JP3918736B2 - 電圧変換装置 - Google Patents

電圧変換装置 Download PDF

Info

Publication number
JP3918736B2
JP3918736B2 JP2003008618A JP2003008618A JP3918736B2 JP 3918736 B2 JP3918736 B2 JP 3918736B2 JP 2003008618 A JP2003008618 A JP 2003008618A JP 2003008618 A JP2003008618 A JP 2003008618A JP 3918736 B2 JP3918736 B2 JP 3918736B2
Authority
JP
Japan
Prior art keywords
voltage
temperature
switching element
motor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003008618A
Other languages
English (en)
Other versions
JP2004219324A (ja
Inventor
明朗 北見
高志 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003008618A priority Critical patent/JP3918736B2/ja
Publication of JP2004219324A publication Critical patent/JP2004219324A/ja
Application granted granted Critical
Publication of JP3918736B2 publication Critical patent/JP3918736B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直流電源からの直流電圧を指令電圧に変換する電圧変換装置に関し、特に、冷却水温を推定可能な電圧変換装置に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
【0004】
このようなハイブリッド自動車または電気自動車においては、直流電源からの直流電圧を昇圧コンバータによって昇圧し、その昇圧した直流電圧がモータを駆動するインバータに供給されることも提案されている。
【0005】
すなわち、ハイブリッド自動車または電気自動車は、図10に示すモータ駆動装置を搭載している。図10を参照して、モータ駆動装置300は、直流電源Bと、システムリレーSR1,SR2と、コンデンサC1,C2と、双方向コンバータ310と、電圧センサー320と、インバータ330とを備える。
【0006】
直流電源Bは、直流電圧を出力する。システムリレーSR1,SR2は、制御装置(図示せず)によってオンされると、直流電源Bからの直流電圧をコンデンサC1に供給する。コンデンサC1は、直流電源BからシステムリレーSR1,SR2を介して供給された直流電圧を平滑化し、その平滑化した直流電圧を双方向コンバータ310へ供給する。
【0007】
双方向コンバータ310は、リアクトル311と、NPNトランジスタ312,313と、ダイオード314,315とを含む。リアクトル311の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタ312とNPNトランジスタ313との中間点、すなわち、NPNトランジスタ312のエミッタとNPNトランジスタ313のコレクタとの間に接続される。NPNトランジスタ312,313は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタ312のコレクタは電源ラインに接続され、NPNトランジスタ313のエミッタはアースラインに接続される。また、各NPNトランジスタ312,313のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオード314,315が配置されている。
【0008】
双方向コンバータ310は、制御装置(図示せず)によってNPNトランジスタ312,313がオン/オフされ、コンデンサC1から供給された直流電圧を昇圧して出力電圧をコンデンサC2に供給する。また、双方向コンバータ310は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1によって発電され、インバータ330によって変換された直流電圧を降圧して直流電源Bに供給する。
【0009】
コンデンサC2は、双方向コンバータ310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。電圧センサー320は、コンデンサC2の両側の電圧、すなわち、双方向コンバータ310の出力電圧Vmを検出する。
【0010】
インバータ330は、コンデンサC2から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値によって指定されたトルクを発生するように駆動される。また、インバータ330は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して双方向コンバータ310へ供給する。
【0011】
モータ駆動装置300においては、直流電源Bからの直流電圧を出力電圧Vmに昇圧する場合、NPNトランジスタ313をオン/オフし、NPNトランジスタ313がオンされた期間に応じて電力をリアクトル311に蓄積する。そして、リアクトル311に蓄積された電力に応じた電圧(=出力電圧Vm)をNPNトランジスタ313がオフされたタイミングにダイオード314を介してインバータ330に供給する。この場合、NPNトランジスタ312はオフされている。
【0012】
一方、交流モータM1が発電した電力を直流電源Bに回生する場合、NPNトランジスタ313がオフされ、NPNトランジスタ312はオンされる。そして、双方向コンバータ310は、インバータ330から直流電圧を受け、その受けた直流電圧を降圧して直流電源Bに供給する。
【0013】
したがって、双方向コンバータ310が電圧の昇圧または電圧の降圧を行なう場合、NPNトランジスタ312,313はオン/オフされ、発熱する。そこで、NPNトランジスタ312,313が適正に動作するようにNPNトランジスタ312,313を冷却することが行なわれている。そして、NPNトランジスタ312,313が正常に動作しているか否かを判定するために冷却水の温度を推定することが行なわれている。
【0014】
このような冷却水の温度を推定する1つの方法として次のような方法が特開2001−318008号公報に開示されている。
【0015】
トランジスタは発熱(通電)の有無に応じて比較的急速な温度変化を示し、冷却水は比較的緩慢な温度変化を示す。また、トランジスタの発熱が無い場合、トランジスタの温度および冷却水の温度は、ほぼ等しい温度に収束する。そこで、特開2001−318008号公報には、この原理を利用して(トランジスタの温度または冷却水の温度)+(トランジスタ通電量)から他方の温度を推定する技術が開示されている。
【0016】
【特許文献1】
特開2001−318008号公報
【0017】
【特許文献2】
特開平7−234162号公報
【0018】
【発明が解決しようとする課題】
しかし、特開2001−318008号公報に開示された技術を用いて冷却水の温度を推定する場合、オフされた直後のトランジスタ温度の収束に多少の時間を要するため、推定温度の精度が低下する可能性がある。
【0019】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、冷却水の温度を精度良く推定可能な電圧変換装置を提供することである。
【0020】
【課題を解決するための手段および発明の効果】
この発明によれば、電圧変換装置は、第1および第2のスイッチング素子と、冷却手段と、検出手段と、推定手段とを備える。第1および第2のスイッチング素子は、電圧の昇圧動作および降圧動作を行なう昇降圧チョッパ回路に用いられる。冷却手段は、第1および第2のスイッチング素子を水冷する。検出手段は、第1および第2のスイッチング素子の温度を検出する。推定手段は、電圧の昇圧動作の間、オフされたスイッチング素子の温度、または電圧の降圧動作の間、オフされたスイッチング素子の温度に基づいて冷却水温を推定する。
【0021】
好ましくは、推定手段は、電圧の昇圧動作時と電圧の降圧動作時とでは、異なるスイッチング素子の温度に基づいて冷却水温を推定する。
【0022】
好ましくは、推定手段は、電圧の昇圧動作時、昇圧回路を構成するスイッチング素子と異なるスイッチング素子の温度に基づいて冷却水温を推定し、電圧の降圧動作時、降圧回路を構成するスイッチング素子と異なるスイッチング素子の温度に基づいて冷却水温を推定する。
【0023】
好ましくは、第1のスイッチング素子は、昇降圧チョッパ回路の上アームとして用いられる。また、第2のスイッチング素子は、昇降圧チョッパ回路の下アームとして用いられる。そして、推定手段は、電圧の昇圧動作時、第1のスイッチング素子の温度に基づいて冷却水温を推定し、電圧の降圧動作時、第2のスイッチング素子の温度に基づいて冷却水温を推定する。
【0024】
好ましくは、検出手段は、第1のダイオードと、第2のダイオードと、第1の電圧センサーと、第2の電圧センサーと、演算処理部とを含む。第1のダイオードは、第1のスイッチング素子に隣接して設けられる。第2のダイオードは、第2のスイッチング素子に隣接して設けられる。第1の電圧センサーは、第1のダイオードの両端の第1の電圧を検出する。第2の電圧センサーは、第2のダイオードの両端の第2の電圧を検出する。演算処理部は、第1の電圧に基づいて第1のスイッチング素子の温度を演算し、第2の電圧に基づいて第2のスイッチング素子の温度を演算する。
【0025】
好ましくは、演算処理部は、電圧と温度との関係をマップとして保持しており、マップを参照して第1の電圧に対応する第1のスイッチング素子の温度を抽出し、マップを参照して第2の電圧に対応する第2のスイッチング素子の温度を抽出する。
【0026】
好ましくは、推定手段は、オフされたスイッチング素子の温度をそのまま冷却水温と推定する。
【0027】
この発明においては、電圧の昇圧動作の間、オフされたスイッチング素子の温度が検出され、または電圧の降圧動作の間、オフされたスイッチング素子の温度が検出される。そして、検出された温度がスイッチング素子を冷却する冷却水の温度と推定される。
【0028】
したがって、この発明によれば、スイッチング素子がオフされた直後においても、冷却水の温度を精度良く推定できる。
【0029】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0030】
図1を参照して、この発明の実施の形態による電圧変換装置を備えたモータ駆動装置100は、直流電源Bと、電圧センサー10〜12,14と、システムリレーSR1,SR2と、コンデンサC1,C2と、昇圧コンバータ13と、インバータ15,25と、電流センサー24,28と、制御装置30とを備える。交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。交流モータM2は、エンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなモータである。
【0031】
昇圧コンバータ13は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2,Dd1,Dd2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2が配置されている。
【0032】
ダイオードDd1は、NPNトランジスタQ1の温度を検出するためのダイオードである。ダイオードDd2は、NPNトランジスタQ2の温度を検出するためのダイオードである。
【0033】
インバータ15は、U相アーム16と、V相アーム17と、W相アーム18とから成る。U相アーム16、V相アーム17およびW相アーム18は、電源ラインとアースとの間に並列に設けられる。
【0034】
U相アーム16は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム17は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム18は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0035】
インバータ25は、インバータ15と同じ構成から成る。そして、インバータ15,25は、コンデンサC2の両端に並列に接続される。
【0036】
インバータ15の各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。インバータ25の各相アームの中間点は、交流モータM2の各相コイルの各相端に接続されている。すなわち、交流モータM1,M2は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0037】
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。コンデンサC1は、直流電源Bから供給された直流電圧Vbを平滑化し、その平滑化した直流電圧を昇圧コンバータ13へ供給する。
【0038】
電圧センサー11は、ダイオードDd1の両端の電圧V1を検出し、その検出した電圧V1を制御装置30へ出力する。電圧センサー12は、ダイオードDd2の両端の電圧V2を検出し、その検出した電圧V2を制御装置30へ出力する。
【0039】
昇圧コンバータ13は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2へ供給する。より具体的には、昇圧コンバータ13は、制御装置30から信号PWMUを受けると、信号PWMUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。この場合、NPNトランジスタQ1は、信号PWMUによってオフされている。また、昇圧コンバータ13は、制御装置30から信号PWMDを受けると、コンデンサC2を介してインバータ15または25から供給された直流電圧を降圧して直流電源Bを充電する。
【0040】
コンデンサC2は、昇圧コンバータ13からの直流電圧を平滑化し、その平滑化した直流電圧をノードN1,N2を介してインバータ15,25へ供給する。電圧センサー14は、コンデンサC2の両端の電圧、すなわち、昇圧コンバータ13の出力電圧Vm(インバータ15,25への入力電圧に相当する。以下同じ。)を検出し、その検出した出力電圧Vmを制御装置30へ出力する。
【0041】
インバータ15は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMI1に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TR1によって指定されたトルクを発生するように駆動される。また、インバータ15は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMC1に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ13へ供給する。
【0042】
インバータ25は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMI2に基づいて直流電圧を交流電圧に変換して交流モータM2を駆動する。これにより、交流モータM2は、トルク指令値TR2によって指定されたトルクを発生するように駆動される。また、インバータ25は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM2が発電した交流電圧を制御装置30からの信号PWMC2に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ13へ供給する。
【0043】
なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0044】
電流センサー24は、交流モータM1に流れるモータ電流MCRT1を検出し、その検出したモータ電流MCRT1を制御装置30へ出力する。電流センサー28は、交流モータM2に流れるモータ電流MCRT2を検出し、その検出したモータ電流MCRT2を制御装置30へ出力する。
【0045】
制御装置30は、外部に設けられたECU(Electrical Control Unit)からのトルク指令値TR1,2およびモータ回転数MRN1,2、電圧センサー10からの直流電圧Vb、電圧センサー13からの出力電圧Vm、電圧センサー11からの電圧V1、電圧センサー12からの電圧V2、電流センサー24からのモータ電流MCRT1および電流センサー28からのモータ電流MCRT2を受ける。そして、制御装置30は、トルク指令値TR1(またはTR2)、モータ回転数MRN1(またはMRN2)、直流電圧Vb、出力電圧Vmおよびモータ電流MCRT1(またはMCRT2)に基づいて、後述する方法により昇圧コンバータ13を駆動するための信号PWMUとインバータ15を駆動するための信号PWMI1(またはPWMI2)とを生成し、その生成した信号PWMUおよび信号PWMI1(またはPWMI2)をそれぞれ昇圧コンバータ13およびインバータ15(またはインバータ25)へ出力する。
【0046】
信号PWMUは、昇圧コンバータ13がコンデンサC1からの直流電圧を出力電圧Vmに変換する場合に昇圧コンバータ13を駆動するための信号である。そして、制御装置30は、昇圧コンバータ13が直流電圧を出力電圧Vmに変換する場合に、出力電圧Vmをフィードバック制御し、出力電圧Vmが指令された電圧指令Vdc_comになるように昇圧コンバータ13を駆動するための信号PWMUを生成する。信号PWMUの生成方法については後述する。
【0047】
また、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMC1を生成してインバータ15へ出力する。この場合、インバータ15のNPNトランジスタQ3〜Q8は信号PWMC1によってスイッチング制御される。これにより、インバータ15は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ13へ供給する。
【0048】
さらに、制御装置30は、回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM2で発電された交流電圧を直流電圧に変換するための信号PWMC2を生成してインバータ25へ出力する。この場合、インバータ25のNPNトランジスタQ3〜Q8は信号PWMC2によってスイッチング制御される。これにより、インバータ25は、交流モータM2で発電された交流電圧を直流電圧に変換して昇圧コンバータ13へ供給する。
【0049】
さらに、制御装置30は、回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、インバータ15(またはインバータ25)から供給された直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ13へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
【0050】
さらに、制御装置30は、電圧V1に基づいてNPNトランジスタQ1の温度TQ1を検出し、電圧V2に基づいてNPNトランジスタQ2の温度TQ2を検出する。そして、制御装置30は、検出した温度TQ1(またはTQ2)に基づいて昇圧コンバータ13の冷却水の温度Twを推定し、その推定した温度Twを外部ECUへ出力する。
【0051】
さらに、制御装置30は、システムリレーSR1,SR2をオン/オフするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0052】
上述した昇圧コンバータ13は、図2に示すPCU(Power Contorol Unit)80に搭載される。図2を参照して、PCU80は、メインIPM(Intelligent Power Module)81と、昇圧IPM82と、リアクトルL1とを含む。NPNトランジスタQ1,Q2およびダイオードD1,D2,Dd1,Dd2は、昇圧IPM82を構成する。また、インバータ15,25はメインIPM81を構成する。
【0053】
PCU80は、その下側に配水管84が取り付けられている。冷却水は、入口84Aから配水管84に導入され、配水管84を流れて出口84Bから出る。また、メインIPM81の下側には、フィン811が形成され、昇圧IPM82の下側には、フィン821が形成され、リアクトルL1の下側にはフィン831が形成されている。
【0054】
冷却水を配水管84に流すことと、フィン811,821,831とにより、メインIPM81、昇圧IPM82およびリアクトルL1は冷却される。
【0055】
メインIPM81は、昇圧IPM82と接続されており、昇圧IPM82によって昇圧された直流電圧を用いて交流モータM1(またはM2)を駆動する。昇圧IPM82は、リアクトルL1に接続されており、直流電源BからリアクトルL1のコイルに流れる直流電流をスイッチングして電力をリアクトルL1に蓄積し、その蓄積した電力に応じて昇圧された直流電圧をメインIPM81へ供給する。
【0056】
そして、制御装置30は、昇圧IPM82に含まれるダイオードDd1(またはDd2)の両端の電圧V1(またはV2)に基づいてNPNトランジスタQ1(またはQ2)の温度TQ1(またはTQ2)を検出し、その検出した温度TQ1(またはTQ2)に基づいて配水管84に流れる冷却水の温度Twを推定する。
【0057】
図3は、昇圧コンバータ13に含まれるNPNトランジスタQ1,Q2およびダイオードD1,D2,Dd1,Dd2の配置を示す斜視図である。図3を参照して、NPNトランジスタQ1,Q2およびダイオードD1,D2,Dd1,Dd2は、1つの基板20上に配置される。NPNトランジスタQ1,Q2は、インバータ15,25の電源ライン31とアースライン32との間に直列に接続されるように配置される。ダイオードD1,D2は、それぞれ、NPNトランジスタQ1,Q2の横に配置される。
【0058】
ダイオードDd1,Dd2は、NPNトランジスタQ1,Q2が直列に接続された回路系に接続されることなく、それぞれ、NPNトランジスタQ1,Q2に近接して配置される。
【0059】
図4は、制御装置30の機能ブロック図である。図4を参照して、制御装置30は、モータトルク制御手段301と、温度処理手段302と、電圧変換制御手段303とを含む。モータトルク制御手段301は、トルク指令値TR1(またはTR2)、直流電圧Vb、モータ電流MCRT1(またはMCRT2)、モータ回転数MRN1(またはMRN2)および昇圧コンバータ13の出力電圧Vmに基づいて、交流モータM1(またはM2)の駆動時、後述する方法により昇圧コンバータ13のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUと、インバータ15(またはインバータ25)のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMI1(またはPWMI2)とを生成する。そして、モータトルク制御手段301は、信号PWMUを昇圧コンバータ13および温度処理手段302へ出力し、信号PWMI1(またはPWMI2)をインバータ15(またはインバータ25)へ出力する。
【0060】
温度処理手段302は、モータトルク制御手段301から信号PWMUを受けると、電圧センサー11からの電圧V1に基づいてNPNトランジスタQ1の温度TQ1を検出する。また、温度処理手段302は、電圧変換制御手段303から信号PWMDを受けると、電圧センサー12からの電圧V2に基づいてNPNトランジスタQ2の温度TQ2を検出する。そして、温度処理手段302は、検出した温度TQ1またはTQ2を昇圧コンバータ13を冷却する冷却水の温度Twと推定し、その推定した温度Twを外部ECUへ出力する。
【0061】
電圧変換制御手段303は、回生制動時、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMC1を生成してインバータ15へ出力する。また、電圧変換制御手段303は、回生制動時、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM2が発電した交流電圧を直流電圧に変換するための信号PWMC2を生成してインバータ25へ出力する。
【0062】
さらに、電圧変換制御手段303は、回生制動時、信号RGEを外部ECUから受けると、インバータ15または25から供給された直流電圧を降圧するための信号PWMDを生成して昇圧コンバータ13および温度処理手段302へ出力する。このように、昇圧コンバータ13は、直流電圧を降圧するための信号PWMDにより電圧を降下させることもできるので、双方向コンバータの機能を有するものである。
【0063】
図5は、モータトルク制御手段301の機能ブロック図である。図5を参照して、モータトルク制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、インバータ入力電圧指令演算部50と、コンバータ用デューティー比演算部52と、コンバータ用PWM信号変換部54とを含む。
【0064】
モータ制御用相電圧演算部40は、昇圧コンバータ13の出力電圧Vm、すなわち、インバータ15への入力電圧を電圧センサー14から受け、交流モータM1の各相に流れるモータ電流MCRT1を電流センサー24から受け、トルク指令値TR1を外部ECUから受ける。そして、モータ制御用相電圧演算部40は、これらの入力される信号に基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0065】
また、モータ制御用相電圧演算部40は、昇圧コンバータ13の出力電圧Vm、すなわち、インバータ25への入力電圧を電圧センサー14から受け、交流モータM2の各相に流れるモータ電流MCRT2を電流センサー28から受け、トルク指令値TR2を外部ECUから受ける。そして、モータ制御用相電圧演算部40は、これらの入力される信号に基づいて、交流モータM2の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0066】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ15の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMI1を生成し、その生成した信号PWMI1をインバータ15の各NPNトランジスタQ3〜Q8へ出力する。
【0067】
これにより、インバータ15の各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出力するように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TR1に応じたモータトルクが出力される。
【0068】
また、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ25の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMI2を生成し、その生成した信号PWMI2をインバータ25の各NPNトランジスタQ3〜Q8へ出力する。
【0069】
これにより、インバータ25の各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM2が指令されたトルクを出力するように交流モータM2の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TR2に応じたモータトルクが出力される。
【0070】
一方、インバータ入力電圧指令演算部50は、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいてインバータ入力電圧の最適値(目標値)、すなわち、電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comをコンバータ用デューティー比演算部52へ出力する。
【0071】
コンバータ用デューティー比演算部52は、電圧センサー10からの直流電圧(「バッテリ電圧」とも言う。)Vbに基づいて、電圧センサー14からの出力電圧Vmをインバータ入力電圧指令演算部50からの電圧指令Vdc_comに設定するためのデューティー比を演算し、その演算したデューティー比をコンバータ用PWM信号変換部54へ出力する。
【0072】
コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比に基づいて昇圧コンバータ13のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUを生成する。そして、コンバータ用PWM信号変換部54は、生成した信号PWMUを昇圧コンバータ13のNPNトランジスタQ1,Q2へ出力する。
【0073】
なお、昇圧コンバータ13の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
【0074】
昇圧コンバータ13の冷却水の温度Twを推定する方法について説明する。昇圧コンバータ13は、直流電圧Vbを出力電圧Vmに昇圧する場合、信号PWMUを制御装置30から受ける。そして、信号PWMUは、図6に示すように信号PWMU1と信号PWMU2とから成る。信号PWMU1は、NPNトランジスタQ1をオフするための信号である。また、信号PWMU2は、NPNトランジスタQ2を所定のデューティー比でオン/オフするための信号である。
【0075】
したがって、昇圧コンバータ13が昇圧動作を行なう場合、NPNトランジスタQ1はオフされ、NPNトランジスタQ2は、所定のデューティー比でオン/オフされる。すなわち、図7を参照して、NPNトランジスタQ2がオンされた期間、直流電源Bからの直流電流は、矢印21で示すようにリアクトルL1およびNPNトランジスタQ2を流れ、リアクトルL1に電力が蓄積される。そして、NPNトランジスタQ2がオフされた期間、直流電流は、矢印22で示すようにリアクトルL1およびダイオードD1を介してコンデンサC2へ流れる。
【0076】
このように、昇圧コンバータ13が電圧を昇圧する場合、NPNトランジスタQ1は常時オフされている。
【0077】
一方、昇圧コンバータ13は、インバータ15または25からの直流電圧を降圧して直流電源Bを充電する場合、制御装置30から信号PWMDを受ける。そして、信号PWMDは、図6に示すように信号PWMD1と信号PWMD2とから成る。信号PWMD1は、NPNトランジスタQ1を常時オンするための信号である。また、信号PWMD2は、NPNトランジスタQ2を常時オフするための信号である。
【0078】
したがって、昇圧コンバータ13が降圧動作を行なう場合、NPNトランジスタQ1は常時オンされており、NPNトランジスタQ2は、常時オフされている。すなわち、図8を参照して、インバータ15または25からの直流電流は、矢印23で示すようにNPNトランジスタQ1およびリアクトルL1を流れ、直流電源Bに供給される。
【0079】
このように、昇圧コンバータ13が電圧を降圧する場合、NPNトランジスタQ1は常時オンされており、NPNトランジスタQ2は常時オフされている。
【0080】
そこで、この発明においては、昇圧コンバータ13が昇圧動作を行なう場合、常時オフされているNPNトランジスタQ1に近接して配置されたダイオードDd1の両端の電圧V1を電圧センサー11により検出する。また、昇圧コンバータ13が降圧動作を行なう場合、常時オフされているNPNトランジスタQ2に近接して配置されたダイオードDd2の両端の電圧V2を電圧センサー12により検出する。
【0081】
一般に、ダイオードの両端の電圧は、そのダイオードの温度によって決定され、図9に示す関係を有する。すなわち、ダイオードの両端の電圧は、ダイオードの温度と直線k1によって示される関係を有する。そして、両端の電圧は、温度が高くなるに従って低下する。
【0082】
したがって、ダイオードの両端の電圧を検出すれば、ダイオードの温度を図9に示す関係から検出することができる。
【0083】
そして、ダイオードDd1は、同一基板20上にNPNトランジスタQ1に近接して配置されているので、NPNトランジスタQ1がオフされているとき、ダイオードDd1の温度はNPNトランジスタQ1の温度と等しくなる。また、ダイオードDd2は、同一基板20上にNPNトランジスタQ2に近接して配置されているので、NPNトランジスタQ2がオフされているとき、ダイオードDd2の温度はNPNトランジスタQ2の温度と等しくなる。
【0084】
そこで、昇圧コンバータ13が昇圧動作を行なう場合、常時オフされているNPNトランジスタQ1に近接して配置されたダイオードDd1の両端の電圧V1を検出し、その検出した電圧V1に基づいて図9に示す直線k1の関係からダイオードDd1の温度=NPNトランジスタQ1の温度TQ1を検出する。
【0085】
また、昇圧コンバータ13が降圧動作を行なう場合、常時オフされているNPNトランジスタQ2に近接して配置されたダイオードDd2の両端の電圧V2を検出し、その検出した電圧V2に基づいて図9に示す直線k1の関係からダイオードDd2の温度=NPNトランジスタQ2の温度TQ2を検出する。
【0086】
したがって、制御装置30の温度処理手段302は、図9の直線k1によって示される関係をマップとして保持しており、モータトルク制御手段301から信号PWMUを受けると、昇圧コンバータ13が昇圧動作モードにあることを認識し、電圧センサー11からの電圧V1に基づいて、保持したマップを参照してNPNトランジスタQ1の温度TQ1を検出する。また、温度処理手段302は、電圧変換制御手段303から信号PWMDを受けると、昇圧コンバータ13が降圧動作モードにあることを認識し、電圧センサー12からの電圧V2に基づいて、保持したマップを参照してNPNトランジスタQ2の温度TQ2を検出する。
【0087】
そして、温度処理手段302は、検出した温度TQ1またはTQ2を昇圧コンバータ13の冷却水の温度Twと推定する。NPNトランジスタQ1,Q2がオフされている場合、NPNトランジスタQ1,Q2の温度TQ1,TQ2は、冷却水の温度とよく一致するので、NPNトランジスタQ1,Q2の温度TQ1,TQ2を冷却水の温度と推定することにしたものである。
【0088】
このように、この発明は、オフされているNPNトランジスタQ1(またはQ2)の温度TQ1(またはTQ2)を検出し、その検出した温度TQ1(またはTQ2)を冷却水の温度Twと推定することを特徴とする。
【0089】
また、この発明は、昇圧コンバータ13が昇圧動作を行なっているときNPNトランジスタQ1の温度TQ1をダイオードDd1の両端の電圧V1に基づいて検出し、昇圧コンバータ13が降圧動作を行なっているときNPNトランジスタQ2の温度TQ2をダイオードDd2の両端の電圧V2に基づいて検出する。つまり、この発明は、電圧の昇圧時と電圧の降圧時とでは、異なるNPNトランジスタの温度に基づいて冷却水の温度Twを推定することを特徴とする。
【0090】
再び、図1を参照して、モータ駆動装置100の全体動作について説明する。全体動作が開始されると、制御装置30は、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2がオンされる。直流電源Bは直流電圧をシステムリレーSR1,SR2を介して昇圧コンバータ13へ出力する。
【0091】
電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。また、電圧センサー14は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30へ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRT1を検出して制御装置30へ出力し、電流センサー28は、交流モータM2に流れるモータ電流MCRT2を検出して制御装置30へ出力する。そして、制御装置30は、外部ECUからトルク指令値TR1,2、およびモータ回転数MRN1,2を受ける。
【0092】
そうすると、制御装置30は、直流電圧Vb、出力電圧Vm、モータ電流MCRT1、トルク指令値TR1およびモータ回転数MRN1に基づいて、上述した方法により信号PWMI1を生成し、その生成した信号PWMI1をインバータ15へ出力する。また、制御装置30は、直流電圧Vb、出力電圧Vm、モータ電流MCRT2、トルク指令値TR2およびモータ回転数MRN2に基づいて、上述した方法により信号PWMI2を生成し、その生成した信号PWMI2をインバータ25へ出力する。
【0093】
さらに、制御装置30は、インバータ15(または25)が交流モータM1(またはM2)を駆動するとき、直流電圧Vb、出力電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)、およびモータ回転数MRN1(またはMRN2)に基づいて、昇圧コンバータ13のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ13へ出力する。
【0094】
そうすると、NPNトランジスタQ1は、信号PWMU1(信号PWMUを構成する信号)に応じてオフされ、NPNトランジスタQ2は、信号PWMU2(信号PWMUを構成する信号)に応じてオン/オフされ、昇圧コンバータ13は、NPNトランジスタQ2がオンされた期間に応じて直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をノードN1,N2を介してコンデンサC2に供給する。そして、インバータ15は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMI1によって交流電圧に変換して交流モータM1を駆動する。また、インバータ25は、コンデンサC2によって平滑化された直流電圧を制御装置30からの信号PWMI2によって交流電圧に変換して交流モータM2を駆動する。これによって、交流モータM1は、トルク指令値TR1によって指定されたトルクを発生し、交流モータM2は、トルク指令値TR2によって指定されたトルクを発生する。
【0095】
また、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置30は、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMC1,2を生成してそれぞれインバータ15,25へ出力し、信号PWMDを生成して昇圧コンバータ13へ出力する。
【0096】
そうすると、インバータ15は、交流モータM1が発電した交流電圧を信号PWMC1に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ13へ供給する。また、インバータ25は、交流モータM2が発電した交流電圧を信号PWMC2に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ13へ供給する。そして、昇圧コンバータ13は、コンデンサC2からの直流電圧をノードN1,N2を介して受け、その受けた直流電圧を信号PWMDによって降圧し、その降圧した直流電圧を直流電源Bに供給する。これにより、交流モータM1またはM2によって発電された電力が直流電源Bに充電される。
【0097】
上述したようにモータ駆動装置100が動作している期間、電圧センサー11は、ダイオードDd1の両端の電圧V1を検出して制御装置30へ出力し、電圧センサー12は、ダイオードDd2の両端の電圧V2を検出して制御装置30へ出力する。そして、制御装置30は、昇圧コンバータ13が昇圧動作を行なっているとき、電圧センサー11からの電圧V1に基づいてNPNトランジスタQ1の温度TQ1を検出し、その検出した温度TQ1を昇圧コンバータ13の冷却水の温度Twと推定して外部ECUへ出力する。
【0098】
また、制御装置30は、昇圧コンバータ13が降圧動作を行なっているとき、電圧センサー12からの電圧V2に基づいてNPNトランジスタQ2の温度TQ2を検出し、その検出した温度TQ2を昇圧コンバータ13の冷却水の温度Twと推定して外部ECUへ出力する。
【0099】
このように、この発明においては、オフされたNPNトランジスタQ1(またはQ2)の温度TQ1(またはTQ2)を検出し、その検出した温度TQ1(またはTQ2)を昇圧コンバータ13の冷却水の温度Twと推定する。したがって、NPNトランジスタQ1,Q2がオフされた直後においても冷却水の温度を精度良く推定できる。
【0100】
なお、上述したモータ駆動装置100によって駆動される2つの交流モータM1,M2のうち、1つのモータを後輪駆動用に用い、他のモータを前輪駆動用に用いてもよい。また、遊星ギア機構を用いたハイブリッド自動車としては、1つのモータジェネレータを遊星ギア機構のサンギアに接続し、エンジンを遊星ギア機構のキャリアに接続し、もう1つのモータジェネレータをリングギアに接続するものも公知であるが、この発明は、このようなハイブリッド自動車にも適用できる。
【0101】
また、この発明においては、リアクトルL1およびNPNトランジスタQ2は、「昇圧回路」を構成する。
【0102】
さらに、この発明においては、NPNトランジスタQ1およびリアクトルL1は、「降圧回路」を構成する。
【0103】
さらに、この発明においては、電圧センサー11,12、昇圧コンバータ13および制御装置30は、「電圧変換装置」を構成する。
【0104】
さらに、この発明においては、ダイオードDd1,Dd2、電圧センサー11,12および温度処理手段302は、NPNトランジスタQ1,Q2の温度を検出する「検出手段」を構成する。
【0105】
さらに、この発明においては、配水管84およびフィン821は、NPNトランジスタQ1,Q2を冷却する「冷却手段」を構成する。
【0106】
さらに、上記においては、昇圧コンバータ13およびインバータ15,25は、NPNトランジスタにより構成されると説明したが、この発明においては、これに限らず、MOSトランジスタおよびIGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子によって構成されていればよい。
【0107】
さらに、上記においては、交流モータが2個の場合について説明したが、この発明は、これに限らず、交流モータが1個の場合についても適用可能である。
【0108】
この発明の実施の形態によれば、電圧変換装置は、オフされたNPNトランジスタQ1(またはQ2)に近接して配置されたダイオードDd1(またはDd2)の両端の電圧V1(またはV2)に基づいて、オフされたNPNトランジスタQ1(またはQ2)の温度TQ1(またはTQ2)を検出し、その検出した温度TQ1(またはTQ2)を昇圧コンバータ13の冷却水の温度Twと推定する温度処理手段を備えるので、NPNトランジスタがオフされた直後においても冷却水の温度を精度良く推定できる。
【0109】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 この発明の実施の形態による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図2】 図1に示す昇圧コンバータおよびインバータを搭載したPCUの平面図である。
【図3】 図1に示す昇圧コンバータを構成するNPNトランジスタおよびダイオードの配置を示す斜視図である。
【図4】 図1に示す制御装置の機能ブロック図である。
【図5】 図4に示すモータトルク制御手段の機能ブロック図である。
【図6】 信号のタイミングチャートである。
【図7】 昇圧コンバータが昇圧動作を行なう場合の電流の流れを示す回路図である。
【図8】 昇圧コンバータが降圧動作を行なう場合の電流の流れを示す回路図である。
【図9】 ダイオードの両端の電圧と温度との関係を示す図である。
【図10】 従来のモータ駆動装置の概略ブロック図である。
【符号の説明】
10〜12,14,320 電圧センサー、13 昇圧コンバータ、15,25,330 インバータ、16 U相アーム、17 V相アーム、18 W相アーム、20 基板、21〜23 矢印、24,28 電流センサー、30 制御装置、40 モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、50 インバータ入力電圧指令演算部、52 コンバータ用デューティー比演算部、54 コンバータ用PWM信号変換部、100,300 モータ駆動装置、301 モータトルク制御手段、302 温度処理手段、303 電圧変換制御手段、310 双方向コンバータ、B 直流電源、SR1,SR2 システムリレー、C1,C2 コンデンサ、L1,311 リアクトル、Q1〜Q8,312,313 NPNトランジスタ、D1〜D8,Dd1,Dd2,314,315 ダイオード、M1,M2 交流モータ。

Claims (7)

  1. 電圧の昇圧動作および降圧動作を行なう昇降圧チョッパ回路に用いられる第1および第2のスイッチング素子と、
    前記第1および第2のスイッチング素子を水冷する冷却手段と、
    前記第1および第2のスイッチング素子の温度を検出する検出手段と、
    前記検出手段により検出された温度に基づいて冷却水温を推定する推定手段とを備え、
    前記推定手段は、前記電圧の昇圧動作の間、オフされたスイッチング素子の温度、または前記電圧の降圧動作の間、オフされたスイッチング素子の温度に基づいて冷却水温を推定する、電圧変換装置。
  2. 前記推定手段は、前記電圧の昇圧動作時と前記電圧の降圧動作時とでは、異なるスイッチング素子の温度に基づいて前記冷却水温を推定する、請求項1に記載の電圧変換装置。
  3. 前記推定手段は、前記電圧の昇圧動作時、昇圧回路を構成するスイッチング素子と異なるスイッチング素子の温度に基づいて前記冷却水温を推定し、前記電圧の降圧動作時、降圧回路を構成するスイッチング素子と異なるスイッチング素子の温度に基づいて前記冷却水温を推定する、請求項2に記載の電圧変換装置。
  4. 前記第1のスイッチング素子は、前記昇降圧チョッパ回路の上アームとして用いられ、
    前記第2のスイッチング素子は、前記昇降圧チョッパ回路の下アームとして用いられ、
    前記推定手段は、前記電圧の昇圧動作時、前記第1のスイッチング素子の温度に基づいて前記冷却水温を推定し、前記電圧の降圧動作時、前記第2のスイッチング素子の温度に基づいて前記冷却水温を推定する、請求項3に記載の電圧変換装置。
  5. 前記検出手段は、
    前記第1のスイッチング素子に隣接して設けられた第1のダイオードと、
    前記第2のスイッチング素子に隣接して設けられた第2のダイオードと、
    前記第1のダイオードの両端の第1の電圧を検出する第1の電圧センサーと、
    前記第2のダイオードの両端の第2の電圧を検出する第2の電圧センサーと、
    前記第1の電圧に基づいて前記第1のスイッチング素子の温度を演算し、前記第2の電圧に基づいて前記第2のスイッチング素子の温度を演算する演算処理部とを含む、請求項1から請求項4のいずれか1項に記載の電圧変換装置。
  6. 前記演算処理部は、電圧と温度との関係をマップとして保持しており、前記マップを参照して前記第1の電圧に対応する前記第1のスイッチング素子の温度を抽出し、前記マップを参照して前記第2の電圧に対応する前記第2のスイッチング素子の温度を抽出する、請求項5に記載の電圧変換装置。
  7. 前記推定手段は、前記オフされたスイッチング素子の温度をそのまま前記冷却水温と推定する、請求項1から請求項6のいずれか1項に記載の電圧変換装置。
JP2003008618A 2003-01-16 2003-01-16 電圧変換装置 Expired - Fee Related JP3918736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008618A JP3918736B2 (ja) 2003-01-16 2003-01-16 電圧変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008618A JP3918736B2 (ja) 2003-01-16 2003-01-16 電圧変換装置

Publications (2)

Publication Number Publication Date
JP2004219324A JP2004219324A (ja) 2004-08-05
JP3918736B2 true JP3918736B2 (ja) 2007-05-23

Family

ID=32898367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008618A Expired - Fee Related JP3918736B2 (ja) 2003-01-16 2003-01-16 電圧変換装置

Country Status (1)

Country Link
JP (1) JP3918736B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933676B2 (ja) * 1981-12-14 1984-08-17 旭化成株式会社 メツキ用治具の被覆用樹脂組成物
JP5092696B2 (ja) * 2007-11-06 2012-12-05 株式会社デンソー 冷却流体の温度情報取得装置
JP6135563B2 (ja) * 2014-03-14 2017-05-31 トヨタ自動車株式会社 電圧コンバータ
JP6239020B2 (ja) * 2016-03-08 2017-11-29 三菱電機株式会社 電動車両の制御装置および制御方法
WO2017203693A1 (ja) * 2016-05-27 2017-11-30 日産自動車株式会社 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
CN115313800B (zh) * 2022-05-17 2024-06-04 固赢科技(深圳)有限公司 高功率自适应电源控制系统

Also Published As

Publication number Publication date
JP2004219324A (ja) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4710588B2 (ja) 昇圧コンバータの制御装置
JP3661689B2 (ja) モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
EP1581407B1 (en) Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method
JP4640200B2 (ja) 電圧変換装置および電圧変換器の制御方法
JP4678374B2 (ja) 負荷装置の制御装置、および車両
JP4623065B2 (ja) 電圧変換装置および電圧変換方法
JP4280573B2 (ja) 負荷駆動装置
JP4220851B2 (ja) 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4052195B2 (ja) 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2007166874A (ja) 電圧変換装置
JP4013739B2 (ja) 電圧変換装置、電圧変換方法および電圧変換をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2006211886A (ja) モータ制御装置および車両
JP2007166804A (ja) モータ駆動装置およびそれを備えた車両
JP5303030B2 (ja) 電圧変換装置の制御装置、それを搭載した車両および電圧変換装置の制御方法
JP5780197B2 (ja) 電圧変換装置
JP3879528B2 (ja) 電圧変換装置
JP2006149064A (ja) 車両駆動システムおよびそれを備える車両
JP5303295B2 (ja) 車両用電力変換装置および電動車両
JP3918736B2 (ja) 電圧変換装置
JP2005045880A (ja) 負荷駆動装置および負荷駆動装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004201463A (ja) 電圧変換装置、異常検出方法、および異常検出をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4019953B2 (ja) 電圧変換装置、電圧変換方法、電力供給方法および電力供給の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2005012890A (ja) 駆動システムおよびそれを搭載した自動車
JP2004015895A (ja) 電気負荷駆動装置
JP2004194476A (ja) 電圧変換装置、異常検出方法、および異常検出をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees