WO2017204252A1 - 黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法 - Google Patents

黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法 Download PDF

Info

Publication number
WO2017204252A1
WO2017204252A1 PCT/JP2017/019383 JP2017019383W WO2017204252A1 WO 2017204252 A1 WO2017204252 A1 WO 2017204252A1 JP 2017019383 W JP2017019383 W JP 2017019383W WO 2017204252 A1 WO2017204252 A1 WO 2017204252A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
hot
phase
less
corrosion resistance
Prior art date
Application number
PCT/JP2017/019383
Other languages
English (en)
French (fr)
Inventor
恵一郎 大石
真次 田中
Original Assignee
三菱伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱伸銅株式会社 filed Critical 三菱伸銅株式会社
Priority to JP2017548234A priority Critical patent/JP6304915B1/ja
Priority to CN201780008129.9A priority patent/CN108495942B/zh
Priority to KR1020187019057A priority patent/KR101929170B1/ko
Publication of WO2017204252A1 publication Critical patent/WO2017204252A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a brass alloy hot-worked product excellent in corrosion resistance (a hot-worked product of brass alloy) and a method for producing the brass alloy hot-worked product.
  • brass alloy hot-worked material hot extruded rod or hot forged product
  • machinability cutability
  • forgeability it is mainly JIS H3250 C3604 (free-cutting brass) or C3771. (Brass for forging) is used.
  • these brass alloy materials are used in a corrosive environment that comes in contact with tap water such as faucet equipment because the metal structure is composed of an ⁇ phase and a ⁇ phase and many ⁇ phases with poor corrosion resistance are included. Then, dezincification corrosion easily occurs, and problems such as water leakage occur due to aging corrosion.
  • Patent Document 1 discloses a dezincing-resistant brass joint member containing 1.5 mass% or more of Sn in the ⁇ phase.
  • Patent Document 2 Cu: 61.0 to 63.0 mass%, Pb: 2.0 to 4.5 mass%, P: 0.05 to 0.25 mass%, Ni: 0.05 to 0.30 mass %, A material with improved anti-dezincing corrosion resistance made of a copper-based alloy with the balance being Zn has been proposed.
  • the alloy disclosed in Patent Document 1 is an alloy containing a lot of hard and brittle ⁇ -phase, and there is a problem that cracking is likely to occur in a water hammer phenomenon in a faucet device where a sudden force is applied. is there.
  • the ⁇ phase is more excellent in dezincification corrosion resistance than the ⁇ phase, but is inferior to the ⁇ phase. Therefore, when it is present in a large amount, dezincification corrosion occurs preferentially in the ⁇ phase.
  • the copper-based alloy disclosed in Patent Document 2 does not contain Sn, the resistance to substantial dezincification is inferior, and when it contains a large amount of P, it causes cracks during casting. There is also a problem.
  • the present invention has been made in order to solve the above-described problems of the prior art, and has excellent corrosion resistance such as anti-zinc corrosion resistance, and hot-worked brass alloy and hot-worked brass alloy. It is an object to provide a method for manufacturing a processed product.
  • the brass alloy hot-worked product according to the first aspect of the present invention has Cu: 61.5 mass% or more and 64.5 mass% or less, Pb: 0.0. 6 mass% or more and 2.0 mass% or less, Sn: 0.55 mass% or more and 1.0 mass% or less, Sb: 0.02 mass% or more and 0.08 mass% or less, Ni: 0.02 mass% or more and 0.10 mass% or less
  • the balance is made of Zn and inevitable impurities, the Cu content is [Cu] mass%, the Pb content is [Pb] mass%, the Sn content is [Sn] mass%, and the Sb content is [Sb ] Mass%, when the content of Ni is [Ni] mass%, 60.5 ⁇ [Cu] + 0.5 ⁇ [Pb] ⁇ 2 ⁇ [Sn] ⁇ 2 ⁇ [Sb] + [Ni] ⁇ 64.0, 0.03 ⁇ [Sb] / [Sn] ⁇ 0.12, 0.3
  • the brass alloy hot-worked product according to the second aspect of the present invention is Cu: 62.0 mass% or more and 64.0 mass% or less, Pb: 0.7 mass% or more and 2.0 mass% or less, Sn: 0.60 mass% or more 0.95 mass% or less, Sb: 0.03 mass% or more and 0.07 mass% or less, Ni: 0.025 mass% or more and 0.095 mass% or less, and the balance is made of Zn and inevitable impurities, and the content of Cu is [ Cu] mass%, Pb content is [Pb] mass%, Sn content is [Sn] mass%, Sb content is [Sb] mass%, and Ni content is [Ni] mass%.
  • the brass alloy hot-worked product according to the third aspect of the present invention is the above-described brass alloy hot-worked product, wherein the metal structure is an ⁇ -phase matrix, includes Pb particles, and the ⁇ -phase area ratio and the ⁇ -phase.
  • the area ratio of the total area ratio is 0% or more and 5% or less.
  • the brass alloy hot-worked product according to the fourth aspect of the present invention is the above-described brass alloy hot-worked product, wherein the metal structure is an ⁇ -phase matrix, includes Pb particles, and each of the ⁇ -phase or ⁇ -phase.
  • the long side length is 100 ⁇ m or less.
  • the brass alloy hot-worked product according to the fifth aspect of the present invention is the above-described brass alloy hot-worked product, wherein the metal structure is an ⁇ -phase matrix, includes Pb particles, and the average particle size of the Pb particles is 0. .2 ⁇ m or more and 3 ⁇ m or less.
  • the brass alloy hot-worked product according to the sixth aspect of the present invention is the above-described brass alloy hot-worked product, wherein the metal structure is an ⁇ -phase matrix, contains Pb particles, and the distribution of Pb particles is 0.002. It is characterized in that the number is 100 / ⁇ m 2 or more and 0.06 / 100 ⁇ m 2 or less.
  • the brass alloy hot-worked product according to the seventh aspect of the present invention is the above-described brass alloy hot-worked product, wherein the metal structure is an ⁇ -phase matrix, includes Pb particles, and the average particle size of the Pb particles is 0. .2 ⁇ m or more and 3 ⁇ m or less, and the distribution of Pb particle 0.002 / 100 [mu] m 2 or more, characterized in that 0.06 units / 100 [mu] m 2 or less.
  • the brass alloy hot-worked product according to the eighth aspect of the present invention is the above-described brass alloy hot-worked product, and is characterized by being used as a water supply device.
  • the method for producing a brass alloy hot-worked product according to the ninth aspect of the present invention is a method for producing a brass alloy hot-worked product for producing the above-described brass alloy hot-worked product, and is 670 ° C. or higher and 820 ° C. or lower. And a temperature region from 620 ° C. to 450 ° C. is cooled at an average cooling rate of 200 ° C./min or less.
  • a method for manufacturing a brass alloy hot-worked product according to a tenth aspect of the present invention is the above-described method for manufacturing a brass alloy hot-worked product, wherein, after the hot working, a temperature of 470 ° C. or more and 560 ° C. or less is 1 It is characterized by performing a heat treatment for holding for 8 minutes or more.
  • the brass alloy hot-worked product according to the present embodiment is used as a water supply device such as a water tap fitting, a joint, or a valve.
  • the brass alloy hot-worked product which is this embodiment is a brass alloy hot-extrusion rod or a brass alloy hot-forged product.
  • compositional relation f1 [Cu] + 0.5 ⁇ [Pb] ⁇ 2 ⁇ [Sn] ⁇ 2 ⁇ [Sb] + [Ni]
  • Composition relation f2 [Sb] / [Sn]
  • Composition relation f3 [Ni] / [Sb]
  • the brass alloy hot-worked product according to the first embodiment of the present invention is Cu: 61.5 mass% to 64.5 mass%, Pb: 0.6 mass% to 2.0 mass%, Sn: 0.55 mass% 1.0 mass% or less, Sb: 0.02 mass% or more and 0.08 mass% or less, Ni: 0.02 mass% or more and 0.10 mass% or less, and the balance is composed of Zn and inevitable impurities.
  • the composition relational expression f2 is within the range of 0.03 ⁇ f2 ⁇ 0.12
  • the compositional relational expression f3 is within the range of 0.3 ⁇ f3 ⁇ 3.5. ing.
  • the brass alloy hot-worked product according to the second embodiment of the present invention is Cu: 62.0 mass% to 64.0 mass%, Pb: 0.7 mass% to 2.0 mass%, Sn: 0.60 mass% 0.95 mass% or less, Sb: 0.03 mass% or more and 0.07 mass% or less, Ni: 0.025 mass% or more and 0.095 mass% or less, and the balance is composed of Zn and inevitable impurities.
  • the composition relational expression f2 is within the range of 0.035 ⁇ f2 ⁇ 0.10
  • the compositional relational expression f3 is within the range of 0.4 ⁇ f3 ⁇ 3.5. ing.
  • the metal structure is an ⁇ -phase matrix, includes Pb particles, the ⁇ -phase area ratio and the ⁇ -phase area.
  • the total area ratio is set to 0% or more and 5% or less.
  • the length of each long side of the ⁇ phase or ⁇ phase is set to 100 ⁇ m or less.
  • Cu is a main element constituting the alloy of the present invention, and is greatly influenced by the relationship with Sn, Pb, Zn, but is a hot-worked material of the alloy of the present invention, a hot extruded material, and a hot forged product
  • Cu needs to be 61.5 mass% or more, preferably 62.0 mass% or more.
  • the proportion of ⁇ phase or the like that lowers the deformation resistance during hot working, that is, hot extrusion and hot forging decreases. For this reason, the hot deformation resistance increases, and the hot working temperature for appropriate hot working increases.
  • the upper limit of the Cu content is 64.5 mass% or less, preferably 64.0 mass% or less.
  • Pb is contained in order to improve machinability (machinability).
  • Pb needs to be 0.6 mass% or more.
  • it is 0.7 mass% or more, and is 1.0 mass% or more particularly when machinability is required.
  • the machinability improves as the Pb content increases.
  • Pb is contained in excess of 2.0 mass%, the amount of elution into water increases and the environmental load may increase. Therefore, the upper limit of the Pb content is set to 2.0 mass% or less.
  • Pb is present as Pb particles because it hardly dissolves in the parent phase of the copper alloy. The size and distribution of the Pb particles greatly affect the machinability (machinability) and also affect the elution amount of Pb.
  • the Pb particles In order to improve the machinability (machinability), it is desired that the Pb particles have a small size and are uniformly distributed at a high density.
  • the amount of Pb eluted the larger the area of Pb particles in contact with an aqueous solution such as tap water that is in contact with, the larger the amount of elution, so that the size of Pb particles contrary to machinability (machinability) and Distribution. Therefore, there is an appropriate range for the size and distribution of the Pb particles in order to balance the machinability (machinability) and elution amount necessary for the alloy of the present invention so as not to be a problem.
  • the average particle size of the Pb particles needs to be 0.2 ⁇ m or more and 3 ⁇ m or less.
  • the average particle diameter of the Pb particles exceeds 3 ⁇ m, the Pb particles are stretched to the cutting surface at the time of cutting, but the area of the Pb increases. For this reason, as a result, the area of Pb which contacts tap water becomes large and the elution amount of Pb increases.
  • the average particle diameter is less than 0.2 ⁇ m, the particles are small and do not serve as a chip breaker for improving the machinability.
  • the distribution of Pb particles is indicated by the number (density) of Pb particles present per cross-sectional area of 100 ⁇ m 2 .
  • Pb particle Density 0.002 / 100 [mu] m 2 or more, as long as 0.06 pieces / 100 [mu] m 2 or less, which contributes to cutting performance (machinability). If the distribution of Pb particles is less than 0.002 particles / 100 ⁇ m 2 , the presence of Pb particles is low and does not serve as a chip breaker, resulting in a low machinability index (less than 75%). Further, the distribution of Pb particles is more advantageous from the viewpoint of machinability (machinability), but it is better from the viewpoint of elution of Pb.
  • the Pb particles When the Pb particles come into contact with the cutting tool at the time of cutting, the Pb particles are partly dissolved by the heat generated at that time and are stretched in the moving direction of the cutting tool, so that the Pb particles are substantially present in a wide range of the cutting surface. Therefore, if the distribution of Pb particles is large, the amount of Pb present on the surface after cutting inevitably increases, and the amount of Pb elution increases inevitably.
  • the leaching amount (elution amount) of Pb is measured according to JIS S3200-7 (water supply equipment-leaching performance test method)
  • the average particle size of Pb particles is well above 0.007 mg / L even when the volume is corrected. Is over 3 ⁇ m, and the particle distribution is over 0.06 particles / 100 ⁇ m 2 .
  • the upper limit of the distribution (density) of the Pb particles is set to 0.06 particles / 100 ⁇ m 2 or less, which does not cause a problem in the dissolution amount (leaching amount). From the above, the average particle size of Pb particles is 0.2 to 3 ⁇ m, and the distribution is 0.002 to 0.06 particles / 100 ⁇ m 2 .
  • Sn Sn is greatly influenced by the relationship with Cu and Zn, but improves the corrosion resistance under severe water quality for copper alloys, particularly dezincification corrosion resistance. Furthermore, Sn lowers the deformation resistance during hot working, that is, during hot extrusion and during hot forging. In order to achieve these, Sn is required to be 0.55 mass% or more, preferably 0.60 mass% or more, and more preferably 0.65 mass% or more. On the other hand, if the Sn content exceeds 1.0 mass%, the proportion of the ⁇ phase or ⁇ phase increases, and the corrosion resistance becomes a problem. For this reason, the upper limit of the Sn content is 1.0 mass% or less, and preferably 0.95 mass% or less.
  • Sb has a function of improving the corrosion resistance under severe water quality for copper alloys, in particular, dezincification corrosion resistance, and exhibits its effect even more when Sn and Ni are added together.
  • Sb is required to be 0.02 mass% or more, preferably 0.03 mass% or more, more preferably 0.035 mass% or more.
  • the upper limit of the Sb content is 0.08 mass% or less, preferably 0.07 mass% or less, and more preferably 0.065 mass% or less.
  • Ni co-adds with Sn and Sb, and improves the corrosion resistance and the dezincification corrosion resistance in harsh water quality for copper alloys, and in particular has the function of maximizing the effect of Sb.
  • Ni is required to be 0.02 mass% or more, preferably 0.025 mass% or more.
  • the upper limit of the Ni content is 0.10 mass% or less, preferably 0.095 mass% or less.
  • the alloy of the present invention inevitable impurities such as Fe, Cr, Mn, and Al are allowed up to 1.0 mass% in total on the premise that the characteristics are not seriously affected.
  • P like Sb, functions to improve the corrosion resistance of the copper alloy.
  • P is mixed even in a small amount, cracks are likely to occur on the surface or inside during the production of the ingot, and cracks are likely to occur on the material surface during hot working.
  • the upper limit value is preferably 0.02 mass% or less.
  • composition relational expression f1 [Cu] + 0.5 ⁇ [Pb] ⁇ 2 ⁇ [Sn] ⁇ 2 ⁇ [Sb] + [Ni] is good when the value is less than 60.5 Corrosion resistance is not obtained.
  • the lower limit of the compositional relational expression f1 is 60.5 or more, preferably 60.7 or more, more preferably 61.0 or more.
  • the upper limit of the compositional relational expression f1 is 64.0 or less, preferably 63.6 or less, and more preferably 63.0 or less.
  • composition relational expression f2 By simply containing Sb and Sn in a predetermined amount, particularly excellent corrosion resistance and dezincification corrosion resistance cannot be obtained. Both Sn and Sb elements are more solidly dissolved in the ⁇ phase, which is stable at a high temperature of 600 ° C. or higher, than the ⁇ phase of the matrix. Alternatively, Sn and Sb are more dissolved in the ⁇ phase which is stable at a low temperature of 475 ° C. or less, particularly 450 ° C. or less than the ⁇ phase of the matrix.
  • the amount of Sn and Sb dissolved in the ⁇ phase is the Approximately 2 to 7 times more than the amount of Sn and Sb. Further, the amount of Sn and Sb dissolved in the ⁇ phase is approximately 7 to 15 times larger than that dissolved in the ⁇ phase.
  • the abundance ratio of Sb and Sn is important, and it is assumed that Sb and Sn are in the above composition range.
  • the lower limit of the compositional relational expression f2 is 0.035 or more, and the upper limit of the compositional relational expression f2 is 0.10 or less.
  • the compositional relational expression f2 [Sb] / [Sn] is 0.03 ⁇ f2, preferably When 0.035 ⁇ f2 is satisfied, the corrosion resistance of the ⁇ phase is improved, and the corrosion resistance of the extruded material or the forged product is improved.
  • the alloy of the present invention enhances hot workability by generating a ⁇ phase with low hot deformation resistance at high temperatures. However, as the temperature decreases, the ⁇ phase changes to an ⁇ phase and the corrosion resistance increases. It is done. However, crystal grain boundaries and phase boundaries that change from the ⁇ phase to the ⁇ phase have a problem in corrosion resistance.
  • the corrosion resistance of the crystal grain boundary and the phase boundary is improved.
  • the concentration of Sn and Sb dissolved in the ⁇ phase is further increased, so that the ⁇ phase is generated.
  • 0.03 ⁇ f2 ⁇ 0.12 the grain boundaries of the ⁇ phase and the ⁇ phase, the phase boundary, and the corrosion resistance of the ⁇ phase itself are further improved.
  • the total proportion of the ⁇ phase and ⁇ phase contained in the metal structure exceeds 5% in area ratio, and the long side length of each of the ⁇ phase or ⁇ phase in the microscopic observation of an arbitrary cross section
  • the anti-dezincification corrosion resistance of the ⁇ phase or ⁇ phase is lower than that of the ⁇ phase, if they are present in the metal structure, they may preferentially exhibit dezincification corrosion. That is, when the length of the long side exceeds 100 ⁇ m, the dezincification corrosion depth may exceed 100 ⁇ m, which causes a problem in corrosion resistance.
  • the total proportion of ⁇ phase and ⁇ phase contained in the metal structure is 0% or more and 5% or less in terms of area ratio, or the length of each long side of ⁇ phase or ⁇ phase is , 100 ⁇ m or less is necessary.
  • the ⁇ phase area ratio is preferably 0% or more and 3% or less. More preferably, the total proportion of ⁇ phase and ⁇ phase contained in the metal structure is 5% or less in terms of area ratio, and the length of each long side of the ⁇ phase or ⁇ phase is 100 ⁇ m or less. It is.
  • the total proportion of ⁇ phase and ⁇ phase is 0% or more and 5% or less in area ratio, and the area ratio of ⁇ phase is 0% or more and 3% or less, and ⁇ The length of each long side of the phase or ⁇ phase is 100 ⁇ m or less.
  • the ⁇ phase and ⁇ phase, or the ⁇ phase and ⁇ phase grain boundaries and phase boundaries which are problems in corrosion resistance under harsh environments, are the phase boundaries and crystal grains that contact the ⁇ phase during high-temperature heating.
  • an ingot having the above-described component composition is prepared, and hot working (hot extrusion, hot forging) is performed on the ingot. Furthermore, in this embodiment, heat treatment may be performed after hot working.
  • hot extrusion or hot forging In this hot working, hot extrusion or hot forging at a temperature of 670 ° C. or more and 820 ° C. or less, and a temperature range of 620 ° C. to 450 ° C. with an average cooling rate of 2 ° C./min or more and 200 ° C./min or less. It is preferable to cool.
  • the hot-processed material is finally brought to 100 ° C. or lower, and many are cooled to room temperature. If the hot working temperature (hot extrusion temperature and hot forging temperature) is too high, fine cracks are generated on the surface. For this reason, the hot working temperature (hot extrusion temperature and hot forging temperature) is set to 820 ° C. or less, preferably 800 ° C.
  • the hot working temperature hot extrusion temperature and hot forging temperature
  • the deformation resistance increases.
  • the yield which is the weight ratio of the product from the ingot, may be deteriorated.
  • a forged product with a high degree of processing may not be sufficiently filled with material and may not be molded.
  • the temperature range from 620 ° C. to 450 ° C. is cooled at an average cooling rate of 200 ° C./min or less, preferably 100 ° C./min or less.
  • the lower limit of the cooling rate is 2 ° C./min or more in consideration of production efficiency.
  • a hot extruded rod is obtained by extrusion from an ingot.
  • the metal structure of the hot-extrusion rod is in a state where it is easily stretched and aligned in parallel with the extrusion direction.
  • a hot forged product is obtained by hot forging using a hot extruded material obtained by extrusion from an ingot as a raw material.
  • the material plastically deforms and flows in various directions in the mold during hot forging, but basically it has a metal structure along the flow of the material.
  • Hot forged material is heated and hot forged, but it is plastic because it is plastically deformed into a shape along the forging die and the metal structure of the heated hot extruded rod is destroyed.
  • the crystal grains are hardly larger than the hot extruded material. Since the Pb particles are hardly dissolved in the copper alloy as described above, they exist as metallic Pb particles and exist regardless of the crystal grains and the crystal grain boundaries. Therefore, Pb is in a liquid state when it is at 327 ° C. or higher, which is the melting point of Pb, during hot working or heat treatment described later.
  • the size (average crystal grain size) and distribution (density of existing number) of the Pb particles also vary depending on the hot working temperature, the flow of the metal structure and the cooling rate. This is the same for the heat treatment described later.
  • the heat treatment temperature is preferably 470 ° C. or more and 560 ° C. or less, and the holding time at the heat treatment temperature is preferably 1 minute or more and 8 hours or less.
  • heat treatment is an effective means.
  • the heat treatment temperature exceeds 560 ° C., there is no effect with respect to the decrease of the ⁇ phase (phase change from the ⁇ phase to the ⁇ phase), and the ⁇ phase may increase, which causes a problem in corrosion resistance.
  • the upper limit of heat processing temperature is 560 degrees C or less, Preferably it is 550 degrees C or less.
  • the minimum of heat processing temperature is 470 degreeC or more, Preferably it is 490 degreeC or more.
  • the holding time at the heat treatment temperature is set to 1 minute or more and 8 hours or less.
  • hot forging is performed with respect to a hot extrusion material (forging raw material)
  • it heat-processes to the bar material forged it has no big influence on forgeability. This is because the forging material is heated before hot forging, so the history of heat treatment is also cleared.
  • heat treatment is costly, generally, a brass alloy to be hot forged is often used as an extruded material (not subjected to heat treatment).
  • the brass alloy hot-worked products according to the first and second embodiments are manufactured by the manufacturing method as described above.
  • the brass alloy hot-worked products according to the first and second embodiments of the present invention have excellent corrosion resistance, and good hot workability and machinability. From these characteristics, it becomes a suitable material for water supply equipment such as a water faucet fitting, a joint, and a valve excellent in cost performance.
  • a brass alloy hot-worked product and a billet having a composition for comparison according to the first and second embodiments of the present invention described above were produced.
  • the compositions of the copper alloy are shown in Tables 1-3.
  • the billet having the composition shown in Table 1 was manufactured using a commercial melting furnace and casting machine. Specifically, a molten copper alloy was melted so as to have predetermined components in a low frequency induction furnace, and a billet having a diameter of 240 mm was manufactured by a semi-continuous casting machine.
  • Billets having the compositions shown in Tables 2 and 3 were manufactured in a small-scale melting facility in a laboratory. Specifically, a copper alloy melt was melted so as to be a predetermined component in a small high-frequency melting furnace and cast into a mold to produce a billet having a diameter of 100 mm and a length of 125 mm.
  • Billets having the composition shown in Table 1 were cut into a diameter of 240 mm and a length of 750 mm, and extruded to a diameter of 12 mm by a 2750-ton indirect extruder.
  • the billet was heated with the induction heating furnace before extrusion, and it was set as the extrusion temperature described in Table 4.
  • the cooling rate in the temperature range of 620 ° C. to 450 ° C. of the bar after extrusion was set as shown in Table 4.
  • the temperature of the billet and the bar after extrusion was measured using a radiation thermometer.
  • heat processing was implemented on the conditions shown in Table 4 with respect to the extrusion product after a hot extrusion process.
  • Billets having the composition shown in Table 1 were cut into a diameter of 240 mm and a length of 750 mm, and extruded to a diameter of 20 mm by a 2750-ton indirect extruder.
  • the billet was heated with the induction heating furnace before extrusion, and it was set as the extrusion temperature described in Table 5.
  • the cooling rate in the temperature range of 620 ° C. to 450 ° C. of the bar after extrusion was set as shown in Table 5.
  • the bar was cooled to room temperature (20 ° C.).
  • the obtained hot extruded material was cut into a cylindrical shape having a diameter of 20 mm and a length of 30 mm, and a sample was collected.
  • This sample was heated to the temperature shown in Table 5, and a columnar sample was set up with a 200-ton friction press and freely forged from a height of 30 mm to 12 mm (processing rate 60%).
  • the cooling rate in the temperature range of 620 ° C. to 450 ° C. of the forged material was the conditions shown in Table 5.
  • This hot forged product was also cooled to room temperature (20 ° C.).
  • This sample was heated to the temperature shown in Table 9 and Table 10, and a columnar sample was set up with a 200-ton friction press and freely forged from a height of 30 mm to 12 mm (processing rate 60%).
  • the cooling rate in the temperature range of 620 ° C. to 450 ° C. of the forged material was the conditions shown in Table 9 and Table 10.
  • the hot forged product was cooled to room temperature (20 ° C.). Further, heat treatment was performed on the forged product after the hot forging process under the conditions shown in Table 9 and Table 10.
  • the length of the remaining part was set to 50 mm, and the case where an ingot exceeding 50 mm remained due to the extrusion capability of the mass production machine was evaluated as “x”.
  • hot extrusion rods with a diameter of 20 mm and extrusion lengths of 200 mm or more are evaluated as “ ⁇ ”, and those less than 200 mm are evaluated as “x”, and the surface of the hot extrusion material is cracked. What was recognized was evaluated as “XX”.
  • the metal structure is a 1/4 portion of the diameter D in the direction parallel to the extrusion direction (if it is a ⁇ 20 mm material that is a 1/4 portion of the diameter D from the surface).
  • the cross-sectional microstructure of the portion 5 mm from the surface, or 3 mm from the surface in the case of a ⁇ 12 mm material was observed.
  • the cross-sectional microstructure of a portion of 3 mm, which is 1 ⁇ 4 of the thickness from the surface was observed in a cross section cut in the diameter direction at a portion 8 mm outside from the center. .
  • the area ratio of ⁇ phase and ⁇ phase is the ratio of the area of ⁇ phase and ⁇ phase to the total area of the observed metal structure by binarizing the observed metal structure using image processing software (WinRoof). Calculated as In addition, the area ratio enlarges the metal structure observed at a magnification of 200 times to a size of 195 mm ⁇ 243 mm (substantial magnification is 355 times), and the metal structure of an arbitrary three fields of view with an area of 75 mm ⁇ 100 mm therein was measured and taken as the average value thereof. In each of the three visual fields, a non-overlapping portion was measured.
  • the ⁇ -phase and ⁇ -phase portions are color-coded for the 75 mm ⁇ 100 mm portion, and the color-coded areas are measured using image processing software, and the whole (75 mm ⁇ 100 mm) is measured.
  • the area ratio of each of the ⁇ phase and ⁇ phase was measured.
  • the size and distribution (density) of the Pb particles were measured by the following method. Regarding the size of the Pb particles, the Pb particles may be fine.
  • the metal structure was photographed at a magnification of 1000 times using a metal microscope, and the metal structure was enlarged to 195 mm ⁇ 243 mm (substantial magnification was 1775 times).
  • the Pb particle part is color-coded, and the color-coded area is measured using image processing software
  • the average particle diameter was measured from the area of the Pb particles. Specifically, assuming that the Pb particle is a circle, the diameter of the Pb particle was obtained as the particle diameter from the measured area. And the average value of the particle diameter of all the observed Pb particles was calculated
  • the distribution (density) of Pb particles was measured as follows. The number of Pb particles was counted in three fields of view where the average particle size of the Pb particles was obtained. The number of Pb particles with respect to the entire measured location was determined, and the number per 100 ⁇ m 2 (10 ⁇ m ⁇ 10 ⁇ m) was calculated. And the average value of the three places was calculated
  • the maximum length of the long side of the ⁇ phase and the ⁇ phase was binarized with respect to the metal structure of any three fields of view using image processing software (WinRoof) in the same manner as the area ratio of the ⁇ phase and the ⁇ phase. .
  • the absolute maximum lengths of the specified ⁇ phase and ⁇ phase were determined. Among the absolute maximum lengths of all the measured ⁇ phases and ⁇ phases, the largest value was taken as the maximum length. In the case of a hot extruded material, there was a maximum length in a direction parallel to the extrusion direction, and in the case of a hot forged material, there was a maximum length in a direction parallel to the material flow direction in the cross-sectional direction.
  • the maximum length of the long side of the ⁇ phase and the ⁇ phase is less than 20 ⁇ m (including 0 ⁇ m, that is, the case where the ⁇ phase rate and the ⁇ phase rate are 0%). If the length is 20 ⁇ m or more and less than 50 ⁇ m, it is the next best. When the maximum length of the long side of the ⁇ phase and ⁇ phase is 50 ⁇ m or more and 100 ⁇ m or less, there is no problem. When the maximum length of the long side of the ⁇ phase and ⁇ phase exceeds 100 ⁇ m, there is a problem from the viewpoint of corrosion resistance. May occur. The ⁇ phase and the ⁇ phase are inferior in corrosion resistance to the ⁇ phase.
  • Corrosion resistance is enhanced by the proper addition of Sn, Sb, and Ni.
  • dezincification corrosion may occur in the ⁇ phase and ⁇ phase. From the viewpoint of corrosion resistance, these phases are continuous. In other words, it is better that the length in the longitudinal direction is short, and it is desirable that the length is 100 ⁇ m or less.
  • Dezincification corrosion test As a dezincification corrosion test, ISO65509-1 (corrosion of metals and alloys-determining of dezincification resistance of copper alloy with zinc decorrosion by zinc corrosion test described in each alloy). That is, the surface where the cross-sectional microstructure was observed was exposed to a 1 vol% cupric chloride aqueous solution maintained at 75 ° C. (masking with an exposed area of 1 cm 2 ) and immersed for 24 hours. Next, the cross-sectional microstructure was observed from the direction perpendicular to the exposed surface, and the maximum dezincification depth, which is the deepest part of the exposed surface, was measured.
  • test Further, as a test in a severe corrosive environment, sodium hypochlorite was appropriately added to tap water, carbon dioxide gas was blown in, and a residual chlorine concentration was adjusted to 30 ppm and pH 6.8 to prepare a test solution. A test piece having an exposed surface adjusted by the same method as in the ISO 6509 test was prepared. The test piece was immersed in a test solution having a liquid temperature of 40 ° C. After 8 weeks, the test piece was taken out and the maximum dezincification corrosion depth was measured by the same method as the ISO 6509 test.
  • the case where the maximum dezincification corrosion depth is less than 20 ⁇ m (including the case where dezincification corrosion is not observed) is evaluated as “ ⁇ ”, and the case where the maximum dezincification corrosion depth is 20 ⁇ m or more and less than 50 ⁇ m is evaluated as “ ⁇ "
  • the case where the maximum dezincification corrosion depth was 50 ⁇ m or more and less than 100 ⁇ m was evaluated as “ ⁇ ”, and the case where the maximum dezincification corrosion depth was 100 ⁇ m or more was evaluated as “x”.
  • the immersion test there is no standard for determining that there is clear dezincification corrosion resistance. However, if the maximum dezincification corrosion depth is less than 100 ⁇ m as in the ISO 6509 test, it was determined that there is dezincification corrosion resistance. In any dezincification corrosion test, it goes without saying that the smaller the maximum dezincification corrosion depth, the better the corrosion resistance.
  • a hot extruded material (no heat treatment) having a diameter of 20 mm was prepared. With a straight drill having a diameter of 3.5 mm, a hole having a depth of 10 mm was made in the center of the hot extruded material (bar material) at a rotation speed of 1250 rpm and a feed rate of 0.17 mm / rev. The torque applied to the drill at that time and the resistance value of the thrust were measured, and the cutting resistance value, which is the root mean square of the torque and thrust, was determined. Based on the cutting resistance value of JIS H3250 C3604, the machinability index was determined by the following formula, and the machinability was evaluated based on the value.
  • Machinability index (%) (cutting resistance value of each brass alloy material) / (cutting resistance value of C3604) ⁇ 100 A machinability index of 90% or more was evaluated as “ ⁇ ”, a machinability index of 75% or more and less than 90% was evaluated as “ ⁇ ”, and a machinability index of less than 75% was evaluated as “x”. . If the machinability index is 75% or more, it can be industrially cut without much inferior to C3604. Further, a bar with a diameter of 20 mm and a height of 30 mm was forged to a height of 12 mm to prepare a hot forged material (no heat treatment).
  • Alloy No. 1 with a Cu content of 61.2 mass% In S137 (Test No. T137), the extrudability is good, but in the extruded material, the ⁇ phase ratio is 6%, the sum of ⁇ and ⁇ phases ( ⁇ + ⁇ ) is 10%, and the maximum length of ⁇ phase or ⁇ phase.
  • the ratio of ⁇ phase and ⁇ phase was high, and the maximum length of ⁇ phase or ⁇ phase was long, so the corrosion resistance (zinc corrosion resistance) was poor.
  • the ⁇ phase ratio in the extruded material is 3 to 4%, and the total of ⁇ and ⁇ phases ( ⁇ + ⁇ ) is as high as 5%.
  • the maximum length of the ⁇ phase is relatively long as 90 to 95 ⁇ m.
  • Corrosion resistance (zinc corrosion resistance) is also evaluated for extruded materials, forged materials, and heat-treated materials, and there is no practical problem, but the corrosion resistance is slightly lower than other alloys of the present invention.
  • Alloy No. 2 having a relatively high Cu content of 64.1 mass%.
  • S6 test No. T6, T16, T26
  • alloy No. In S31 Test Nos. T31 and T61
  • the extrudability and the forgeability are evaluated as “ ⁇ ” and there is no problem, but the extrusion is possible with the full capacity of the extruder.
  • the deformation resistance is large, and the extrudability is slightly deteriorated when compared with other alloys of the present invention under the same other extrusion conditions.
  • Alloy No. 1 having a Cu content of 64.7 mass% In S136 (Test No.
  • Alloy No. 5 with a Pb content of 0.55 mass% In S144 (Test No. T144), other components are within the scope of the present invention, and hot workability such as extrudability and corrosion resistance are not problematic (evaluation is ⁇ or more), but machinability is inferior.
  • This material has an average particle size of Pb particles of 0.1 ⁇ m, a distribution (density) of 0.001 particles / 100 ⁇ m 2 , a small size, a low density, and inferior machinability (machinability).
  • Alloy No. 2 with a Pb content of 2.15 mass% In S145 (Test No. T145), other components are within the range, and there is no problem in hot workability, corrosion resistance, and machinability.
  • the amount of Pb is large, the amount of elution into water may increase, and a treatment for reducing the amount of elution is required.
  • This material has an average particle diameter of Pb particles of 3.0 ⁇ m and a distribution (density) exceeding 0.06 particles / 100 ⁇ m 2 , and the amount of Pb eluted increases as described above.
  • the machinability evaluation is “ ⁇ ” or “ ⁇ ”, which is excellent. Since machinability affects not only Pb but also the structure, it cannot be evaluated only by the content of Pb, but the evaluation is “ ⁇ ” for a sample that contains a large amount within an appropriate range.
  • the average particle diameter and distribution (density) of the Pb particles are slightly affected by the conditions of hot working (hot extrusion, hot forging) and heat treatment conditions. Alloy No. In S5, when the heat treatment temperature is as high as 580 ° C. (Test No. T5-2), the average particle size of Pb exceeds 3 ⁇ m, which causes a problem in the elution amount. In addition, Alloy No. Even when the hot extrusion temperature of the laboratory extrudate of S1 is as high as 850 ° C. (Test No. T21-3), the average particle size of Pb exceeds 3 ⁇ m. Alloy No. In S37, S44 and S45, when the hot forging temperature is as high as 840 ° C.
  • Alloy No. 1 with a Sn content of 0.45 mass% In S141 (test No. T141), if the other composition is within the appropriate range, there is no problem as extrudability and metal structure, but the evaluation is x in the immersion test, resulting in poor corrosion resistance.
  • Alloy No. 1 with Sn content of 1.10 mass% In S142 (Test No. T142), the ⁇ phase ratio increases, and the total of ⁇ and ⁇ phases ( ⁇ + ⁇ ) exceeds 5%. Therefore, the corrosion resistance is poor, and the corrosion resistance remains poor even after heat treatment.
  • the alloy No. 1 has an Sn content of 0.57 mass%.
  • S46 Teest Nos. T46 and T76
  • the corrosion resistance evaluation is many (determined that there is no problem in practical use), and if the Sn content is small, the corrosion resistance tends to deteriorate.
  • the Sn content is large, the ⁇ phase tends to increase, but there is no problem as long as it is within the scope of the present invention.
  • the hot-extruded material or hot-forged material had a larger amount of ⁇ phase, and the corrosion resistance evaluation also had more ⁇ .
  • the corrosion resistance is improved by the Sn content.
  • the Sn content exceeds the appropriate range, the ⁇ phase increases in the metal structure, and the corrosion resistance becomes worse.
  • Alloy No. 1 with a Ni content of 0.018 mass% In S140 (Test No. T140), other elements are in an appropriate range, but the corrosion resistance is inferior and there is a problem.
  • Alloy No. 1 with a Ni content of 0.021 mass% In S41 (test Nos. T41 and T71), the compositional relational
  • S138 the Sb content is less than the range of the present invention, and the corrosion resistance is poor.
  • S43 test Nos. T43 and T73
  • the corrosion resistance evaluation is large, and there is no practical problem with the corrosion resistance, but it can be seen that Sb affects the corrosion resistance.
  • P, Mn, and Fe are unavoidable impurities, but do not significantly affect hot workability, corrosion resistance, etc., as long as they are within the ranges shown in the examples. Alloy No. whose P content is 0.02 mass% or less. In S5 (test Nos. T5-1 to T11, T15), there was no problem in castability and hot workability (extrudability, forgeability). On the other hand, in alloy No. S7 (test No. T7, T17) in which the P content was 0.026 mass%, cracks occurred during hot working (hot extrusion, hot forging).
  • S101 Teest No. T101
  • alloy No. 5 with composition relational expression f1 set to 60.63 In S56 (Test Nos. T56 and T86), although the ⁇ and ⁇ phases were slightly larger, the corrosion resistance evaluation was ⁇ .
  • Alloy No. with compositional relationship f1 set to 64.09 In S135 (Test No. T135), there are few ⁇ phases and ⁇ phases and corrosion resistance is good, but there is a problem in hot workability such as cracking during extrusion.
  • compositional relational expression f1 relates to hot workability and corrosion resistance, and it is important for the alloy of the present invention to be within an appropriate range.
  • composition relational expression f2 is within an appropriate range, the hot workability or the corrosion resistance is also good.
  • the compositional relational expression f2 is greatly related to hot workability and corrosion resistance as described above, but each characteristic is influenced by other compositional relational expressions and additive elements.
  • Alloy No. with compositional relationship f3 set to 0.28 In S132 (Test No. T132), although the content of the additive element is within the appropriate range of the present application, the corrosion resistance is inferior. It is considered that the effect of Ni and Sb on the corrosion resistance is reduced because the value of the composition relational expression f3 is small.
  • Alloy No. with composition relational expression f3 set to 0.38 In S54 (Test Nos. T54 and T84), the corrosion resistance of the immersion test was a level at which it was possible to judge that there was corrosion resistance, although the evaluation was lower than any ⁇ . If the composition relational expression f3 is within an appropriate range, it is affected by the content of other elements and other compositional relational expressions, but exhibits good corrosion resistance.
  • test no See T5-1 to T5-11, T12-1 to T12-8, T21-1 to T21-8, T23-1 to T23-7, T67-1 to T67-8, T75-1 to T75-6 Confirm the hot working conditions.
  • the temperature conditions during hot working are as high as 840 ° C or 850 ° C, cracks occur in the extruded material and surface cracks occur in the forged product. The performance becomes worse.
  • Test No When the temperature during hot working is high, such as T21-3 and T67-3, the average particle size of Pb increases and the amount of elution of Pb increases, which has an adverse effect.
  • test no The heat treatment conditions are confirmed with reference to T5-1 to T5-10 and T12-1 to T12-7.
  • the heat treatment conditions of the hot extruded material and the hot forged product exceed 560 ° C.
  • the ⁇ phase is large, the maximum length is long, and the corrosion resistance is poor.
  • the conditions for heat treatment of the hot extruded material and the hot forged product are less than 470 ° C.
  • the ⁇ phase increases more than the other conditions, the maximum length is longer, and the corrosion resistance becomes worse.
  • the holding time is the same as the extrusion under the condition of less than 1 minute, and the effect of heat treatment is not seen.
  • even if it exceeds 8 hours (480 minutes) there is no significant difference from the conditions within 8 hours, and only the cost for heat treatment is required.
  • the alloy of the present invention in which the content of each additive element and each compositional relational expression are in an appropriate range are excellent in hot workability (hot extrusion, hot forging), and have good corrosion resistance and machinability. Moreover, in order to obtain the outstanding characteristic in this invention alloy, it can achieve by making the manufacturing conditions in hot extrusion and hot forging, and the conditions in heat processing into an appropriate range.
  • the brass alloy hot-worked product of the present invention is excellent in hot workability (hot extrudability and hot forgeability), and excellent in corrosion resistance and machinability. For this reason, the brass alloy hot-worked product of the present invention can be suitably applied as a component for water supply equipment such as a water faucet fitting, a joint, and a valve.

Abstract

この黄銅合金熱間加工品の一態様は、Cu:61.5~64.5mass%、Pb:0.6~2.0mass%、Sn:0.55~1.0mass%、Sb:0.02~0.08mass%、Ni:0.02~0.10mass%を含み、残部がZn及び不可避不純物からなり、以下の式を満足する。 60.5≦[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]≦64.0 0.03≦[Sb]/[Sn]≦0.12 0.3≦[Ni]/[Sb]≦3.5

Description

黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法
 本発明は、耐食性に優れる黄銅合金熱間加工品(黄銅合金の熱間加工品)、及び、この黄銅合金熱間加工品の製造方法に関する。
 本願は、2016年5月25日に、日本に出願された特願2016-104136号に基づき優先権を主張し、その内容をここに援用する。
 上述の黄銅合金熱間加工材(熱間押出棒あるいは熱間鍛造品)としては、被削性(切削性)あるいは鍛造性に優れることから、主としてJIS H3250 C3604(快削黄銅)、あるいは、C3771(鍛造用黄銅)が使用されている。
 しかし、これらの黄銅合金材料は、金属組織がα相とβ相からなり、耐食性が悪いβ相が多く含まれるため、水栓機器などの水道水と接触するような腐食環境下で使用されると、脱亜鉛腐食が容易に発生し、経年腐食により漏水などの不具合を生じることになる。
 ここで、黄銅合金材料の耐脱亜鉛腐食性を向上させる目的で、面積比率5%以上のγ相を析出させることがある。特許文献1には、β相中にSnを1.5mass%以上含有する耐脱亜鉛黄銅接合部材が開示されている。また、特許文献2には、Cu:61.0~63.0mass%、Pb:2.0~4.5mass%、P:0.05~0.25mass%、Ni:0.05~0.30mass%、残部がZnとされた銅基合金からなる耐脱亜鉛腐食性を改善した材料が提案されている。
 特許文献1に開示された合金は、硬質で脆いγ相が多く含まれる合金であり、急激な力がかかるような、例えば水栓機器でのウォーターハンマー現象などでは、割れが生じやすいといった問題がある。また、γ相は、β相よりも耐脱亜鉛腐食性に優れるがα相よりも劣るため、多量に存在する場合はγ相で優先的に脱亜鉛腐食が発生することになる。
 一方、特許文献2に開示された銅基合金は、Snが含まれていないことから、実質的な耐脱亜鉛腐食性が劣り、Pを多く含む場合は鋳造時に割れを生じるなどの製造上の問題もある。
特開2002-069552号公報 特開平11-131158号公報
 本発明は、上記の従来技術の問題を解決するためになされたものであり、耐脱亜鉛腐食性などの耐食性が優れ、熱間加工性に優れた黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法を提供することを課題とする。
 本発明は、かかる知見に基づいてなされたものであって、本発明の第1の態様である黄銅合金熱間加工品は、Cu:61.5mass%以上64.5mass%以下、Pb:0.6mass%以上2.0mass%以下、Sn:0.55mass%以上1.0mass%以下、Sb:0.02mass%以上0.08mass%以下、Ni:0.02mass%以上0.10mass%以下、を含み、残部がZn及び不可避不純物からなり、Cuの含有量を[Cu]mass%、Pbの含有量を[Pb]mass%、Snの含有量を[Sn]mass%、Sbの含有量を[Sb]mass%、Niの含有量を[Ni]mass%とした場合に、
 60.5≦[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]≦64.0、
 0.03≦[Sb]/[Sn]≦0.12、
 0.3≦[Ni]/[Sb]≦3.5、
を満足することを特徴とする。
 本発明の第2の態様である黄銅合金熱間加工品は、Cu:62.0mass%以上64.0mass%以下、Pb:0.7mass%以上2.0mass%以下、Sn:0.60mass%以上0.95mass%以下、Sb:0.03mass%以上0.07mass%以下、Ni:0.025mass%以上0.095mass%以下、を含み、残部がZn及び不可避不純物からなり、Cuの含有量を[Cu]mass%、Pbの含有量を[Pb]mass%、Snの含有量を[Sn]mass%、Sbの含有量を[Sb]mass%、Niの含有量を[Ni]mass%とした場合に、
 60.7≦[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]≦63.6、
 0.035≦[Sb]/[Sn]≦0.10、
 0.4≦[Ni]/[Sb]≦3.5、
を満足することを特徴とする。
 本発明の第3の態様である黄銅合金熱間加工品は、上述の黄銅合金熱間加工品において、金属組織が、α相マトリックスであり、Pb粒子を含み、β相の面積率とγ相の面積率の合計の面積率が0%以上5%以下であることを特徴とする。
 本発明の第4の態様である黄銅合金熱間加工品は、上述の黄銅合金熱間加工品において、金属組織が、α相マトリックスであり、Pb粒子を含み、β相又はγ相の各々の長辺の長さが100μm以下であることを特徴とする。
 本発明の第5の態様である黄銅合金熱間加工品は、上述の黄銅合金熱間加工品において、金属組織が、α相マトリックスであり、Pb粒子を含み、Pb粒子の平均粒径が0.2μm以上、3μm以下であることを特徴とする。
 本発明の第6の態様である黄銅合金熱間加工品は、上述の黄銅合金熱間加工品において、金属組織が、α相マトリックスであり、Pb粒子を含み、Pb粒子の分布が0.002個/100μm以上、0.06個/100μm以下であることを特徴とする。
 本発明の第7の態様である黄銅合金熱間加工品は、上述の黄銅合金熱間加工品において、金属組織が、α相マトリックスであり、Pb粒子を含み、Pb粒子の平均粒径が0.2μm以上、3μm以下であり、かつPb粒子の分布が0.002個/100μm以上、0.06個/100μm以下であることを特徴とする。
 本発明の第8の態様である黄銅合金熱間加工品は、上述の黄銅合金熱間加工品であって、水道用器具として使用されることを特徴とする。
 本発明の第9の態様である黄銅合金熱間加工品の製造方法は、上述の黄銅合金熱間加工品を製造する黄銅合金熱間加工品の製造方法であって、670℃以上820℃以下の温度で熱間加工し、620℃から450℃までの温度領域を、200℃/分以下の平均冷却速度で冷却することを特徴とする。
 本発明の第10の態様である黄銅合金熱間加工品の製造方法は、上述の黄銅合金熱間加工品の製造方法において、前記熱間加工後に、470℃以上560℃以下の温度で、1分以上8時間以下の保持する熱処理を行うことを特徴とする。
 本発明の態様によれば、耐脱亜鉛腐食性などの耐食性が優れ、熱間加工性に優れた黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法を提供することができる。
実施例における熱間押出材の金属組織観察位置を示す説明図である。 実施例における熱間鍛造材の金属組織観察位置を示す説明図である。
 以下に、本発明の実施形態に係る黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法について説明する。
 本実施形態である黄銅合金熱間加工品は、給水栓金具、継手、バルブ等の水道用器具として用いられるものである。また、本実施形態である黄銅合金熱間加工品は、黄銅合金熱間押出棒又は黄銅合金熱間鍛造品である。
 ここで、本明細書では、[Zn]のように括弧付の元素記号は当該元素の含有量(mass%)を示すものとする。
 そして、本実施形態では、この含有量の表示方法を用いて、以下のように、複数の組成関係式を規定している。
 組成関係式f1=[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]
 組成関係式f2=[Sb]/[Sn]
 組成関係式f3=[Ni]/[Sb]
 本発明の第1の実施形態に係る黄銅合金熱間加工品は、Cu:61.5mass%以上64.5mass%以下、Pb:0.6mass%以上2.0mass%以下、Sn:0.55mass%以上1.0mass%以下、Sb:0.02mass%以上0.08mass%以下、Ni:0.02mass%以上0.10mass%以下、を含み、残部がZn及び不可避不純物からなり、組成関係式f1が60.5≦f1≦64.0の範囲内、組成関係式f2が0.03≦f2≦0.12の範囲内、組成関係式f3が0.3≦f3≦3.5の範囲内とされている。
 本発明の第2の実施形態に係る黄銅合金熱間加工品は、Cu:62.0mass%以上64.0mass%以下、Pb:0.7mass%以上2.0mass%以下、Sn:0.60mass%以上0.95mass%以下、Sb:0.03mass%以上0.07mass%以下、Ni:0.025mass%以上0.095mass%以下、を含み、残部がZn及び不可避不純物からなり、組成関係式f1が60.7≦f1≦63.6の範囲内、組成関係式f2が0.035≦f2≦0.10の範囲内、組成関係式f3が0.4≦f3≦3.5の範囲内とされている。
 そして、上述した本発明の第1,2の実施形態に係る黄銅合金熱間加工品においては、金属組織が、α相マトリックスであり、Pb粒子を含み、β相の面積率とγ相の面積率の合計の面積率が0%以上5%以下とされている。
 また、β相又はγ相の各々の長辺の長さが100μm以下とされている。
 以下に、成分組成、組成関係式f1、f2、f3、金属組織を、上述のように規定した理由について説明する。
(Cu)
 Cuは、本発明合金を構成する主要元素であり、Sn、Pb、Znとの関係に大きく影響されるが、本発明合金の熱間加工材である、熱間押出材、および熱間鍛造品において、優れた耐食性、耐脱亜鉛腐食性を有するために、Cuは61.5mass%以上必要であり、好ましくは62.0mass%以上である。一方、Cuの含有量が64.5mass%を超えると、熱間での加工時、すなわち、熱間押出および熱間鍛造時の変形抵抗を下げるβ相等の占める割合が低くなる。このため、熱間での変形抵抗が大きくなり、適切な熱間加工をするための熱間加工温度が上がる。また熱間加工性である熱間押出性、熱間鍛造性が悪くなるだけでなく、切削性も悪くなり、強度も低くなり、耐食性も飽和する。このため、Cuの含有量の上限は64.5mass%以下であり、好ましくは64.0mass%以下である。
(Pb)
 Pbは、切削性(被削性)を向上させるために含有される。そのためには、Pbは0.6mass%以上必要である。好ましくは0.7mass%以上であり、特に切削性が求められる場合には1.0mass%以上である。Pbの含有量が多くなるにしたがって切削性が向上する。一方、Pbが2.0mass%を超えて含有されると、水への溶出量が多くなり、環境負荷が大きくなるおそれがあるため、Pbの含有量の上限は2.0mass%以下とする。
 なお、Pbは、銅合金の母相中にほとんど固溶しないため、Pb粒子として存在することになる。Pb粒子の大きさおよび分布は、切削性(被削性)に大きく影響し、またPbの溶出量にも影響を与える。切削性(被削性)の向上のためには、Pb粒子の大きさが小さく、均一かつ高密度で分布していることが望まれる。一方、Pbの溶出量に関しては、接触する水道水などの水溶液と接触するPb粒子の面積が多いほど、溶出量が多くなるため、切削性(被削性)と相反するPb粒子の大きさおよび分布となる。従って、本発明合金に必要である切削性(被削性)と溶出量が問題とならないようにバランスさせるには、Pb粒子の大きさと分布のそれぞれに適正な範囲がある。切削性(被削性)のためにはPb粒子の平均粒子径は0.2μm以上、3μm以下であることが必要である。Pb粒子の平均粒子径が3μmを超えると、切削時にPb粒子が切削面に引き伸ばされるが、そのPbの面積が増大する。このため、結果として水道水と接触するPbの面積が大きくなりPbの溶出量が増加する。平均粒子径が0.2μm未満では、粒子が小さく、切削性の向上のためのチップブレーカーとしての役割を果たさなくなる。
 Pb粒子の分布は、断面積100μm当たりのPb粒子の存在個数(密度)で示す。Pb粒子の分布(密度)が0.002個/100μm以上、0.06個/100μm以下であれば、切削性(被削性)に寄与する。Pb粒子の分布が0.002個/100μm未満では、Pb粒子の存在が低く、チップブレーカーとしての役割を果たさず、被削性指数が小さくなってしまう(75%未満)。
 また、Pb粒子の分布は、切削性(被削性)の観点からすると、多い方が有利であるが、Pbの溶出の観点からは少ない方が良い。Pb粒子は切削時に刃具と接触した場合、その時に生じた熱によって一部溶解するなど、刃具の動く方向に引き伸ばされることにより、実質的に切削表面の広範囲に存在することとなる。従って、Pb粒子の分布が多いと、必然的に切削後の表面に存在するPbは多くなり、Pbの溶出量が必然的に大きくなる。JIS S3200-7(水道用器具―浸出性能試験方法)によりPbの浸出量(溶出量)を測定すると、容量補正を行っても0.007mg/Lを十分超えるのは、Pb粒子の平均粒径が3μmを超え、また粒子の分布が0.06個/100μmを超える場合である。なお、鉛浸出量(溶出量)の0.007mg/Lは、厚生労働省令第一五号に記載の末端給水栓における浸出液に係る基準の上限(主要な部材を銅合金を用いた場合)であり、この基準を超える材料は、末端給水栓として用いることが出来なくなる。
 従って、Pb粒子の分布(密度)の上限としては、溶出量(浸出量)に問題が生じない0.06個/100μm以下とする。
 以上のことから、Pb粒子の平均粒子径は0.2~3μmであり、分布については0.002~0.06個/100μmとなる。
(Sn)
 Snは、Cu、Znとの関係に大きく影響されるが、銅合金にとって過酷な水質での耐食性、特に耐脱亜鉛腐食性を向上させる。さらに、Snは、熱間加工すなわち、熱間押出時、および熱間鍛造時の熱間での変形抵抗を低くする。これらを達成するためには、Snは、0.55mass%以上必要であり、好ましくは0.60mass%以上であり、より好ましくは0.65mass%以上である。一方、Snが1.0mass%を超えて含有されると、γ相、或いはβ相の占める割合が多くなり、却って耐食性が問題になる。このため、Snの含有量の上限は、1.0mass%以下であり、好ましくは0.95mass%以下である。
(Sb)
 Sbは、銅合金にとって過酷な水質での耐食性、特に耐脱亜鉛腐食性を向上させる働きがあり、SnおよびNiの共添加のもと、より一層その効果を発揮する。優れた耐食性を発揮するためには、Sbは0.02mass%以上必要であり、好ましくは0.03mass%以上であり、より好ましくは0.035mass%以上である。一方、Sbは0.08mass%を超えて含有しても、その効果は飽和するだけでなく、熱間での加工性に悪影響を及ぼし、冷間での加工性も悪くなる。このため、Sbの含有量の上限は、0.08mass%以下であり、好ましくは0.07mass%以下であり、より好ましくは0.065mass%以下である。
(Ni)
 Niは、Sn、Sbとの共添加の下、銅合金にとって過酷な水質での耐食性、耐脱亜鉛腐食性を向上させ、特にSbの効果を最大限に発揮させる働きがある。優れた耐食性を発揮するためには、Niは0.02mass%以上必要であり、好ましくは0.025mass%以上である。一方、Niを0.10mass%を超えて含有すると、過酷な水質下でNiの溶出量が増えるおそれがある。このため、Niの含有量の上限は0.10mass%以下であり、好ましくは0.095mass%以下である。
(不可避不純物)
 Pbを含有した銅合金は、リサイクル、コストの点から切削切屑や廃棄製品が主要原料として使われる。切削切屑には、例えば、工具摩耗等によりFe等の数種の元素が混入する。廃棄製品には、Crなどのめっきが施されていることがある。それらが原料として使われるため、不可避不純物は、他の銅合金より多く混入する。たとえば、不純物として扱われるFeの量に関しては、JIS H 3250で規定される約3mass%のPbを含有する銅合金(C3604)、約4mass%のPbを含有する銅合金(C3605)では、0.5mass%まで許容されている。
 したがって、本発明合金においては、特性に重大な影響を及ぼさないことが前提で、Fe、Cr、Mn、Alなどの不可避不純物は、合計で1.0mass%まで許容される。
 PはSbと同様に銅合金の耐食性を向上させる働きがある。しかし、少量でもPが混入すると、鋳塊作成時に表面あるいは内部に割れが生じやすく、また、熱間加工中に材料表面に割れが生じやすくなる。Cu、Pb、Sn、Niの含有量にもよるが、例えばPの含有量が0.02mass%を超えると、鋳塊作成時の問題や熱間加工時の問題が生じるため、Pが混入したとしてもその上限値を0.02mass%以下とすることが好ましい。
(組成関係式f1)
 優れた耐食性を発揮するためには、また、良好な熱間加工性を確保するためには、Cu、Sn、Ni等の各元素の含有量の範囲を規定するだけでは不十分である。Cuの含有量を[Cu]mass%、Pbの含有量を[Pb]mass%、Snの含有量を[Sn]mass%、Sbの含有量を[Sb]mass%およびNiの含有量を[Ni]mass%とすると、組成関係式f1=[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]の値が60.5未満であると、良好な耐食性が得られない。さらに熱間加工(熱間押出、熱間鍛造)後の工程で、熱処理を施しても優れた耐食性が発揮できない。
 よって、組成関係式f1の下限は、60.5以上であり、好ましくは60.7以上、より好ましくは61.0以上である。
 一方、組成関係式f1=[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]の値が64.0を超えると、熱間での変形抵抗が高くなり、また、熱間での変形能が悪くなり、良好な熱間加工性、すなわち、熱間押出性、熱間鍛造性が確保できない。例えば、熱間加工温度や設備能力にもよるが、良好な熱間加工性とは、熱間押出については、押出棒の表面に割れが無く、実用上多く使用される最小の寸法、φ12mmに押し出すことが可能かどうかである。熱間鍛造については、鍛造品の表面に割れが生じず、薄肉鍛造まで可能かどうかである。
 よって、組成関係式f1の上限は、64.0以下であり、好ましくは63.6以下であり、より好ましくは63.0以下である。
(組成関係式f2)
 単に、Sb、Snが所定量で含有されているだけでは、特に優れた耐食性、耐脱亜鉛腐食性は得られない。Sn、Sbの両元素はともに、600℃以上の高温で安定なβ相に、マトリックスのα相より、多く固溶する。或は、Sn、Sbは、475℃以下、特に450℃以下の低温側で安定なγ相に、マトリックスのα相より、多く固溶する。マトリックスのα相と、β相および/またはγ相との比率にもよるが、本発明合金の組成であれば、β相中に固溶するSn、Sbの量は、α相中に固溶するSn、Sbの量より、概ね2~7倍多い。またγ相中に固溶するSn、Sbの量は、α相中に固溶する量より、概ね7~15倍多く固溶する。まず、マトリックスのα相の耐食性を優れたものにするためには、SbとSnの存在比が重要であり、SbとSnが前記の組成範囲であることが前提である。組成関係式f2=[Sb]/[Sn]が、0.03≦f2≦0.12であるとき、SnとSbの共添加の効果が一層顕著なものとなり、α相の耐食性が最も向上する。好ましくは、組成関係式f2の下限は0.035以上であり、組成関係式f2の上限は0.10以下である。
 Cu-Zn-Sn系合金のβ相に関しては、特に耐食性に優れたものにすることは困難であるが、組成関係式f2=[Sb]/[Sn]が、0.03≦f2、好ましくは0.035≦f2を満たすとき、β相の耐食性が向上し、押出材または鍛造品の耐食性が向上する。本発明合金は、高温で熱間変形抵抗の低いβ相が生成することにより、熱間加工性を高めるものであるが、温度の低下に伴いβ相がα相に相変化し、耐食性が高められる。しかしながら、β相からα相に相変化する結晶粒界、相境界は、耐食性に問題がある。組成関係式f2=[Sb]/[Sn]の値が、少なくとも0.03以上、0.12以下であるとき、結晶粒界、相境界の耐食性が高められる。
 475℃以下あるいは450℃以下の温度になると、β相がα相に変化するとき、β相に固溶するSn、Sb濃度が一層高くなることによりγ相は生成する。0.03≦f2≦0.12の時、α相とγ相の結晶粒界、相境界、およびγ相自体の耐食性が一段と向上する。
 高温の変形能に関し、組成関係式f2=[Sb]/[Sn]が0.12を超えると、Snに比べ、Sbの量が過剰となり、α相、およびβ相の熱間での変形能が低下し、熱間加工性を悪くする。
(組成関係式f3)
 組成関係式f2=[Sb]/[Sn]と同様に、NiとSbの関係も重要である。Niの存在によって、マトリックスのα相、γ相の耐食性に対して、Sbの効果が一層高められ、β相の耐食性に対しても高められる。特に、高温で安定であるβ相から、α相に変化するときの結晶粒界、相境界、および低温側でβ相からγ相とα相に変化するときの相境界、およびγ相の耐食性を向上させる。それらの効果を発揮するには、組成関係式f3=[Ni]/[Sb]の値が0.3以上であり、好ましくは0.4以上である。上限は、本発明合金のNi組成範囲では特に制約する必要はないが、前記効果が飽和することを鑑みて、組成関係式f3=[Ni]/[Sb]の値を3.5以下とする。
(金属組織)
 良好な熱間加工性を確保するためには、熱間加工温度で、β相が存在することが必須要件である。高温の加熱温度、或いは加工温度で生成するβ相は、温度低下と共にα相、或いはγ相に変化する。製造プロセスにもよるが、本発明合金の組成であっても、耐食性に問題のあるβ相が残留し、γ相が生成することがある。前記のSn、Sb、Niを、組成関係式f2=[Sb]/[Sn]、および組成関係式f3=[Ni]/[Sb]が適正になるように含有させることにより、β相、γ相の耐食性を向上させているので、一般的な水質では問題とはならないが、過酷な環境下では十分とは言えない。
 すなわち、金属組織中に含まれるβ相とγ相の占める割合の合計が、面積率で5%を超え、かつ、任意の断面の顕微鏡観察において、β相またはγ相の各々の長辺の長さが、100μmを超えると、過酷な環境下での耐食性に耐え得ることができない。β相あるいはγ相の耐脱亜鉛腐食性が、α相と比較して低いため、それらが金属組織中に存在した場合、優先的に脱亜鉛腐食を呈することがある。つまり、長辺の長さが100μmを超えると、脱亜鉛腐食深さが100μmを超えることがあり、耐食性に問題が生じることになる。したがって、金属組織中に含まれるβ相とγ相の占める割合の合計が、面積率で0%以上、5%以下であるか、または、β相またはγ相の各々の長辺の長さが、100μm以下であることが必要である。β相とγ相の占める割合の合計が、面積率で0%以上、5%以下である場合、好ましくは、β相の面積率が0%以上、3%以下である。より好ましくは、金属組織中に含まれるβ相とγ相の占める割合の合計が、面積率で5%以下であり、かつ、β相またはγ相の各々の長辺の長さが、100μm以下である。最善には、β相とγ相の占める割合の合計が、面積率で0%以上、5%以下であり、かつ、β相の面積率が0%以上、3%以下であり、かつ、β相またはγ相の各々の長辺の長さが、100μm以下である。
 なお、過酷な環境下の耐食性で問題となるα相とβ相、またはα相とγ相の結晶粒界、相境界については、高温加熱時にβ相と接するα相との相境界、結晶粒界を含め、前記のSn、Sb、Niを、組成関係式f2=[Sb]/[Sn]、および組成関係式f3=[Ni]/[Sb]が適正になるように含有させることにより、耐食性を向上させることができ、十分に対処できる。
 次に、本発明の第1、2の実施形態に係る黄銅合金熱間加工品の製造方法について説明する。
 まず、上述の成分組成とされた鋳塊を準備し、この鋳塊に対して熱間加工(熱間押出し、熱間鍛造)を行う。さらに、本実施形態では、熱間加工後に熱処理を実施してもよい。
(熱間加工)
 この熱間加工においては、670℃以上820℃以下の温度で熱間押出または熱間鍛造し、620℃から450℃の温度領域を、2℃/分以上200℃/分以下の平均冷却速度で冷却することが好ましい。熱間加工した材料は最終的に100℃以下とし、多くは室温まで冷却される。
 熱間加工温度(熱間押出温度および熱間鍛造温度)が高すぎると、表面に微細な割れが生じる。このため、熱間加工温度(熱間押出温度および熱間鍛造温度)は820℃以下としており、好ましくは800℃以下である。
 一方、熱間加工温度(熱間押出温度および熱間鍛造温度)が低すぎると、変形抵抗が高くなる。加工設備能力にもよるが、例えば、サイズの小さな細棒(直径12mm以下)を製造するとき、押出が困難となったり、押出ができても、加工中の温度低下により押出しきれない部分が生じ、鋳塊から製品の重量比である歩留まりが悪くなったりするおそれがある。また、加工度の高い鍛造品では、十分に材料が充填されず成形できないおそれがある。
 また、熱間加工後の冷却速度が速すぎると、β相からα相への相変化が不十分となり、冷却後のβ相率が高くなる、さらに、伸長したβ相が残留し易くなり、過酷な環境下での耐食性が悪くなる。そのために、620℃から450℃の温度領域を200℃/分以下の平均冷却速度で冷却することにしており、好ましくは100℃/分以下である。冷却速度の下限は、敢えて記載すると、生産効率を考えて2℃/分以上とする。
 ここで、冷却中にβ相からγ相およびα相へと変化する場合においても、β相が伸長した場合はγ相も伸長しやすくなるなど、過酷な環境下では耐食性が悪くなる。
 特に熱間押出棒は、鋳塊からの押出によって得られる。熱間押出棒の金属組織は、押出方向と平行に並び、伸長しやすい状況にある。
 一方、熱間鍛造品は、鋳塊から押出によって得られた熱間押出材を素材として熱間鍛造して得られる。熱間鍛造では製品の形状によって、熱間鍛造中に金型の中でさまざまな方向に材料が塑性変形して流れるが、基本的に材料の流れに沿った金属組織となる。熱間押出材を加熱して熱間鍛造するが、鍛造の金型に沿った形状に塑性変形し、加熱された熱間押出棒の金属組織が破壊されるため、一般的には素材である熱間押出材よりも結晶粒が大きくなることはほとんどない。
 Pb粒子は上述のように銅合金にはほとんど固溶しないため、金属のPb粒子として存在し、結晶粒内および結晶粒界に関係なく、存在する。従って熱間加工中あるいは後述する熱処理中で、Pbの融点である327℃以上にある場合、Pbは液体の状態にある。熱間加工の温度、金属組織の流れおよび冷却速度によってPb粒子の大きさ(平均結晶粒径)および分布(存在個数の密度)も変化する。これは後述する熱処理でも同じである。
(熱処理)
 熱間加工後に熱処理を行う場合には、熱処理温度を470℃以上560℃以下とし、熱処理温度での保持時間を1分以上8時間以下とすることが好ましい。
 より耐食性を高めるためには、熱処理が有効な手段である。しかしながら、熱処理温度が560℃を超えると、β相の減少(β相からα相への相変化)に関して効果がなく、寧ろβ相が増えることがあり、耐食性に問題が生じる。このため、熱処理温度の上限は560℃以下であり、好ましくは550℃以下である。一方、熱処理温度が470℃未満の温度で熱処理すると、β相は減少するが、γ相が増し、場合によっては、耐食性が悪くなることがある。このため、熱処理温度の下限は470℃以上であり、好ましくは490℃以上である。
 また、熱処理温度での保持時間が1分より短いと、十分にβ相が減少しない。一方、熱処理温度での保持時間が8時間を超えると、β相減少の効果は飽和し、エネルギー使用の点で問題がある。よって、本実施形態では、熱処理温度での保持時間を1分以上8時間以下に設定している。
 なお、熱間鍛造は、熱間押出材(鍛造素材)に対して施されるが、鍛造される棒材に熱処理を施しても鍛造性に大きな影響は与えない。これは熱間鍛造の前に鍛造素材を加熱するため、熱処理の履歴もクリアされるためである。ただし、熱処理をするためにはコストがかかることから、一般的には、熱間鍛造する黄銅合金は、押出のまま(熱処理を施さない)の材料が用いられることが多い。
 以上のような製造方法により、第1,2の実施形態に係る黄銅合金熱間加工品が製造される。
 上述のように、本発明の第1、第2の実施形態に係る黄銅合金熱間加工品においては、耐食性に優れ、熱間加工性、被削性が良い。これらの特性から、コストパフォーマンスに優れた、給水栓金具、継手、バルブ等の水道用器具の好適素材となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更することが可能である。
 以下、本発明の効果を確認すべく行った確認実験の結果を示す。なお、以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものでない。
 また、以下、評価結果において、符号“◎”は“優(excellent)”を意味し、符号“○”は“良(good)”を意味する。符号“△”は“可(fair)”を意味し、符号“×”は“不良(poor)”を意味し、符号“××”は“非常に悪く、不良(very poor)”を意味する。
 上述した本発明の第1、第2の実施形態に係る黄銅合金熱間加工品及び比較用の組成のビレットを作製した。銅合金の組成を表1~3に示す。
 なお、表1に示す組成のビレットは、商用の溶解炉及び鋳造機を用いて製造されたものである。具体的には、低周波誘導炉で所定の成分になるように銅合金溶湯を溶製し、半連続鋳造機により、直径240mmのビレットを製造した。
 表2及び表3に示す組成のビレットは、実験室の小規模な溶解設備で製造されたものである。具体的には、小型の高周波溶解炉で所定の成分になるように銅合金溶湯を溶製し、金型に鋳込み、直径100mm×長さ125mmのビレットを製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(熱間押出材)
 表1に示す組成のビレットを直径240mm×長さ750mmに切断し、2750トンの間接押出機により、直径12mmに押し出した。なお、押出前に誘導加熱炉によりビレットを加熱し、表4に記載された押出温度とした。
 押出後の棒材の620℃から450℃の温度領域の冷却速度は表4に示す条件とした。なお、ビレットおよび押出後の棒材の温度は、放射温度計を用いて測定した。
 また、熱間押出工程後の押出品に対して、表4に示す条件で熱処理を実施した。
(熱間鍛造材)
 表1に示す組成のビレットを直径240mm×長さ750mmに切断し、2750トンの間接押出機により、直径20mmに押し出した。なお、押出前に誘導加熱炉によりビレットを加熱し、表5に記載された押出温度とした。押出後の棒材の620℃から450℃の温度領域の冷却速度は表5に示す条件とした。なお、棒材は室温(20℃)まで冷却した。
 得られた熱間押出材を直径20mm×長さ30mmの円柱状に切断してサンプルを採取した。このサンプルを表5に示す温度まで加熱し、200トンのフリクションプレスで、円柱状のサンプルを立てて、高さ30mmから12mm(加工率60%)まで自由鍛造した。鍛造材の620℃から450℃の温度領域の冷却速度は表5に示す条件とした。この熱間鍛造品も室温(20℃)まで冷却した。
(ラボ押出材1)
 上記の熱間押出材を作製する際に用いられ、表1に示す組成の直径240mmのビレットから一部を切断し、次いで、その表面を切削加工し、直径95mm×長さ120mmとした。これをラボ押出材1を作製するためのビレットとして用いた。これをマッフル炉により表6に示す温度にまで加熱し、200トンの直接押出機により、直径20mmの熱間押出棒を得た。
 押出後の棒材の620℃から450℃の温度領域の冷却速度は表6に示す条件とした。押出棒は室温(20℃)まで冷却した。
 また、熱間押出工程後の押出品に対して、表6に示す条件で熱処理を実施した。
(ラボ押出材2)
 表2及び表3に示す組成のビレットの表面を切削加工し、直径95mm×長さ120mmとした。これをマッフル炉により表7及び表8に示す温度にまで加熱し、200トンの直接押出機により、直径20mmの熱間押出棒を得た。
 押出後の棒材の620℃から450℃の温度領域の冷却速度は表7及び表8に示す条件とした。押出棒は室温(20℃)まで冷却した。
 また、熱間押出工程後の押出品に対して、表7及び表8に示す条件で熱処理を実施した。
(ラボ鍛造材)
 表2及び表3に示す組成のビレットの表面を切削加工し、直径95mm×長さ120mmとした。これをマッフル炉により表9及び表10に示す温度にまで加熱し、200トンの直接押出機により、直径20mmの熱間押出棒を得た。
 押出後の棒材の620℃から450℃の温度領域の冷却速度は表9及び表10に示す条件とした。押出棒は室温(20℃)まで冷却した。
 得られた熱間押出材を、直径20mm×長さ30mmの円柱状に切断してサンプルを採取した。このサンプルを表9及び表10に示す温度まで加熱し、200トンのフリクションプレスで、円柱状のサンプルを立てて、高さ30mmから12mm(加工率60%)まで自由鍛造した。鍛造材の620℃から450℃の温度領域の冷却速度は表9及び表10に示す条件とした。なお、熱間鍛造品は室温(20℃)まで冷却した。
 また、熱間鍛造工程後の鍛造品に対して、表9及び表10に示す条件で熱処理を実施した。
 上述の熱間押出材、熱間鍛造材、ラボ押出材、ラボ鍛造材について、以下の熱間加工性の評価を行った。
(熱間押出性)
 熱間押出材においては、直径12mmで押し切れない部分を残すことなく押し出しできたものを「○」とし、押し切れない部分があったものを「×」とし、熱間押出材の表面に割れが認められたものを「××」と評価した。なお、商用で実際に行われている押出工程では、鋳塊(ビレット)すべてを棒材に押出すことはない。全てを押出すると鋳塊末端部分となる押出材の後端部には欠陥が生じることとなり製品にならない。このため、鋳塊末端部分の一定量を残して押出工程を実施した。その残す部分の長さを50mmとし、量産機の押出能力で50mmを超える鋳塊が残ってしまった場合を「×」と評価した。
 ラボ押出材においては、直径20mmの熱間押出棒で押出長さが200mm以上のものを「○」と評価し、200mm未満のものを「×」と評価し、熱間押出材の表面に割れが認められたものを「××」と評価した。
(熱間鍛造性)
 鍛造荷重が100トン以下で鍛造できたものを「○」と評価し、鍛造荷重が100トンを超えた場合を「×」と評価し、熱間鍛造材の表面に割れが認められたものを「××」と評価した。鍛造性としては「○」評価が必要である。鍛造荷重が100トンを超えると、能力の小さな鍛造機で鍛造が困難になり、また複雑な形状の鍛造品が成形できない可能性もあるため、熱間鍛造性としては「×」の評価とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 上述の熱間押出材、熱間鍛造材、ラボ押出材、ラボ鍛造材について、金属組織観察、耐食性(脱亜鉛腐食試験/浸漬試験)、被削性について評価を行った。
(金属組織観察)
 金属組織は、熱間押出材については、図1に示すように、押出方向と平行方向に直径Dの1/4部分(表面から直径Dの1/4の箇所である、φ20mm材であれば表面から5mmの部分、φ12mm材であれば表面から3mmの部分)の断面ミクロ組織を観察した。
 熱間鍛造材については、図2に示すように、中心部から8mm外側の部分について直径方向に切断した横断面で、表面から厚みの1/4である3mmの箇所の断面ミクロ組織を観察した。なお、熱間鍛造では高さ30mmから12mmまで自由鍛造した場合、直径約32mmの円盤形状となる。
 この観察試料を3vol%過酸化水素水と3vol%アンモニア水の混合エッチング液でエッチングし、金属顕微鏡(株式会社ニコン製EPIPHOTO300)を用いて倍率200倍で金属組織を観察した。
 β相、γ相の面積率は、観察した金属組織を、画像処理ソフト(WinRoof)を用いて2値化の処理を行い、観察した金属組織全体の面積に対するβ相、γ相の面積の割合として算出した。なお、面積率は、倍率200倍で観察した金属組織を195mm×243mmの大きさに拡大し(実質的な倍率は355倍)、その中の75mm×100mmの面積について任意の3視野の金属組織について測定し、それらの平均値とした。3視野はそれぞれ重なりのない部分を測定した。2値化の処理は上記の75mm×100mmの部分について、β相およびγ相の部分をそれぞれ色分けし、その色分けした面積を画像処理ソフトを用いて測定し、全体(75mm×100mm)に対してのβ相およびγ相のそれぞれの面積率を計測した。
 Pb粒子の大きさおよび分布(密度)の測定は以下の方法で行った。Pb粒子の大きさについては、Pb粒子が細かい場合もあり、金属顕微鏡を用い倍率1000倍で金属組織を撮影し、その金属組織を195mm×243mmに拡大した(実質倍率は1775倍)。その測定視野の任意の重なりの無い3視野(75mm×100mm:実質的な評価面積0.06mm)において、Pb粒子部分を色分けし、その色分けした面積を画像処理ソフトを用いて測定し、それぞれのPb粒子の面積から平均粒子径を測定した。詳細には、Pb粒子が円であると仮定し、おのおの測定された面積からPb粒子の直径を粒子径として求めた。そして、観察された全てのPb粒子の粒子径の平均値を求め、平均粒子径とした。また、Pb粒子の分布(密度)は、以下のように測定した。Pb粒子の平均粒子径を求めた3視野において、Pb粒子の個数をカウントした。測定した箇所全体に対するPb粒子の個数を求めて100μm(10μm×10μm)当たりの個数を計算した。そして、その3箇所の平均値を求め、分布(密度)とした。
 β相、γ相の長辺の最大長さは、β相およびγ相の面積率と同様に、画像処理ソフト(WinRoof)を用いて任意の3視野の金属組織について2値化処理を行った。次いで、特定されたβ相およびγ相の絶対最大長を求めた。測定したすべてのβ相およびγ相の絶対最大長のうち、最も大きい数値を最大長さとした。熱間押出材であれば押出方向と平行な方向、熱間鍛造材であれば横断面方向の材料の流れの方向に平行な方向に最大長さがあった。
 β相、γ相の長辺の最大長さが20μm未満(0μm、つまりβ相率、γ相率が0%の場合を含む)の場合が最も良く、β相、γ相の長辺の最大長さが20μm以上50μm未満の場合はその次に良い。β相、γ相の長辺の最大長さが50μm以上100μm以下の場合は問題のないレベルであり、β相、γ相の長辺の最大長さが100μm超える場合、耐食の観点から問題が生じる恐れがある。
 β相およびγ相は、α相よりも耐食性が劣る。Sn,Sb,Niの適正な添加によって耐食性は強化されるが、過酷な条件ではβ相およびγ相に脱亜鉛腐食が発生する可能性があり、耐食性の観点から、それらの相が連続していない、つまり長手方向の長さが短い方が良く、100μm以下とすることが望ましい。
(脱亜鉛腐食試験)
 脱亜鉛腐食試験としてISO6509-1(Corrosion of metalsand alloys-Determination of dezincification resistance of copper alloys with zinc-Part1:Test method)に記載の脱亜鉛腐食試験により各黄銅合金材の脱亜鉛腐食性を評価した。つまり、75℃に保持した1vol%塩化第2銅水溶液に断面ミクロ組織を観察した面を暴露し(暴露面積を1cmとしてマスキング)、24時間浸漬した。次いで、暴露面と垂直方向から断面ミクロ組織を観察し、暴露面全体で最も脱亜鉛腐食が深い部分である最大脱亜鉛腐食深さを測定した。
 最大脱亜鉛腐食深さが20μm未満(0μm、つまり脱亜鉛腐食が認められない場合を含む)の場合を「◎」と評価し、最大脱亜鉛腐食深さが20μm以上50μm未満の場合を「○」と評価した。最大脱亜鉛腐食深さが50μm以上100μm未満の場合を「△」と評価し、最大脱亜鉛腐食深さが100μm以上を「×」と評価した。
 最大脱亜鉛腐食深さが100μm未満であれば、耐脱亜鉛腐食性があると判断されるため、「△」以上の評価であれば、耐食性(耐脱亜鉛腐食性)があると言える。
(浸漬試験)
 さらに過酷な腐食環境での試験として、水道水に次亜塩素酸ナトリウムを適宜添加し、炭酸ガスを吹き込み、残留塩素濃度30ppm、pH6.8に調整して試験液を作製した。ISO6509試験と同じ方法で暴露面を調整した試験片を作製した。液温40℃の試験液に試験片を浸漬した。8週間後に試験片を取り出し、ISO6509試験と同じ方法で最大脱亜鉛腐食深さを測定した。
 最大脱亜鉛腐食深さが20μm未満(0μm、つまり脱亜鉛腐食が認められない場合を含む)の場合を「◎」と評価し、最大脱亜鉛腐食深さが20μm以上50μm未満の場合を「○」と評価した。最大脱亜鉛腐食深さが50μm以上100μm未満の場合を「△」と評価し、最大脱亜鉛腐食深さが100μm以上を「×」と評価した。
 浸漬試験では、明確な耐脱亜鉛腐食性があると判断される基準はないが、ISO6509試験と同じく最大脱亜鉛腐食深さが100μm未満であれば、耐脱亜鉛腐食性があると判断した。
 いずれの脱亜鉛腐食試験においても最大脱亜鉛腐食深さが小さい方が耐食性は良好であることは言うまでもない。
(被削性)
 直径20mmの熱間押出材(熱処理なし)を用意した。直径3.5mmのストレートドリルにより、回転数1250rpm、送り速度0.17mm/revとして、熱間押出材(棒材)の中心部に深さ10mmの穴をあけた。そのときのドリルに掛かるトルクとスラストの抵抗値を測定し、トルクとスラストの2乗平均平方根である切削抵抗値を求めた。JIS H3250 C3604の切削抵抗値を基準とし、以下の式で被削性指数を求め、その値で被削性を評価した。
 被削性指数(%)=(各黄銅合金材の切削抵抗値)/(C3604の切削抵抗値)×100
 被削性指数が90%以上を「◎」と評価し、被削性指数が75%以上90%未満を「○」と評価し、被削性指数が75%未満を「×」と評価した。
 被削性指数は75%以上であれば、C3604と大きな遜色なく工業的に切削が可能である。
 また、直径20mm、高さ30mmの棒材を高さ12mmまで鍛造し、熱間鍛造材(熱処理なし)を用意した。直径3.5mmのストレートドリルにより、直径20mmの熱間押出材の場合と同じ条件で試験を行い、熱間鍛造材の被削性を評価した。
 各種の試験結果を表11~表24に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 Cuの含有量が61.2mass%とされた合金No.S137(試験No.T137)においては、押出性は良好であるが、押出材においてβ相率が6%、β相とγ相の合計(β+γ)が10%、β相又はγ相の最大長さが150μmとなっており、β相及びγ相の比率が高く、β相又はγ相の最大長さが長いため、耐食性(耐亜鉛腐食性)が悪かった。
 Cuの含有量が61.7mass%とされた合金No.S40(試験No.T40、T70)及びCuの含有量が61.8mass%とされた合金No.S52(試験No.T52、T82)においては、押出性に問題はないが、押出材においてβ相率が3~4%、β相とγ相の合計(β+γ)が5%と高く、β相又はγ相の最大長さも90~95μmと比較的長い。耐食性(耐亜鉛腐食性)としては、押出材、鍛造材およびそれぞれの熱処理材においても△評価であり、実用上問題ないが、その他の本発明合金に比べてやや耐食性は低い。
 Cuの含有量が64.1mass%と比較的高い合金No.S6(試験No.T6、T16、T26)及び合金No.S31(試験No.T31、T61)においては、押出性や鍛造性としては評価が「○」であり問題はないが、押出機の能力一杯で押出が可能となったこともあり、高温での変形抵抗が大きく、他の同じ押出条件では他の本発明合金と比較するとやや押出性が悪化している。
 Cuの含有量が64.7mass%とされた合金No.S136(試験No.T136)においては、押出不可(押出し切れない部分があり、実験室押出材では押出長さが200mm未満)であり、量産に対して問題がある。ただしβ相、γ相は少なく耐食性は良好である。
 Pbの含有量が0.55mass%とされた合金No.S144(試験No.T144)においては、その他成分が本発明の範囲内にあり、押出性などの熱間加工性、耐食性は問題ないが(評価が△以上)、被削性が劣る。この材料はPb粒子の平均粒子径が0.1μm、分布(密度)が0.001個/100μmであり、大きさも小さく、密度も低く、切削性(被削性)が劣っている。
 Pbの含有量が2.15mass%とされた合金No.S145(試験No.T145)においては、その他成分が範囲内にあり、熱間加工性、耐食性および被削性は問題ない。しかし、Pbが多いと水への溶出量が多くなるおそれがあり、溶出量を低減するための処理などが必要となる。この材料はPb粒子の平均粒子径が3.0μm、分布(密度)が0.06個/100μmを超えており、上記のごとくPbの溶出量が多くなる。
 Pbの含有量が本発明の範囲内であれば、被削性評価が「◎」あるいは「○」となり、優れている。被削性は、Pbだけでなく組織にも影響するため、Pbの含有量だけでは評価できないが、評価が「◎」となるのは適正範囲内で多く含むサンプルである。
 Pb粒子の平均粒径および分布(密度)は熱間加工(熱間押出、熱間鍛造)の条件や熱処理の条件によって若干影響している。合金No.S5において、熱処理温度が580℃と高い場合(試験No.T5-2)、Pbの平均粒子径は溶出量に問題が生じる3μmを超えている。また、合金No.S1のラボ押出材の熱間押出温度が850℃と高い場合(試験No.T21-3)も、Pbの平均粒子径は3μmを超える。合金No.S37、S44およびS45において、熱間鍛造温度が840℃以上と高い場合(試験No.T67-3、T74-2、T75-3)、表面割れが生じ、熱間加工性については問題があり、その後の熱処理等の調査は行わなかった。さらに同じ合金において熱間鍛造温度が670℃未満の低い場合(試験No.T67-5、T74-3、T75-5)も、変形抵抗が高く熱間鍛造時の荷重が100tを超え、その後の熱処理などについては調査を行わなかった。これらの合金についてPb粒子の平均粒子径および分布についてのみ調査した。その結果、合金No.S37では850℃で熱間鍛造した場合(試験No.T67-3)、Pb平均粒子径は3μmを超えた。またNo.S44およびS45において熱間鍛造温度が840℃の場合(試験No.T74-2、T75-3)、Pbの分布は0.001個/100μmとなり、切削性(被削性)が悪かった。また、合金No.S44において熱間鍛造温度が650℃と低い場合(試験No.T74-3)、Pbの平均粒子径が0.1μmとなり、これも切削性(被削性)が悪かった。これらのPbの平均粒子径および分布が適性範囲から外れた場合には切削性あるいはPbの溶出に問題が生じることになる。それらが適正範囲にある場合には切削性(被削性)評価に問題なく、優れている。
 Snの含有量が0.45mass%とされた合金No.S141(試験No.T141)においては、その他の組成が適正範囲にあれば、押出性や金属組織としては問題ないが、浸漬試験で評価が×となり、耐食性が劣る結果となった。
 Snの含有量が1.10mass%とされた合金No.S142(試験No.T142)においては、γ相率が多くなり、β相とγ相の合計(β+γ)が5%を超える。そのため耐食性が悪く、熱処理をしても耐食性は悪いままである。
 Snだけでなく、その他の元素の含有量によっても異なるが、Snの含有量が0.57mass%とされた合金No.S46(試験No.T46、T76)では、耐食性評価が△が多く(実用上は問題なく耐食性があると判断される)、Snの含有量が少ないと耐食性を悪化させる傾向にある。
 一方、Snの含有量が多いとγ相が多くなる傾向にあるが、本発明の範囲内であれば問題ない。Snの含有量が0.96mass%とされた合金No.S49(試験No.T49、T79)では、熱間押出材あるいは熱間鍛造材のγ相が多めであり、耐食性評価も△が多かった。
 このように、Snの含有量によって耐食性は改善されるが、適正範囲を超えると金属組織にγ相が多くなり耐食性が逆に悪くなる。
 Niの含有量が0.018mass%とされた合金No.S140(試験No.T140)においては、他の元素は適正範囲にあるが、耐食性が劣り、問題がある。
 Niの含有量が0.021mass%とされた合金No.S41(試験No.T41、T71)は、組成関係式f3=[Ni]/[Sb]も低めであるが、耐食性の評価では△が多く、特に浸漬試験の評価が△であり、耐食性がある材料ではあるものの本発明合金の中ではやや劣る結果となった。
 Niの含有量が0.11mass%と本発明の範囲よりも高い合金No.S146(試験No.T146)では、熱間押出性や耐食性には問題が無いが、水に対してNiの溶出量が多くなるため好ましくない。その他の元素の含有量や組成関係式にもよるが、Niの含有量が多くなると耐食性評価も○が多くなり、耐食性が良好となる。
 Sbの含有量が0.015mass%とされた合金No.S143(試験No.T143)及びSbの含有量が0.018mass%とされた合金No.S138(試験No.T138)では、Sbの含有量が本発明の範囲よりも少なく、耐食性が悪い。
 Sbの含有量が0.024mass%とされた合金No.S34(試験No.T34、T64)及びSbの含有量が0.028mass%とされた合金No.S43(試験No.T43、T73)においては、耐食性評価が△が多く、耐食性には実用上問題がないが、Sbが耐食性に影響していることが分かる。
 一方、Sbの含有量が0.085mass%とされた合金No.S139(試験No.T139)においては、Sbの含有量が多いため耐食性は良好であるが、熱間押出時に割れが生じるなど熱間加工性が悪い。Sbが本発明の範囲内であれば、他の添加元素の含有量あるいは組成関係式にも影響されるが、耐食性は良くなる。
 P、MnやFeは、不可避不純物であるが、実施例で示した範囲内であれば、熱間加工性、耐食性などに大きく影響しない。
 Pの含有量が0.02mass%以下である合金No.S5(試験No.T5-1~11、T15)では、鋳造性、熱間加工性(押出性、鍛造性)に問題はなかった。一方、Pの含有量が0.026mass%である合金No.S7(試験No.T7、T17)では、熱間加工(熱間押出、熱間鍛造)時に割れが生じた。
 組成関係式f1が60.32とされた合金No.S101(試験No.T101)においては、熱間加工性に問題はないものの、β相、γ相が多く、最大長さも長くなり、その結果耐食性が劣る。
 組成関係式f1が60.63とされた合金No.S56(試験No.T56、T86)においては、ややβ、γ相が多めであるが耐食性評価は△であった。
 組成関係式f1が64.09とされた合金No.S135(試験No.T135)においては、β相、γ相も少なく、耐食性も良好であるが、押出時に割れが発生するなど熱間加工性に問題がある。
 組成関係式f1が63.65とされた合金No.S35(試験No.T35、T65)ではβ相、γ相も少なめで耐食性も良い。また熱間加工性については実験室押出で押出長さが200mm以上であったものの、その他の本発明合金より短めであり、熱間加工性の限界が近い。
 組成関係式f1の数値が適正範囲内にあれば、その他の元素などにも影響されるが、耐食性の評価が良好になる傾向にある。以上、組成関係式f1は、熱間加工性および耐食性に関係し、適正範囲内にあることが本発明合金にとっては重要である。
 組成関係式f2が0.026とされた合金No.S133(試験No.T133)では、各元素の含有量は適正範囲内にあるが、耐食性が悪く、β相、γ相が優先的に脱亜鉛腐食するなど腐食深さも大きかった。なお、熱間加工性については問題なかった。
 一方、組成関係式f2が0.132とされた合金No.S134(試験No.T134)では、耐食性は良好であるが、熱間押出時に割れが発生するなど熱間加工性に問題が生じる。
 組成関係式f2が0.033とされた合金No.S53(試験No.T53、T83)では、熱間押出性も問題なく、ISO6509の脱亜鉛腐食試験では熱処理材で◎評価も得られるが、浸漬試験ではいずれも△評価であり、熱処理をしても耐食性の向上が少ない結果となった。
 組成関係式f2が0.11とされた合金No.S42(試験No.T42、T72)、組成関係式f2が0.105とされた合金No.S55(試験No.T55、T85)では、耐食性も比較的良好であり、熱処理を行うことで耐食性評価が○以上となり問題ない。しかし、押出先端部分の表面は開口した割れは認められなかったが、凹凸が存在し、割れが発生する限界に近い兆候が見られた。
 その他、組成関係式f2が適正な範囲内にあれば、熱間加工性あるいは耐食性も良好である。もちろん、組成関係式f2は上述のように熱間加工性や耐食性に大きく関与するが、その他の組成関係式および添加元素によってそれぞれの特性が影響される。
 組成関係式f3が0.28とされた合金No.S132(試験No.T132)では、添加元素の含有量は本願の適正範囲にあるものの、耐食性が劣る。組成関係式f3の値が小さいため、Ni,Sbの耐食性への効果が低くなったためと考えられる。
 組成関係式f3が0.38とされた合金No.S54(試験No.T54、T84)では、浸漬試験の耐食性がいずれの△と評価は低めではあるものの、耐食性があると判断できるレベルであった。組成関係式f3が適正な範囲内であれば、その他の元素の含有量や他の組成関係式にも影響されるが、良好な耐食性を示す。
 組成関係式f3が3.73とされた合金No.S143(試験No.T143)においては、Sbの含有量が低く耐食性が悪い。NiとSbの含有量によるが、Sbが例えば好ましい範囲の下限である0.03mass%とすれば[Ni]/[Sb]=3.5以上となるのはNiの含有量は0.105mass%となり、本願のNiの適正範囲の上限を超える。このように関係式f3の数値が大きい場合はNi量が多く、したがって、Niの溶出量に問題があるか、Sbが低く耐食性に問題があるおそれがあるため3.5を上限としている。
 次に、試験No.T5-1~T5-11、T12-1~T12-8、T21-1~T21-8、T23-1~T23-7、T67-1~T67-8、T75-1~T75-6を参照して、熱間加工条件について確認する。
 熱間加工(熱間押出、熱間鍛造)時の温度条件が840℃や850℃と高温である場合には、押出材では割れが発生し、鍛造品では表面割れが生じるなど高温での変形能が悪くなる。また、試験No.T21-3やT67-3のように熱間加工時の温度が高い条件ではPbの平均粒子径が大きくなり、Pbの溶出量も増加することになり悪影響を及ぼす。
 反対に、熱間加工(熱間押出、熱間鍛造)時の温度条件が640℃や650℃と低温である場合には、押出が不可(実験室押出材で押出長さが200mm未満となる)あるいは鍛造で鍛造荷重が大きくなるなど高温での材料の変形抵抗が高くなり、熱間加工性が低くなる。試験No.T21-5の熱間押出温度が640℃と低い場合、Pbはその粒径も小さく、さらに分布が0.06個/100μmを超えることになり、この場合はPbの溶出量に問題が生じることになる。このように熱間加工(熱間押出、熱間鍛造)時の温度条件は熱間加工時の加工性だけでなく、Pbの粒径、分布にも影響する。
 熱間加工(熱間押出、熱間鍛造)後において、620℃から450℃までの温度領域における冷却速度が200℃/分を超える場合(試験No.T5-11,T21-7)には、β相が多く、最大長さも長くなるなどにより耐食性が悪い。
 一方、上述の冷却速度が2℃/分よりも小さい場合は実施していないが、例えば1℃/分とすれば冷却時間が170分となり、量産性に支障をきたすなど問題がある。
 次に、試験No.T5-1~T5-10、T12-1~T12-7を参照して、熱処理条件について確認する。
 熱間押出材および熱間鍛造品の熱処理の条件が560℃を超える場合には、β相が多く、また最大長さも長くなり、耐食性が悪い。
 熱間押出材および熱間鍛造品の熱処理の条件が470℃未満の場合には、他条件よりもγ相が多くなり、最大長さも長く、耐食性が悪くなる。
 保持時間は1分未満の条件では押出ままと同じであり、熱処理の効果が見られない。一方、8時間(480分)を超えても8時間以内での条件と大きな差はなく、熱処理のためのコストがかかるだけとなる。
 以上、各添加元素の含有量および各組成関係式が適正な範囲にある本発明合金は、熱間加工性(熱間押出、熱間鍛造)に優れ、耐食性、被削性も良好である。また、本発明合金において優れた特性を得るためには、熱間押出および熱間鍛造での製造条件、熱処理での条件を適正範囲とすることで達成できる。
 本発明の黄銅合金熱間加工品は、熱間加工性(熱間押出性および熱間鍛造性)に優れ、耐食性、被削性に優れる。このため、本発明の黄銅合金熱間加工品は、給水栓金具、継手、バルブ等の水道用器具の構成材等として好適に適用できる。

Claims (10)

  1.  Cu:61.5mass%以上64.5mass%以下、Pb:0.6mass%以上2.0mass%以下、Sn:0.55mass%以上1.0mass%以下、Sb:0.02mass%以上0.08mass%以下、Ni:0.02mass%以上0.10mass%以下、を含み、残部がZn及び不可避不純物からなり、
     Cuの含有量を[Cu]mass%、Pbの含有量を[Pb]mass%、Snの含有量を[Sn]mass%、Sbの含有量を[Sb]mass%、Niの含有量を[Ni]mass%とした場合に、
     60.5≦[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]≦64.0、
     0.03≦[Sb]/[Sn]≦0.12、
     0.3≦[Ni]/[Sb]≦3.5、
    を満足することを特徴とする黄銅合金熱間加工品。
  2.  Cu:62.0mass%以上64.0mass%以下、Pb:0.7mass%以上2.0mass%以下、Sn:0.60mass%以上0.95mass%以下、Sb:0.03mass%以上0.07mass%以下、Ni:0.025mass%以上0.095mass%以下、を含み、残部がZn及び不可避不純物からなり、
     Cuの含有量を[Cu]mass%、Pbの含有量を[Pb]mass%、Snの含有量を[Sn]mass%、Sbの含有量を[Sb]mass%、Niの含有量を[Ni]mass%とした場合に、
     60.7≦[Cu]+0.5×[Pb]-2×[Sn]-2×[Sb]+[Ni]≦63.6、
     0.035≦[Sb]/[Sn]≦0.10、
     0.4≦[Ni]/[Sb]≦3.5、
    を満足することを特徴とする黄銅合金熱間加工品。
  3.  金属組織が、α相マトリックスであり、Pb粒子を含み、β相の面積率とγ相の面積率の合計の面積率が0%以上、5%以下であることを特徴とする請求項1又は請求項2に記載の黄銅合金熱間加工品。
  4.  金属組織が、α相マトリックスであり、Pb粒子を含み、β相又はγ相の各々の長辺の長さが100μm以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の黄銅合金熱間加工品。
  5.  金属組織が、α相マトリックスであり、Pb粒子を含み、Pb粒子の平均粒径が0.2μm以上、3μm以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の黄銅合金熱間加工品。
  6.  金属組織が、α相マトリックスであり、Pb粒子を含み、Pb粒子の分布が0.002個/100μm以上、0.06個/100μm以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の黄銅合金熱間加工品。
  7.  金属組織が、α相マトリックスであり、Pb粒子を含み、Pb粒子の平均粒径が0.2μm以上、3μm以下であり、かつPb粒子の分布が0.002個/100μm以上、0.06個/100μm以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の黄銅合金熱間加工品。
  8.  水道用器具として使用されることを特徴とする請求項1から請求項7のいずれか一項に記載の黄銅合金熱間加工品。
  9.  請求項1から請求項7のいずれか一項に記載の黄銅合金熱間加工品を製造する黄銅合金熱間加工品の製造方法であって、
     670℃以上820℃以下の温度で熱間加工し、620℃から450℃までの温度領域を、200℃/分以下の平均冷却速度で冷却することを特徴とする黄銅合金熱間加工品の製造方法。
  10.  前記熱間加工後に、470℃以上560℃以下の温度で、1分以上8時間以下の保持する熱処理を行うことを特徴とする請求項9に記載の黄銅合金熱間加工品の製造方法。
PCT/JP2017/019383 2016-05-25 2017-05-24 黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法 WO2017204252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017548234A JP6304915B1 (ja) 2016-05-25 2017-05-24 黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法
CN201780008129.9A CN108495942B (zh) 2016-05-25 2017-05-24 黄铜合金热加工品及黄铜合金热加工品的制造方法
KR1020187019057A KR101929170B1 (ko) 2016-05-25 2017-05-24 황동 합금 열간 가공품 및 황동 합금 열간 가공품의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-104136 2016-05-25
JP2016104136 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204252A1 true WO2017204252A1 (ja) 2017-11-30

Family

ID=60412277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019383 WO2017204252A1 (ja) 2016-05-25 2017-05-24 黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法

Country Status (5)

Country Link
JP (1) JP6304915B1 (ja)
KR (1) KR101929170B1 (ja)
CN (1) CN108495942B (ja)
TW (1) TWI645053B (ja)
WO (1) WO2017204252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394597A (zh) * 2018-04-25 2019-11-01 温州市嘉信金属制品有限公司 一种阀门锻件的生产工艺
CN111926214B (zh) * 2020-08-18 2021-12-07 宁波金田铜业(集团)股份有限公司 一种冷加工塑性优异的易切削铅黄铜棒材及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010106A1 (fr) * 1996-09-09 1998-03-12 Toto Ltd. Alliage de cuivre et procede de fabrication correspondant
WO2014069020A1 (ja) * 2012-10-31 2014-05-08 株式会社キッツ リサイクル性と耐食性に優れた黄銅合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2040031B2 (de) * 1969-08-18 1976-05-20 Olof Manner AB, Mölndal (Schweden) Kupfer-zinklegierung fuer druckdichte gusstuecke
JP3483774B2 (ja) 1994-01-17 2004-01-06 株式会社キッツ 耐食性及び被削性に優れた銅基合金を用いた温水関連機器、電気・機械部品
JP3903297B2 (ja) * 2000-06-30 2007-04-11 Dowaホールディングス株式会社 耐脱亜鉛性銅基合金
JP2002069552A (ja) 2000-09-06 2002-03-08 Toto Ltd 耐脱亜鉛黄銅接合部材及び水栓金具
DE602005023737D1 (de) * 2004-08-10 2010-11-04 Mitsubishi Shindo Kk Gussteil aus kupferbasislegierung mit raffinierten kristallkörnern
WO2012140977A1 (ja) * 2011-04-13 2012-10-18 サンエツ金属株式会社 鍛造性、耐応力腐食割れ性及び耐脱亜鉛腐食性に優れた銅基合金
CN102865426A (zh) * 2012-09-18 2013-01-09 浙江波士特机械有限公司 用于快速接头上的卡套及其制造方法
DE102013004081B4 (de) * 2013-03-11 2023-06-07 Hansa Metallwerke Ag Sanitärer Armaturenkörper
EP3056578B1 (en) * 2013-09-26 2018-10-31 Mitsubishi Shindoh Co., Ltd. Copper alloy
US10533244B2 (en) * 2014-04-30 2020-01-14 Kitz Corporation Method of producing hot forged product using brass and hot forged product and wetted product such as valve and water faucet molded using the same
JP6477127B2 (ja) 2015-03-26 2019-03-06 三菱伸銅株式会社 銅合金棒および銅合金部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010106A1 (fr) * 1996-09-09 1998-03-12 Toto Ltd. Alliage de cuivre et procede de fabrication correspondant
WO2014069020A1 (ja) * 2012-10-31 2014-05-08 株式会社キッツ リサイクル性と耐食性に優れた黄銅合金

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US11512370B2 (en) 2019-06-25 2022-11-29 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11788173B2 (en) 2019-06-25 2023-10-17 Mitsubishi Materials Corporation Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
US11814712B2 (en) 2019-06-25 2023-11-14 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy

Also Published As

Publication number Publication date
JPWO2017204252A1 (ja) 2018-06-07
CN108495942A (zh) 2018-09-04
CN108495942B (zh) 2019-06-07
TWI645053B (zh) 2018-12-21
JP6304915B1 (ja) 2018-04-04
KR101929170B1 (ko) 2018-12-13
KR20180081826A (ko) 2018-07-17
TW201742929A (zh) 2017-12-16

Similar Documents

Publication Publication Date Title
TWI422691B (zh) High strength and high conductivity copper alloy tube, rod, wire
EP2761042B1 (en) Leadless free-cutting copper alloy
WO2009107586A1 (ja) 高強度高導電銅棒線材
JP6795872B1 (ja) 快削性銅合金、及び、快削性銅合金の製造方法
WO2006016631A9 (ja) Sn含有銅合金及びその製造方法
JP6304915B1 (ja) 黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法
JP6796356B1 (ja) 快削性銅合金、及び、快削性銅合金の製造方法
CN111655878B (zh) 不含有铅和铋的易切割无铅铜合金
JP6309003B2 (ja) 耐食性の銅合金から成る成型部品
EP2558606A1 (en) Noval lead-free brass alloy
JP5143948B1 (ja) 熱間加工用無鉛黄銅合金
JP6034727B2 (ja) 高強度銅合金管
JP6796355B1 (ja) 快削性銅合金、及び、快削性銅合金の製造方法
EP2406406B1 (en) Lead-free brass alloy
JP2012241202A (ja) 熱間加工用無鉛黄銅合金
KR20220059528A (ko) 쾌삭성 구리 합금, 및 쾌삭성 구리 합금의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548234

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187019057

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019057

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802838

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802838

Country of ref document: EP

Kind code of ref document: A1