WO2017203693A1 - 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置 - Google Patents

電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置 Download PDF

Info

Publication number
WO2017203693A1
WO2017203693A1 PCT/JP2016/065728 JP2016065728W WO2017203693A1 WO 2017203693 A1 WO2017203693 A1 WO 2017203693A1 JP 2016065728 W JP2016065728 W JP 2016065728W WO 2017203693 A1 WO2017203693 A1 WO 2017203693A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power conversion
conversion unit
inverter
loss
Prior art date
Application number
PCT/JP2016/065728
Other languages
English (en)
French (fr)
Inventor
渉 丸山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/302,761 priority Critical patent/US10739207B2/en
Priority to EP16903174.7A priority patent/EP3468018B1/en
Priority to JP2018518918A priority patent/JP6402841B2/ja
Priority to MX2018014352A priority patent/MX2018014352A/es
Priority to RU2018146439A priority patent/RU2697050C1/ru
Priority to CN201680086022.1A priority patent/CN109275350B/zh
Priority to KR1020187035690A priority patent/KR101973926B1/ko
Priority to PCT/JP2016/065728 priority patent/WO2017203693A1/ja
Priority to BR112018074335-6A priority patent/BR112018074335B1/pt
Priority to MYPI2018002055A priority patent/MY176327A/en
Priority to CA3025638A priority patent/CA3025638C/en
Publication of WO2017203693A1 publication Critical patent/WO2017203693A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Definitions

  • the present invention relates to a temperature abnormality detection method for a power conversion device and a temperature abnormality detection device for a power conversion device.
  • a power conversion device such as an inverter device that is provided with a cooling flow path for circulating cooling water to protect from overheating and to detect temperature abnormality of the power conversion device or the cooling flow path.
  • Patent Document 1 a power conversion device such as an inverter device is known that is provided with a cooling flow path for circulating cooling water to protect from overheating and to detect temperature abnormality of the power conversion device or the cooling flow path.
  • the difference between the temperature of the cooling water and the temperature of the power conversion device is compared with the temperature threshold, and the variation range of the command torque signal is compared with the torque variation range threshold. Then, when the variation range of the command torque signal falls below the torque variation range threshold and the state in which the temperature difference value exceeds the temperature threshold continues beyond the predetermined time, it is judged as abnormal.
  • a plurality of power conversion devices such as the above inverter devices may be mounted.
  • a cooling channel is provided in each of the power conversion devices, and furthermore, the temperature of each of the power conversion devices and the cooling water is detected to perform temperature abnormality detection. And the number of temperature sensors and cooling channels increases. In this case, the cost increases and the installation space is expanded.
  • the present invention was made in view of the above problems, and a method of detecting a temperature abnormality of a power conversion device capable of achieving cost reduction and downsizing by reducing the number of cooling flow paths and temperature sensors, and a power conversion device It is an object of the present invention to provide a temperature abnormality detection device for
  • the temperature abnormality detection method of the power conversion device detects the temperatures of the plurality of power conversion units, while the temperature of the cooling fluid detects only the temperature of the cooling fluid upstream of the power conversion units. did. And about the power conversion part of the front
  • the method for detecting a temperature abnormality of the power conversion device it is not necessary to detect the temperature of the cooling fluid upstream of the power conversion unit in the subsequent stage, and the number of necessary temperature sensors can be reduced. Therefore, the number of temperature sensors and cooling channels can be reduced, and the cost can be reduced and the installation space can be made compact.
  • FIG. 1 is an overall view showing an outline of a power conversion device to which a temperature abnormality detection method of Embodiment 1 is applied. It is a flowchart which shows the flow of the abnormality determination processing by the said power converter device.
  • FIG. 7 is an overall view showing an outline of a power conversion device to which a temperature abnormality detection method of Embodiment 2 is applied.
  • FIG. 7 is an overall view showing an outline of a power conversion device to which a temperature abnormality detection method of Embodiment 2 is applied.
  • FIG. 13 is an overall view showing an outline of a power conversion device according to a third embodiment.
  • FIG. 16 is an overall view showing an outline of a power conversion device according to a fourth embodiment.
  • Embodiment 1 a temperature abnormality detection method and a power conversion device of the power conversion device according to the first embodiment will be described. (Overall configuration of a drive system equipped with an inverter device) First, the configuration of a power conversion device A to which the temperature abnormality detection method of the first embodiment is applied will be described based on FIG.
  • the power conversion device A shown in FIG. 1 includes a first inverter device (power conversion unit) 10 that drives the first power generation machine 1 and a second inverter device (power conversion unit) 20 that drives the second power generation machine 2.
  • the first power generating electric machine 1 and the second power generating electric machine 2 are mounted on an electric vehicle, a hybrid vehicle or the like whose illustration is omitted.
  • the use of both the electric power generating electric machines 1 and 2 is not specifically limited.
  • both of the power generation machines 1 and 2 may be used as a drive source for providing a drive force to the drive wheels (not shown).
  • one of the two power generating electric machines 1 and 2 may be used as the drive source, and the other may be used as a generator that generates electric power by being driven by a drive source such as an engine (not shown).
  • Both inverter devices 10 and 20 are mounted on a casing CA that accommodates the power conversion device A.
  • the first inverter device 10 converts a direct current, which is electric power from the battery 3, into an alternating current and supplies the alternating current to the first power generator 1 to drive the first power generator 1, and the first power generator 1 generates power.
  • An alternating current is converted to a direct current and supplied to the battery 3 for charging.
  • the first inverter device 10 internally includes a power module such as an IGBT module and a smoothing capacitor. Further, as the battery 3, a secondary battery (such as a lithium ion secondary battery or a nickel hydrogen battery) having a voltage control range of about several hundred volts is employed.
  • a secondary battery such as a lithium ion secondary battery or a nickel hydrogen battery having a voltage control range of about several hundred volts is employed.
  • the second inverter device 20 can also convert direct current from the battery 3 into alternating current and supply the alternating current to the second power generation electric machine 2, and the second power generation electric machine 2 generates power.
  • An alternating current is converted into a direct current so that the battery 3 can be charged.
  • the second inverter device 20 also has a power module and a smoothing capacitor inside.
  • each of the first inverter device 10 and the second inverter device 20 incorporates a first inverter temperature sensor 11 and a second inverter temperature sensor 12 for detecting the temperature of a heat generating portion such as an internal power module.
  • the power conversion device A includes a cooling device 30.
  • the cooling device 30 includes a cooling water passage 31, a radiator 32, a pump 33, and a circulation passage 34, and circulates the cooling water W to cool the two inverter devices 10 and 20.
  • the cooling channel 31 is formed in the casing CA, and from the inlet 31a at the first end, the first inverter device 10 (power conversion unit at the front stage) and the second inverter device 20 (power conversion unit at the front stage) As a result, it is a flow path leading to the outlet 31 b of the second end.
  • a flow passage from the outlet 31 b to the inlet 31 a Connected to the cooling water channel 31 is a flow passage from the outlet 31 b to the inlet 31 a, and a circulation passage 34 including a radiator 32 and a pump 33 in the middle.
  • the pump 33 sucks in the cooling water W from the outlet 31 b, pumps it to the inlet 31 a, and circulates the cooling water W.
  • the radiator 32 radiates the heat of the cooling water W to the outside air to cool the cooling water W.
  • a water temperature sensor 40 is provided in the vicinity of the inlet 31 a upstream of the first inverter device 10 in the cooling water channel 31. Then, detection signals of the water temperature sensor 40 and the first inverter temperature sensor 11 and the second inverter temperature sensor 12 described above are input to the first controller 51 and the second controller 52.
  • the first controller 51 detects a temperature abnormality of the first inverter device 10
  • the second controller 52 detects a temperature abnormality of the second inverter device 20.
  • the first controller 51 includes a first temperature difference calculation unit 51a and a first abnormality detection unit 51b.
  • the first abnormality detection unit 51b determines that the first temperature difference ⁇ t1 is equal to or less than the first abnormality determination temperature tlim1 when it is determined that the first temperature difference ⁇ t1 is equal to or less than the first abnormality determination temperature tlim1. , It is determined not abnormal. That is, when abnormality occurs in cooling device 30 or abnormality occurs in first inverter device 10 due to an abnormality, first temperature difference ⁇ t1, which is the difference between first inverter temperature tin1 and cooling water temperature tw, is large. Become. Therefore, the first abnormality determination temperature tlim1 is set to a value capable of determining the occurrence of an abnormality based on measurement or simulation at the time of occurrence of an abnormality.
  • the second controller 52 includes a second temperature difference calculation unit 52a, a second abnormality detection unit 52b, and a temperature addition unit 52c.
  • the temperature addition unit 52c sets a value obtained by converting the loss during operation of the first inverter device 10 into a rising temperature of the cooling water temperature tw as an addition value Tad, and adds this to the cooling water temperature tw detected by the water temperature sensor 40 Ask for In Embodiment 1, the rising temperature due to this loss is set to a temperature at which the cooling water temperature tw rises due to the heat generation of the first inverter device 10 at the maximum loss assumed in the first inverter device 10.
  • the maximum loss time for example, the lock time of the first power generation machine 1 can be mentioned.
  • the lock time is, for example, a case where the vehicle is moving forward but the wheel can not move forward due to hitting a car stop or the like, that is, although the first power generator 1 is energized and driven. It is a case where rotation does not occur in the power generation machine 1.
  • the additional value Tad to be added to the cooling water temperature tw actually reproduces such a locked state, and the cooling water temperature tw and the command value for the first electric generator 1 at that time, and the rising of the cooling water temperature tw at that time.
  • the relationship with the temperature (addition value Tad) is stored in the first controller 51 in the form of, for example, a map or an arithmetic expression. Therefore, the temperature addition unit 52c obtains the addition value Tad from the cooling water temperature tw at the time of addition and the command value, adds this to the cooling water temperature tw, and obtains the addition temperature twa.
  • the second temperature difference calculation unit 52a receives the second inverter temperature tin2 and the addition temperature twa, and calculates a second temperature difference ⁇ t2 that is the difference between the two.
  • the second abnormality detection unit 52b determines that the second temperature difference ⁇ t2 is equal to or less than the second abnormality determination temperature tlim2 when the second temperature difference ⁇ t2 is equal to or less than the second abnormality determination temperature tlim2. , It is determined not abnormal.
  • the second abnormality determination temperature tlim2 is set according to the second power generation machine 2 and the second inverter device 20, and is not necessarily the same value as the first abnormality determination temperature tlim1.
  • a first inverter temperature tin1 and a second inverter temperature tin2 which are detected temperatures from the first inverter temperature sensor 11, the second inverter temperature sensor 12, and the water temperature sensor 40, respectively. Read the cooling water temperature tw.
  • the first temperature difference calculation unit 51a calculates a first temperature difference ⁇ t1, which is the difference between the first inverter temperature tin1 and the cooling water temperature tw, and the process proceeds to step S3.
  • step S3 the first abnormality detection unit 51b determines the presence or absence of any abnormality between the first inverter device 10 and the cooling system based on whether the first temperature difference ⁇ t1 is larger than the first abnormality determination temperature tlim1. .
  • the process proceeds to step S7, and when it is determined that ⁇ t1 ⁇ tlim1 is not abnormal (normal), the process proceeds to step S4.
  • step S4 the temperature addition unit 52c adds the addition value Tad of the loss during the operation of the first inverter device 10 to the cooling water temperature tw in step S4 that proceeds when it is determined that the first abnormality detection unit 51b is not abnormal (normal). Then, the addition temperature twa is obtained, and the process proceeds to step S5.
  • step S5 the second temperature difference calculation unit 52a calculates a second temperature difference ⁇ t2 which is a difference between the second inverter temperature tin2 and the addition temperature twa, and the process proceeds to step S6.
  • step S6 the second abnormality detection unit 52b determines the presence or absence of an abnormality in either the second inverter device 20 or the cooling system based on whether the second temperature difference ⁇ t2 is larger than the second abnormality determination temperature tlim2. .
  • the process proceeds to step S7.
  • ⁇ t2 ⁇ tlim2 is not abnormal (normal)
  • one abnormality determination process is ended.
  • step S7 which is performed when it is determined that the process is abnormal in any of step S3 and step S6, a fail process set in advance is executed.
  • This failure process may be any process as long as it suppresses the heat generation of both power generation machines 1 and 2.
  • the output of either of both power generation machines 1 and 2 may be reduced by a predetermined amount, It can be a process of stopping or the like.
  • the temperature difference between the cooling water temperature tw of the cooling water channel 31 and the inverter temperatures tin1 and tin2 Becomes larger.
  • the water temperature sensor needs to be provided in the cooling water passage 31 formed in the casing CA of the power conversion device A, which requires time and effort for installation.
  • the cooling water passage 31 is a conduit or the like independent of the casing CA, installation is relatively easy, but if the cooling water passage 31 is integrally formed with the casing CA, the cooling water temperature tw can be accurately detected. It is difficult to install with high sealing performance.
  • the abnormality determination of the second inverter device 20 is performed based on the difference between the second inverter temperature tin2 and the coolant temperature tw detected by the coolant temperature sensor 40 lower than the actual coolant temperature of the second inverter device 20
  • the difference is larger than the actual difference. For this reason, the accuracy of the abnormality determination is lowered, and the possibility of the fuel processing being erroneously determined as being abnormal increases. That is, there is a possibility that the operation range of the power converter A may be narrowed while the abnormality detection accuracy is lowered.
  • the addition value Tad obtained by converting the loss of the first inverter device 10 is used as the cooling water temperature tw detected by the water temperature sensor 40. Therefore, the second temperature difference ( ⁇ t2) between the second inverter temperature tin2 and the cooling water temperature in the second inverter device 20 is more accurate than in the case where the cooling water temperature tw detected by the water temperature sensor 40 is used as it is. Improve. Further, since the detection of the water temperature is performed only by the water temperature sensor 40 upstream of the cooling water passage 31, the cost can be suppressed as compared with the case where the water temperature sensor is separately added to the power conversion device A.
  • the temperature addition unit 52c uses the addition value Tad which is preset based on the actual measurement value, the configuration of the temperature addition unit 52c of the second controller 52 can be simplified and the cost can be suppressed. Further, a value set based on the temperature due to the maximum loss assumed in the first inverter device 10 is used as the addition value Tad. For this reason, even if the temperature rise of the cooling water W due to the heat generation of the first inverter device 10 actually exceeds the addition value Tad, it is possible to suppress the erroneous determination that it is determined to be normal even though the abnormality occurs. .
  • the temperature abnormality detection method of the power conversion device A according to the first embodiment First and second inverter devices 10 and 20 as a plurality of power conversion units for converting and transmitting electric power, and a cooling channel 31 for cooling the respective inverter devices 10 and 20 through both the inverter devices 10 and 20;
  • a temperature abnormality detection method of a power conversion device A comprising: While detecting the temperature (the 1st inverter temperature tin1 and the 2nd inverter temperature tin2) of both inverter devices 10 and 20, the temperature (cooling water temperature tw) of the cooling water of the cooling water passage 31 more upstream than both inverter devices 10 and 20 Detecting and reading these (S1), About the 1st inverter apparatus 10 as a power conversion part of the front
  • Step (S6) And the like. Therefore, in the power conversion device A equipped with the first and second inverter devices 10 and 20 as the power conversion unit, the number of the water temperature sensors 40 is set to “1”, and the cost is suppressed while the cost of the cooling system is reduced. It becomes possible to perform abnormality detection with high accuracy.
  • the temperature abnormality detection device of the power conversion device A A first inverter device 10 and a second inverter device 20 as a plurality of power conversion units that convert and transmit power; A cooling channel 31 for cooling each inverter device 10, 20 through both inverter devices 10, 20; A first inverter temperature sensor 11 and a second inverter temperature sensor 12 as a power conversion unit temperature sensor that detects the temperature of each of the inverter devices 10 and 20; A water temperature sensor 40 for detecting the temperature of the cooling water of the cooling water passage 31 upstream of the two inverter devices 10 and 20; A first temperature difference calculation unit 51a as a front stage temperature difference calculation unit for obtaining a first temperature difference ⁇ t1 which is a difference between a cooling water temperature tw and a first inverter temperature tin1 which is a temperature of the first inverter device 10; A first abnormality detection unit 51b as a front stage power conversion unit abnormality detection unit that performs abnormality determination based on the first temperature difference ⁇ t1 obtained
  • the number of the water temperature sensors 40 is set to “1”, and the cost is suppressed while the cost of the cooling system is reduced. It becomes possible to perform abnormality detection with high accuracy.
  • the second embodiment is an example in which the method of obtaining the addition value for converting the loss of the first inverter device 10 into temperature and adding it to the cooling water temperature tw is different from the first embodiment. That is, in the second embodiment, the temperature obtained by converting the loss of the first inverter device 10 is a value calculated based on the loss calculation information including the current supplied to the first inverter device 10, the carrier frequency, and the semiconductor characteristics. I used to use it.
  • FIG. 3 is an overall view showing an outline of a power conversion device B to which the temperature abnormality detection method of the second embodiment is applied.
  • the temperature addition unit 252c of the second controller 252 illustrated in FIG. 3 uses the addition value calculated by the loss calculation unit 200 provided in the first controller 251 as the addition value that is the temperature for the loss.
  • the loss calculating unit 200 calculates the addition value Tad based on the loss calculation information including the current I in the first inverter device 10, the carrier frequency f, and the semiconductor characteristics.
  • the first inverter device 10 includes a well-known bridge-connected insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, hereinafter referred to as IGBT), and a diode (Free Wheeling Diode, hereinafter, referred to as FWD).
  • IGBT Insulated Gate Bipolar Transistor
  • FWD Free Wheeling Diode
  • the steady loss in the IGBT of the first inverter device 10 is determined by the following equation (1), and the switching loss of the IGBT is determined by the following equation (2). Further, the steady state loss in the FWD of the first inverter device 10 is determined by the following equation (3), and the switching loss in the FWD is determined by the following equation (4). Then, the power module loss of the first inverter device 10 is obtained from these values by the following equation (5).
  • Ic IGBT switching element current (first generator current) Vce (sat); ON voltage of switching element of IGBT D; PWM modulation rate Esw; switching loss per pulse of IGBT f; PWM carrier frequency N (I): Number of IGBT chips N (F); number of FWD chips Vf: ON voltage of FWD switching element Err; switching loss per pulse of FWD
  • the loss (power module loss P (PM)) of the first inverter device 10 obtained from the above equation is converted to a temperature, and an addition value Tad corresponding to the rising temperature of the cooling water is calculated.
  • the addition value Tad is determined by using a table or an arithmetic expression set so as to be obtained according to the power module loss P (PM) and the cooling water temperature tw by performing the experiment repeatedly in advance.
  • the temperature addition unit 252c adds the addition value Tad to the cooling water temperature tw detected by the water temperature sensor 40, and the calculation itself is the same as the temperature addition unit 52c shown in the first embodiment.
  • the temperature addition unit 252c sets the current Ic or voltage Vce (sat) in the power module of the first inverter device 10, the carrier frequency f, and the semiconductor characteristic as the addition value Tad which is the temperature obtained by converting the loss to be added to the cooling water temperature tw.
  • a value calculated based on loss calculation information including the PWM modulation ratio D, the number N (I) of IGBT chips, and the number N (F) of FWD chips is used. Therefore, the optimum addition value Tad according to the operation state of the first inverter device 10 can be determined, and abnormality detection with higher accuracy can be performed.
  • the addition value Tad is based on one of the current Ic, the voltage Vce (sat), and the semiconductor characteristics (carrier frequency f, PWM modulation rate D, number of IGBT chips N (I), number of FWD chips N (F)). It can be asked.
  • the third embodiment is an example in which the method of determining the addition value Tad for converting the loss of the first inverter device 10 into temperature and adding it to the cooling water temperature tw is different from the first and second embodiments.
  • the addition value Tad which converts the loss of the first inverter device 10 into temperature and adds it. Use the estimated value.
  • FIG. 4 is an overall view showing an outline of a power conversion device C to which the temperature abnormality detection method of the third embodiment is applied.
  • the second temperature difference calculation unit 352a of the second controller 352 shown in FIG. 4 calculates a second temperature difference ⁇ t2 between the addition temperature twa3 estimated by the loss estimation unit 300 and the second inverter temperature tin2.
  • the loss estimation unit 300 receives the first temperature difference ⁇ t1 calculated by the first temperature difference calculation unit 51a, and inversely calculates the loss of the first inverter device 10 from the first temperature difference ⁇ t1. Further, the loss estimation unit 300 estimates an addition value corresponding to the temperature rise of the cooling water due to the loss, and calculates an addition temperature twa3 obtained by adding this to the cooling water temperature tw. It should be noted that the estimation of the added value is made in advance with the first controller 51 in a state in which the value corresponding to the first temperature difference ⁇ t1 and the driving state (for example, power running, regeneration, lock etc.) of the first power generation machine 1 at that time is map. Is stored in The second temperature difference calculation unit 352a calculates a second temperature difference ⁇ t2 between the addition temperature twa3 and the second inverter temperature tin2.
  • the temperature rise of the cooling water according to the estimated loss of the first inverter device 10 is estimated based on the first temperature difference ⁇ t1. Therefore, the cooling water temperature in the actual 2nd inverter apparatus 20 can be calculated
  • a temperature abnormality detection method of the power conversion device C according to the third embodiment A value estimated based on the first temperature difference ⁇ t1 which is the difference between the first inverter temperature tin1 which is the temperature of the first inverter device 10 and the cooling water temperature tw as the temperature for the loss added in the second temperature difference calculation unit 352a It is characterized by using. That is, the heat generation state of the first inverter device 10 can be estimated from the difference between the first inverter temperature tin1 and the cooling water temperature tw, and thereby, the addition value can be obtained with high accuracy. Therefore, the coolant temperature in the second inverter device 20 can be estimated with high accuracy based on the highly accurate added value, and abnormality detection can be performed with high accuracy based on this.
  • Embodiment 4 The power conversion device D of the fourth embodiment is a modification of the first embodiment, and as shown in FIG. 5, a third inverter device 430 that drives a third electric generator (not shown) downstream of the cooling water passage 31. This is an example of adding
  • the third controller 453 that performs abnormality determination of the third inverter device 430 includes a third temperature difference calculation unit 453a, a third abnormality detection unit 453b, and a temperature addition unit 453c.
  • the temperature addition unit 453c sets a value obtained by converting the loss during operation of the first inverter device 10 and the loss during operation of the second inverter device 20 into a rising temperature of the cooling water temperature tw as an addition value Tad.
  • An addition temperature twb added to the detected cooling water temperature tw is determined.
  • the temperature rise due to this loss is set to a temperature at which the cooling water temperature tw rises due to heat generation at the maximum loss assumed in both inverter devices 10 and 20.
  • the third temperature difference calculation unit 453a receives the third inverter temperature tin3 detected by the third inverter temperature sensor 413 and the addition temperature twb, and calculates a third temperature difference ⁇ t3 which is a difference between the both.
  • the third abnormality detection unit 453b determines that the third temperature difference ⁇ t3 is the third abnormality determination temperature (tlim3) when the third temperature difference ⁇ t3 is higher than the third abnormality determination temperature (tlim3) set in advance. In the following cases, it is determined that there is no abnormality.
  • the third abnormality determination temperature tlim3 is set according to the third rotating electric machine (not shown) and the third inverter device 430.
  • the power conversion device E of the fifth embodiment is a modification of the second embodiment, and as shown in FIG. 6, a third inverter device 530 is added to the rear stage of the cooling water passage 31 as in the fourth embodiment.
  • the temperature addition unit 553c of the third controller 553 illustrated in FIG. 6 uses the addition value Tad2 calculated by the loss calculation unit 500 provided in the first controller 251 as the addition value that is the temperature for the loss.
  • the loss calculation unit 500 calculates the addition value Tad based on the loss calculation information including the current I, the carrier frequency f, and the semiconductor characteristics in the first inverter device 10. Furthermore, the loss calculating unit 500 calculates the addition value Tad2 based on the loss calculation information including the current I, the carrier frequency f, and the semiconductor characteristics in the second inverter device 20. The calculation of the addition value Tad2 can be obtained using the same table or calculation formula as in the second embodiment. Further, it is also possible to obtain the added values Tad and Tad2 based on any of the current I, the carrier frequency f, and the semiconductor characteristics.
  • the third temperature difference calculation unit 553a receives the third inverter temperature tin3 detected by the third inverter temperature sensor 513 and the addition temperature twb calculated using the addition value Tad2, and the third temperature which is the difference between the two.
  • the difference ⁇ t3 is calculated.
  • the third abnormality detection unit 553b determines that the third temperature difference ⁇ t3 is the third abnormality determination temperature (tlim3) when the third temperature difference ⁇ t3 is larger than the third abnormality determination temperature (tlim3) set in advance. In the following cases, it is determined that there is no abnormality.
  • the fifth embodiment even when the number of inverter devices is increased, the effect described in the above 2-1) can be obtained.
  • the illustration is omitted when the number of inverter devices increases in this way, the same method as that of the third embodiment is used to calculate the addition temperature twb when detecting an abnormality in the third inverter device. You can also That is, in this case, a value estimated based on the second temperature difference ⁇ t2 in the second inverter device 20 is used as a temperature for a loss to be added in the third temperature difference calculation unit.
  • the inverter device is illustrated as a plurality of power conversion units that convert and transmit power, but the power conversion unit is not limited to the inverter device, and other power conversion units such as a converter may be used. it can. Therefore, although the power generation machine is shown in the embodiment as the output target of the power conversion unit, the output target is not limited to this, and other things such as a battery can be used.
  • cooling water was shown as a refrigerant
  • the temperature obtained by adding the temperature of the power conversion unit in the previous stage as the temperature added is set to the rising temperature of the water temperature at the maximum loss assumed in the first inverter device, it is not limited thereto.
  • the rising temperature of the water temperature at the maximum loss in the driving state may be used. That is, the temperature may be raised at the time of maximum loss for each driving state such as power running, regeneration, and locking.
  • the temperature is calculated based on the equations (1) to (5) as the rising temperature for the loss, but it includes the current supplied to the power conversion unit, the carrier frequency, and the semiconductor characteristics.
  • the values are not limited to the expressions (1) to (5) as long as they are values calculated based on the loss calculation information.
  • the number of power conversion units is not limited to "2" and "3" shown in the embodiment, and may be four or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

冷却流体温度を検出するセンサを追加することなく、後段のパワーモジュールの異常検出精度を向上可能なインバータ装置の異常検出方法を提供する。 第1インバータ温度(tin1)、第2インバータ温度(tin2)、冷却水温(tw)を読み込むステップ(S1)と、前段の第1インバータ装置(10)について第1インバータ温度(tin1)と冷却水温(tw)との第1温度差(Δt1)に基づいて異常の有無を判定するステップ(S3)と、後段の第2インバータ装置(20)について冷却水温(tw)に第1インバータ装置(10)の損失分を換算した温度(加算値Tad)を加算した加算温度(twa)と第2インバータ温度(tin2)との第2温度差(Δt2)に基づいて異常の有無を判定するステップ(S6)と、を備えることを特徴とするインバータ装置の異常検出方法とした。

Description

電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
 本発明は、電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置に関する。
  従来、インバータ装置のような電力変換装置において、冷却水を循環させる冷却流路を備え、過熱から保護するととともに、電力変換装置あるいは冷却流路の温度異常を検出するようにしたものが知られている(例えば、特許文献1参照)。
  この従来技術では冷却水の温度と電力変換装置の温度との差分と温度閾値との比較を行うとともに、指示トルク信号の変動幅とトルク変動幅閾値との比較を行う。そして、指示トルク信号の変動幅がトルク変動幅閾値を下回るとともに、温度の差分値が温度閾値を上回る状態が、所定時間を越えて継続したら、異常と判断するようにしている。
特開2011-172406号公報
 近年、車両などでは、上記のようなインバータ装置などの電力変換装置が、複数搭載される場合がある。
  しかしながら、電力変換装置のそれぞれに上述の従来技術を適用した場合、電力変換装置のそれぞれに冷却流路を設け、さらに、各電力変換装置および冷却水の温度をそれぞれ検出し温度異常検出を行うことになり、温度センサおよび冷却流路の数が多くなる。この場合、コストアップおよび設置スペースの拡大を招く。
 本発明は、上記問題に着目してなされたもので、冷却流路および温度センサの数を削減してコストダウンおよびコンパクト化を図ることが可能な電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置を提供することを目的とする。
 本発明の電力変換装置の温度異常検出方法は、複数の電力変換部の温度を検出する一方で、冷却流体の温度は、これら電力変換部よりも上流の冷却流体の温度のみを検出するようにした。
そして、冷却流路の上流側に配置された前段の電力変換部については、この電力変換部の温度と前記冷却流体の温度との差分に基づいて異常の有無を判定する。
一方、冷却流路の下流に配置された後段の電力変換部については、冷却流体の温度に前段の電力変換部の損失分を温度に換算して加算した温度と、後段の電力変換部の温度と、の差分に基づいて異常の有無を判定するようにした。
 本発明の電力変換装置の温度異常検出方法にあっては、後段の電力変換部の上流の冷却流体温度の検出が不要であり、必要な温度センサの数を削減できる。よって、温度センサおよび冷却流路の数を削減し、コストダウンおよび設置スペースのコンパクト化を図ることができる。
実施の形態1の温度異常検出方法を適用した電力変換装置の概略を示す全体図である。 前記電力変換装置による異常判定処理の流れを示すフローチャートである。 実施の形態2の温度異常検出方法を適用した電力変換装置の概略を示す全体図である。 実施の形態2の温度異常検出方法を適用した電力変換装置の概略を示す全体図である。 実施の形態3の電力変換装置の概略を示す全体図である。 実施の形態4の電力変換装置の概略を示す全体図である。
 以下、本発明の電力変換装置の異常検出方法を実現する最良の形態を、図面に示す実施の形態に基づいて説明する。
(実施の形態1)
  以下、実施の形態1の電力変換装置の温度異常検出方法および電力変換装置について説明する。
  (インバータ装置を備えた駆動系の全体構成)
  まず、実施の形態1の温度異常検出方法を適用した電力変換装置Aの構成を図1に基づいて説明する。
 図1に示す電力変換装置Aは、第1発電電機1を駆動させる第1インバータ装置(電力変換部)10および第2発電電機2を駆動させる第2インバータ装置(電力変換部)20を備える。
 第1発電電機1および第2発電電機2は、図示を省略した電気自動車やハイブリッド車両などに搭載されている。
  なお、両発電電機1,2の用途は、特に限定されるものではない。例えば、両発電電機1,2を、図示を省略した駆動輪に駆動力を与える駆動源として用いてもよい。あるいは、両発電電機1,2の一方を前記駆動源として用い、もう一方を、図示を省略したエンジンなどの駆動源により駆動して発電を行う発電機として用いてもよい。
 両インバータ装置10,20は、電力変換装置Aを収容するケーシングCAに搭載されている。
  第1インバータ装置10は、バッテリ3からの電力である直流電流を交流電流に変換して第1発電電機1に供給し第1発電電機1を駆動し、また、第1発電電機1が発電した交流電流を直流電流に変換してバッテリ3に供給し充電する。
 なお、第1インバータ装置10は、図示を省略するが、IGBTモジュールなどのパワーモジュールや平滑コンデンサを内部に備える。また、バッテリ3として、電圧制御範囲が数百ボルト程度の二次電池(リチウムイオン二次電池やニッケル水素電池等)を採用している。
 第2インバータ装置20も、第1インバータ装置10と同様に、バッテリ3からの直流電流を交流電流に変換して第2発電電機2に供給可能であり、また、第2発電電機2が発電した交流電流を直流電流に変換しバッテリ3に充電可能とするものである。この第2インバータ装置20も、図示を省略するが、パワーモジュールや平滑コンデンサを内部に備える。
 さらに、第1インバータ装置10、第2インバータ装置20は、それぞれ、内部のパワーモジュールなどの発熱部の温度を検出する第1インバータ温度センサ11、第2インバータ温度センサ12を内蔵している。
 さらに、電力変換装置Aは、冷却装置30を備える。
  この冷却装置30は、冷却水路31と放熱器32とポンプ33と循環路34とを備え、冷却水Wを循環させ両インバータ装置10,20を冷却する。
 冷却水路31は、ケーシングCAに形成され、第1の端部の流入口31aから、第1インバータ装置10(前段の電力変換部)、第2インバータ装置20(前段の電力変換部)、を順に通り、第2の端部の流出口31bに至る流路である。
 冷却水路31には、流出口31bから流入口31aに至る流路であって、途中に放熱器32とポンプ33とを備えた循環路34が接続されている。ポンプ33は、流出口31bから冷却水Wを吸入し、流入口31aに圧送し、冷却水Wを循環させる。放熱器32は、冷却水Wの熱を外気に放熱して冷却水Wを冷却する。
 さらに、冷却水路31において第1インバータ装置10よりも上流の流入口31aの付近に水温センサ40が設けられている。
  そして、この水温センサ40と、前述の第1インバータ温度センサ11および第2インバータ温度センサ12の検出信号が、第1コントローラ51および第2コントローラ52に入力される。
 第1コントローラ51は、第1インバータ装置10の温度異常を検出し、第2コントローラ52は、第2インバータ装置20の温度異常を検出する。
 次に、第1コントローラ51と第2コントローラ52の構成について説明する。
  第1コントローラ51は、第1温度差演算部51aと第1異常検出部51bとを備える。
  第1温度差演算部51aは、第1インバータ温度センサ11が検出する第1インバータ温度tin1と水温センサ40が検出する冷却水温twとを入力し、両者の差である第1温度差Δt1(tin1=tw)を演算する。
 第1異常検出部51bは、第1温度差Δt1が予め設定された第1異常判定温度tlim1よりも大きい場合に異常と判定し、第1温度差Δt1が第1異常判定温度tlim1以下の場合は、異常ではないと判定する。すなわち、冷却装置30に異常が生じたり、第1インバータ装置10に異常が生じて異常発熱したりした場合は、第1インバータ温度tin1と冷却水温twとの差である第1温度差Δt1が大きくなる。そこで、第1異常判定温度tlim1は、異常発生時の実測やシミュレーションなどに基づいて、異常発生を判定することができる値に設定されている。
 第2コントローラ52は、第2温度差演算部52aと第2異常検出部52bと温度加算部52cとを備える。
  温度加算部52cは、第1インバータ装置10の動作時の損失を冷却水温twの上昇温度に換算した値を加算値Tadとし、これを水温センサ40が検出する冷却水温twに加算した加算温度twaを求める。この損失による上昇温度として、実施の形態1では、第1インバータ装置10において想定される最大損失時の第1インバータ装置10の発熱により冷却水温twが上昇する温度に設定している。なお、最大損失時として、例えば、第1発電電機1のロック時を挙げることができる。このロック時とは、例えば、車両を前進させようとしているのに、車輪が車止めに当たるなどして前進できない場合であって、すなわち、第1発電電機1に通電し駆動させているのに第1発電電機1に回転が生じない場合である。
 このようなロック時に、第1発電電機1の損失エネルギーは最大となり、熱エネルギーとして損失される。そして、冷却水温twに加算する加算値Tadは、実際にこのようなロック状態を再現し、その際の、冷却水温twと第1発電電機1に対する指令値と、その際の冷却水温twの上昇温度(加算値Tad)との関係を、例えば、マップや演算式の形で第1コントローラ51に記憶しておく。したがって、温度加算部52cは、加算時の冷却水温twと指令値とから加算値Tadを求め、これを冷却水温twに加算し、加算温度twaを求める。
 第2温度差演算部52aは、第2インバータ温度tin2と加算温度twaとを入力し、両者の差である第2温度差Δt2を演算する。
  第2異常検出部52bは、第2温度差Δt2が予め設定された第2異常判定温度tlim2よりも大きい場合に異常と判定し、第2温度差Δt2が第2異常判定温度tlim2以下の場合は、異常ではないと判定する。なお、この第2異常判定温度tlim2は、第2発電電機2および第2インバータ装置20に応じて設定されており、第1異常判定温度tlim1とは、必ずしも同じ値ではない。
 次に、第1コントローラ51および第2コントローラ52による異常判定処理の流れを図2のフローチャートに基づいて説明する。なお、この異常判定処理は、予め設定された制御周期毎に繰り返し行われる。
 最初のステップS1では、両コントローラ51,52において、第1インバータ温度センサ11、第2インバータ温度センサ12、水温センサ40から、それぞれ、検出温度である第1インバータ温度tin1、第2インバータ温度tin2、冷却水温twを読み込む。
 次のステップS2では、第1温度差演算部51aにおいて第1インバータ温度tin1と冷却水温twとの差分である第1温度差Δt1を演算し、ステップS3に進む。
 ステップS3では、第1異常検出部51bにおいて、第1温度差Δt1が第1異常判定温度tlim1よりも大きいか否かにより第1インバータ装置10と冷却系統とのいずれかの異常の有無を判定する。そして、Δt1>tlim1により異常と判定した時には、ステップS7に進み、Δt1≦tlim1により非異常(正常)と判定した時は、ステップS4に進む。
 第1異常検出部51bにおいて非異常(正常)と判定した場合に進むステップS4では、温度加算部52cにおいて、冷却水温twに、第1インバータ装置10の動作時の損失分の加算値Tadを加算して加算温度twaを求め、ステップS5に進む。
 ステップS5では、第2温度差演算部52aにおいて、第2インバータ温度tin2と加算温度twaとの差分である第2温度差Δt2を演算し、ステップS6に進む。
 ステップS6では、第2異常検出部52bにおいて、第2温度差Δt2が第2異常判定温度tlim2よりも大きいか否かにより第2インバータ装置20と冷却系統とのいずれかの異常の有無を判定する。そして、Δt2>tlim2により異常と判定した時には、ステップS7に進み、Δt2≦tlim2により非異常(正常)と判定した時は、1回の異常判定処理を終える。
 ステップS3、ステップS6のいずれかで異常と判定された場合に進むステップS7では、予め設定されたフェール処理を実行する。このフェール処理としては、両発電電機1,2の発熱を抑える処理であればどのような処理であってもよいが、例えば、両発電電機1,2いずれかの出力を所定量だけ抑えたり、停止させたりする処理とすることができる。
 (実施の形態1の作用)
  次に、実施の形態1の作用について説明する。
  各インバータ装置10,20を駆動させると、図示を省略したパワーモジュールやスイッチング素子に損失が生じ、その損失分の熱が発生し、各インバータ温度tin1,tin2が上昇する。また、その各インバータ装置10,20は、冷却装置30により冷却され、これに伴い、冷却水路31では、第1インバータ装置10の発熱により冷却水温twが上昇し、この上昇した冷却水温twは、さらに第2インバータ装置20の発熱により上昇する。この温度が上昇した冷却水は、放熱器32で放熱を行って冷却された後、再び、冷却水路31に供給される。
 ここで、冷却装置30に異常が生じた場合や、各インバータ装置10,20のパワーモジュールやスイッチング素子が異常発熱した場合、冷却水路31の冷却水温twと各インバータ温度tin1、tin2との温度差が大きくなる。
 そこで、各インバータ温度tin1、tin2と冷却水温twとの温度差を正確に検出するには、第1インバータ装置10の発熱により上昇した冷却水温を検出する水温センサを追加する必要がある。
 しかしながら、その場合、水温センサの数が増加し、コストアップを招く。加えて、水温センサを、電力変換装置AのケーシングCAに形成した冷却水路31内に設ける必要があり、設置に手間を要する。特に、この冷却水路31が、ケーシングCAとは独立した管路等であれば、設置も比較的楽ではあるが、ケーシングCAに一体に形成されている場合、正確に冷却水温twを検出可能であり、かつ、高いシール性を確保して設置するのが難しい。
 一方、第2インバータ装置20の異常判定を、第2インバータ温度tin2と、実際の第2インバータ装置20の冷却水温よりも低い水温センサ40が検出する冷却水温twとの差分に基づいて行った場合、この差分は実際の差分よりも大きな値となる。このため、異常判定精度が低下し、かつ、異常と誤判定されてフューエル処理が実行される可能性が高くなる。すなわち、異常検出精度が低下するとともに、電力変換装置Aの動作範囲が狭くなるおそれが生じる。
 それに対し、本実施の形態1では、第2インバータ装置20の異常判定には、水温センサ40が検出する冷却水温twに、第1インバータ装置10の損失分を換算した加算値Tadを用いる。このため、第2インバータ装置20における第2インバータ温度tin2と冷却水温との第2温度差(Δt2)が、水温センサ40が検出する冷却水温twをそのまま用いる場合よりも正確になり、異常検出精度が向上する。また、水温の検出は、冷却水路31の上流の水温センサ40のみにより行うため、別途、電力変換装置A内に水温センサを追加するものと比較して、コストを抑えることができる。
 加えて、温度加算部52cでは、実測値を元に予め設定された加算値Tadを用いるため、第2コントローラ52の温度加算部52cの構成の簡略化を図り、コストを抑えることができる。また、加算値Tadとして第1インバータ装置10で想定される最大損失による温度に基づいて設定した値を使用する。このため、実際の第1インバータ装置10の発熱による冷却水Wの上昇温度が、加算値Tadを上回ることもなく、異常が発生しているのに、正常と判定する誤判定を抑えることができる。
 (実施の形態1の効果)
  以下に、実施の形態1の効果を列挙する。
  1)実施の形態1の電力変換装置Aの温度異常検出方法は、
電力を変換して伝送する複数の電力変換部としての第1インバータ装置10、第2インバータ装置20と、両インバータ装置10,20を通り各インバータ装置10,20の冷却を行う冷却水路31と、を備えた電力変換装置Aの温度異常検出方法であって、
両インバータ装置10,20の温度(第1インバータ温度tin1、第2インバータ温度tin2)を検出するとともに、両インバータ装置10,20よりも上流の冷却水路31の冷却水の温度(冷却水温tw)を検出してこれらを読み込むステップ(S1)と、
両インバータ装置10,20のうち、冷却水路31の上流側に配置された前段の電力変換部としての第1インバータ装置10については、第1インバータ温度tin1と冷却水温twとの第1温度差Δt1に基づいて異常の有無を判定するステップ(S3)と、
第1インバータ装置10よりも下流に配置された後段の電力変換部としての第2インバータ装置20については、冷却水温twに第1インバータ装置10の損失分を換算した温度(加算値Tad)を加算した加算温度twaを求め(ステップS4)、この加算温度twaと第2インバータ温度tin2との第2温度差Δt2を求め(ステップS5)、この第2温度差Δt2に基づいて異常の有無を判定するステップ(S6)と、
を備えることを特徴とする。
  したがって、電力変換部として第1、第2インバータ装置10,20を搭載した電力変換装置Aにおいて、水温センサ40の数を「1」としてコストを抑えつつ、両インバータ装置10,20および冷却系統の異常検出を高精度で行うことが可能となる。
 2)実施の形態1の電力変換装置Aの温度異常検出方法において、
損失分を換算した温度(加算値Tad)として、第1インバータ装置10で想定される最大損失による温度に基づいて設定した値を使用することを特徴とする。
  したがって、温度加算部52cにおける演算を簡略化してコストを抑えることができ、かつ、異常が発生しているのに、正常と判定する誤検出を抑えることができ、高い検出精度を得ることができる。
 3)実施の形態1の電力変換装置Aの温度異常検出装置は、
電力を変換して伝送する複数の電力変換部としての第1インバータ装置10および第2インバータ装置20と、
両インバータ装置10,20を通り各インバータ装置10,20の冷却を行う冷却水路31と、
各インバータ装置10,20の温度を検出する電力変換部温度センサとしての第1インバータ温度センサ11および第2インバータ温度センサ12と、
両インバータ装置10,20よりも上流の冷却水路31の冷却水の温度を検出する水温センサ40と、
冷却水温twと、第1インバータ装置10の温度である第1インバータ温度tin1との差分である第1温度差Δt1を求める前段温度差演算部としての第1温度差演算部51aと、
第1温度差演算部51aが求めた第1温度差Δt1分に基づいて異常判定を行う前段電力変換部異常検出部としての第1異常検出部51bと、
第1インバータ装置10の損失分を温度に換算して冷却水温twに加算する温度加算部52cと、
温度加算部52cが算出した加算温度twaと、第2インバータ温度tin2との差分である第2温度差Δt2を求める後段温度差演算部としての第2温度差演算部52aと、
第2温度差演算部52aが演算した第2温度差Δt2に基づいて異常判定を行う後段電力変換部異常検出部としての第2異常検出部52bと、
を備えることを特徴とする。
  したがって、電力変換部として第1、第2インバータ装置10,20を搭載した電力変換装置Aにおいて、水温センサ40の数を「1」としてコストを抑えつつ、両インバータ装置10,20および冷却系統の異常検出を高精度で行うことが可能となる。
 (他の実施の形態)
  次に、他の実施の形態の電力変換装置の温度異常検出方法および温度異常検出装置について説明する。
  なお、他の実施の形態の説明において、他の実施の形態と共通する構成には当該実施の形態と同じ符号を付して説明を省略し、当該実施の形態との相違点のみ説明する。
 (実施の形態2)
  実施の形態2は、第1インバータ装置10の損失分を温度に換算して冷却水温twに加算する加算値の求め方を実施の形態1と異ならせた例である。
  すなわち、実施の形態2では、第1インバータ装置10の損失分を換算した温度として、第1インバータ装置10に供給される電流、キャリア周波数、半導体特性を含む損失演算情報に基づいて演算した値を使用するようにした。
 図3は、実施の形態2の温度異常検出方法を適用した電力変換装置Bの概略を示す全体図である。
  図3に示す第2コントローラ252の温度加算部252cは、損失分の温度である加算値として、第1コントローラ251に設けられた損失演算部200により演算された加算値を用いる。
 また、損失演算部200は、加算値Tadを、第1インバータ装置10における電流I、キャリア周波数f、半導体特性を含む損失演算情報に基づいて演算する。
  なお、第1インバータ装置10は、周知のブリッジ接続した絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、以下、IGBTと称する)、ならびに、ダイオード(Free Wheeling Diode、以下、FWDと称する)を備える。
 そこで、第1インバータ装置10のIGBTにおける定常損失を、下記の式(1)により求め、IGBTのスイッチング損失を下記の式(2)により求める。
  また、第1インバータ装置10のFWDにおける定常損失を、下記の式(3)により求め、FWDにおけるスイッチング損失を下記の式(4)により求める。
  そして、これらの値から第1インバータ装置10のパワーモジュール損失を、下記の式(5)により求める。
[式1]
Figure JPOXMLDOC01-appb-I000001
[式2]
Figure JPOXMLDOC01-appb-I000002
[式3]
Figure JPOXMLDOC01-appb-I000003
[式4]
Figure JPOXMLDOC01-appb-I000004
[式5]
Figure JPOXMLDOC01-appb-I000005
Ic;IGBTのスイッチング素子電流(第1発電電機電流)
Vce(sat);IGBTのスイッチング素子のON電圧
D;PWM変調率
Esw;IGBTの1pulseあたりのスイッチング損失
f;PWMキャリア周波数
N(I);IGBTチップ数
N(F);FWDチップ数
Vf: FWDのスイッチング素子のON電圧
Err;FWDの1pulseあたりのスイッチング損失
 さらに、上述の式から得られた第1インバータ装置10の損失(パワーモジュール損失P(PM))を温度に換算し、さらに冷却水の上昇温度に相当する加算値Tadを演算する。
  なお、この加算値Tadは、予め繰り返し実験を行って、パワーモジュール損失P(PM)と冷却水温twとに応じて得られるように設定したテーブルあるいは演算式を用いて求める。
 また、温度加算部252cでは、水温センサ40が検出する冷却水温twに、加算値Tadを加算するもので、その演算自体は実施の形態1で示した温度加算部52cと同様である。
 したがって、実施の形態2では、第1インバータ装置10の実際の損失による発熱により冷却水Wの温度上昇により近い値を加算値Tadとすることができ、これにより、異常検出精度がより高いものとなる。
 (実施の形態2の効果)
  2-1)実施の形態2の電力変換装置Bの温度異常検出方法は、
温度加算部252cは、冷却水温twに加算する損失分を換算した温度である加算値Tadとして、第1インバータ装置10のパワーモジュールにおける電流Icや電圧Vce(sat)、キャリア周波数f、半導体特性としてのPWM変調率D, IGBTチップ数N(I)、FWDチップ数N(F) を含む損失演算情報に基づいて演算した値を使用することを特徴とする。
  したがって、第1インバータ装置10の動作状態に応じた最適の加算値Tadを求めることができ、より精度の高い異常検出を行うことができる。
  なお、加算値Tadは、電流Ic、電圧Vce(sat)、半導体特性(キャリア周波数f、PWM変調率D,IGBTチップ数N(I)、FWDチップ数N(F))のいずれかに基づいて求めることができる。
 (実施の形態3)
  実施の形態3は、第1インバータ装置10の損失分を温度に換算して冷却水温twに加算する加算値Tadの求め方を実施の形態1、2と異ならせた例である。
 すなわち、実施の形態3では、第1インバータ装置10の損失分を温度に換算して加算する加算値Tadとして、第1インバータ装置10の温度と、冷却水温twとの第1温度差Δt1に基づいて推定した値を使用するようにした。
 図4は、実施の形態3の温度異常検出方法を適用した電力変換装置Cの概略を示す全体図である。
  図4に示す第2コントローラ352の第2温度差演算部352aは、損失推定部300が推定した加算温度twa3と第2インバータ温度tin2との第2温度差Δt2を演算する。
 ここで損失推定部300は、第1温度差演算部51aが演算した第1温度差Δt1を入力し、この第1温度差Δt1から第1インバータ装置10の損失を逆算する。さらに、損失推定部300は、この損失分による冷却水の温度上昇分に相当する加算値を推定し、これを冷却水温twに加算した加算温度twa3を演算する。なお、この加算値の推定は、予め第1温度差Δt1およびその時の第1発電電機1の駆動状態(例えば、力行、回生、ロックなど)に応じた値が、マップの状態で第1コントローラ51に記憶されている。
  なお、第2温度差演算部352aは、この加算温度twa3と第2インバータ温度tin2との第2温度差Δt2を演算する。
 このように、実施の形態3では、第1温度差Δt1に基づいて、推定した第1インバータ装置10の損失分に応じた冷却水の温度上昇を推定する。
  したがって、加算温度twa3として、実際の第2インバータ装置20における冷却水温を求めることができ、これにより、異常検出精度がより高いものとなる。
 (実施の形態3の効果)
  3-1)実施の形態3の電力変換装置Cの温度異常検出方法は、
第2温度差演算部352aにおいて加算する損失分の温度として、第1インバータ装置10の温度である第1インバータ温度tin1と冷却水温twとの差分である第1温度差Δt1に基づいて推定した値を使用することを特徴とする。
  すなわち、第1インバータ温度tin1と冷却水温twとの差分により第1インバータ装置10の発熱状態を推定し、これにより、高い精度で加算値を求めることができる。よって、この高精度の加算値に基づいて、第2インバータ装置20における冷却水温を高精度で推定し、これに基づいて高精度で異常検出を行うことができる。
 (実施の形態4)
  実施の形態4の電力変換装置Dは、実施の形態1の変形例であり、図5に示すように、冷却水路31の後段に第3発電電機(図示省略)を駆動させる第3インバータ装置430を追加した例である。
 この第3インバータ装置430の異常判定を行う第3コントローラ453は、第3温度差演算部453a、第3異常検出部453b、温度加算部453cを備える。
  温度加算部453cは、第1インバータ装置10の動作時の損失および第2インバータ装置20の動作時の損失を冷却水温twの上昇温度に換算した値を加算値Tadとし、これを水温センサ40が検出する冷却水温twに加算した加算温度twbを求める。この損失による上昇温度は、実施の形態1と同様に、両インバータ装置10,20において想定される最大損失時の発熱により冷却水温twが上昇する温度に設定している。
 そして、第3温度差演算部453aは、第3インバータ温度センサ413が検出した第3インバータ温度tin3と加算温度twbとを入力し、両者の差である第3温度差Δt3を演算する。
 第3異常検出部453bは、第3温度差Δt3が予め設定された第3異常判定温度(tlim3)よりも大きい場合に異常と判定し、第3温度差Δt3が第3異常判定温度(tlim3)以下の場合は、異常ではないと判定する。なお、この第3異常判定温度tlim3は、第3回転電機(図示省略)および第3インバータ装置430に応じて設定されている。
 したがって、実施の形態4では、インバータ装置の数が増加した場合でも、実施の形態1で説明した1)~3)の効果を得ることができる。
 (実施の形態5)
  実施の形態5の電力変換装置Eは、実施の形態2の変形例であり、図6に示すように、上記の実施の形態4と同様に冷却水路31の後段に第3インバータ装置530を追加した例である。
  図6に示す第3コントローラ553の温度加算部553cは、損失分の温度である加算値として、第1コントローラ251に設けられた損失演算部500により演算された加算値Tad2を用いる。
 また、損失演算部500は、実施の形態2と同様に、第1インバータ装置10における電流I、キャリア周波数f、半導体特性を含む損失演算情報に基づいて加算値Tadを、演算する。さらに、損失演算部500は、第2インバータ装置20における電流I、キャリア周波数f、半導体特性を含む損失演算情報に基づいて加算値Tad2を、演算する。
  なお、この加算値Tad2の演算は、実施の形態2と同様のテーブルまたは演算式を用いて求めることができる。また、電流I、キャリア周波数f、半導体特性のいずれかに基づいて加算値Tad,Tad2を求めることも可能である。
 そして、第3温度差演算部553aは、第3インバータ温度センサ513が検出した第3インバータ温度tin3と加算値Tad2を用いて演算した加算温度twbとを入力し、両者の差である第3温度差Δt3を演算する。
 第3異常検出部553bは、第3温度差Δt3が予め設定された第3異常判定温度(tlim3)よりも大きい場合に異常と判定し、第3温度差Δt3が第3異常判定温度(tlim3)以下の場合は、異常ではないと判定する。
 したがって、実施の形態5では、インバータ装置の数が増加した場合でも、上記2-1)に記載した効果が得られる。
  また、このようにインバータ装置の数が増加した場合に、図示は省略するが、第3インバータ装置の異常を検出するのにあたり、実施の形態3と同様の手法を用い、その加算温度twbを演算することもできる。すなわち、この場合、第2インバータ装置20における第2温度差Δt2に基づいて推定した値を第3温度差演算部において加算する損失分の温度として用いる。
 以上、本発明の電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置を実施の形態に基づき説明してきたが、具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 例えば、実施の形態では、電力を変換して伝送する複数の電力変換部としてインバータ装置を示したが、電力変換部としてはインバータ装置に限らず、コンバータなどの他の電力変換部を用いることもできる。したがって、電力変換部の出力対象としても、実施の形態では、発電電機を示したが、出力対象としては、これに限定されず、例えば、バッテリなど、他のものを用いることができる。
 また、冷却流路を流れる冷媒として冷却水を示したが、冷媒としてはこれに限定されず、水以外の液体あるいは気体を用いることができる。
 さらに、実施の形態1では、前段の電力変換部の損失分の温度を加算した温度として、第1インバータ装置において想定される最大損失時の水温の上昇温度に設定したが、これに限定されない。例えば、第1発電電機の駆動状態に応じ、その駆動状態での最大損失時の水温の上昇温度としてもよい。すなわち、力行、回生、ロックなどの駆動状態別の最大損失時の上昇温度としてもよい。
 また、損失分の上昇温度として、実施の形態2では、各式(1)~(5)に基づいて求める例を示したが、電力変換部に供給される電流、キャリア周波数、半導体特性を含む損失演算情報に基づいて演算した値であれば、各式(1)~(5)に限定されるものではない。
  また、電力変換部の数は、実施の形態において示した「2」「3」に限らず、4以上設けることもできる。

Claims (5)

  1.  電力を変換して伝送する複数の電力変換部と、前記複数の電力変換部を通り各電力変換部の冷却を行う冷却流路と、を備えた電力変換装置の温度異常検出方法であって、
     前記電力変換部の温度を検出するとともに、これら電力変換部よりも上流の前記冷却流路の冷却流体の温度を検出し、
     前記複数の電力変換部のうち、前記冷却流路の上流側に配置された前段の電力変換部については、この電力変換部の温度と前記冷却流体の温度との差分に基づいて異常の有無を判定し、
     前記前段の電力変換部よりも前記冷却流路の下流に配置された後段の電力変換部については、前記冷却流体の温度に前記前段の電力変換部の損失分を温度に換算して加算した温度と、前記後段の電力変換部の温度と、の差分に基づいて異常の有無を判定することを特徴とする電力変換装置の温度異常検出方法。
  2.  請求項1に記載の電力変換装置の温度異常検出方法において、
     前記損失分を換算した温度として、前記前段の電力変換部で想定される最大損失から換算した温度に基づいて設定した値を使用することを特徴とする電力変換装置の温度異常検出方法。
  3.  請求項1に記載の電力変換装置の温度異常検出方法において、
     前記損失分を換算した温度として、前記前段の電力変換部における電流、キャリア周波数、半導体特性の少なくともいずれか一つを含む損失演算情報に基づいて演算した値を使用することを特徴とする電力変換装置の温度異常検出方法。
  4.  請求項1に記載の電力変換装置の温度異常検出方法において、
     前記損失分の温度として、前記前段の電力変換部の温度と前記冷却流体の温度との差分に基づいて推定した値を使用する
    ことを特徴とする電力変換装置の温度異常検出方法。
  5.  電力を変換して伝送する複数の電力変換部と、
     前記複数の電力変換部を通り各電力変換部の冷却を行う冷却流路と、
     前記複数の電力変換部の温度を検出する電力変換部温度センサと、
     前記複数の電力変換部よりも上流の前記冷却流路の冷却流体の温度を検出する冷却流体温度センサと、
     前記冷却流体温度と、前記冷却流路の上流側に配置された前段の電力変換部の温度との差分を求める前段温度差演算部と、
     前記前段温度差演算部が求めた差分に基づいて異常判定を行う前段電力変換部異常検出部と、
     前記前段の電力変換部の損失分の損失分を温度に換算して前記冷却流体温度に加算する温度加算部と、
     前記温度加算部が算出した温度と、前記前段の電力変換部よりも前記冷却流路の下流に配置された後段の電力変換部の温度との差分を求める後段温度差演算部と、
     前記後段温度差演算部が演算した差分に基づいて異常判定を行う後段電力変換部異常検出部と、
    を備えることを特徴とする電力変換装置の異常検出装置。
PCT/JP2016/065728 2016-05-27 2016-05-27 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置 WO2017203693A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US16/302,761 US10739207B2 (en) 2016-05-27 2016-05-27 Temperature abnormality detection method for power conversion apparatus, and temperature abnormality detection device for power conversion apparatus
EP16903174.7A EP3468018B1 (en) 2016-05-27 2016-05-27 Method for detecting temperature abnormality in power conversion apparatus, and device for detecting temperature abnormality in power conversion apparatus
JP2018518918A JP6402841B2 (ja) 2016-05-27 2016-05-27 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
MX2018014352A MX2018014352A (es) 2016-05-27 2016-05-27 Metodo de deteccion de anormalidad de temperatura para aparato de conversion de energia y dispositivo de deteccion de anormalidad de temperatura para aparato de conversion de energia.
RU2018146439A RU2697050C1 (ru) 2016-05-27 2016-05-27 Способ обнаружения отклонения температуры для устройства преобразования энергии и устройство обнаружения отклонения температуры для устройства преобразования энергии
CN201680086022.1A CN109275350B (zh) 2016-05-27 2016-05-27 电力变换装置的温度异常检测方法以及电力变换装置的温度异常检测装置
KR1020187035690A KR101973926B1 (ko) 2016-05-27 2016-05-27 전력 변환 장치의 온도 이상 검출 방법 및 전력 변환 장치의 온도 이상 검출 장치
PCT/JP2016/065728 WO2017203693A1 (ja) 2016-05-27 2016-05-27 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
BR112018074335-6A BR112018074335B1 (pt) 2016-05-27 2016-05-27 Método de detecção de anormalidade de temperatura para aparelho de conversão de potência e dispositivo de detecção de anormalidade de temperatura para aparelho de conversão de potência
MYPI2018002055A MY176327A (en) 2016-05-27 2016-05-27 Temperature abnormality detection method for power conversion apparatus and temperature abnormality detection device for power conversion apparatus
CA3025638A CA3025638C (en) 2016-05-27 2016-05-27 Temperature abnormality detection method for power conversion apparatus and temperature abnormality detection device for power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065728 WO2017203693A1 (ja) 2016-05-27 2016-05-27 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置

Publications (1)

Publication Number Publication Date
WO2017203693A1 true WO2017203693A1 (ja) 2017-11-30

Family

ID=60411795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065728 WO2017203693A1 (ja) 2016-05-27 2016-05-27 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置

Country Status (10)

Country Link
US (1) US10739207B2 (ja)
EP (1) EP3468018B1 (ja)
JP (1) JP6402841B2 (ja)
KR (1) KR101973926B1 (ja)
CN (1) CN109275350B (ja)
BR (1) BR112018074335B1 (ja)
CA (1) CA3025638C (ja)
MX (1) MX2018014352A (ja)
RU (1) RU2697050C1 (ja)
WO (1) WO2017203693A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198184A1 (ja) * 2018-04-11 2019-10-17 日産自動車株式会社 機器保護装置及び機器保護方法
CN110412369A (zh) * 2019-07-11 2019-11-05 南方电网科学研究院有限责任公司 一种柔性直流换流阀功率模块损耗测量系统
JP2021103908A (ja) * 2019-12-24 2021-07-15 株式会社デンソー 電力変換装置
WO2024142643A1 (ja) * 2022-12-27 2024-07-04 株式会社日立製作所 電力変換装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830941A (zh) * 2019-03-04 2019-05-31 苏州弈力能源科技有限公司 新能源汽车igbt模组过温保护策略和装置
KR102666376B1 (ko) * 2019-06-14 2024-05-17 현대모비스 주식회사 차량용 제동장치
US11835550B2 (en) * 2021-08-11 2023-12-05 Infineon Technologies Austria Ag Power conversion, fault management, and notification
JP7533498B2 (ja) * 2022-02-09 2024-08-14 トヨタ自動車株式会社 冷却システムの制御装置
CN115468628A (zh) * 2022-07-22 2022-12-13 大庆飞海石油科技有限公司 一种油田用带隔离保护结构的液位计
US20240231456A9 (en) * 2022-10-25 2024-07-11 Dell Products L.P. Fault identification of multiple phase voltage regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238675A (ja) * 2005-02-28 2006-09-07 Tdk Corp 電力変換装置及び電力変換装置への過熱保護温度設定方法
JP2010068641A (ja) * 2008-09-11 2010-03-25 Toyota Motor Corp 駆動装置およびその制御方法並びに車両
JP2011172406A (ja) 2010-02-19 2011-09-01 Fuji Heavy Ind Ltd 電気自動車のインバータ冷却装置
JP2012044772A (ja) * 2010-08-18 2012-03-01 Toyota Motor Corp 車両のインバータ冷却制御装置
JP2014045599A (ja) * 2012-08-28 2014-03-13 Honda Motor Co Ltd 電動機の駆動装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918736B2 (ja) * 2003-01-16 2007-05-23 トヨタ自動車株式会社 電圧変換装置
JP3963175B2 (ja) 2004-03-19 2007-08-22 日産自動車株式会社 温度検出装置および温度検出用プログラム
JP4694278B2 (ja) * 2005-04-28 2011-06-08 本田技研工業株式会社 バッテリユニット構造
JP4349447B2 (ja) * 2007-07-19 2009-10-21 トヨタ自動車株式会社 インバータ制御装置および車両
JP5092696B2 (ja) * 2007-11-06 2012-12-05 株式会社デンソー 冷却流体の温度情報取得装置
JP2010136472A (ja) 2008-12-02 2010-06-17 Toyota Motor Corp 回転電機駆動制御装置及びその制御方法
JP5516272B2 (ja) * 2010-09-22 2014-06-11 トヨタ自動車株式会社 回転電機制御システム
CN102253320B (zh) 2011-04-19 2013-06-05 南车株洲电力机车研究所有限公司 一种igbt失效预警方法
JP5907236B2 (ja) * 2013-12-11 2016-04-26 株式会社デンソー 温度検出装置
RU2549255C1 (ru) * 2014-12-18 2015-04-20 Морской гидрофизический институт Цифровой измеритель температуры
KR20170097421A (ko) * 2016-02-18 2017-08-28 엘에스산전 주식회사 2차원 배열 전력변환장치용 냉각 시스템
RU2699073C1 (ru) * 2016-08-23 2019-09-03 Ниссан Мотор Ко., Лтд. Способ обнаружения анормальностей температуры для устройства преобразования мощности и устройство обнаружения анормальностей температуры для устройства преобразования мощности

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238675A (ja) * 2005-02-28 2006-09-07 Tdk Corp 電力変換装置及び電力変換装置への過熱保護温度設定方法
JP2010068641A (ja) * 2008-09-11 2010-03-25 Toyota Motor Corp 駆動装置およびその制御方法並びに車両
JP2011172406A (ja) 2010-02-19 2011-09-01 Fuji Heavy Ind Ltd 電気自動車のインバータ冷却装置
JP2012044772A (ja) * 2010-08-18 2012-03-01 Toyota Motor Corp 車両のインバータ冷却制御装置
JP2014045599A (ja) * 2012-08-28 2014-03-13 Honda Motor Co Ltd 電動機の駆動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198184A1 (ja) * 2018-04-11 2019-10-17 日産自動車株式会社 機器保護装置及び機器保護方法
CN112042099A (zh) * 2018-04-11 2020-12-04 日产自动车株式会社 仪器保护装置以及仪器保护方法
JPWO2019198184A1 (ja) * 2018-04-11 2021-04-22 日産自動車株式会社 機器保護装置及び機器保護方法
CN110412369A (zh) * 2019-07-11 2019-11-05 南方电网科学研究院有限责任公司 一种柔性直流换流阀功率模块损耗测量系统
JP2021103908A (ja) * 2019-12-24 2021-07-15 株式会社デンソー 電力変換装置
JP7380187B2 (ja) 2019-12-24 2023-11-15 株式会社デンソー 電力変換装置
WO2024142643A1 (ja) * 2022-12-27 2024-07-04 株式会社日立製作所 電力変換装置

Also Published As

Publication number Publication date
EP3468018A4 (en) 2019-04-10
CN109275350A (zh) 2019-01-25
KR101973926B1 (ko) 2019-04-29
JP6402841B2 (ja) 2018-10-10
CA3025638C (en) 2020-08-25
BR112018074335B1 (pt) 2022-11-08
RU2697050C1 (ru) 2019-08-09
EP3468018A1 (en) 2019-04-10
CA3025638A1 (en) 2017-11-30
US10739207B2 (en) 2020-08-11
MX2018014352A (es) 2019-03-14
US20200182706A1 (en) 2020-06-11
CN109275350B (zh) 2020-12-15
BR112018074335A2 (pt) 2019-03-06
KR20180136564A (ko) 2018-12-24
EP3468018B1 (en) 2020-10-07
JPWO2017203693A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017203693A1 (ja) 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
JP6468401B2 (ja) 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
US9823140B2 (en) Sensor abnormality determining apparatus
US11025157B2 (en) Control circuit, electric driving system, inverter system and method for controlling thereof
US20130147407A1 (en) Temperature protection device
US9106173B2 (en) Motor driving device and method of protecting motor driving device
US10500961B2 (en) Failure detection device of power converter and vehicle
JP2009284597A (ja) パワーコントロールユニットの冷却装置
JP2012170211A (ja) 異常判定装置、異常素子検出装置および車両駆動システム
JP2011172406A (ja) 電気自動車のインバータ冷却装置
JP7095984B2 (ja) モータ搭載自動車の駆動制御装置
JP2020071093A (ja) 電流センサ
JP7021927B2 (ja) モータ搭載自動車の駆動制御装置
JP6119647B2 (ja) 電動車両
JP2020120429A (ja) 電力変換装置
JP2010051040A (ja) 車両駆動用モータ制御装置
CN111491821A (zh) 装载马达的汽车的驱动控制装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518918

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3025638

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018074335

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035690

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016903174

Country of ref document: EP

Effective date: 20190102

ENP Entry into the national phase

Ref document number: 112018074335

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181126