JP2004241488A - 固体レーザ装置 - Google Patents

固体レーザ装置 Download PDF

Info

Publication number
JP2004241488A
JP2004241488A JP2003027293A JP2003027293A JP2004241488A JP 2004241488 A JP2004241488 A JP 2004241488A JP 2003027293 A JP2003027293 A JP 2003027293A JP 2003027293 A JP2003027293 A JP 2003027293A JP 2004241488 A JP2004241488 A JP 2004241488A
Authority
JP
Japan
Prior art keywords
solid
state laser
introduction
rod
laser rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003027293A
Other languages
English (en)
Inventor
Fumihiko Nakano
文彦 中野
Shinichi Matsuoka
伸一 松岡
Yoshiaki Tamaoki
善紀 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003027293A priority Critical patent/JP2004241488A/ja
Publication of JP2004241488A publication Critical patent/JP2004241488A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】固体レーザロッドが良好に冷却されるとともに、その振動の発生が抑制される固体レーザ装置を提供する。
【解決手段】固体レーザロッド10と、励起光を供給する半導体レーザ30とを備える固体レーザ装置1において、固体レーザロッド10の両端部を保持するロッドホルダ11、12と、その間に設置された冷却管21とによって、固体レーザロッド10を冷却する冷却ユニット20を構成する。そして、冷却管21の内側で冷却水が流れる冷却水路22に対し、ロッドホルダ11において、導入口23a、24aからの導入水路23、24を延長した範囲内に固体レーザロッド10が位置しない条件で、固体レーザロッド10の中心軸から変位させた導入軸A、Aに沿って導入水路23、24を設ける。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ媒質である固体レーザロッドと、励起光を供給する励起光源とを備える固体レーザ装置に関するものである。
【0002】
【従来の技術】
レーザ媒質として固体レーザロッドを用いた固体レーザ発振器や固体レーザ増幅器などの固体レーザ装置においては、固体レーザロッドが励起熱によって熱破壊を起こさないように固体レーザロッドを冷却する必要がある。このように固体レーザロッドを冷却するための冷却構造として、固体レーザロッドの長手方向に沿って冷却水路を設ける構成が用いられている。
【0003】
冷却水路を用いた冷却構造を有する固体レーザ装置では、冷却水路に対して、その一方の端部に冷却水を導入するための導入口が、また、他方の端部に排出口が設けられる。そして、導入口から排出口へと冷却水路に冷却水を流すことによって、固体レーザロッドが冷却される。このような固体レーザ装置としては、例えば、特許文献1、2に開示された装置がある。特許文献1には、固体レーザロッドの温度分布が均一化される固体レーザ装置について記載されている。また、特許文献2には、固体レーザロッドの温度分布の偏心が防止される固体レーザ装置について記載されている。
【0004】
【特許文献1】
特開平9−83045号公報
【0005】
【特許文献2】
特開2001−185785号公報
【0006】
【発明が解決しようとする課題】
上記した構成の固体レーザ装置においては、導入口から冷却水路へと冷却水を導入するため、固体レーザロッドの中心軸に対して略垂直な導入軸に沿って導入水路が設けられる。そして、導入口から導入された冷却水は、導入水路を介して固体レーザロッドへと供給され、さらに、固体レーザロッドに沿った冷却水路を流れることによって固体レーザロッドを冷却する。
【0007】
このような構成では、導入水路から流れ込む冷却水は、固体レーザロッドに直接に衝突した後に、固体レーザロッドに沿った方向へと向きを変えて冷却水路を流れることとなる。このとき、導入口からの冷却水の流れが衝突することによって固体レーザロッドの振動が発生し、固体レーザロッドにおけるレーザ発振またはレーザ増幅などのレーザ動作が不安定化するという問題を生じる。
【0008】
本発明は、以上の問題点を解決するためになされたものであり、固体レーザロッドが良好に冷却されるとともに、その振動の発生が抑制される固体レーザ装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このような目的を達成するために、本発明による固体レーザ装置は、(1)レーザ媒質である固体レーザロッドと、(2)固体レーザロッドに対して励起光を供給する励起光源と、(3)固体レーザロッドの長手方向に沿って設けられ、固体レーザロッドを冷却する冷却水が流れる冷却水路と、(4)冷却水路の一方の端部に対して、冷却水を導入するための導入口から冷却水路へと所定の導入軸に沿って設けられた導入水路とを備え、(5)導入水路は、固体レーザロッドの中心軸からみて所定距離変位した軸を導入軸として、導入水路を延長した範囲外に固体レーザロッドが位置するように形成されていることを特徴とする。
【0010】
上記した固体レーザ装置においては、導入口からの導入水路を延長した範囲内に固体レーザロッドが位置しない条件で、固体レーザロッドの中心軸上の点を通り中心軸に対して所定角度をなす軸を中心軸から変位させて導入軸とし、この導入軸に沿って導入水路を設けている。このような構成によれば、導入水路からの冷却水の流れが、固体レーザロッドに対して直接に衝突しないように冷却水路へと流れ込むこととなる。したがって、冷却水の流れに起因する固体レーザロッドの振動の発生が抑制され、安定したレーザ動作が可能な固体レーザ装置が実現される。
【0011】
また、固体レーザ装置は、導入水路として、(a)その導入軸が固体レーザロッドの中心軸からみて所定方向へと変位した第1導入水路と、(b)第1導入水路に対して固体レーザロッドを挟む位置に設けられ、その導入軸が第1導入水路とは反対方向へと変位した第2導入水路と、の2つの導入水路が設けられていることが好ましい。
【0012】
このような構成では、固体レーザロッドを挟んで両側に設けられた2つの導入水路から、それぞれ冷却水路へと冷却水が流れ込むこととなる。これにより、固体レーザロッドの振動の発生をさらに抑制することができる。
【0013】
【発明の実施の形態】
以下、図面とともに本発明による固体レーザ装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
【0014】
図1は、本発明による固体レーザ装置の一実施形態の構成を示す斜視図である。また、図2は、図1に示した固体レーザ装置について、その中心軸に沿った断面構造を示す側面断面図である。なお、図1においては、励起光源の図示を省略して固体レーザロッド及び冷却ユニットの構成を示すとともに、固体レーザロッドを保持するロッドホルダを一部破断して、その内部構造を示している。
【0015】
本実施形態による固体レーザ装置1は、固体レーザロッド10と、冷却ユニット20と、半導体レーザ30とを備えている。固体レーザロッド10は、ロッド状に形成された固体レーザ媒質である。
【0016】
固体レーザロッド10の一方の端部には、固体レーザロッド10を保持する円板状のロッドホルダ11が設けられている。同様に、固体レーザロッド10の他方の端部には、円板状のロッドホルダ12が設けられている。固体レーザロッド10は、図2に示すように、その一方の端部が固定板13及びOリングを介してロッドホルダ11に固定され、他方の端部が固定板14及びOリングを介してロッドホルダ12に固定されることによって保持される。
【0017】
ロッドホルダ11、12の間には、冷却管21が設置されている。冷却管21は、固体レーザロッド10の中心軸をその中心軸とした円筒形状に形成されている。また、冷却管21は、固体レーザロッド10の両端部を除くほぼ全体を囲むように配置されるとともに、その両端部がそれぞれロッドホルダ11、12へと接続されている。本固体レーザ装置1においては、これらの一体に接続されたロッドホルダ11、冷却管21、及びロッドホルダ12によって、冷却ユニット20が構成されている。この冷却ユニット20は、励起熱によって熱破壊を起こさないように固体レーザロッド10を冷却するためのものである。
【0018】
冷却管21の外側の所定位置には、1または複数個の半導体レーザ30が、その光出射軸が固体レーザロッド10へと向かうように設置されている。この半導体レーザ30は、冷却管21の内側に位置する固体レーザロッド10に対して所定波長の励起光を供給することによって、固体レーザロッド10をレーザ動作が可能な状態に励起する励起光源である。
【0019】
本実施形態におけるロッドホルダ11、12、及び冷却管21から構成される冷却ユニット20の構成について説明する。
【0020】
固体レーザロッド10を囲む円筒形状の冷却管21の内側部分は、固体レーザロッド10の長手方向に沿った水路22となっている。この水路22は、固体レーザロッド10を冷却するための冷却水がロッドホルダ11側からロッドホルダ12側へと流れる冷却水路である。
【0021】
冷却管21の一方の端部に接続されたロッドホルダ11には、冷却水路22へと冷却水を導入するための2つの導入口23a、24a、及び導入口23a、24aのそれぞれと冷却水路22とを接続する2つの導入水路23、24が設けられている。
【0022】
導入水路(第1導入水路)23は、ロッドホルダ11の内部の所定位置から冷却水路22へと所定の導入軸Aに沿って、導入軸Aを中心軸とする円筒形状に形成されている。
【0023】
本実施形態においては、第1導入水路23の導入軸Aは、固体レーザロッド10の中心軸上の点を通り中心軸に垂直な軸Aを固体レーザロッド10の中心軸からみて所定方向へと距離dだけ変位させた軸に設定されている。また、導入水路23の冷却水路22とは反対側の端部は、このロッドホルダ11の外面11a上に設けられた第1導入口23aへと接続されている。
【0024】
また、導入水路(第2導入水路)24は、上記した第1導入水路23に対して固体レーザロッド10を挟む位置に、ロッドホルダ11の内部の所定位置から冷却水路22へと所定の導入軸Aに沿って、導入軸Aを中心軸とする円筒形状に形成されている。
【0025】
本実施形態においては、第2導入水路24の導入軸Aは、軸Aを固体レーザロッド10の中心軸からみて第1導入水路23とは反対方向へと距離dだけ変位させた軸に設定されている。また、導入水路24の冷却水路22とは反対側の端部は、このロッドホルダ11の外面11a上に設けられた第2導入口24aへと接続されている。
【0026】
固体レーザロッド10の中心軸からみた第1導入水路23の導入軸Aの変位距離、及び第2導入水路24の導入軸Aの変位距離である距離dは、それぞれの導入水路23、24を延長した範囲外に固体レーザロッド10が位置するように設定されている。なお、図2の断面図においては、水路構造の図示及び説明の便宜のため、導入軸A及びAを軸Aから変位させず、冷却水路22、第1導入水路23、及び第2導入水路24が同一平面上にあるようにロッドホルダ11の構成を図示している。
【0027】
一方、冷却管21の他方の端部に接続されたロッドホルダ12には、冷却水路22から冷却水を排出するための2つの排出口25a、26a、及び排出口25a、26aのそれぞれと冷却水路22とを接続する2つの排出水路25、26が設けられている。
【0028】
排出水路(第1排出水路)25は、冷却水路22からロッドホルダ12の内部の所定位置へと所定の排出軸Bに沿って、排出軸Bを中心軸とする円筒形状に形成されている。
【0029】
本実施形態においては、第1排出水路25の排出軸Bは、ロッドホルダ11での第1導入水路23と同様に、固体レーザロッド10の中心軸上の点を通り中心軸に垂直な軸Bを固体レーザロッド10の中心軸からみて所定方向へと距離dだけ変位させた軸に設定されている。また、排出水路25の冷却水路22とは反対側の端部は、このロッドホルダ12の外面12a上に設けられた第1排出口25aへと接続されている。
【0030】
また、排出水路(第2排出水路)26は、上記した第1排出水路25に対して固体レーザロッド10を挟む位置に、冷却水路22からロッドホルダ12の内部の所定位置へと所定の排出軸Bに沿って、排出軸Bを中心軸とする円筒形状に形成されている。
【0031】
本実施形態においては、第2排出水路26の排出軸Bは、ロッドホルダ11での第2導入水路24と同様に、軸Bを固体レーザロッド10の中心軸からみて第1排出水路25とは反対方向へと距離dだけ変位させた軸に設定されている。また、排出水路26の冷却水路22とは反対側の端部は、このロッドホルダ12の外面12a上に設けられた第2排出口26aへと接続されている。なお、排出水路25、26での排出軸B、Bの変位距離dの設定、及びその図2における図示については、導入水路23、24での導入軸A、Aの変位距離dと同様である。
【0032】
以上の構成において、導入口側ロッドホルダ11に設けられた導入口23a、24aから導入された冷却水は、それぞれ導入水路23、24を通って冷却水路22へと流れ込む。そして、流れ込んだ冷却水は、固体レーザロッド10に沿った方向へと向きを変え、ロッドホルダ11側からロッドホルダ12側へと冷却管21内の冷却水路22を流れることによって固体レーザロッド10を冷却する。そして、固体レーザロッド10の冷却に用いられた冷却水は、冷却水路22から排出水路25、26を通って、排出口側ロッドホルダ12に設けられた排出口25a、26aからそれぞれ排出される。
【0033】
図3は、上記した構成を有する固体レーザ装置の具板的な構成の一例を示す斜視図である。本構成例に示す固体レーザ装置1Aにおいては、冷却ユニット20の冷却管21の内側にある固体レーザロッド10に対して、120°の角度間隔で3個の半導体レーザ30が冷却管21を囲むように設置されている。
【0034】
また、固体レーザロッド10が配置された冷却ユニット20、及び半導体レーザ30は、ロッドホルダ11が固定されている略正方形板状の支持板41と、ロッドホルダ12が固定されている略正方形板状の支持板42とを含むハウジングによって一体に支持されている。これらの支持板41、42は、その4隅において連結部材43によって連結固定されている。
【0035】
上記実施形態による固体レーザ装置の効果について、図4を参照しつつ説明する。図4は、図1に示した固体レーザ装置1における導入水路23、24から冷却水路22への冷却水の流れを示す正面断面図である。また、図5は、従来の固体レーザ装置における導入水路から冷却水路への冷却水の流れを示す正面断面図である。
【0036】
図5に示すように、導入口93a、94aと冷却水路92との間の導入水路93、94が固体レーザロッド90の中心軸に対して略垂直な導入軸に沿って設けられた従来の固体レーザ装置では、導入口93a、94aから導入された冷却水の流れは、導入水路93、94を通って固体レーザロッド90に対して直接に衝突する。このとき、冷却水の流れが衝突することによって固体レーザロッド90の振動が発生する。図5に示した例では、特に冷却水路92に対して上下から冷却水が流れ込む導入水路93、94の導入軸に対して直交する図中の横方向に、固体レーザロッド90の振動が発生する。
【0037】
このように固体レーザロッドが振動すると、固体レーザ装置を用いて固体レーザ発振器や固体レーザ増幅器を構成したときに、固体レーザロッドにおけるレーザ発振またはレーザ増幅などのレーザ動作が不安定化する。また、冷却水の導入軸が固体レーザロッドの中心軸から変位された構成であっても、導入水路を延長した範囲内に固体レーザロッドの全部または一部が位置していると、冷却水の流れが固体レーザロッドに対して直接に衝突することとなるので、同様に固体レーザロッドの振動が発生する(特許文献1、2参照)。
【0038】
これに対して、図1及び図2に示した固体レーザ装置1においては、図4に示すように、固体レーザロッド10に沿って設けられた冷却ユニット20の冷却水路22に対し、導入口23a、24aからの導入水路23、24を延長した範囲内に固体レーザロッド10が位置しない条件を満たすように、導入水路23、24を形成している。具体的には、固体レーザロッド10の中心軸上の点を通り中心軸に対して所定角度をなす軸(例えば中心軸に対して垂直な軸A)を中心軸から所定距離dだけ変位させて導入軸A、Aとし、この導入軸に沿って導入水路23、24を設ける構成としている。
【0039】
このような構成によれば、導入水路23、24から冷却水路22への冷却水の流れが、冷却水路22の中央に位置する固体レーザロッド10に対して直接に衝突せず、固体レーザロッド10に回り込むように冷却水路22へと流れ込むこととなる。したがって、冷却水の流れが衝突することに起因する固体レーザロッド10の振動の発生が抑制され、安定したレーザ動作が可能な固体レーザ装置1が実現される。
【0040】
このような水路の構成条件としては、例えば図4に示した例では、固体レーザロッド10の半径をr、円筒形状の導入水路23、24の導入軸A、Aを中心軸とした半径をsとしたときに、固体レーザロッド10の中心軸からの導入軸A、Aの変位距離dを、条件d>r+sを満たすように設定すれば良い。
【0041】
また、上記実施形態においては、固体レーザロッド10の中心軸からみて変位した導入軸を有する導入水路として、導入軸Aが所定方向(図4中の右方向)へと変位した第1導入水路23と、導入軸Aが導入軸Aとは反対方向(図4中の左方向)へと変位した第2導入水路24との2つの導入水路を、固体レーザロッド10を挟む位置に設けている。
【0042】
このような構成では、固体レーザロッド10を挟んで両側に設けられた2つの導入水路23、24から、それぞれ冷却水路22へと冷却水が流れ込むこととなる。これにより、水路内での冷却水の流れの対称性などから、固体レーザロッド10の振動の発生をさらに抑制することができる。ただし、この導入水路としては、具体的な水路の構成や冷却水の流量等に応じて、1つまたは3つ以上の導入水路を設ける構成としても良い。
【0043】
図1に示した固体レーザ装置における固体レーザロッドの振動の抑制効果について、その測定結果とともにさらに具体的に説明する。
【0044】
なお、以下の測定例においては、測定対象となる固体レーザ装置として、図3に示した構成を有する固体レーザ装置1Aを用いている。また、固体レーザロッド10の固体レーザ媒質としてはNd:YAGを用い、その長さを125mm、直径をφ3mmとしている。また、励起光源である半導体レーザ30から固体レーザロッド10へと供給される励起光としては、中心波長808nmの光を用いている。
【0045】
固体レーザ装置1Aにおける固体レーザロッド10の振動の抑制効果に関する第1の測定について説明する。図6は、固体レーザロッドの振動を測定するために用いた第1の測定系の構成を示す図である。
【0046】
本測定系においては、プローブ光源として設置したHe−Neレーザ50からのレーザ光を用いて固体レーザロッド10の振動を測定した。具体的には、He−Neレーザ50から供給されたレーザ光を、2つの全反射ミラー51、52を介して固体レーザ装置1Aの固体レーザロッド10へと照射した。そして、固体レーザロッド10の端面で反射されたレーザ光をCCDカメラ53で複数回にわたって観測し、そのエネルギー中心位置(重心位置)から角度安定性を調べることによって、固体レーザロッド10の振動状態についての測定を行った。
【0047】
また、固体レーザロッドの振動状態を比較するため、固体レーザ装置1Aを従来構成の固体レーザ装置に置き換えて、その固体レーザロッドの振動についても同様に測定を行った。また、いずれの固体レーザ装置に対しても、冷却水路に流す冷却水の流量を3.2l/minに設定して測定を行った。
【0048】
このような測定においては、CCDカメラで観測されるレーザ光のエネルギー中心位置(重心位置)は、レーザ光を反射する固体レーザロッドの振動の影響を受けて変動する。図5に示した構成を有する従来の固体レーザ装置に対する測定結果では、横方向に対する角度安定性はσrms=13.84(μrad)、縦方向に対する角度安定性はσrms=6.15(μrad)であった。この測定結果は、特に横方向について固体レーザロッドの振動が発生し、固体レーザロッドの端面で反射されるレーザ光の位置安定性が低下していることを示している。
【0049】
これに対して、図4に示した構成を有する固体レーザ装置1Aに対する測定結果では、横方向に対する角度安定性はσrms=5.39(μrad)、縦方向に対する角度安定性はσrms=6.35(μrad)であった。この測定結果では、縦方向についてのレーザ光の角度安定性は、上記した従来の固体レーザ装置とほぼ同じである。
【0050】
一方、横方向についての角度安定性は、従来の固体レーザ装置に対して得られた変動量からみて大幅に改善されていることがわかる。このことは、冷却水路22へと冷却水を導入する導入水路23、24を固体レーザロッド10の中心軸から所定距離変位させる上記構成により、冷却水が流れ込む方向に直交する横方向について、固体レーザロッド10の振動の発生が大幅に抑制されていることを示している。
【0051】
固体レーザ装置1Aにおける固体レーザロッド10の振動の抑制効果に関する第2の測定について説明する。図7は、固体レーザロッドの振動を測定するために用いた第2の測定系の構成を示す図である。
【0052】
本測定系においては、固体レーザ装置1Aの固体レーザロッド10を挟んで、全反射ミラー60と、アウトプットカプラとして機能する一部透過ミラー61とを設置して固体レーザ発振器を構成した。そして、この固体レーザ発振器で生成されるレーザ光によって固体レーザロッド10の振動を測定した。具体的には、上記した固体レーザ発振器でレーザ発振して、一部透過ミラー61を介して連続光として出力されるレーザ光を、2つの全反射ミラー62、63を介してCCDカメラ64へと導く。そして、レーザ光をCCDカメラ64で複数回にわたって観測し、そのエネルギー中心位置(重心位置)から角度安定性を調べることによって、固体レーザロッド10の振動状態についての測定を行った。
【0053】
また、固体レーザロッドの振動状態を比較するため、固体レーザ装置1Aを従来構成の固体レーザ装置に置き換えて、その固体レーザロッドの振動についても同様に測定を行った。また、いずれの固体レーザ装置に対しても、冷却水路に流す冷却水の流量を3.2l/minに設定して測定を行った。
【0054】
このような測定においては、CCDカメラで観測されるレーザ光のエネルギー中心位置(重心位置)は、レーザ光を生成する固体レーザロッドの振動の影響を受けて変動する。図5に示した構成を有する従来の固体レーザ装置に対する測定結果では、横方向に対する角度安定性はσrms=14.68(μrad)、縦方向に対する角度安定性はσrms=16.94(μrad)、また、ピーク位置でのビーム強度安定性は±6.35%rmsであった。
【0055】
これに対して、図4に示した構成を有する固体レーザ装置1Aに対する測定結果では、横方向に対する角度安定性はσrms=13.02(μrad)、縦方向に対する角度安定性はσrms=13.12(μrad)、また、ピーク位置でのビーム強度安定性は±1.54%rmsであった。この測定結果では、生成されるレーザ光の位置安定性は、従来の固体レーザ装置に比べて横方向、縦方向ともに改善されている。また、特に、ピーク位置でのビーム強度安定性が大幅に改善されていることがわかる。このことは、第1の測定系での測定結果と同様に、導入水路23、24を固体レーザロッド10の中心軸から所定距離変位させる上記構成により、固体レーザロッド10の振動の発生が抑制されていることを示している。
【0056】
本発明による固体レーザ装置は、上記実施形態に限られるものではなく、様々な変形が可能である。例えば、図1に示した固体レーザ装置1では、ロッドホルダ12に設けられている排出水路25、26についても、ロッドホルダ11での導入水路23、24と同様に、固体レーザロッド10の中心軸から変位させた排出軸に沿って形成している。これにより、冷却水路22からの冷却水を良好に排出して、固体レーザロッド10をより安定に保つことができる。この排出水路については、固体レーザロッドの中心軸から変位していない排出軸に沿って形成する構成としても良いが、水の流れを考慮すれば、変位させておく方が好ましい。
【0057】
【発明の効果】
本発明による固体レーザ装置は、以上詳細に説明したように、次のような効果を得る。すなわち、固体レーザロッドの長手方向に沿って設けられる冷却水路に対し、導入口からの導入水路を延長した範囲内に固体レーザロッドが位置しない条件で、固体レーザロッドの中心軸上の点を通り中心軸に対して所定角度をなす軸を中心軸から変位させて導入軸とし、この導入軸に沿って導入水路を設ける構成によれば、導入水路からの冷却水の流れが、固体レーザロッドに対して直接に衝突しないように冷却水路へと流れ込むこととなる。したがって、冷却水の流れに起因する固体レーザロッドの振動の発生が抑制され、安定したレーザ動作が可能な固体レーザ装置が実現される。
【図面の簡単な説明】
【図1】固体レーザ装置の一実施形態の構成を示す斜視図である。
【図2】図1に示した固体レーザ装置の中心軸に沿った断面構造を示す側面断面図である。
【図3】固体レーザ装置の具体的な構成例を示す斜視図である。
【図4】図1に示した固体レーザ装置における導入水路から冷却水路への冷却水の流れを示す正面断面図である。
【図5】従来の固体レーザ装置における導入水路から冷却水路への冷却水の流れを示す正面断面図である。
【図6】固体レーザ装置における固体レーザロッドの振動の抑制効果を測定するための第1の測定系の構成を示す図である。
【図7】固体レーザ装置における固体レーザロッドの振動の抑制効果を測定するための第2の測定系の構成を示す図である。
【符号の説明】
10…固体レーザロッド、11…導入口側ロッドホルダ、12…排出口側ロッドホルダ、13、14…固定板、20…冷却ユニット、21…冷却管、22…冷却水路、23…第1導入水路、24…第2導入水路、23a、24a…導入口、25…第1排出水路、26…第2排出水路、25a、26a…排出口、30…半導体レーザ、41、42…支持板、43…連結部材、50…He−Neレーザ、51、52…全反射ミラー、53…CCDカメラ、60…全反射ミラー、61…一部透過ミラー、62、63…全反射ミラー、64…CCDカメラ。

Claims (2)

  1. レーザ媒質である固体レーザロッドと、
    前記固体レーザロッドに対して励起光を供給する励起光源と、
    前記固体レーザロッドの長手方向に沿って設けられ、前記固体レーザロッドを冷却する冷却水が流れる冷却水路と、
    前記冷却水路の一方の端部に対して、前記冷却水を導入するための導入口から前記冷却水路へと所定の導入軸に沿って設けられた導入水路とを備え、
    前記導入水路は、前記固体レーザロッドの中心軸からみて所定距離変位した軸を前記導入軸として、前記導入水路を延長した範囲外に前記固体レーザロッドが位置するように形成されていることを特徴とする固体レーザ装置。
  2. 前記導入水路として、その導入軸が前記固体レーザロッドの中心軸からみて所定方向へと変位した第1導入水路と、前記第1導入水路に対して前記固体レーザロッドを挟む位置に設けられ、その導入軸が前記第1導入水路とは反対方向へと変位した第2導入水路と、の2つの導入水路が設けられていることを特徴とする請求項1記載の固体レーザ装置。
JP2003027293A 2003-02-04 2003-02-04 固体レーザ装置 Pending JP2004241488A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027293A JP2004241488A (ja) 2003-02-04 2003-02-04 固体レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027293A JP2004241488A (ja) 2003-02-04 2003-02-04 固体レーザ装置

Publications (1)

Publication Number Publication Date
JP2004241488A true JP2004241488A (ja) 2004-08-26

Family

ID=32955074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027293A Pending JP2004241488A (ja) 2003-02-04 2003-02-04 固体レーザ装置

Country Status (1)

Country Link
JP (1) JP2004241488A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147432A (ja) * 2004-11-22 2006-06-08 Akihiko Konno 流体加熱装置及び暖房システム
CN102457010A (zh) * 2010-10-22 2012-05-16 北京国科世纪激光技术有限公司 一种激光增益模块及用于激光增益模块的液冷循环装置
WO2017204356A1 (ja) * 2016-05-27 2017-11-30 富士フイルム株式会社 固体レーザ装置
WO2017204357A1 (ja) * 2016-05-27 2017-11-30 富士フイルム株式会社 固体レーザ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147432A (ja) * 2004-11-22 2006-06-08 Akihiko Konno 流体加熱装置及び暖房システム
CN102457010A (zh) * 2010-10-22 2012-05-16 北京国科世纪激光技术有限公司 一种激光增益模块及用于激光增益模块的液冷循环装置
WO2017204356A1 (ja) * 2016-05-27 2017-11-30 富士フイルム株式会社 固体レーザ装置
WO2017204357A1 (ja) * 2016-05-27 2017-11-30 富士フイルム株式会社 固体レーザ装置
US10608405B2 (en) 2016-05-27 2020-03-31 Fujifilm Corporation Solid-state laser device

Similar Documents

Publication Publication Date Title
US6654163B1 (en) Optical amplifier arrangement for a solid state laser
JP3589299B2 (ja) ビーム整形装置
JP6003323B2 (ja) レーザ媒質ユニット、レーザ増幅器及びレーザ発振器並びに冷却方法
JP5994033B2 (ja) 増幅媒質の均質なポンピングによるレーザビームの増幅
KR20010041764A (ko) 자외 레이저 장치 및 이 자외 레이저 장치를 이용한 노광장치
JPS5843588A (ja) レ−ザ発生装置
JPH10511228A (ja) 減偏光ポンプビームを備えたダイオードポンプ・ファイバー結合レーザ
RU2232454C2 (ru) Лазерное устройство
JPH09260754A (ja) 半導体レーザ励起固体レーザ増幅装置及び半導体レーザ励起固体レーザ装置
JP2004241488A (ja) 固体レーザ装置
JP2013041051A (ja) 波長変換装置、固体レーザ装置およびレーザシステム
JP2015167216A (ja) レーザ媒質ユニット、レーザ増幅器及びレーザ発振器
KR20010080864A (ko) 레이저 발진장치
JP2011159932A (ja) ガスレーザ増幅装置およびその光軸調整方法
US5936993A (en) Laser system
JP2006196882A (ja) 光増幅器、レーザ発振器およびmopaレーザ装置
JP2001015844A (ja) 固体レーザ装置
US7386022B2 (en) Laser beam transmitter
WO2001082424A1 (fr) Bloc de refroidissement, dispositif a diode laser dote du bloc de refroidissement et dispositif a laser solide utilisant le dispositif a diode laser comme source lumineuse d'excitation
Mandl et al. Multipulse operation of a high average power, good beam quality zig-zag dye laser
JP2010171145A (ja) ガスレーザ発振器
EP4280272A1 (en) Laser device
JP3511964B2 (ja) 固体レーザ装置
JP4001077B2 (ja) 固体レーザ増幅装置及び固体レーザ装置
JPS6310916B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507