WO2017206063A1 - 一种镁离子电池及其制备方法 - Google Patents

一种镁离子电池及其制备方法 Download PDF

Info

Publication number
WO2017206063A1
WO2017206063A1 PCT/CN2016/084113 CN2016084113W WO2017206063A1 WO 2017206063 A1 WO2017206063 A1 WO 2017206063A1 CN 2016084113 W CN2016084113 W CN 2016084113W WO 2017206063 A1 WO2017206063 A1 WO 2017206063A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positive electrode
magnesium
active material
metal
Prior art date
Application number
PCT/CN2016/084113
Other languages
English (en)
French (fr)
Inventor
唐永炳
圣茂华
张帆
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to CN201680085081.7A priority Critical patent/CN109196701A/zh
Priority to PCT/CN2016/084113 priority patent/WO2017206063A1/zh
Publication of WO2017206063A1 publication Critical patent/WO2017206063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a magnesium ion battery and a method of preparing the same.
  • the present invention provides a magnesium ion battery comprising a battery negative electrode, an electrolyte, a separator, and a battery positive electrode;
  • the battery positive electrode includes a positive electrode current collector layer and a positive electrode active material layer, the positive electrode active material layer includes a positive electrode active material layer, and the positive electrode active material layer includes a positive active material freely reversibly deintercalating magnesium ions;
  • the electrolyte includes an electrolyte and a solvent, and the electrolyte is a magnesium salt;
  • the metal, metal alloy or metal composite conductive material comprises magnesium metal, nickel, tin, zinc, lithium, aluminum, copper, bismuth, lead, antimony, bismuth, antimony, bismuth, antimony, cobalt, antimony, calcium.
  • the concentration of the magnesium salt ranges from 0.1 to 10 mol/L.
  • the solvent comprises one or more of an ester, a sulfone, an ether, a nitrile organic solvent or an imidazole, a piperidine, a pyrrole, a quaternary ammonium, an amide ionic liquid.
  • a battery negative electrode is prepared, and a metal, metal alloy or metal composite conductive material of a desired size is subjected to surface treatment and used as a battery negative electrode.
  • the electrolyte is prepared, and a certain amount of magnesium salt electrolyte is added to the corresponding solvent, and stirred and dissolved.
  • the positive electrode of the battery prepares the positive electrode of the battery, weigh the living active material, the conductive agent and the binder according to a certain ratio, and fully grind into a uniform slurry to form a positive active material layer; and use the metal, metal alloy or metal composite conductive material as A cathode current collector; the cathode active material layer is then uniformly applied to the surface of the cathode current collector, and the battery anode of a desired size is obtained after the cathode active material layer is completely dried.
  • FIG. 1 is a schematic structural view of a magnesium ion battery according to an embodiment of the present invention.
  • magnesium ions are removed from the positive electrode material and deposited on the surface of the battery negative electrode, and directly react with the metal or metal alloy or metal composite of the battery negative electrode to form a magnesium-metal alloy; during the discharge process, the magnesium of the negative electrode is After the metal alloy is demagnetized, it is inserted into the positive electrode active material through the electrolyte to achieve reversible charge and discharge.
  • the cathode current collector includes, but is not limited to, aluminum, lithium, magnesium, A composite of one or a mixture of vanadium, copper, iron, tin, zinc, nickel, titanium, manganese, or an alloy of any one of them.
  • the positive electrode active material layer comprises 0.1 to 30% by weight of a conductive agent in percentage by weight.
  • the positive electrode active material layer comprises 0.1 to 10% by weight of a binder by weight.
  • binder and the conductive agent in the positive electrode active material layer are also not particularly limited, and those conventionally used in the art are conventionally used.
  • the electrolyte is a magnesium salt, and one or more of an organic magnesium salt or an inorganic magnesium salt.
  • the magnesium salt has a concentration ranging from 0.1 to 10 mol/L.
  • the inorganic magnesium salt includes, but is not limited to, Mg(ClO 4 ) 2 , Mg(BF 4 ) 2 , Mg(PF 6 ) 2 , MgCl 2 , MgBr 2 , MgF 2 , MgI. 2 , one or more of Mg(NO 3 ) 2 , MgSO 4 , Mg(SCN) 2 , MgCrO 4 , Mg(CF 3 SO 3 ) 2 .
  • the solvent includes, but is not limited to, an ester, a sulfone, an ether, a nitrile organic solvent or an imidazole, a piperidine, a pyrrole, a quaternary ammonium, an amide ionic liquid.
  • an ester a sulfone, an ether, a nitrile organic solvent or an imidazole, a piperidine, a pyrrole, a quaternary ammonium, an amide ionic liquid.
  • the solvent is selected from the group consisting of propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, and methyl propylene carbonate.
  • the separator is also not particularly limited, and it is generally used in the art.
  • the separator includes, but is not limited to, an insulating porous polymer film or an inorganic porous film.
  • the separator includes, but is not limited to, a porous polypropylene film, a porous polyethylene film, a porous composite polymer film, a nonwoven fabric, a glass fiber paper, or a porous ceramic separator.
  • the form of the magnesium ion battery provided by the present invention is not particularly limited, and may be commonly used in the art, such as a button battery, a flat battery, a cylindrical battery, and the like.
  • the magnesium salt electrolyte specifically includes one or more of an organic magnesium salt or an inorganic magnesium salt.
  • the organic magnesium salt includes RMgX, N-methylaniline magnesium bromide, pyrrolyl magnesium bromide, disodium magnesium edetate (EDTA-Mg), N, N-di (three-three One or more of a base silicon-based aminomagnesium chloride, Mg(SnPh 3 ) 2 , Mg(BR 2 R' 2 ) 2 , Mg(AZ 3-n R n' R' n" ) type 2 complex.
  • R is an alkyl group
  • X is a halogen
  • A is Al
  • B As, P, Sb, Ta or Fe
  • Z is Cl or Br
  • R' is an aryl group
  • n'+n" n.
  • the magnesium salt is obtained by direct purchase or by reacting two solutions together.
  • the solvent includes, but is not limited to, one or more of an ester, a sulfone, an ether, a nitrile organic solvent or an imidazole, a piperidine, a pyrrole, a quaternary ammonium, an amide ionic liquid, and is selected from the group consisting of carbonic acid.
  • Propylene ester ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, dibutyl carbonate, methylbutyl carbonate, methyl carbonate
  • the magnesium salt electrolyte is added to the solvent and stirred sufficiently to dissolve, and the concentration of the magnesium salt in the disposed electrolyte is in the range of 0.1 to 10 mol/L.
  • Step 103 Prepare a separator, and use a porous polymer film or an inorganic porous film or an organic/inorganic composite separator of a desired size as a battery separator.
  • Step 104 preparing a positive electrode of the battery, weighing a living active material, a conductive agent and a binder according to a certain ratio, adding a suitable slurry to a uniform slurry to form a positive active material layer; and forming a metal, a metal alloy or a metal composite
  • the conductive material is used as a positive electrode current collector; the positive electrode active material layer is then uniformly applied to the surface of the positive electrode current collector, and the positive electrode active material layer is completely dried to obtain a battery positive electrode of a desired size.
  • the amount of the positive electrode active material in the positive electrode active material layer is 60 to 90% by weight, the content of the conductive agent is 0.1 to 30% by weight, and the content of the binder is 0.1 to 10% by weight.
  • the positive active material includes, but is not limited to, one or more of a metal oxide, a metal sulfide, and a polyanion compound of magnesium.
  • the conductive agent includes, but is not limited to, one or more of conductive acetylene black, conductive carbon spheres, conductive graphite, carbon nanotubes, and graphene.
  • the binder includes, but is not limited to, one or more of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, and polyolefin.
  • Step 105 assembling using the battery negative electrode, the electrolyte solution, the separator, and the battery positive electrode.
  • steps 101-104 describe the operation of the preparation method of the present invention in a specific order, it is not required or implied that these operations must be performed in this particular order.
  • the preparation of steps 101-104 can be performed simultaneously or in any order.
  • the magnesium ion battery preparation method and the foregoing magnesium ion battery are based on the same inventive concept, and the magnesium ion battery obtained by the magnesium ion battery preparation method has all the effects of the foregoing magnesium ion battery, and details are not described herein again.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.02 mm, cut into a 12 mm diameter disc, and use as a negative electrode current collector after surface treatment.
  • the glass fiber paper was cut into a 16 mm diameter disc and dried for use as a separator.
  • the electrolyte was prepared by mixing 2.5 ml of MgBu 2 solution with 2.5 ml of AlCl 2 Et solution, and then distilling off the solvent, and adding the reaction product Mg(AlCl 2 BuEt) 2 to an appropriate high-purity tetrahydrofuran solution as an electrolyte.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take a nickel foil with a thickness of 0.02 mm, cut into a 12 mm diameter disk, and use as a negative electrode current collector after surface treatment.
  • the glass fiber paper was cut into a 16 mm diameter disc and dried for use as a separator.
  • Preparation of battery positive electrode 0.4 g of manganese magnesium silicate material, 0.1 g of carbon black, 0.1 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on aluminum foil. The surface was dried under vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the anode current collector, the separator, and the battery anode prepared above are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacking portion is stacked. It is packaged in a button-type battery case to complete battery assembly.
  • Preparation of battery negative electrode Take a nickel foil with a thickness of 0.02 mm, cut into a 12 mm diameter disk, and use as a negative electrode current collector after surface treatment.
  • the porous polyethylene film was cut into a disk having a diameter of 16 mm, and dried for use as a separator.
  • Preparation of battery positive electrode 0.4g of Mg x Mo 3 S 4 , 0.1g of carbon black, 0.1g of polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the aluminum foil The surface was dried under vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • the non-woven fabric was cut into a 16 mm-diameter wafer, which was used as a separator after drying.
  • the electrolyte was prepared: 0.5 M pyrrole bromide was added to tetrahydrofuran (THF), and the mixture was stirred well until the pyrrolyl magnesium bromide was completely dissolved and used as an electrolyte.
  • Preparation of battery positive electrode 0.4g of MgCo 0.4 Mn 1.6 O 4 , 0.1g of carbon black, 0.1g of polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the aluminum foil The surface was dried under vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take a zinc foil with a thickness of 0.02 mm, cut into a 12 mm diameter disc, and use it as a negative electrode current collector after surface treatment.
  • the porous ceramic diaphragm was cut into a 16 mm-diameter wafer, which was dried and used as a separator.
  • Preparation of battery positive electrode 0.4g of titanium magnesium phosphate, 0.1g of carbon black, 0.1g of polyvinylidene fluoride was added to 2ml of nitromethylpyrrolidone solution, fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and Dry in vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.02 mm, cut into a 12 mm diameter disc, and use as a negative electrode current collector after surface treatment.
  • the porous composite polymer membrane was cut into a 16 mm-diameter wafer, which was dried and used as a separator.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.02 mm, cut into a 12 mm diameter wafer surface treatment and use it as a negative current collector.
  • the glass fiber paper was cut into a 16 mm diameter disc and dried for use as a separator.
  • Preparation of battery positive electrode 0.4 g of magnesium vanadate, 0.1 g of carbon black, 0.1 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the aluminum foil table. The surface is dried in a vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.02 mm, cut into a 12 mm diameter disc, and use as a negative electrode current collector after surface treatment.
  • the glass fiber paper was cut into a 16 mm diameter disc and dried for use as a separator.
  • Formulation of electrolyte Weigh 3.22g of Mg(CF 3 SO 3 ) 2 and add to 10ml of N-methyl-N-propylpyrrolidine-bistrifluoromethylsulfonimide salt, and stir well to Mg(CF 3 SO 3 ) 2 is completely dissolved and used as an electrolyte.
  • Preparation of battery positive electrode 0.4 g of magnesium cobalt phosphate, 0.1 g of carbon black, 0.1 g of polyvinylidene fluoride was added to 2 ml of a solution of nitromethylpyrrolidone, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and Dry in vacuum.
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • the form of the magnesium ion battery according to the present invention is not limited to the button type battery, and may be designed in the form of a flat battery or a cylindrical battery depending on the core component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

发明提供了一种镁离子电池及其制备方法,包括电池负极、电解液、隔膜和电池正极;其中,所述电池正极包括正极集流体和正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极活性材料层包括自由可逆脱嵌镁离子的正极活性材料;所述电解液包括电解质和溶剂,所述电解质为镁盐;所述电池负极包括金属、金属合金或金属复合物导电材料中的一种或几种。本发明提供了一种镁离子电池,用镁替换锂,解决了锂资源储量有限的问题;节省了一个部件的体积和重量,能够降低电池的重量和体积,提高电池能量密度;且所发生的电化学反应的反应主体为镁离子,镁离子带有两个电荷,提高了电池的容量。

Description

一种镁离子电池及其制备方法 技术领域
本发明涉及电池领域,特别涉及一种镁离子电池及其制备方法。
背景技术
在新能源技术与应用日益重要的今天,锂离子电池由于比容量高、能量密度高、循环寿命长、性价比高而得到广泛关注及应用,成为当今电子产品电源的首选对象。锂离子电池的核心组成部件通常包含正极、负极和电解液。目前商用的锂离子电池主要以过渡金属氧化物或聚阴离子型金属化合物为正极活性材料,以石墨等碳材料为负极活性材料,电解液为含有锂盐的酯类。但石墨等负极活性材料在电池中占用了很大一部分的体积和重量,制约了锂离子电池的电池容量及能量密度。同时锂离子电池存在着锂资源储量有限、成本高的缺点。
发明内容
为了克服上述的技术问题,本发明提供一种镁离子电池及其制备方法。
第一方面,本发明提供了一种镁离子电池,包括电池负极、电解液、隔膜和电池正极;
其中,所述电池正极包括正极集流体和正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极活性材料层包括自由可逆脱嵌镁离子的正极活性材料;
所述电解液包括电解质和溶剂,所述电解质为镁盐;
所述电池负极包括金属、金属合金或金属复合物导电材料中的一种或几 种。
优选的,所述金属、金属合金或金属复合物导电材料包括金属镁、镍、锡、锌、锂、铝、铜、钕、铅、锑、锶、钇、镧、锗、钴、铈、钙、铍、金、银、钡中的一种或其中任意一种金属的复合物或其中任意一种的合金。
优选的,所述正极活性材料包括镁的金属氧化物、金属硫化物或聚阴离子化合物的一种或几种。
优选的,所述镁盐包括有机型镁盐或无机型镁盐中的一种或几种。
优选的,所述镁盐的浓度范围为0.1–10mol/L。
优选的,所述溶剂包括酯类、砜类、醚类、腈类有机溶剂或咪唑类、哌啶类、吡咯类、季铵类、酰胺类离子液体中的一种或几种。
第二方面的,本发明还提供了一种镁离子电池的制备方法,该方法包括:
制备电池负极,将所需尺寸的金属、金属合金或金属复合物导电材料经过表面处理后作为电池负极备用。
配制电解液,将一定量镁盐电解质加入到相应溶剂中,充分搅拌溶解。
制备隔膜,将所需尺寸的多孔聚合物薄膜或无机多孔薄膜或有机/无机复合隔膜作为电池隔膜。
制备电池正极,按一定比例称取活正极活性材料、导电剂以及粘结剂,加入适当溶剂中充分研磨成均匀浆料制成正极活性材料层;将金属、金属合金或金属复合物导电材料作为正极集流体;然后将所述正极活性材料层均匀涂覆于正极集流体表面,待所述正极活性材料层完全干燥后获得所需尺寸的电池正极。
利用所述电池负极、电解液、隔膜以及电池正极进行组装。
与现有技术相比,本发明的有益效果在于:本发明提供了一种镁离子电池,用镁替换锂,解决了锂资源储量有限的问题;同时本发明提供的镁离子电池的 电池负极同时起导电作用和作为与电解质中阳离子反应的材料,相比于现有技术中电池的负极通常包括起导电作用的集流体和用于发生反应的活性材料,节省了一个部件的体积和重量,能够降低电池的重量和体积,提高电池能量密度;且本发明提供的镁离子电池所发生的电化学反应的反应主体为镁离子,镁离子带有两个电荷,提高了电池的容量。
附图说明
图1是本发明实施例提供的镁离子电池的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本发明提供了一种镁离子电池,结构如图1所示,包括电池负极1、电解液2、隔膜3和电池正极4,其中,所述电池正极包括正极集流体42和正极活性材料层41,所述正极活性材料层包括自由可逆脱嵌镁离子的正极活性材料;所述电解液包括电解质和溶剂,所述电解质为镁盐;所述电池负极包括金属、金属合金或金属复合物导电材料中的一种或几种。
本发明实施例,在充电过程中,镁离子从正极材料脱出沉积到电池负极表面,直接与电池负极的金属或金属合金或金属复合物反应形成镁-金属合金;放电过程中,负极的镁-金属合金脱镁后通过电解液嵌入正极活性材料中,从而实现可逆充放电。
本发明实施例的镁离子电池中的电池负极同时起导电作用和作为与镁离子反应的材料,相比于现有技术中电池的负极通常包括起导电作用的集流体和用于发生反应的活性材料,节省了一个部件的体积和重量,降低电池的重量和体积,提高电池能量密度;且本发明提供的镁离子电池所发生的电化学反应的反应主体为镁离子,镁离子带有两个电荷,可以提高电池的容量;同时本发明提供的镁离子电池用镁替换锂,解决了锂资源储量有限的问题。
在本发明一优选实施例中,所述正极活性材料包括但不限于镁的金属氧化物、金属硫化物或聚阴离子化合物的一种或几种。
在本发明一优选实施例中,所述正极活性材料包括但不限于镁的金属氧化物,如Mgx1MoO3、铁酸镁、锰酸镁、钒酸镁、钒铁酸镁、锡酸镁、尖晶石型MgCo0.4Mn1.6O4、MgM2O4;镁的金属硫化物,如Mgx2Mo3S4,Mgx3NS2;镁的聚阴离子化合物,如正交结构的硅酸盐系列MgASiO4、硫酸盐系列MgASO4、磷酸盐系列MgAPO4中的一种或几种。其中x1、x2、x3为0-1之间的任意数值,M为Mn、Ni、Co、Fe、Zn、Ti或Al,N为Ti、Zr、Hf、Nb、Ta、Mo、W或V,A为Fe、Mn、Ni、Al、V、Ti、Zn或Co。
在本发明一优选实施例中,所述金属、金属合金或金属复合物导电材料包括但不限于金属镁、镍、锡、锌、锂、铝、铜、钕、铅、锑、锶、钇、镧、锗、钴、铈、钙、铍、金、银、钡中的一种或其中任意一种金属的复合物或其中任意一种的合金,只要该金属可以可逆的沉积溶解镁或与镁形成合金即可,本发明不限制金属的种类。
本发明的负极除了镁金属或合金材料以外,还使用可与镁发生合金化反应的其他金属或合金材料或复合物,增加负极材料的可选择性。
在本发明一优选实施例中,所述正极集流体包括但不限于铝、锂、镁、 钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意一种的合金。
本发明实施例中,所述正极活性材料层还包括导电剂和粘结剂。
在本发明一优选实施例中,所述正极活性材料层,按重量百分比计,包括60~90wt%正极活性材料。
在本发明一优选实施例中,所述正极活性材料层,按重量百分比计,包括0.1~30wt%导电剂。
在本发明一优选实施例中,所述正极活性材料层,按重量百分比计,包括0.1~10wt%粘结剂。
可以理解的是,所述正极活性材料层中的粘结剂和导电剂也没有特别限制,本领域现有普通常用的即可。
在本发明一优选实施例中,所述导电剂为导电乙炔黑、导电碳球、导电石墨、碳纳米管、石墨烯中的一种或几种。
在本发明一优选实施例中,所述粘结剂为聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、丁苯橡胶、聚烯烃类中的一种或几种。
本发明实施例中,电解质为镁盐,包括有机型镁盐或无机型镁盐中的一种或几种。
本发明一优选实施例中,所述镁盐的浓度范围为0.1–10mol/L。
本发明一优选实施例中,所述有机型镁盐包括但不限于RMgX,N-甲基苯胺溴化镁、吡咯基溴化镁、乙二胺四乙酸二钠镁(EDTA-Mg)、N,N-二(三甲基硅基)氨基氯化镁、Mg(SnPh3)2、Mg(BR2R'2)2、Mg(AZ3-nRn'R'n”)2型配合物中的一种或几种,其中,R为烷基,X为卤素,A为Al、B、As、P、Sb、Ta或Fe,Z为Cl或Br,R'为芳基,且n'+n”=n。
本发明一优选实施例中,所述无机型镁盐包括但不限于Mg(ClO4)2、Mg(BF4)2、Mg(PF6)2、MgCl2、MgBr2、MgF2、MgI2、Mg(NO3)2、MgSO4、Mg(SCN)2、MgCrO4、Mg(CF3SO3)2中的一种或几种。
可以理解的是,所述溶剂没有特别限制,只要使离子可以自由迁移即可。
在本发明一优选实施例中,所述溶剂包括但不限于酯类、砜类、醚类、腈类有机溶剂或咪唑类、哌啶类、吡咯类、季铵类、酰胺类离子液体中的一种或几种。
在本发明一优选实施例中,所述溶剂选自碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丁酯、碳酸甲丁酯、碳酸甲异丙酯、甲酯、甲酸甲酯、乙酸甲酯、N,N-二甲基乙酰胺、氟代碳酸乙烯酯,丙酸甲酯,丙酸乙酯、乙酸乙酯、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧甲烷、1,2-二甲氧乙烷、1,2-二甲氧丙烷、三乙二醇二甲醚、二甲基砜、乙腈、二甲醚、亚硫酸乙烯酯、亚硫酸丙烯脂、亚硫酸二甲脂、亚硫酸二乙脂、冠醚、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐、N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中的一种或几种。
在本发明一优选实施例中,所述溶剂为醚类,相比其他种类的溶剂,醚 类尤其是极性较强的醚类不会在电池负极的金属或金属合金或金属复合物表面形成氧化层,有利于充放电时镁离子在电池负极的沉积或脱出。
具体地,所述醚类溶剂包括但不限于包括四氢呋喃(THF)、2-甲基四氢呋喃(2Me-THF)、1,3-二氧戊环(DN)、1,4-二氧六环、二乙醚(DEE)、乙二醇二甲醚(DME)和四乙二醇二甲醚中的一种或几种。
在本发明一优选实施例中,所述电解液可加入添加剂,例如LiCl,添加剂的作用是提高电解液的离子电导率或者提高电池的高低温性能、安全性能、循环性能等综合性能。
可以理解的是,所述隔膜也没有特别限制,采用本领域现有普通常用的即可。
在本发明一实施例中,所述隔膜包括但不限于绝缘的多孔聚合物薄膜或无机多孔薄膜。
在本发明一优选实施例中,所述隔膜包括但不限于多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、无纺布、玻璃纤维纸或多孔陶瓷隔膜。
在本发明一优选实施例中,所述隔膜为玻璃纤维纸或无纺布。
可以理解的是,本发明所提供的镁离子电池的形态没有特殊限制,本领域常用的即可,例如扣式电池、平板电池、圆柱电池等形态。
第二方面的,本发明实施例还提供了制备上述镁离子电池的方法,包括:
步骤101、制备电池负极,将所需尺寸的金属、金属合金或金属复合物导电材料经过表面处理后作为电池负极备用。
具体地,金属、金属合金或金属复合物导电材料选自金属镁、镍、锡、锌、锂、铝、铜、钕、铅、锑、锶、钇、镧、锗、钴、铈、钙、铍、金、银、钡中的一种或其中任意一种金属的复合物或其中任意一种的合金。
步骤102、配制电解液,将一定量镁盐电解质加入到相应溶剂中,充分搅拌溶解。
所述镁盐电解质具体包括有机型镁盐或无机型镁盐中的一种或几种。
具体地,所述有机型镁盐包括RMgX,N-甲基苯胺溴化镁、吡咯基溴化镁、乙二胺四乙酸二钠镁(EDTA-Mg)、N,N-二(三甲基硅基)氨基氯化镁、Mg(SnPh3)2、Mg(BR2R'2)2、Mg(AZ3-nRn'R'n”)2型配合物中的一种或几种。其中,R为烷基,X为卤素,A为Al、B、As、P、Sb、Ta或Fe,Z为Cl或Br,R'为芳基,且n'+n”=n。
具体地,所述无机型镁盐包括Mg(ClO4)2、Mg(BF4)2、Mg(PF6)2、MgCl2、MgBr2、MgF2、MgI2、Mg(NO3)2、MgSO4、Mg(SCN)2、MgCrO4、Mg(CF3SO3)2中的一种或几种。
具体地,所述镁盐通过直接购买获得或通过将两种溶液配置在一起发生反应获得。
所述溶剂包括但不限于酯类、砜类、醚类、腈类有机溶剂或咪唑类、哌啶类、吡咯类、季铵类、酰胺类离子液体中的一种或几种,选自碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丁酯、碳酸甲丁酯、碳酸甲异丙酯、甲酯、甲酸甲酯、乙酸甲酯、N,N-二甲基乙酰胺、氟代碳酸乙烯酯,丙酸甲酯,丙酸乙酯、乙酸乙酯、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧甲烷、1,2-二甲氧乙烷、1,2-二甲氧丙烷、三乙二醇二甲醚、二甲基砜、乙腈、二甲醚、亚硫酸乙烯酯、亚硫酸丙烯脂、亚硫酸二甲脂、亚硫酸二乙脂、冠醚、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、 1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐、N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中的一种或几种。
将所述镁盐电解质加入到所述溶剂中,充分搅拌溶解,配置的电解液中所述镁盐的浓度范围为0.1–10mol/L。
步骤103、制备隔膜,将所需尺寸的多孔聚合物薄膜或无机多孔薄膜或有机/无机复合隔膜作为电池隔膜。
具体地,所述多孔聚合物薄膜或无机多孔薄膜包括但不限于多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、无纺布、玻璃纤维纸或多孔陶瓷隔膜。
步骤104、制备电池正极,按一定比例称取活正极活性材料、导电剂以及粘结剂,加入适当溶剂中充分研磨成均匀浆料制成正极活性材料层;将金属、金属合金或金属复合物导电材料作为正极集流体;然后将所述正极活性材料层均匀涂覆于正极集流体表面,待所述正极活性材料层完全干燥后获得所需尺寸的电池正极。
正极集流体正极集流体为金属、金属合金或金属复合物导电材料,可以选自铝、镁、钒、锂、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意一种的合金。
正极活性材料层中正极活性材料的份量为60-90wt%,导电剂的含量为0.1-30wt%,粘结剂的含量为0.1-10wt%。
所述正极活性材料包括但不限于镁的金属氧化物、金属硫化物、聚阴离子化合物中的一种或几种。
所述导电剂包括但不限于导电乙炔黑、导电碳球、导电石墨、碳纳米管、石墨烯中的一种或几种。
所述粘结剂包括但不限于聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、丁苯橡胶、聚烯烃类中的一种或几种
步骤105、利用所述电池负极、电解液、隔膜以及电池正极进行组装。
具体包括:在惰性气体或无水无氧环境下,将制备好的负极、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后封装入电池壳体,完成电池组装。
需要说明的是尽管上述步骤101-104是以特定顺序描述了本发明制备方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作。步骤101-104的制备可以同时或者任意先后执行。
该镁离子电池制备方法与前述镁离子电池是基于同一发明构思的,采用该镁离子电池制备方法得到的镁离子电池具有前述镁离子电池的所有效果,在此不再赘述。
下面通过具体的实施例进一步说明上述镁离子电池制备方法,但是,应当理解为,这些实施例仅仅是用于更详细地说明之用,而不应理解为用于以任何形式限制本发明。
实施例1
制备电池负极:取厚度为0.02mm的铝箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:量取2.5ml MgBu2溶液与2.5ml AlCl2Et溶液混合,然后将溶 剂蒸馏出去,将反应产物Mg(AlCl2BuEt)2加入至适当高纯四氢呋喃溶液中作为电解液备用。
制备电池正极:将0.4g铁酸镁、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例2
制备电池负极:取厚度为0.02mm的镍箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:量取4.5ml N,N-二(三甲基硅基)氨基氯化镁溶液与1.5ml AlCl3溶液混合,然后将溶剂蒸馏出去,将反应产物[Mg2(μ-Cl)3·6THF][HMDSAlCl3]加入至适当高纯四氢呋喃溶液中作为电解液备用。
制备电池正极:将0.4g硅酸锰镁材料、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部 分封装入扣式电池壳体,完成电池组装。
实施例3
制备电池负极:取厚度为0.02mm的镍箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将多孔聚乙烯薄膜裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取2.15g乙二胺四乙酸二钠镁(EDTA-Mg)加入到5ml甲酰胺(FA)中,充分搅拌至乙二胺四乙酸二钠镁完全溶解后作为电解液备用。
制备电池正极:将0.4gMgxMo3S4、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例4
制备电池负极:取厚度为0.02mm的锡箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将无纺布裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取0.5M吡咯基溴化镁加入到四氢呋喃(THF)中,充分搅拌至吡咯基溴化镁完全溶解后作为电解液备用。
制备电池正极:将0.4gMgCo0.4Mn1.6O4、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例5
制备电池负极:取厚度为0.02mm的锌箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将多孔陶瓷隔膜裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取1.11g高氯酸镁加入到2.5ml乙腈与2.5ml碳酸乙烯酯中,充分搅拌至高氯酸镁完全溶解后作为电解液备用。
制备电池正极:将0.4g磷酸钛镁、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例6
制备电池负极:取厚度为0.02mm的铝箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将多孔复合聚合物隔膜裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取0.475g氯化镁加入到2.5ml四氢呋喃(THF)与2.5ml碳酸乙烯酯中,充分搅拌至氯化镁完全溶解后作为电解液备用。
制备电池正极:将0.4g钒铁酸镁、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例7
制备电池负极:取厚度为0.02mm的铝箔,裁切成直径12mm的圆片表面处理后作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取2.22g高氯酸镁加入到5ml N,N-二甲基甲酰胺(DMF),充分搅拌至高氯酸镁完全溶解后作为电解液备用。
制备电池正极:将0.4g钒酸镁、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表 面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例8
制备电池负极:取厚度为0.02mm的铝箔,裁切成直径12mm的圆片,表面处理后作为负极集流体备用。
制备隔膜:将玻璃纤维纸裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取3.22gMg(CF3SO3)2加入到10mlN-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐,充分搅拌至Mg(CF3SO3)2完全溶解后作为电解液备用。
制备电池正极:将0.4g磷酸钴镁、0.1g碳黑、0.1g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
本发明涉及的镁离子电池形态不局限于扣式电池,也可根据核心成分设计成平板电池、圆柱电池等形态。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不 用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种镁离子电池,包括电池负极、电解液、隔膜和电池正极,其特征在于,
    其中,所述电池正极包括正极集流体和正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极活性材料层包括自由可逆脱嵌镁离子的正极活性材料;
    所述电解液包括电解质和溶剂,所述电解质为镁盐;
    所述电池负极包括金属、金属合金或金属复合物导电材料中的一种或几种。
  2. 如权利要求1所述的镁离子电池,其特征在于,所述金属、金属合金或金属复合物导电材料包括金属镁、镍、锡、锌、锂、铝、铜、钕、铅、锑、锶、钇、镧、锗、钴、铈、钙、铍、金、银、钡中的一种或其中任意一种金属的复合物或其中任意一种的合金。
  3. 如权利要求1所述的镁离子电池,其特征在于,所述正极活性材料包括镁的金属氧化物、金属硫化物或聚阴离子化合物的一种或几种。
  4. 如权利要求1所述的二次电池,其特征在于,所述镁盐包括有机型镁盐或无机型镁盐中的一种或几种。
  5. 如权利要求1所述的镁离子电池,其特征在于,所述镁盐的浓度范围为0.1–10mol/L。
  6. 如权利要求1所述的镁离子电池,其特征在于,所述溶剂包括酯类、砜类、醚类、腈类有机溶剂或咪唑类、哌啶类、吡咯类、季铵类、酰胺类离子液体中的一种或几种。
  7. 一种制备如权利要求1-6之一所述的镁离子电池的制备方法,其特征在 于,包括:
    制备电池负极,将所需尺寸的金属、金属合金或金属复合物导电材料经过表面处理后作为电池负极备用;
    配制电解液,称取一定量镁盐电解质加入到相应溶剂中,充分搅拌溶解;
    制备隔膜,将所需尺寸的多孔聚合物薄膜或无机多孔薄膜或有机/无机复合隔膜作为电池隔膜;
    制备电池正极,按一定比例称取活正极活性材料、导电剂以及粘结剂,加入适当溶剂中充分研磨成均匀浆料制成正极活性材料层;将金属、金属合金或金属复合物导电材料作为正极集流体;然后将所述正极活性材料层均匀涂覆于正极集流体表面,待所述正极活性材料层完全干燥后获得所需尺寸的电池正极;
    利用所述电池负极、电解液、隔膜以及电池正极进行组装。
PCT/CN2016/084113 2016-05-31 2016-05-31 一种镁离子电池及其制备方法 WO2017206063A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680085081.7A CN109196701A (zh) 2016-05-31 2016-05-31 一种镁离子电池及其制备方法
PCT/CN2016/084113 WO2017206063A1 (zh) 2016-05-31 2016-05-31 一种镁离子电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084113 WO2017206063A1 (zh) 2016-05-31 2016-05-31 一种镁离子电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2017206063A1 true WO2017206063A1 (zh) 2017-12-07

Family

ID=60478363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084113 WO2017206063A1 (zh) 2016-05-31 2016-05-31 一种镁离子电池及其制备方法

Country Status (2)

Country Link
CN (1) CN109196701A (zh)
WO (1) WO2017206063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488633A (zh) * 2021-07-27 2021-10-08 广西师范大学 磷酸钛镁包覆高镍三元或富锂锰基正极材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197929B (zh) * 2019-05-22 2020-09-08 佛山科学技术学院 镁离子电池负极材料的预处理方法及镁离子电池
CN112573572A (zh) * 2020-12-28 2021-03-30 上海纳米技术及应用国家工程研究中心有限公司 一种钒氧酸镁纳米材料的制备方法及其产品和应用
CN115706209A (zh) * 2021-08-04 2023-02-17 中国科学院青岛生物能源与过程研究所 一种镁负极聚合物保护层及其制备方法和应用
CN115036469A (zh) * 2022-06-02 2022-09-09 重庆大学 一种可在传统电解液中可逆循环的金属镁负极人工sei的制备方法及产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534853A (zh) * 2011-03-08 2014-01-22 派立昂技术公司 可再充电的镁离子电池部件及组件
CN104037447A (zh) * 2014-05-14 2014-09-10 广州鹏辉能源科技股份有限公司 一种含厚极片的扣式锂离子电池的制备方法
US20150086859A1 (en) * 2013-09-23 2015-03-26 Samsung Electronics Co., Ltd. Cathode active material, and cathode and magnesium secondary battery including the cathode active material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217194B (zh) * 2007-12-27 2010-06-23 上海交通大学 一种镁二次电池正极材料及其制备方法
CN101694888B (zh) * 2009-10-29 2011-05-04 上海交通大学 实现镁合金用于可充镁电池负极的方法
CA2799209A1 (en) * 2010-05-25 2011-12-01 Pellion Technologies Inc. Electrode materials for magnesium batteries
EP2605325B1 (en) * 2010-08-09 2015-11-18 LG Chem, Ltd. Cathode current collector coated with a primer and magnesium secondary battery including same
CN103872321B (zh) * 2014-03-19 2016-05-04 上海交通大学 纳米过渡金属硫化物作为可充镁电池正极材料的应用方法
CN104538669B (zh) * 2014-12-16 2017-11-10 上海交通大学 一种可充镁电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534853A (zh) * 2011-03-08 2014-01-22 派立昂技术公司 可再充电的镁离子电池部件及组件
US20150086859A1 (en) * 2013-09-23 2015-03-26 Samsung Electronics Co., Ltd. Cathode active material, and cathode and magnesium secondary battery including the cathode active material
CN104037447A (zh) * 2014-05-14 2014-09-10 广州鹏辉能源科技股份有限公司 一种含厚极片的扣式锂离子电池的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488633A (zh) * 2021-07-27 2021-10-08 广西师范大学 磷酸钛镁包覆高镍三元或富锂锰基正极材料及其制备方法
CN113488633B (zh) * 2021-07-27 2022-05-31 广西师范大学 磷酸钛镁包覆高镍三元或富锂锰基正极材料及其制备方法

Also Published As

Publication number Publication date
CN109196701A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN106340651B (zh) 一种二次电池及其制备方法
CN105304936B (zh) 一种锂离子二次电池
WO2017190365A1 (zh) 一种钠离子电池及其制备方法
WO2017206063A1 (zh) 一种镁离子电池及其制备方法
WO2017094712A1 (ja) リチウムイオン二次電池
JP5797993B2 (ja) 非水電解質二次電池
WO2017206062A1 (zh) 一种二次电池及其制备方法
WO2017190584A1 (zh) 锌锂锰水体系二次电池及其制备方法
US9722247B2 (en) Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery
US20230299275A1 (en) Positive electrode active material, electrochemical apparatus, and electronic device
WO2023024266A1 (zh) 一种包覆型硫化物固态电解质及其制备方法和应用
JP6965932B2 (ja) 蓄電デバイス用電極及びその製造方法
JP2013225413A (ja) 電極活物質、非水系二次電池用電極及び非水系二次電池
CN109690860A (zh) 锂二次电池
CN110416551A (zh) 用于可再充电锂电池的负极和包括其的可再充电锂电池
CN109155426A (zh) 锂离子二次电池
CN110036521A (zh) 锂离子二次电池
JP6966188B2 (ja) 二次電池用電解質、及びそれを含む二次電池
CN108682901B (zh) 一种大容量双袋式铁镍电池
CN107369564B (zh) 金属导电材料用作镁离子混合超级电容器负极和镁离子混合超级电容器及其制备方法
CN107369565B (zh) 镁离子混合超级电容器及其制备方法
CN113745636A (zh) 一种固态锂电池及其制备方法
CN109216692A (zh) 改性三元正极材料及其制备方法、锂离子电池
CN113437248B (zh) 负极极片的处理方法、钠金属负极极片与电化学装置
WO2020255489A1 (ja) 負極材、負極、電池セル

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903448

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903448

Country of ref document: EP

Kind code of ref document: A1