WO2017204357A1 - 固体レーザ装置 - Google Patents

固体レーザ装置 Download PDF

Info

Publication number
WO2017204357A1
WO2017204357A1 PCT/JP2017/019805 JP2017019805W WO2017204357A1 WO 2017204357 A1 WO2017204357 A1 WO 2017204357A1 JP 2017019805 W JP2017019805 W JP 2017019805W WO 2017204357 A1 WO2017204357 A1 WO 2017204357A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
rod
solid
laser rod
face
Prior art date
Application number
PCT/JP2017/019805
Other languages
English (en)
French (fr)
Inventor
裕康 石井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP17802943.5A priority Critical patent/EP3467971B1/en
Priority to JP2018519652A priority patent/JP6595712B2/ja
Publication of WO2017204357A1 publication Critical patent/WO2017204357A1/ja
Priority to US16/200,117 priority patent/US20190097382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection

Definitions

  • the present invention relates to a solid-state laser device provided with a laser rod made of a solid-state laser crystal as a laser medium.
  • the solid-state laser device includes, for example, a resonator, a rod-shaped solid laser medium (laser rod) disposed in the resonator, an excitation light source such as a flash lamp that excites the laser rod, and an optical member such as a Q switch. It consists of. In many cases, in order to efficiently irradiate the laser rod with excitation light emitted from the excitation light source, the laser rod and the excitation light source are accommodated in at least a part of the laser chamber.
  • Patent Document 1 in a solid-state laser device, return light from an optical component or the like to a laser rod is incident on an O-ring provided at an exposed root of a laser rod end from a laser chamber that houses the laser rod to burn out the O-ring. It is stated that there is a problem that the burnt residue adheres to the end face of the laser rod and damages the antireflection film on the end face of the laser rod.
  • an opening smaller than the diameter of the laser rod is provided at a position facing the end face of the laser rod so that the return light does not enter the O-ring.
  • a configuration in which a holder block is provided has been proposed.
  • Patent Document 1 although the size of the opening of the holder block is smaller than the diameter of the laser rod, the laser light is gradually narrowed by the thermal lens effect, so that kicking occurs in a region where the laser output is extremely small. It is stated that there is no problem without being limited to.
  • Patent Document 2 discloses a solid-state laser device provided with a mode limiting aperture in order to ensure the beam quality of oscillation laser light.
  • the mode limiting aperture is generally provided to selectively oscillate the lowest order eigenmode.
  • an optical film corresponding to the role of the element is provided on the optical surface.
  • the end face of the laser rod is used as an optical film to prevent reflection.
  • a membrane is provided.
  • the optical film is usually provided on a smooth surface, and good adhesion to the sand surface (ground glass) portion is often not obtained.
  • the ridgeline between adjacent surfaces of the optical member is often chamfered to prevent chipping, and this chamfered portion is generally a sand surface.
  • a chamfered portion is not used as a light transmission region (optical path).
  • the rod itself is usually the optical path, and the chamfered portion is also in the laser optical path, which is a region through which the laser light passes.
  • the present inventors have found that when the laser rod is provided with a chamfered portion around the end surface, the optical film provided on the end surface may be damaged starting from the outer periphery of the end surface serving as a boundary with the chamfered portion. It was. Specifically, as described above, it has been found that when the diameter of the laser rod is small and the energy in the optical path cross section is very high, the optical film is broken.
  • an object of the present invention is to provide a solid-state laser device that can be stably driven over a long period of time, with the occurrence of optical film destruction on the end face of the laser rod being suppressed.
  • the solid-state laser device of the present invention is a solid-state laser device in which a laser rod is arranged in a resonator composed of a pair of mirrors.
  • the laser rod has an antireflection film on the end surface, and has a chamfered portion on the periphery of the end surface,
  • An end face protection member for limiting the area is provided.
  • the distance between the opening defining portion of the end surface protection member and one end surface of the laser rod is preferably 0.5 mm or less.
  • the opening defining portion of the end face protection member and one end face of the laser rod are in contact with each other.
  • the opening defining portion of the end face protection member includes a tapered portion having a smaller opening diameter toward the laser rod side.
  • the end surface protection member has a cylindrical portion that supports the opening defining portion, and the cylindrical portion is fitted and attached to an end portion on one end surface side of the laser rod. Is preferred.
  • the solid-state laser device of the present invention includes a laser chamber having a columnar hole shorter than the long axis length of the laser rod, which accommodates at least a part of the laser rod, and the laser rod is inserted into the hole of the laser chamber. It is preferable that both ends of the laser rod are supported by the laser chamber in a state where both ends of the laser rod are exposed from the hole, and the cylindrical portion of the end surface protection member has a shape covering the entire side surface of the end exposed from the laser chamber. .
  • the solid-state laser device of the present invention includes a laser chamber having a columnar hole shorter than the long axis length of the laser rod, which accommodates at least a part of the laser rod, and the laser rod is inserted into the hole of the laser chamber.
  • the both ends of the laser rod are supported by the laser chamber in a state of being exposed from the hole, and an O-ring is provided at the exposed base from the hole of the laser chamber at the end including the end face provided with the end face protection member.
  • a cover member for preventing the stray light from entering the O-ring is provided on the side surface of the laser rod closer to the end face than the O-ring.
  • the end face protection member is preferably made of at least one of ceramic, glass and fluororesin.
  • the laser rod is preferably made of alexandrite crystals.
  • the rod diameter of the laser rod is preferably 3 mm or less.
  • the solid-state laser device of the present invention is a solid-state laser device in which a laser rod is disposed in a resonator composed of a pair of mirrors.
  • the laser rod includes an antireflection film on an end surface, and a chamfered portion on the periphery of the end surface. And having an opening defining portion that forms an opening having a diameter smaller than the diameter of the outer periphery of the end face at a position facing at least one end face of the laser rod, and the laser optical path region on the end face of the laser rod from the outer periphery of the end face.
  • the end face protection member that restricts to the inner region is provided, it is possible to effectively suppress the occurrence of breakage in the antireflection film on the end face. Then, by suppressing the destruction of the antireflection film on the end face of the laser rod, stable driving can be performed for a long time.
  • FIG. 1 Schematic perspective view of a solid-state laser device according to an embodiment Side surface schematic diagram which shows schematic structure in the side view of the solid-state laser apparatus which concerns on embodiment Plane schematic diagram showing a schematic configuration of the solid-state laser device according to the embodiment in plan view Perspective view of laser chamber Enlarged sectional view showing the vicinity of the end of the laser rod exposed from the laser chamber Laser rod end face front view and end side view Perspective view of end face protection member
  • regulation part and a rod end surface Enlarged sectional view showing the vicinity of the end of the laser rod provided with the end face protection member of the design change example
  • the expanded sectional view which shows the laser rod end part vicinity of the solid-state laser apparatus which concerns on 2nd Embodiment Side view showing the vicinity of the end of a laser rod provided with a cover member of a design change example
  • FIG. 1 is a perspective view schematically showing the external shape of a solid-state laser device according to an embodiment of the present invention.
  • FIGS. 2 and 3 are a schematic side view and a schematic plan view of the solid-state laser device according to the present embodiment, respectively, in which a part of the housing is omitted and the arrangement of internal components is schematically shown.
  • the solid-state laser device 1 includes a pair of mirrors 11 and 12 constituting a resonator, a laser rod 13 disposed in the resonator, and a laser chamber 30 that houses at least a part of the laser rod 13.
  • the solid-state laser device 1 further includes an aperture member 15, a polarizer (polarizer) 16, a shutter 17, a Q switch 18, and a wedge prism pair 19 as optical members between one mirror 12 and the laser rod 13. ing.
  • the mirrors 11 and 12, the laser rod 13, and the optical members 15 to 19 are arranged in the housing 50.
  • a part of the laser chamber 30 is exposed to the outside from the housing 50, and the flash lamp 20 is accommodated in a portion exposed from the housing 50 of the laser chamber 30.
  • the housing 50 includes a base 51, a side wall portion 53, and a lid portion 55, and includes an emission opening 56 for outputting laser light to a part of the side wall portion 53.
  • the pair of mirrors 11 and 12 are arranged to face each other with the laser rod 13 interposed therebetween, and constitute a linear resonator.
  • the mirror 11 is a partial transmission mirror, and acts as a so-called output mirror that outputs laser light.
  • the mirror 12 is a high reflection mirror and functions as a so-called rear mirror.
  • the mirror 11 is a plane mirror and the mirror 12 is a concave mirror.
  • the mirrors 11 and 12 may be referred to as an output mirror 11 and a rear mirror 12, respectively.
  • the output mirror 11 and the rear mirror 12 face each other and are attached to each side surface in the short side direction of the side wall portion 53 that forms a part of the housing 50.
  • the linear optical resonator is configured by the mirrors 11 and 12, but the solid-state laser device of the present invention is not limited to the linear resonator, and the light in the optical path. It may be provided with an L-type, Z-type, or X-type resonator structure including a prism or mirror for changing the traveling direction. On the other hand, from the viewpoint of miniaturization and cost reduction, the number of optical members is preferably small, and a linear resonator is most preferable.
  • the laser rod 13 is a solid-state laser medium, for example, a solid-state laser such as alexandrite (Cr: BeAl 2 O 3 ), neodymium YAG (Nd: YAG (yttrium, aluminum, garnet)), titanium sapphire (Ti: Al 2 O 3 ), or the like.
  • a crystal is processed into a rod shape.
  • the rod shape is a columnar shape in which the distance between the two disks serving as end faces is longer than the diameter of the disk.
  • the solid laser medium is not limited to those listed above, and other known media may be used as appropriate. In order to reduce the size of the entire apparatus, it is preferable that the laser rod 13 has a small diameter.
  • the laser rod 13 is particularly preferably made of alexandrite, and the diameter of the cross section (circular cross section) perpendicular to the length direction of the laser rod 13 (hereinafter referred to as “rod diameter”) is 4 mm or less. It is preferable that The rod diameter is more preferably 3 mm or less, and further preferably 2.5 mm or less. Further, the length of the laser rod is preferably 75 mm or less, and more preferably 60 mm or less.
  • the flash lamp 20 is an excitation light source that emits excitation light for exciting the laser rod 13, and the entirety including the terminals 21 provided at both ends is substantially formed in a rod shape.
  • the length of the flash lamp 20 is, for example, about 10 cm.
  • the length of the flash lamp 20 is defined by the length in the longitudinal direction including the terminal 21.
  • Conductive wires (not shown) are connected to the two terminals 21, respectively, and the flash lamp 20 is connected to the lighting light source via the conductive wires. More specifically, for example, a xenon flash lamp or the like is applicable as the flash lamp 20.
  • the excitation light source in the solid-state laser device of the present invention is not limited to the flash lamp 20 as described above, and, for example, a plurality of LEDs (light emitting diodes) are arranged in a transparent straight tube so that the whole is formed in a rod shape. A thing etc. may be applied.
  • the laser chamber 30 is made of, for example, metal and configured to accommodate the laser rod 13 and the flash lamp 20.
  • the laser chamber 30 has a space for accommodating the laser rod 13 and the flash lamp 20 inside, and transmits the light emitted from the flash lamp 20 to the laser rod 13 inside.
  • a reflection surface is formed inside the laser chamber 30, and light emitted from the flash lamp 20 is directly applied to the laser rod 13, or reflected by the reflection surface and applied to the laser rod 13. .
  • Pipes 42 and 44 are connected to the side wall of the laser chamber 30, and the laser chamber 30 is connected to a cooling device 45 through the pipes 42 and 44 as schematically shown in FIG. 3.
  • the cooling device 45 is a device for cooling the laser rod 13 and the flash lamp 20.
  • the cooling device 45 sends a cooling medium such as pure water into the laser chamber 30 through the pipe 42.
  • the cooling device 45 receives the waste water from the laser chamber 30 through the pipe 44, lowers the temperature of the cooling medium, and sends it again to the laser chamber 30. By circulating the cooling medium in this manner, the temperature of the laser rod 13 in the laser chamber 30 can be maintained in a desired temperature range.
  • FIG. 4 is a perspective view showing the external appearance of the laser chamber 30.
  • the laser chamber 30 includes a first portion 31 that accommodates the flash lamp 20 and a second portion 32 that accommodates the laser rod 13.
  • the first portion 31 has a hole 33 penetrating from one wall surface perpendicular to the longitudinal direction to the other wall surface as a space for accommodating the flash lamp 20, and the second portion 32 is provided with the laser rod 13.
  • a hole 34 penetrating from one wall surface perpendicular to the longitudinal direction to the other wall surface is provided. That is, the two holes 33 and 34 are provided in parallel to each other along the longitudinal direction of the laser chamber 30.
  • the hole 34 of the laser chamber 30 has a columnar shape shorter than the long axis length of the laser rod 13, and the laser rod 13 is supported in a state where both ends are exposed through the hole 34.
  • the hole 33 is inserted and supported (see FIG. 2).
  • the shape of the hole 34 is not limited to a cylindrical shape as long as the laser rod 13 can be received, and may be a prismatic shape or an elliptical column shape.
  • the flash lamp 20 can be inserted into and removed from the laser chamber 30 in the longitudinal direction, in the right side in the drawing.
  • the length of the first portion 31 of the laser chamber 30 in the longitudinal direction is longer than the length of the second portion 32 in the longitudinal direction. Note that the length in the longitudinal direction of the first portion 31 and the second portion 32 may be the same.
  • the first portion 31 that accommodates the flash lamp 20 protrudes from the lid portion 55 of the casing 50, and the second portion 32 that accommodates the laser rod 13 is the casing 50. It is supported by the support base 23 so as to be disposed inside, and the flash lamp 20 can be replaced with the lid 55 closed.
  • FIG. 5 shows an enlarged cross-sectional view of the vicinity of one end of the laser rod 13 exposed from the laser chamber 30 (region A surrounded by a broken line in FIG. 2).
  • an O-ring 36 is disposed at an exposed root of the end portion 13 a of the laser rod 13 (hereinafter referred to as “rod end portion 13 a”) from the hole 34 of the laser chamber 30.
  • an O-ring pressing plate 37 Adjacent to the ring 36, an O-ring pressing plate 37 having a through hole through which the laser rod 13 passes is disposed on the end surface 13 b (hereinafter referred to as “rod end surface 13 b”) side of the laser rod 13.
  • the exposed root of the rod end portion 13a from the hole 34 of the laser chamber 30 means that the rod end portion 13a exposed from the hole 34 of the laser chamber 30 is closest to the laser chamber 30 side (that is, the hole 34 side). ) Part.
  • the exposed root from the hole 34 of the laser chamber 30 may be referred to as an exposed root from the laser chamber.
  • the O-ring 36 is fitted into the laser rod 13 and is disposed in an O-ring receiving portion provided at the end of the hole 34 of the laser chamber 30.
  • the O-ring pressing plate 37 is screwed to the laser chamber 30, the O-ring 36 is biased toward the laser chamber 30 and the laser rod 13 is fixed.
  • the O-ring 36 and the O-ring pressing plate 37 are basically provided at both ends of the laser rod 13 exposed from the laser chamber 30.
  • FIG. 6 shows an end face front view (left figure) and an end side view (right figure) of the laser rod 13.
  • the laser rod 13 has a chamfered portion 13d between an end surface 13b (hereinafter referred to as “rod end surface 13b”) and a side surface 13c (hereinafter referred to as “rod side surface 13c”). It has. That is, the laser rod 13 has a chamfered portion 13d on the outer periphery in the radial direction of the outer periphery of the end surface 13b and the outer periphery of the end surface 13b.
  • the chamfered portion 13d is a sand surface.
  • An antireflection film 14 is provided on the rod end surface 13b. In FIG. 6, only one end face of the laser rod is shown, but the structure is the same as both end faces.
  • the antireflection film 14 is preferably provided over the entire rod end surface 13b.
  • the width ⁇ of the chamfered portion 13d which corresponds to the difference between the radius of the end face the outer periphery of the laser rod 13, preferably about 2%.
  • the width ⁇ of the chamfered portions 13d and 0.05 mm and the like.
  • the solid-state laser apparatus in a position facing the rod end face 13b, with an opening defining portion 62 which constitutes a diameter phi 2 of the opening 61 than the diameter phi 1 of the outer periphery of the rod end face 13b
  • An end face protection member 60 is provided.
  • the end surface protection member 60 limits the laser light path region on the rod end surface 13b to a region inside the outer periphery of the rod end surface 13b. If without the end face protection member 60, laser rod 13 throughout a light path, the optical path cross-section is equal to a circular cross section with a diameter phi 0, by providing the end face protection member 60, the diameter phi shown by the two-dot chain line in FIG. 5 The optical path is limited to two circular cross-sectional areas.
  • the laser light path region is limited to a region inside the outer periphery of the rod end surface 13b, that is, the laser light path is limited to a region inside the inner periphery of the chamfered portion 13d.
  • the laser beam is not irradiated to the boundary between the rod end surface 13b and the chamfered portion 13d.
  • the boundary between the rod end surface 13b and the chamfered portion 13d is a region where the coating of the optical film cannot be said to be satisfactory and the coating is easily broken.
  • this boundary is not irradiated with high-energy laser light, the occurrence of coating breakdown can be suppressed. That is, by providing the end surface protection member 60, it is possible to suppress the occurrence of coating breakage on the rod end surface 13b.
  • the end face protection member 60 in the present embodiment has a cylindrical portion 64 that supports the opening defining portion 62, and the cylindrical portion 64 is attached to the rod end portion 13a. It has a cap shape that fits and is attached.
  • the shape of the end surface protection member 60 is not particularly limited as long as it can stably support and arrange the opening defining portion 62 in the vicinity of the rod end surface 13b. However, a cap shape that can be fitted and mounted as in the present embodiment is preferable because the placement accuracy can be easily secured.
  • the opening defining portion 62 is provided in the very vicinity of the rod end surface 13b so as to cover the boundary between the rod end surface 13b and the chamfered portion 13d.
  • the distance d is preferably 0.5 mm or less, more preferably 0.1 mm or less, and particularly preferably the rod end surface 13b and the opening defining portion 62 are in contact with each other.
  • the distance between the opening defining portion 62 and the rod end surface 13b is provided on the opening defining portion 62 and the rod end surface 13b. It means the distance to the surface of the antireflection film 14.
  • the rod end surface 13b and the opening defining portion 62 are in contact means that the surface of the antireflection film 14 provided on the rod end surface 13b and the opening defining portion 62 are in contact.
  • the opening defining portion 62 of the end surface protection member 60 is provided with a tapered portion 62a whose opening diameter becomes smaller as the rod end surface 13b is closer.
  • the distance between the opening defining portion 62 and the rod end face 13b is the aperture-defining portion 62, defined as the distance between the portion and the rod end face 13b located closest to the rod end surface 13b side of the portion constituting the diameter phi 2.
  • the aperture-defining portion 62 defined as the distance between the portion and the rod end face 13b located closest to the rod end surface 13b side of the portion constituting the diameter phi 2.
  • the distance from the rod end surface 13b to the rod end surface 13b is the distance d between the opening defining portion 62 and the rod end surface 13b.
  • the end face protection member 60 may be provided on both end faces of the laser rod 13 as long as it is provided on any one end face. Even if only one of them is used, there is an effect of limiting the laser oscillation region.
  • the aperture limit greatly affects the laser output.
  • the end face protection member has high sensitivity to the laser output in terms of production accuracy and placement accuracy, resulting in decreased stability and increased manufacturing costs. May lead to. Therefore, it is desirable to provide the protective member only on one end face.
  • the material is required to be free from damage and deformation by the laser beam and to generate less dust and outgas. Therefore, ceramic or fluororesin is suitable as the material for the opening defining portion 62.
  • the entire end surface protection member 60 including the opening defining portion 62 is preferably made of at least one of ceramic or fluororesin.
  • FIG. 9 is a cross-sectional view showing a first design modification of the end face protection member.
  • the opening defining portion 62 is in contact with the rod end surface 13b (here, the antireflection film 14 formed on the rod end surface 13b), and the cylindrical portion 64A is a laser of the laser rod 13. It has a length that abuts against an O-ring pressing plate 37 provided at an exposed base from the chamber 30.
  • the cover-like shape covering the entire exposed portion of the rod side surface 13c of the rod end portion 13a exposed from the laser chamber 30 can improve the arrangement accuracy of the opening defining portion 62 with respect to the rod end surface 13b.
  • the stray light generated in the housing 50 on the O-ring 36 provided at the exposed root of the laser rod 13 from the laser chamber 30 is provided by providing the end surface protecting member 60A having a shape covering the exposed root of the laser rod 13. Can be prevented from entering.
  • the end surface protecting member 60A may cause damage to the O-ring 36. Since the incidence of stray light can be suppressed, damage to the laser rod can be more effectively prevented.
  • the solid-state laser device 1 includes the aperture member 15, the polarizer 16, the shutter 17, the Q switch 18, and the wedge prism pair 19 as optical members on the rear mirror 12 side of the laser rod 13.
  • the aperture member 15 is disposed closest to the laser rod 13 side.
  • the aperture member 15 can suppress the stray light generated in the polarizer 16, the shutter 17, the Q switch 18, the wedge prism pair 19, the rear mirror 12, and the like from traveling to the laser rod 13 side.
  • the aperture member 15 has an opening in the optical path, blocks stray light that is far from the optical path toward the laser rod 13 at a relatively large angle from the optical members 16 to 19 side, and prevents the stray light from hitting the laser chamber 30. can do.
  • the aperture member 15 is required to generate less dust and outgas, to absorb less laser light, and to have heat resistance. Further, a material having diffusibility with respect to laser light is desirable. Therefore, as the material of the aperture member 15, a fluororesin such as ceramic, ground glass, or polytetrafluoroethylene (PTFE) is suitable.
  • PTFE polytetrafluoroethylene
  • the aperture member 15 is desirably disposed between the laser chamber 30 and the other optical members 16 to 19 as in the present embodiment. Opening diameter of the aperture member 15 is preferably to the rod diameter phi 0 equal or more, and more preferably greater than rod diameter phi 0. In particular, when a laser rod having a small diameter such as a rod diameter ⁇ 0 of 4 mm or less is used as the laser rod 13 in order to reduce the size of the device and shorten the pulse of the laser beam, the aperture limitation by the aperture member 15 is limited by the laser output. Greatly affects.
  • the arrangement accuracy of the aperture member 15 is high with respect to the laser output with respect to the small-diameter laser rod, if the arrangement accuracy of the aperture member 15 is low, the stability is lowered and the arrangement accuracy is increased. Leads to increased manufacturing costs. Therefore, when a small-diameter laser rod is employed, it is more desirable that the aperture diameter of the aperture member is larger than the rod diameter. However, if the aperture diameter of the aperture member is too large, the effect of blocking stray light may not be sufficiently obtained, so that it is preferably 120% or less of the rod diameter.
  • the aperture shape of the aperture member 15 is preferably similar to the end surface shape of the laser rod 13.
  • the aperture member 15 is disposed only on the rear mirror 12 side of the laser rod 13, but the aperture member 15 is disposed on both end surfaces of the laser rod 13 from the viewpoint of protection by blocking stray light. Is preferred.
  • the aperture members 15 are arranged on both end surfaces of the laser rod 13, the requirement for the arrangement accuracy increases, leading to an increase in manufacturing cost. This is particularly noticeable when the rod has a small diameter.
  • the various optical members 16 to 19 are concentratedly arranged on the rear mirror 12 side of the laser rod 13 so that the main stray light generation point is brought to one side, so that the aperture member 15 is arranged only on one side. Even so, a sufficiently high protective effect can be obtained.
  • the polarizer 16 selectively extracts components linearly polarized in a predetermined direction from the oscillated laser light.
  • the shutter 17 controls the emission of the laser beam, and is controlled to be opened and closed to mechanically block the emission of the laser beam.
  • the Q switch 18 performs a so-called Q switch operation so as to generate a high-power pulsed laser beam.
  • the solid-state laser device of the present invention is not limited to the one that generates pulsed laser light as described above, and may be configured to operate in a CW (continuous wave) manner.
  • the wedge prism pair 19 is provided for performing optical system adjustment such as optical axis correction by adjusting the position and angle thereof. By providing the wedge prism pair 19, it is possible to perform optical axis adjustment with very high accuracy.
  • Optical members 15 to 19 are attached to holders 25 to 29, respectively, and the holders 25 to 29 are installed on a base 51 that forms a part of the casing 50. Any of these optical members 15 to 19 may be provided as necessary.
  • the solid-state laser device of the present invention may have a configuration including, for example, only a Q switch among these optical members. Good. Moreover, you may provide the other optical member as needed.
  • the solid-state laser device 1 when the flash lamp 20 is turned on with the Q switch 18 in the light blocking state, the laser rod 13 is excited by the excitation light emitted therefrom, and a strong inversion distribution state is formed.
  • the Q switch 18 When the Q switch 18 is in a light passing state after this state, the light stimulated and emitted from the laser rod 13 resonates between the mirrors 11 and 12 and becomes a high output giant pulse, and the output mirror 11 It is transmitted and emitted out of the resonator. Note that the flash lamp 20 and the laser rod 13 that generate heat are cooled by the refrigerant flowing in the laser chamber 30.
  • the solid-state laser device 1 is provided with the end face protection member 60 on the end face 13b of the laser rod 13, the coating destruction of the antireflection film 14 on the rod end face 13b can be suppressed, and a stable laser output can be obtained for a long time.
  • FIG. 10 is an enlarged cross-sectional view of the exposed portion of the laser rod from the laser chamber 30 in the design change example of the solid-state laser device of the above embodiment.
  • the present design change example includes a cover member 38 that suppresses the incidence of stray light on the O-ring 36 at the exposed root of the laser rod 13 from the laser chamber 30 in the solid-state laser device 1.
  • the stray light generated in the housing 50 is formed on the rod side surface 13c closer to the rod end surface 13b than the O-ring 36 fitted in the rod end portion 13a.
  • a cover member 38 that prevents incidence on the ring 36 is provided.
  • the cover member 38 by providing the cover member 38, stray light can be prevented from entering the O-ring 36 in the same manner as when the end surface protection member 60A shown in FIG. 9 is provided. Therefore, generation
  • the cover member 38 is preferably provided at both ends of the laser rod, but only one of them may be provided. When the cover member 38 is provided only at one end of the laser rod, it is preferable to provide the cover member 38 on the side where more optical members that can cause stray light such as Q switches and polarizers are provided.
  • the cover member 38 is required to generate less dust and outgas, to absorb less laser light, and to have heat resistance. Moreover, it is desirable to have a diffusibility with respect to a laser beam. Therefore, the cover member 38 is preferably made of at least one of a fluororesin such as ceramic, ground glass, or polytetrafluoroethylene (PTFE).
  • a fluororesin such as ceramic, ground glass, or polytetrafluoroethylene (PTFE).
  • the cover member 38 is preferably made of a soft material having high adhesion to the laser rod 13 in order to prevent stray light from entering the O-ring 36. Accordingly, fibrous ceramics or glass, or unfired fluororesin is particularly suitable.
  • FIG. 11 shows an enlarged view of the vicinity of the end of the laser rod provided with the cover member 39 of the design change example.
  • the cover member 39 shown in FIG. 11 is formed by winding a tape 39a made of PTFE around the rod side surface 13c a plurality of times.
  • the cover member 39 configured by winding the tape 39a a plurality of times has high adhesion to the laser rod 13, and the size can be freely changed depending on the number of windings, which is preferable.
  • the tape 39a is wound to such an extent that the O-ring 36 cannot be visually recognized when viewed from the rod end surface 13b side, stray light can be effectively prevented from entering the O-ring 36.
  • the O-ring pressing plate may not be provided.
  • the O-ring 36 a general rubber made of non-fluorine resin can be used.
  • the O-ring 36 itself is made of a material that generates less dust and outgas, for example, a fluororesin rubber.
  • stray light may enter the O-ring pressing plate 37 and dust and outgas may be generated.
  • a material that generates less dust and outgas such as ceramic or fluororesin.
  • the cover member is enlarged so that stray light is prevented from entering the O-ring pressing plate.
  • the solid laser device having the configuration in which the resonator, the laser rod, and each optical member are disposed in the casing has been described.
  • the present invention is not limited to the one disposed in the casing. There may be a configuration without a housing.
  • the application of the solid-state laser device of the present invention is not particularly limited, and can be used for various applications.
  • laser light particularly pulsed laser light
  • irradiating a subject for photoacoustic wave detection is generated. It can be preferably used as a measurement light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

レーザロッド端面のコーティング破壊の発生が抑制された固体レーザ装置を提供する。 1対のミラー(11、12)からなる共振器中にレーザロッド(13)が配置される固体レーザ装置(1)において、レーザロッド(13)は、端面(13b)に反射防止膜(14)を備え、かつ、端面(13b)の周縁に面取り部(13d)を有し、レーザロッド(13)の少なくとも一方の端面(13b)に対向する位置に、端面(13b)の外周の直径よりも小さい直径の開口(61)を構成する開口規定部(62)を有し、レーザロッド(13)の端面(13b)におけるレーザ光路領域を端面(13b)の外周よりも内側の領域に制限する端面保護部材(60)を備える。

Description

固体レーザ装置
 本発明は、固体レーザ結晶からなるレーザロッドをレーザ媒質として備えた固体レーザ装置に関する。
 固体レーザ装置は、例えば、共振器と、その共振器中に配置されたロッド状の固体レーザ媒質(レーザロッド)と、レーザロッドを励起するフラッシュランプなどの励起光源と、Qスイッチなどの光学部材とから構成される。多くの場合、励起光源から出射した励起光を効率よくレーザロッドに照射するため、レーザロッドおよび励起光源はレーザチャンバに少なくとも一部が内包されるように収容されている。
 特許文献1では、固体レーザ装置において、光学部品などからレーザロッドへの戻り光がレーザロッドを収容するレーザチャンバからのレーザロッド端部露出根元に備えられるOリングに入射してOリングを焼損させ、その燃えカスがレーザロッドの端面に付着してレーザロッドの端面の反射防止膜に損傷を及ぼすという問題がある旨述べられている。そして、レーザロッドの端面をレーザ光の戻り光による損傷から保護するため、戻り光がOリングに入射しないように、レーザロッドの端面に対向する位置にレーザロッドの直径より小さな開口部を備えたホルダブロックを設ける構成が提案されている。なお、特許文献1においては、ホルダブロックの開口部の大きさがレーザロッドの直径より小さいが、熱レンズ効果によってレーザ光は徐々に絞られるので、蹴られが起こるのはレーザ出力の極小さい領域に限られて問題ないと述べられている。
 一方、特許文献2では、発振レーザ光のビーム品質を担保するためモード制限アパーチャを備えた固体レーザ装置が開示されている。モード制限アパーチャは、一般には、最低次固有モードを選択的に発振させるために設けられる。
特開平11-87806号公報 特開2007-96063号公報
 一般に、光学素子の多くは、その光学面において、その素子の役割に応じた光学膜が施されており、特許文献1に記載されているように、レーザロッドの端面には光学膜として反射防止膜が備えられている。
 光学膜は通常平滑な面上に設けられるものであり、砂面(すりガラス状)部分に対しては良好な密着性が得られないことが多い。光学部材の隣接する面間の稜線は欠け防止のため面取りがなされることが多く、この面取り部は一般に砂面となっている。一般的な光学部材の場合には、このような面取り部は光線透過領域(光路)としては用いない。しかしながら、レーザロッドは通常ロッド自体が光路そのものであり、面取り部もレーザ光路内となり、レーザ光が通過する領域である。
 さて、固体レーザ装置においては、短パルスかつ小型化への要請が高まっており、短パルスかつ小型化を実現する手段として細径のレーザロッドの採用が考えられる。同一の励起光を吸収する場合、レーザロッドの直径が細いほどエネルギー密度は高まり短パルスレーザが得られる。
 本発明者らは、レーザロッドが端面の周囲に面取り部を備える場合、端面に設けられている光学膜に面取り部との境界となる端面外周を起点とする破壊が生じる場合があることを見出した。具体的には、上述のように、レーザロッドの直径が細径となり、光路断面におけるエネルギーが非常に高密度である場合、光学膜に破壊が生じることを見出した。
 本発明は、上記事情に鑑み、レーザロッド端面の光学膜破壊の発生が抑制され、長期に安定して駆動可能な固体レーザ装置を提供することを目的とする。
 本発明の固体レーザ装置は、1対のミラーからなる共振器中にレーザロッドが配置される固体レーザ装置において、
 レーザロッドは、端面に反射防止膜を備え、かつ、端面の周縁に面取り部を有し、
 レーザロッドの少なくとも一方の端面に対向する位置に、端面の外周の直径よりも小さい直径の開口を構成する開口規定部を有し、レーザロッドの端面におけるレーザ光路領域を端面の外周よりも内側の領域に制限する端面保護部材を備えている。
 本発明の固体レーザ装置においては、端面保護部材の開口規定部とレーザロッドの一方の端面との距離が0.5mm以下であることが好ましい。
 本発明の固体レーザ装置においては、端面保護部材の開口規定部とレーザロッドの一方の端面とが接触していることが好ましい。
 本発明の固体レーザ装置においては、端面保護部材の開口規定部は、レーザロッド側ほど開口直径が小さくなるテーパ部を備えていることが好ましい。
 本発明の固体レーザ装置においては、端面保護部材は、開口規定部を支持する筒状部を有し、筒状部がレーザロッドの一方の端面側の端部に嵌合して装着されることが好ましい。
 本発明の固体レーザ装置においては、レーザロッドの少なくとも一部を収容する、レーザロッドの長軸長よりも短い柱状の孔部を有するレーザチャンバを備え、レーザロッドは、レーザチャンバの孔部に挿通され、レーザロッドの両端部が孔部から露出した状態でレーザチャンバに支持されており、端面保護部材の筒状部が、レーザチャンバから露出した端部の側面全域を覆う形状であることが好ましい。
 本発明の固体レーザ装置においては、レーザロッドの少なくとも一部を収容する、レーザロッドの長軸長よりも短い柱状の孔部を有するレーザチャンバを備え、レーザロッドは、レーザチャンバの孔部に挿通され、レーザロッドの両端部が孔部から露出した状態でレーザチャンバに支持されており、端面保護部材を備えた端面を含む端部の、レーザチャンバの孔部からの露出根元にOリングが設けられており、レーザロッドの、Oリングよりも端面側の側面に、迷光のOリングへの入射を妨げるカバー部材を備えていることが好ましい。
 本発明の固体レーザ装置においては、端面保護部材は、セラミック、ガラスおよびフッ素樹脂の少なくとも1つからなることが好ましい。
 本発明の固体レーザ装置においては、レーザロッドはアレキサンドライト結晶からなることが好ましい。
 本発明の固体レーザ装置においては、レーザロッドのロッド直径は3mm以下であることが好ましい。
 本発明の固体レーザ装置は、1対のミラーからなる共振器中にレーザロッドが配置される固体レーザ装置において、レーザロッドは、端面に反射防止膜を備え、かつ、端面の周縁に面取り部を有し、レーザロッドの少なくとも一方の端面に対向する位置に、端面の外周の直径よりも小さい直径の開口を構成する開口規定部を有し、レーザロッドの端面におけるレーザ光路領域を端面の外周よりも内側の領域に制限する端面保護部材を備えているので、端面の反射防止膜に破壊が生じるのを効果的に抑制することができる。そして、レーザロッド端面の反射防止膜の破壊を抑制することにより、長期に安定した駆動を可能とする。
実施形態に係る固体レーザ装置の概略斜視図 実施形態に係る固体レーザ装置の側面視における概略構成を示す側面模式図 実施形態に係る固体レーザ装置の平面視における概略構成を示す平面模式図 レーザチャンバの斜視図 レーザチャンバから露出したレーザロッド端部近傍を示す拡大断面図 レーザロッドの端面正面図および端部側面図 端面保護部材の斜視図 開口規定部とロッド端面との距離dを説明するための図 設計変更例の端面保護部材を備えたレーザロッド端部近傍を示す拡大断面図 第2の実施形態に係る固体レーザ装置のレーザロッド端部近傍を示す拡大断面図 設計変更例のカバー部材を備えたレーザロッド端部近傍を示す側面図
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の実施形態に係る固体レーザ装置の外観形状を模式的に示す斜視図である。また、図2および図3は本実施形態に係る固体レーザ装置の概略側面図および概略平面図であり、いずれも筐体の一部を省き内部の構成要素の配置を模式的に示している。
 固体レーザ装置1は、共振器を構成する1対のミラー11、12、共振器中に配置されたレーザロッド13、このレーザロッド13の少なくとも一部を収容するレーザチャンバ30を備えている。本固体レーザ装置1は、さらに、一方のミラー12とレーザロッド13との間に、光学部材として、アパーチャ部材15、ポラライザ(偏光子)16、シャッタ17、Qスイッチ18およびウェッジプリズムペア19を備えている。そして、ミラー11、12、レーザロッド13および光学部材15~19が筐体50中に配置されている。ここで、レーザチャンバ30の一部は筐体50から外部に露出し、レーザチャンバ30の筐体50から露出した部分にフラッシュランプ20が収容されている。筐体50は、基台51、側壁部53および蓋部55から構成されており、側壁部53の一部にレーザ光を出力するための出射開口56を備えている。
 1対のミラー11、12は、レーザロッド13を挟んで対向して配置されて、直線型の共振器を構成している。ミラー11は部分透過ミラーであり、レーザ光を出力するいわゆる出力ミラーとして作用する。ミラー12は高反射ミラーであり、いわゆるリアミラーとして作用する。また、本実施形態においてミラー11は平面ミラーであり、ミラー12は凹面ミラーである。以下において、ミラー11、12を、それぞれ出力ミラー11、リアミラー12と称する場合がある。本実施形態においては、出力ミラー11およびリアミラー12は互いに対向して、筐体50の一部を成す側壁部53のうち短手方向の各側面に取り付けられている。
 本実施形態の固体レーザ装置1においては、ミラー11、12により直線型の光共振器が構成されているが、本発明の固体レーザ装置は直線型の共振器に限らず、光路中に光の進行方向を変更するためのプリズムやミラーを備えた、L型、Z型、さらにはX型などの共振器構造を備えるものであってもよい。一方で、小型化、低コスト化の観点から、光学部材数は少ない方が好ましく、直線型の共振器が最も好ましい。
 レーザロッド13は固体レーザ媒質であり、例えばアレキサンドライト(Cr:BeAl23)、ネオジウムYAG(Nd:YAG(イットリウム・アルミニウム・ガーネット))、チタンサファイア(Ti:Al23)等の固体レーザ結晶がロッド状に加工されてなるものである。なお、ここで、ロッド状とは、端面となる2つの円板間の距離が円板の直径よりも長い円柱形状である。固体レーザ媒質としては上に挙げたものに限らず、その他公知のものが適宜用いられてもよい。装置全体の小型化を図るためにはレーザロッド13が細径であることが好ましい。本実施形態においては、レーザロッド13としては、アレキサンドライトからなるものが特に好ましく、レーザロッド13の長さ方向に垂直な断面(円形断面)の直径(以下において「ロッド直径」という。)が4mm以下であることが好ましい。ロッド直径は3mm以下であることがより好ましく、2.5mm以下であることがさらに好ましい。また、レーザロッドの長さは75mm以下であることが好ましく、60mm以下であることがさらに好ましい。
 フラッシュランプ20は、レーザロッド13を励起するための励起光を出射する励起光源であり、両端にそれぞれ備えられた端子21を含む全体がほぼ棒状に形成されている。フラッシュランプ20の長さは、例えば10cm程度とされる。なお、フラッシュランプ20の長さは、端子21を含む長尺方向の長さで定義する。2つの端子21にはそれぞれ図示外の導線が接続され、それらの導線を介してフラッシュランプ20が点灯用光源に接続される。なおフラッシュランプ20としてより詳しくは、例えばキセノン・フラッシュランプ等が適用可能である。また、本発明の固体レーザ装置における励起光源としては、このようなフラッシュランプ20に限らず、例えばLED(発光ダイオード)を複数並べて透明な直管内に配置することにより、全体が棒状に形成されたもの等が適用されてもよい。
 レーザチャンバ30は、例えば、金属からなり、レーザロッド13およびフラッシュランプ20を収容するように構成されている。レーザチャンバ30は、内部にレーザロッド13およびフラッシュランプ20を収容するための空間を有しており、内部でフラッシュランプ20から出射された光をレーザロッド13に伝達する。例えば、レーザチャンバ30の内側には反射面が形成されており、フラッシュランプ20から出射した光は、直接レーザロッド13に照射されるか、または反射面で反射してレーザロッド13に照射される。
 レーザチャンバ30の側壁には配管42、44が接続されており、図3中に模式的に示すように、レーザチャンバ30は配管42、44を介して冷却機器45に接続される。冷却機器45は、レーザロッド13およびフラッシュランプ20を冷却するための機器である。冷却機器45は、例えば純水などの冷却媒体を、配管42を通じてレーザチャンバ30に送り込む。冷却機器45は、配管44を通じてレーザチャンバ30からの排水を受け取り、冷却媒体の温度を下げた上で、再びレーザチャンバ30に送り込む。このように冷却媒体を循環させることで、レーザチャンバ30内のレーザロッド13の温度を所望の温度範囲に保つことができる。
 図4は、レーザチャンバ30の外観を示す斜視図である。図4では、配管42、44(図1参照)を接続するための穴などは図示を省略している。レーザチャンバ30は、フラッシュランプ20を収容する第1の部分31と、レーザロッド13を収容する第2の部分32とを有する。第1の部分31には、フラッシュランプ20を収容する空間として、長手方向に垂直な一方の壁面から他方の壁面に貫通する孔部33を備え、第2の部分32には、レーザロッド13を収容する空間として、長手方向に垂直な一方の壁面から他方の壁面に貫通する孔部34を備えている。すなわち、2つの孔部33、34は、レーザチャンバ30の長手方向に沿って、互いに平行に設けられている。
 レーザチャンバ30の孔部34は、レーザロッド13の長軸長よりも短い円柱状であり、レーザロッド13は、孔部34に挿通され両端部が露出する状態で支持され、フラッシュランプ20は、孔部33に挿通されて支持される(図2参照)。孔部34の形状はレーザロッド13を受容できればよく、円柱状に限らず、角柱状あるいは楕円柱状等であってもよい。フラッシュランプ20は、レーザチャンバ30に対して長手方向、図中において右側に抜き差し可能である。本実施形態においては、レーザチャンバ30の第1の部分31の長手方向の長さは、第2の部分32の長手方向の長さよりも長い。なお、第1の部分31と第2の部分32の長手方向の長さは同じでも構わない。
 図2に示すように、レーザチャンバ30はフラッシュランプ20を収容する第1の部分31が筐体50の蓋部55から外部に突出し、レーザロッド13を収容する第2の部分32が筐体50内に配置されるように支持台23により支持されており、蓋部55が閉じた状態でフラッシュランプ20の交換が可能とされている。
 図5にレーザチャンバ30から露出したレーザロッド13の一方の端部近傍(図2において、破線で囲まれた領域A)の拡大断面図を示す。
 図5に示すように、レーザロッド13の端部13a(以下において「ロッド端部13a」という。)のレーザチャンバ30の孔部34からの露出根元にはOリング36が配され、さらに、Oリング36に隣接して、レーザロッド13の端面13b(以下において「ロッド端面13b」という。)側にレーザロッド13を通過させる貫通孔を有するOリング押さえ板37が配されている。なお、ロッド端部13aのレーザチャンバ30の孔部34からの露出根元とは、レーザチャンバ30の孔部34から露出されたロッド端部13aのうち、最もレーザチャンバ30側(すなわち孔部34側)の部分をいう。なお、以下において、レーザチャンバ30の孔部34からの露出根元を、レーザチャンバからの露出根元という場合がある。Oリング36はレーザロッド13に嵌め込まれ、レーザチャンバ30の孔部34の端部に設けられているOリング受け部に配置される。Oリング押さえ板37が、レーザチャンバ30にネジ止めされることにより、Oリング36はレーザチャンバ30側に付勢され、レーザロッド13は固定されている。Oリング36およびOリング押さえ板37は、基本的にはレーザチャンバ30から露出されているレーザロッド13の両端部に設けられている。
 ここで、図6に、レーザロッド13の端面正面図(左図)および端部側面図(右図)を示す。図6に示すように、レーザロッド13は、その端面13b(以下において、「ロッド端面13b」という。)と、側面13c(以下において、「ロッド側面13c」という。)との間に面取り部13dを備えている。すなわち、レーザロッド13は端面13bの周縁、端面13bの外周の半径方向外側に面取り部13dを有する。この面取り部13dは砂面である。そして、ロッド端面13bには反射防止膜14を備えている。図6においては、レーザロッドの一方の端面のみを示しているが、両端面同様の構成である。反射防止膜14はロッド端面13bの全面に備えられていることが好ましい。
 レーザロッド13の半径と端面外周の半径との差に相当する面取り部13dの幅δはロッド直径φの1~5%程度、好ましくは2%程度である。例えば、ロッド直径φが2.5mmのとき、面取り部13dの幅δは0.05mmとする、などである。
 本固体レーザ装置1は、図5に示すように、ロッド端面13bに対向する位置に、ロッド端面13bの外周の直径φよりも小さい直径φの開口61を構成する開口規定部62を有する端面保護部材60を備えている。この端面保護部材60は、ロッド端面13bにおけるレーザ光路領域をロッド端面13bの外周よりも内側の領域に制限するものである。端面保護部材60を備えない場合、レーザロッド13全域が光路であり、光路断面は直径φの円形断面に等しいが、端面保護部材60を備えることにより、図5において2点鎖線で示す直径φの円形断面領域に光路が制限されている。
 このように、端面保護部材60を備えることにより、レーザ光路領域がロッド端面13bの外周よりも内側の領域に制限される、すなわち、面取り部13dの内周よりも内側の領域にレーザ光路が制限されている。したがって、レーザ発振時において、ロッド端面13bと面取り部13dとの境界にレーザ光が照射されない。既述の通り、ロッド端面13bと面取り部13dとの境界は、光学膜のコーティングが良好とは言えず、コーティング破壊の起点となりやすい領域である。しかし、この境界に高エネルギーのレーザ光が照射されなければ、コーティング破壊の発生を抑制することができる。すなわち、端面保護部材60を備えることにより、ロッド端面13bにおけるコーティング破壊の発生を抑制することができる。
 図7に端面保護部材60の斜視図を示すように、本実施形態における端面保護部材60は、開口規定部62を支持する筒状部64を有し、筒状部64がロッド端部13aに嵌合して装着されるキャップ形状をなしている。端面保護部材60は開口規定部62をロッド端面13bの近傍に安定して支持配置できるものであれば特に形状に制限はない。しかしながら、本実施形態のような、嵌め込んで装着可能なキャップ形状であれば、配置精度を容易に担保することができ好ましい。
 開口規定部62は、ロッド端面13bと面取り部13dとの境界を覆うようにロッド端面13bのごく近傍に備えられていることが肝要である。ごく近傍とは、ロッド端面13bと開口規定部62との距離d(図5参照)が、両者が接触した状態(すなわちd=0)に対して、効果に有意な差が出ない程度の距離を意味する。具体的には、距離dは0.5mm以下とすることが好ましく、0.1mm以下がより好ましく、ロッド端面13bと開口規定部62とが接触していることが特に好ましい。なお、ロッド端面13bの表面には反射防止膜14が設けられているため、本明細書において、開口規定部62のロッド端面13bとの距離とは、開口規定部62とロッド端面13bに設けられた反射防止膜14の表面との距離を意味する。同様に、ロッド端面13bと開口規定部62とが接触しているとは、ロッド端面13bに設けられた反射防止膜14の表面と開口規定部62とが接触していることを意味する。
 また、図5および図7に示すように、端面保護部材60の開口規定部62がロッド端面13bに近くなるほど開口直径が小さくなるテーパ部62aを備えていることが好ましい。テーパ部62aを備えることにより開口規定部62による光路のケラレを抑制できる。
 なお、開口規定部62とロッド端面13bとの距離は、開口規定部62の、直径φを構成する部分のうち最もロッド端面13b側に位置する部分とロッド端面13bとの距離で定義する。例えば、図8のように、開口規定部62の直径φを構成する部分の一部62bがロッド端面13b側に突出した形状の場合には、突出した一部62bのロッド端面13b側の面からロッド端面13bまでの距離が、開口規定部62とロッド端面13bとの距離dである。
 端面保護部材60は、レーザロッド13の両端面に備えられていてもよいが、いずれか一方の端面に備えられていればよい。一方のみであっても、レーザ発振領域を制限する効果を奏する。装置の小型化および短パルス化などの要請に応じて細径のレーザロッドを採用する場合、開口制限はレーザ出力に大きく影響する。すなわち、細径のレーザロッドの両端部に端面保護部材を備える場合、端面保護部材の作製精度、配置精度がレーザ出力に対して高い感度を持つこととなり、安定性の低下や製造上のコストアップにつながる場合がある。したがって、保護部材は、一方の端面にのみ備えることが望ましい。
 端面保護部材60の開口規定部62はレーザ光路と接するため、材質としてはレーザ光による損傷、変形がなく、塵およびアウトガスの発生が少ないものであることが求められる。したがって、開口規定部62の材質としては、セラミックあるいはフッ素樹脂が適している。開口規定部62を含む端面保護部材60全体がセラミックあるいはフッ素樹脂の少なくとも1つからなることが好ましい。
 図9は、端面保護部材の第1の設計変更例を示す断面図である。
 図9に示す端面保護部材60Aは、開口規定部62がロッド端面13b(ここでは、ロッド端面13bに形成されている反射防止膜14)に接触し、かつ筒状部64Aがレーザロッド13のレーザチャンバ30からの露出根元に備えられたOリング押さえ板37に突き当たる長さを有している。このようにレーザチャンバ30から露出するロッド端部13aのロッド側面13cの露出部分を全て覆うカバー状とされていることにより、開口規定部62のロッド端面13bに対する配置精度を高めることができ好ましい。また、レーザロッド13の露出根元までを覆う形状の端面保護部材60Aを備えることにより、レーザロッド13のレーザチャンバ30からの露出根元に備えられたOリング36に、筐体50内で発生した迷光が入射するのを抑制することができる。迷光が入射するとOリング36から塵やアウトガスが生じ、これらの塵やアウトガスがロッド端面に付着し、焼き付きを生じてロッド端面が損傷する場合があるが、端面保護部材60AによりOリング36への迷光の入射を抑制できるので、レーザロッドの損傷をさらに効果的に防止することができる。
 次に、本固体レーザ装置の他の構成要素について簡単に説明する。
 本固体レーザ装置1においては、既述の通り、レーザロッド13のリアミラー12側に、光学部材として、アパーチャ部材15、ポラライザ16、シャッタ17、Qスイッチ18およびウェッジプリズムペア19を備えている。ここで、アパーチャ部材15が、最もレーザロッド13側に配置されている。このような配置により、アパーチャ部材15は、ポラライザ16、シャッタ17、Qスイッチ18、ウェッジプリズムペア19およびリアミラー12などにおいて生じた迷光のレーザロッド13側への進行を抑制することができる。アパーチャ部材15は、光路に開口を有し、光学部材16~19側から比較的大きい角度でレーザロッド13側に向かう、光路から大きくはずれた迷光を遮断し、迷光がレーザチャンバ30に当たることを防止することができる。
 アパーチャ部材15は、塵およびアウトガスの発生が少なく、レーザ光の吸収が小さく、耐熱性を有することが求められる。また、レーザ光に対して拡散性がある材質が望ましい。したがって、アパーチャ部材15の材質としては、セラミック、すりガラス、あるいはポリテトラフルオロエチレン(polytetrafluoroethylene;PTFE)等のフッ素樹脂が適している。
 アパーチャ部材15は、迷光がレーザチャンバ30に当たることを防止するため、本実施形態のように、レーザチャンバ30と他の光学部材16~19との間に配置することが望ましい。アパーチャ部材15の開口直径はロッド直径φと同等以上とすることが好ましく、ロッド直径φよりも大きいことがさらに好ましい。特に、装置の小型化およびレーザ光の短パルス化のためにレーザロッド13として、ロッド直径φが4mm以下のような細径のレーザロッドを採用する場合、アパーチャ部材15による開口制限はレーザ出力に大きく影響する。すなわち、細径のレーザロッドに対してはアパーチャ部材15の配置精度がレーザ出力に対して高い感度を持つため、アパーチャ部材15の配置精度が低いと安定性の低下が生じ、配置精度を高めることは製造上のコストアップに繋がる。したがって、細径のレーザロッドを採用する場合、アパーチャ部材の開口直径はロッド直径より大きいことがより望ましい。但し、アパーチャ部材の開口直径が大きすぎると、迷光の遮断効果が十分得られない場合があるためロッド直径の120%以下であることが好ましい。なお、アパーチャ部材15の開口形状はレーザロッド13の端面形状と相似形であることが好ましい。
 本実施形態においては、アパーチャ部材15は、レーザロッド13のリアミラー12側にのみ配置されているが、アパーチャ部材15はレーザロッド13の両端面側に配置することが迷光の遮断による保護の観点からは好ましい。しかしながら、レーザロッド13の両端面側にアパーチャ部材15を配置する場合、配置精度の要求が上がり、製造上のコストアップに繋がる。特にロッドが細径の場合には顕著である。本実施の形態においては、レーザロッド13のリアミラー12側に各種光学部材16~19を集中配置することにより、主要な迷光の発生点を片側に寄せているため、アパーチャ部材15を片側だけに配置しても充分に高い保護効果が得られる。
 ポラライザ16は、発振したレーザ光から所定方向に直線偏光した成分を選択的に取り出すものである。シャッタ17はレーザ光の出射を制御するものであり、開閉制御されてレーザ光の出射を機械的に遮断するものである。Qスイッチ18は高出力のパルス状のレーザ光を発生させるように、いわゆるQスイッチ動作するものである。なお、本発明の固体レーザ装置は、このようにパルス状のレーザ光を発生させるものに限らず、CW(連続波)動作するものとして構成されてもよい。また、ウェッジプリズムペア19は、それらの位置、角度を調整することにより、光軸の補正等の光学系調整を行うために備えられている。このウェッジプリズムペア19を備えることにより、非常に精度のよい光軸調整を行うことが可能となる。
 光学部材15~19は、それぞれホルダ25~29に取り付けられており、ホルダ25~29は筐体50の一部を成す基台51の上に設置されている。なお、これらの光学部材15~19はいずれも必要に応じて設けられればよく、本発明の固体レーザ装置としては、これらの光学部材のうち、例えば、Qスイッチのみを備えた構成であってもよい。また、必要に応じて、他の光学部材を備えていてもよい。
 本固体レーザ装置1においては、上記Qスイッチ18を光遮断状態にしてフラッシュランプ20を点灯させると、そこから発せられた励起光によりレーザロッド13が励起され、強い反転分布状態が形成される。この状態になってからQスイッチ18が光通過状態にされると、レーザロッド13から誘導放出された光が、ミラー11、12間で共振し、高出力のジャイアントパルスとなって出力ミラー11を透過し、共振器外に出射される。なお、発熱するフラッシュランプ20およびレーザロッド13は、レーザチャンバ30内を流通する冷媒によって冷却される。
 固体レーザ装置1は、レーザロッド13の端面13bに端面保護部材60を備えているので、ロッド端面13bの反射防止膜14のコーティング破壊を抑制し、長期に安定したレーザ出力を得ることができる。
 図10に、上記実施形態の固体レーザ装置の設計変更例における、レーザロッドのレーザチャンバ30からの露出部の拡大断面図を示す。
 本設計変更例は、上記固体レーザ装置1において、レーザチャンバ30からのレーザロッド13の露出根元において、Oリング36への迷光の入射を抑制するカバー部材38を備えている。
 図10に示すように、本実施形態の固体レーザ装置においては、ロッド端部13aに嵌め込まれたOリング36よりもロッド端面13b側のロッド側面13cに、筐体50内で生じた迷光のOリング36への入射を妨げるカバー部材38を備えている。
 本実施形態の固体レーザ装置においては、上記カバー部材38を備えることにより、図9に示した端面保護部材60Aを備えた場合と同様に、Oリング36への迷光の入射を防止することができるので、塵やガスの発生を効果的に抑制することができ、レーザロッド13の損傷を抑制することができる。
 カバー部材38はレーザロッドの両端部に備えられていることが好ましいが、一方のみであってもよい。カバー部材38をレーザロッドの一方の端部にのみ設ける場合には、Qスイッチ、ポラライザなどの迷光の発生原因となりうる光学部材がより多く配置されている側に設けることが好ましい。
 カバー部材38は、塵およびアウトガスの発生が少なく、レーザ光の吸収が小さく耐熱性を有するものであることが求められる。また、レーザ光に対して拡散性を有することが望ましい。したがって、カバー部材38はセラミック、すりガラス、あるいはポリテトラフルオロエチレン(polytetrafluoroethylene;PTFE)などのフッ素樹脂の少なくとも1つからなることが好ましい。カバー部材38は迷光がOリング36へ突入することを防ぐため、レーザロッド13との密着性が高い軟性材料が望ましい。したがって、繊維状のセラミックやガラス、あるいは未焼成のフッ素樹脂等が特に適している。
 図11は、設計変更例のカバー部材39を備えたレーザロッド端部近傍の拡大図を示す。図11に示すカバー部材39は、PTFEからなるテープ39aをロッド側面13cに複数回巻き付けてなる。テープ39aを複数回巻き付けて構成されたカバー部材39は、レーザロッド13との密着性が高く、巻回数により大きさを自由に変化させることができ、好ましい。ロッド端面13b側から視認した際に、Oリング36が視認できない程度にテープ39aを巻きつけることにより、迷光のOリング36への入射を効果的に抑制することができる。
 また、図11において、カバー部材39で十分にOリング36を付勢して、レーザロッド13を固定可能である場合には、Oリング押さえ板を備えなくともよい。
 なお、Oリング36としては、一般的な、フッ素樹脂系でないゴム製のものを用いることができる。一方で、Oリング36自体を塵やアウトガス発生の少ない材質、例えばフッ素樹脂系ゴム製にするとさらに好ましい。
 また、図10に示したように、Oリング押さえ板37を備える場合には、Oリング押さえ板37に迷光が入射して、塵やアウトガスが発生する場合があるため、Oリング押さえ板37としても塵およびアウトガス発生の少ない材質、例えばセラミックあるいはフッ素樹脂等からなるものを用いることが好ましい。または、カバー部材を大きくして、Oリング押さえ板への迷光の入射を抑制するように構成することも好ましい。
 図10および図11に示すように、端面保護部材60とOリングへの迷光入射を抑制するカバー部材38もしくは39とを組み合わせて用いることにより、レーザロッドの損傷をより効果的に抑制することがき、さらなる長期安定性を実現することが可能となる。
 なお、上記各実施形態においては、共振器およびレーザロッド、各光学部材が筐体内に配置された構成の固体レーザ装置について説明したが、本発明は筐体内に配置されているものに限るものでなく、筐体を備えていない構成であっても構わない。
 本発明の固体レーザ装置は、特に用途を限定されず、各種用途に使用することができる。例えば、特開2012-196430号公報、特開2014-207971号公報などに記載の光音響計測装置において、光音響波検出のために被検体に照射するレーザ光(特にはパルスレーザ光)を発生する測定用の光源として好ましく用いることができる。
 1  固体レーザ装置
 11  出力ミラー
 12  リアミラー
 13  レーザロッド
 13a  ロッド端部
 13b  ロッド端面
 13c  ロッド側面
 13d  面取り部
 14  反射防止膜
 15  アパーチャ部材
 16  ポラライザ
 17  シャッタ
 18  Qスイッチ
 19  ウェッジプリズムペア
 20  フラッシュランプ
 21  端子
 23  支持台
 25~29  ホルダ
 30  レーザチャンバ
 31  第1の部分
 32  第2の部分
 33、34  孔部
 36  Oリング
 37  Oリング押さえ板
 38、39  カバー部材
 39a テープ
 42、44  配管
 45  冷却機器
 50  筐体
 51  基台
 53  側壁部
 55  蓋部
 56  出射開口
 60、60A  端面保護部材
 61  開口
 62  開口規定部
 62a  テーパ部
 62b  開口規定部の突出した一部
 64、64A  筒状部

Claims (10)

  1.  1対のミラーからなる共振器中にレーザロッドが配置される固体レーザ装置において、
     前記レーザロッドは、端面に反射防止膜を備え、かつ、該端面の周縁に面取り部を有し、
     前記レーザロッドの少なくとも一方の端面に対向する位置に、該端面の外周の直径よりも小さい直径の開口を構成する開口規定部を有し、前記レーザロッドの前記端面におけるレーザ光路領域を前記端面の外周よりも内側の領域に制限する端面保護部材を備えた固体レーザ装置。
  2.  前記端面保護部材の前記開口規定部と前記レーザロッドの前記一方の端面との距離が0.5mm以下である請求項1記載の固体レーザ装置。
  3.  前記端面保護部材の前記開口規定部と前記レーザロッドの前記一方の端面とが接触している請求項1記載の固体レーザ装置。
  4.  前記端面保護部材の前記開口規定部は、前記レーザロッド側ほど開口直径が小さくなるテーパ部を備えている請求項1から3いずれか1項記載の固体レーザ装置。
  5.  前記端面保護部材は、前記開口規定部を支持する筒状部を有し、該筒状部が前記レーザロッドの前記一方の端面側の端部に嵌合して装着される請求項1から4いずれか1項記載の固体レーザ装置。
  6.  前記レーザロッドの少なくとも一部を収容する、該レーザロッドの長軸長よりも短い柱状の孔部を有するレーザチャンバを備え、
     前記レーザロッドは、前記レーザチャンバの前記孔部に挿通され、該レーザロッドの両端部が前記孔部から露出した状態で該レーザチャンバに支持されており、
     前記端面保護部材の前記筒状部が、前記孔部から露出した前記端部の側面全域を覆う形状である請求項5記載の固体レーザ装置。
  7.  前記レーザロッドの少なくとも一部を収容する、該レーザロッドの長軸長よりも短い柱状の孔部を有するレーザチャンバを備え、
     前記レーザロッドは、前記レーザチャンバの前記孔部に挿通され、該レーザロッドの両端部が前記孔部から露出した状態で該レーザチャンバに支持されており、
     前記端面保護部材を備えた前記端面を含む端部の、前記孔部からの露出根元にOリングが設けられており、
     前記レーザロッドの、前記Oリングよりも前記端面側の側面に、迷光の前記Oリングへの入射を妨げるカバー部材を備えた請求項1から5いずれか1項記載の固体レーザ装置。
  8.  前記端面保護部材は、セラミック、ガラスおよびフッ素樹脂の少なくとも1つからなる請求項1から7いずれか1項記載の固体レーザ装置。
  9.  前記レーザロッドはアレキサンドライト結晶からなる請求項1から8いずれか1項記載の固体レーザ装置。
  10.  前記レーザロッドのロッド直径は3mm以下である請求項1から9いずれか1項記載の固体レーザ装置。
PCT/JP2017/019805 2016-05-27 2017-05-26 固体レーザ装置 WO2017204357A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17802943.5A EP3467971B1 (en) 2016-05-27 2017-05-26 Solid-state laser device
JP2018519652A JP6595712B2 (ja) 2016-05-27 2017-05-26 固体レーザ装置
US16/200,117 US20190097382A1 (en) 2016-05-27 2018-11-26 Solid-state laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-105871 2016-05-27
JP2016105871 2016-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/200,117 Continuation US20190097382A1 (en) 2016-05-27 2018-11-26 Solid-state laser device

Publications (1)

Publication Number Publication Date
WO2017204357A1 true WO2017204357A1 (ja) 2017-11-30

Family

ID=60412474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019805 WO2017204357A1 (ja) 2016-05-27 2017-05-26 固体レーザ装置

Country Status (4)

Country Link
US (1) US20190097382A1 (ja)
EP (1) EP3467971B1 (ja)
JP (1) JP6595712B2 (ja)
WO (1) WO2017204357A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182488A (ja) * 1984-09-29 1986-04-26 Hoya Corp 固体レ−ザ装置
JPH05218530A (ja) * 1992-01-31 1993-08-27 Hoya Corp レーザ光学部品保持装置及び固体レーザ装置
JPH1187806A (ja) 1997-09-04 1999-03-30 Amada Eng Center:Kk 固体レーザ発振装置
JP2003008118A (ja) * 2001-06-26 2003-01-10 Nec Corp 固体レーザ装置
JP2004241488A (ja) * 2003-02-04 2004-08-26 Japan Science & Technology Agency 固体レーザ装置
JP2007096063A (ja) 2005-09-29 2007-04-12 Mitsubishi Electric Corp レーザ装置、レーザ加工方法、被レーザ加工物及び被レーザ加工物の生産方法。
JP2011018815A (ja) * 2009-07-10 2011-01-27 Toshiba Corp Yagレーザ発振器
US20110158271A1 (en) * 2009-12-29 2011-06-30 Ams Research Corporation Laser resonator gain medium securement
JP2012196430A (ja) 2011-03-10 2012-10-18 Fujifilm Corp 光音響計測装置
JP2014207971A (ja) 2013-03-22 2014-11-06 富士フイルム株式会社 光音響計測装置及び穿刺針
JP2015192044A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 固体レーザ装置及び光音響計測装置
WO2016051664A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 固体レーザ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946331A (en) * 1974-04-30 1976-03-23 The United States Of America As Represented By The Secretary Of The Navy Nernst lamp for laser pumping
DE2804991A1 (de) * 1978-02-06 1979-08-16 Hauni Werke Koerber & Co Kg Filterzigarette mit einem aus mindestens zwei filterkomponenten bestehenden mundstueck, verfahren zur herstellung einer filterzigarette und vorrichtung zum ausueben des verfahrens
US4858243A (en) * 1987-06-12 1989-08-15 Raycon Corporation Laser pumping cavity
JPH01230276A (ja) * 1988-03-10 1989-09-13 Toshiba Corp 固体レーザ発振装置
US5052011A (en) * 1991-01-16 1991-09-24 United States Department Of Energy Explosively pumped laser light
US5172388A (en) * 1991-07-23 1992-12-15 International Business Machines Corporation Method and apparatus for an increased pulse repetition rate for a CW pumped laser
JPH1010342A (ja) * 1996-06-26 1998-01-16 Ishikawajima Harima Heavy Ind Co Ltd 光移送ファイバ
US5852626A (en) * 1997-07-31 1998-12-22 Coherent, Inc. Geometry for cylindrical shaped laser system gain medium
US6339605B1 (en) * 2000-02-16 2002-01-15 The Boeing Company Active mirror amplifier system and method for a high-average power laser system
DE60118936T2 (de) * 2001-11-19 2006-11-02 Gsi Group Ltd., Swift Valley Rugby Verpresste Stabhülse in einer Laseranordnung
JP6026467B2 (ja) * 2013-09-18 2016-11-16 富士フイルム株式会社 固体レーザ装置および光音響計測装置
JP6308965B2 (ja) * 2015-03-26 2018-04-11 三菱重工業株式会社 レーザ発振装置
EP3467970B1 (en) * 2016-05-27 2020-07-08 FUJIFILM Corporation Solid-state laser device
EP3467969B1 (en) * 2016-05-27 2024-01-10 FUJIFILM Corporation Solid-state laser device
WO2017204358A1 (ja) * 2016-05-27 2017-11-30 富士フイルム株式会社 固体レーザ装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182488A (ja) * 1984-09-29 1986-04-26 Hoya Corp 固体レ−ザ装置
JPH05218530A (ja) * 1992-01-31 1993-08-27 Hoya Corp レーザ光学部品保持装置及び固体レーザ装置
JPH1187806A (ja) 1997-09-04 1999-03-30 Amada Eng Center:Kk 固体レーザ発振装置
JP2003008118A (ja) * 2001-06-26 2003-01-10 Nec Corp 固体レーザ装置
JP2004241488A (ja) * 2003-02-04 2004-08-26 Japan Science & Technology Agency 固体レーザ装置
JP2007096063A (ja) 2005-09-29 2007-04-12 Mitsubishi Electric Corp レーザ装置、レーザ加工方法、被レーザ加工物及び被レーザ加工物の生産方法。
JP2011018815A (ja) * 2009-07-10 2011-01-27 Toshiba Corp Yagレーザ発振器
US20110158271A1 (en) * 2009-12-29 2011-06-30 Ams Research Corporation Laser resonator gain medium securement
JP2012196430A (ja) 2011-03-10 2012-10-18 Fujifilm Corp 光音響計測装置
JP2014207971A (ja) 2013-03-22 2014-11-06 富士フイルム株式会社 光音響計測装置及び穿刺針
JP2015192044A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 固体レーザ装置及び光音響計測装置
WO2016051664A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 固体レーザ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467971A4

Also Published As

Publication number Publication date
JP6595712B2 (ja) 2019-10-23
US20190097382A1 (en) 2019-03-28
EP3467971A4 (en) 2019-06-05
JPWO2017204357A1 (ja) 2019-03-22
EP3467971A1 (en) 2019-04-10
EP3467971B1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US10431951B2 (en) Leakage light removal structure and fiber laser
JP6097584B2 (ja) レーザ発振装置とその製造方法
JP2005506687A (ja) 高パワー高出力固体レーザー増幅システムおよび方法
US20160336710A1 (en) Residual light removal structure and fiber laser
JP2015111660A (ja) レーザ装置、及び光音響計測装置
WO2015074246A1 (zh) 径向偏振薄片激光器
US10530112B2 (en) Solid-state laser device
JP6595712B2 (ja) 固体レーザ装置
US10587088B2 (en) Solid-state laser device
WO2017204356A1 (ja) 固体レーザ装置
US20160285225A1 (en) Radial polarization thin-disk laser
TW211605B (ja)
JPWO2006098313A1 (ja) 光増幅器およびレーザ装置
JP2011014646A (ja) 受動qスイッチ固体レーザ発振装置及びレーザ着火装置
JP2006147987A (ja) レーザー発振器
JP7291587B2 (ja) レーザ加工ヘッドおよびレーザ加工装置
JPH07115234A (ja) 高出力レーザー装置
JP2014229813A (ja) レーザ増幅器及びレーザ発振器
JP2005158886A (ja) 光増幅器、レーザ発振器およびmopaレーザ装置
JP2010098215A (ja) 固体レーザロッドとその製造方法及び前記固体レーザロッドを用いた固体レーザ装置
RU113082U1 (ru) Миниатюрный твердотельный лазер с диодной накачкой
JP2002198595A (ja) 固体レーザ装置とその製造方法
JPH0246786A (ja) 固体レーザ発振装置
JP2017183505A (ja) 固体レーザ装置
JPH0260178A (ja) 固体レーザ発振装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802943

Country of ref document: EP

Effective date: 20190102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802943

Country of ref document: EP

Kind code of ref document: A1