너로 사용되는 음이온을 갖는 유기 아민염류 화합물 및 그것의 발포제로서의 용도
RU2018146942A RU2708457C1 (ru) 2016-06-02 2017-05-11 Соединение с органической аминовой солью, имеющее анион в качестве донора CO2, и его использование в качестве вспенивающего агента
US16/306,031 US20190152899A1 (en) 2016-06-02 2017-05-11 Organic Amine Salt Compound Having Anions Serving as CO2 Donors and Application of Same as Foaming Agent
EP17805637.0A EP3466924A4 (en) 2016-06-02 2017-05-11 ORGANIC AMINE SALT COMPOUND WITH ANIONS serving as CO2 donors and the use thereof as a blowing agent
AU2017275049A AU2017275049B2 (en) 2016-06-02 2017-05-11 Organic amine salt compound having anions serving as CO2 donors and application of same as foaming agent
CA3025030A CA3025030C (en) 2016-06-02 2017-05-11 Organic amine salt compounds having co2-donating anions and their use as foaming agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610393108.0A CN107089927B (zh) 2016-06-02 2016-06-02 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途
CN201610393108.0 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017206692A1 true WO2017206692A1 (zh) 2017-12-07

Family

ID=59646507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083948 WO2017206692A1 (zh) 2016-06-02 2017-05-11 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途

Country Status (9)

Country Link
US (1) US20190152899A1 (zh)
EP (1) EP3466924A4 (zh)
JP (1) JP6800320B2 (zh)
KR (2) KR20190004693A (zh)
CN (2) CN107522892B (zh)
AU (1) AU2017275049B2 (zh)
CA (1) CA3025030C (zh)
RU (1) RU2708457C1 (zh)
WO (1) WO2017206692A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679130B (zh) * 2017-10-19 2021-09-07 山东理工大学 包含六氟丁烯和有机醇胺盐化合物的复合发泡剂
CN109867767B (zh) * 2017-12-05 2021-08-10 补天新材料技术有限公司 二氧化碳与有机胺相结合使用的聚氨酯发泡方法
JP7327904B2 (ja) * 2018-03-30 2023-08-16 マツダ株式会社 2液反応型ウレタン樹脂組成物を用いたポリウレタンフォームの形成方法
CN110396212A (zh) * 2018-04-25 2019-11-01 北京市建筑工程研究院有限责任公司 一种硬质聚氨酯泡沫辅助发泡剂
CN109021280B (zh) * 2018-07-04 2021-11-12 淮北市星光新材料科技有限公司 一种聚氨酯泡沫的制备方法及聚氨酯泡沫
CN109021281B (zh) * 2018-07-04 2021-11-26 广西斯佰祥科技产业有限公司 一种复合发泡剂及其制备聚氨酯泡沫的用途
CN109762136B (zh) * 2019-01-25 2021-05-25 海信容声(广东)冰箱有限公司 一种聚氨酯发泡组合物、聚氨酯泡沫及其制备方法和应用
TWI717959B (zh) * 2019-12-31 2021-02-01 財團法人工業技術研究院 發泡組成物與發泡材料的形成方法
US11603444B2 (en) 2019-12-31 2023-03-14 Industrial Technology Research Institute Foaming composition and method of forming foam material
CN116731381A (zh) * 2023-05-16 2023-09-12 四川大学 一种含二氧化碳加合物的液态发泡剂
CN116854934A (zh) * 2023-07-27 2023-10-10 四川大学 环氧卤丙烷扩链的多胺聚合物的二氧化碳加合物发泡剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939350A (zh) * 2008-02-09 2011-01-05 拜尔材料科学股份公司 耐晒发泡聚氨酯模塑品
CN102471514A (zh) * 2009-08-14 2012-05-23 化学制造布敦海姆两合公司 用于塑料的发泡剂
CN104559044A (zh) * 2014-12-30 2015-04-29 陕西师范大学 一种无腐蚀低密度高强度酚醛泡沫
CN104945599A (zh) * 2015-06-18 2015-09-30 常州大学 一种潜伏性环氧树脂固化-发泡剂及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707501A (en) * 1987-02-13 1987-11-17 Air Products And Chemicals, Inc. Polyurethane foam catalysts that eliminate polyurea-containing polyol based masterbatch cure drift
US4980388A (en) * 1988-10-17 1990-12-25 The Dow Chemical Company Use of carbon dioxide adducts as blowing agents in cellular and microcellular polyureas
JPH04253718A (ja) * 1991-02-05 1992-09-09 Asahi Glass Co Ltd 硬質フォームの製造方法
JP2875923B2 (ja) * 1992-02-14 1999-03-31 ユシロ化学工業株式会社 電解ドレッシング研削用研削油剤及び電解ドレッシング方法
DE4317531B4 (de) * 1993-05-26 2005-02-24 Bayer Materialscience Ag Verfahren zur Herstellung von harten Polyurethanschaumstoffen
JP3618791B2 (ja) * 1994-09-06 2005-02-09 住化バイエルウレタン株式会社 硬質ポリウレタンフォーム用のポリオール組成物およびその用途
JP3780770B2 (ja) * 1999-09-30 2006-05-31 豊田合成株式会社 インテグラルスキンフォームの成形方法及び成形用ポリウレタン材料
BRPI0508135A (pt) * 2004-03-11 2007-07-24 Dow Global Technologies Inc método para formar uma espuma de poliuretano rìgida ligada a um substrato tendo uma cavidade aberta
EP1903072B1 (en) * 2006-09-22 2009-08-26 Dow Global Technologies Inc. Integral skin polyurethane Foam Article
RU2341541C2 (ru) * 2007-02-19 2008-12-20 Владислав Александрович Зворыгин Способ получения пористых пластических материалов из ненасыщенных полиэфирных смол
CN103965470B (zh) * 2014-04-30 2016-03-23 四川大学 可释放二氧化碳的疏水改性聚乙烯亚胺发泡剂及其制备方法和应用
CN104327232A (zh) * 2014-11-27 2015-02-04 合肥华凌股份有限公司 聚氨酯发泡白料以及聚氨酯组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939350A (zh) * 2008-02-09 2011-01-05 拜尔材料科学股份公司 耐晒发泡聚氨酯模塑品
CN102471514A (zh) * 2009-08-14 2012-05-23 化学制造布敦海姆两合公司 用于塑料的发泡剂
CN104559044A (zh) * 2014-12-30 2015-04-29 陕西师范大学 一种无腐蚀低密度高强度酚醛泡沫
CN104945599A (zh) * 2015-06-18 2015-09-30 常州大学 一种潜伏性环氧树脂固化-发泡剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466924A4 *

Also Published As

Publication number Publication date
KR20210028751A (ko) 2021-03-12
CN107089927B (zh) 2017-11-21
JP6800320B2 (ja) 2020-12-16
JP2019523810A (ja) 2019-08-29
EP3466924A4 (en) 2020-04-15
AU2017275049B2 (en) 2019-12-19
CA3025030C (en) 2021-05-04
CA3025030A1 (en) 2017-12-07
CN107522892A (zh) 2017-12-29
US20190152899A1 (en) 2019-05-23
KR20190004693A (ko) 2019-01-14
CN107522892B (zh) 2020-08-18
KR102346512B1 (ko) 2021-12-31
RU2708457C1 (ru) 2019-12-09
EP3466924A1 (en) 2019-04-10
CN107089927A (zh) 2017-08-25
AU2017275049A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017206692A1 (zh) 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途
WO2017206693A1 (zh) 具有作为co2给体的阴离子的有机胺盐类化合物及其作为发泡剂的用途
CN109679130B (zh) 包含六氟丁烯和有机醇胺盐化合物的复合发泡剂
CN107253919B (zh) 肼基醇胺盐类化合物及其制备方法和用途
CN107312192B (zh) 有机醇胺盐类化合物及其作为发泡剂的用途
CN112029134B (zh) 含有碳酸二烷基酯和醇胺盐的聚氨酯复合发泡剂
CN109422911B (zh) 包含原甲酸醇胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422910B (zh) 包含原甲酸醇胺盐和碳酸醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422912B (zh) 碱性多胺醇胺发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN109422915B (zh) 包含原甲酸醇胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
Bi et al. Organic amine salt compounds having CO 2-donating anions and their use as foaming agent
CN109422901B (zh) 碱性醇胺发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN109422859B (zh) 原甲酸醇胺盐和碳酸乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
CN109422903B (zh) 包含仲胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422916B (zh) 包含仲胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422917B (zh) 仲胺和醇胺碱性发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN109422899B (zh) 包含叔胺和醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422906B (zh) 乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
CN109422902B (zh) 包含醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422904B (zh) 包含仲胺和醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422896B (zh) 包含伯胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422897B (zh) 包含伯胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422894B (zh) 包含叔胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
CN109422909B (zh) 原甲酸醇胺盐和碳酸醇胺盐碱性发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN112029140A (zh) 含有碳酸二烷基酯的聚氨酯复合发泡剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025917

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3025030

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019514163

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017275049

Country of ref document: AU

Date of ref document: 20170511

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017805637

Country of ref document: EP

Effective date: 20190102