WO2017202297A1 - 三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用 - Google Patents

三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用 Download PDF

Info

Publication number
WO2017202297A1
WO2017202297A1 PCT/CN2017/085519 CN2017085519W WO2017202297A1 WO 2017202297 A1 WO2017202297 A1 WO 2017202297A1 CN 2017085519 W CN2017085519 W CN 2017085519W WO 2017202297 A1 WO2017202297 A1 WO 2017202297A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular
imm
vascular inflammation
mice
triacetyl
Prior art date
Application number
PCT/CN2017/085519
Other languages
English (en)
French (fr)
Inventor
朱海波
王敏杰
Original Assignee
江苏天士力帝益药业有限公司
中国医学科学院药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天士力帝益药业有限公司, 中国医学科学院药物研究所 filed Critical 江苏天士力帝益药业有限公司
Priority to KR1020187035525A priority Critical patent/KR102483150B1/ko
Priority to RU2018143953A priority patent/RU2783498C2/ru
Priority to US16/303,739 priority patent/US11324768B2/en
Priority to EP17802143.2A priority patent/EP3466433B1/en
Priority to CA3025109A priority patent/CA3025109A1/en
Priority to JP2018560192A priority patent/JP7442263B2/ja
Priority to AU2017270864A priority patent/AU2017270864B2/en
Publication of WO2017202297A1 publication Critical patent/WO2017202297A1/zh
Priority to ZA2018/08646A priority patent/ZA201808646B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate

Definitions

  • the present invention relates to the use of triacetyl-3-hydroxyphenyladenosine and a pharmaceutical composition containing the same for the preparation of a medicament for preventing and/or treating vascular inflammation or/and for improving endothelial dysfunction, and belongs to the field of medical and health care.
  • ED endothelial dysfunction
  • Endothelial cells regulate the maintenance of vascular homeostasis by promoting vasodilation, inhibiting smooth muscle proliferation, and inhibiting intravascular inflammatory responses. These effects are mainly affected by the endogenous vasodilator Nitric Oxide (NO). Impaired NO production leads to endothelial dysfunction, which is manifested by impaired endothelium-dependent diastolic function. Improving vascular endothelial dysfunction is extremely important for the prevention and treatment of atherosclerosis, hypertension, and diabetes.
  • NO vasodilator Nitric Oxide
  • statins reduce endothelial risk in patients with coronary heart disease by improving endothelial dysfunction independently of their effects on blood lipids.
  • Thiazolidinediones and angiotensin-converting enzyme inhibitors reduce heart by independently improving endothelial dysfunction.
  • the risk of vascular disease, therefore reducing vascular inflammation and improving endothelial dysfunction is extremely important in reducing the risk of cardiovascular disease.
  • the drugs that can improve the vascular endothelial function in clinical practice include statins, metformin, thiazolidinedione, antihypertensive angiotensin-converting enzyme inhibitors and other traditional cardiovascular diseases, mainly by increasing nitric oxide. Enzyme activity increases NO production.
  • adverse reactions such as myalgia caused by long-term use of statins make it difficult for patients to withstand long-term tolerance.
  • Bismuth drugs may cause gastrointestinal disorders or occasionally cause lactic acidosis.
  • Thiazolidine derivatives may cause fluid retention or weight gain. Serious side effects such as liver dysfunction, so care must be taken when using it.
  • Triacetyl-3-hydroxyphenyladenosine (Patent No. ZL200980101131.6) is a new structural type compound that has significant lipid-lowering activity in cordycepin derivatives from the Institute of Materia Medica, Chinese Academy of Medical Sciences, and has small toxic and side effects. Good pharmacokinetic properties, etc., currently in the preclinical research stage. There are no reports of the use of this compound in diseases associated with reducing vascular inflammation and increasing endothelial nitric oxide synthase activity to improve vascular endothelial dysfunction.
  • One technical problem to be solved by the present invention is to provide the use of triacetyl-3-hydroxyphenyladenosine as shown in formula (I) for the preparation of a medicament for preventing, alleviating or treating vascular inflammation or endothelial dysfunction.
  • a first aspect of the present invention provides a use of the triacetyl-3-hydroxyphenyl adenosine represented by the formula (I) for the preparation of a medicament for preventing and/or treating vascular inflammation,
  • the vascular inflammation comprises acute vascular inflammation or chronic vascular inflammation;
  • the chronic vascular inflammation comprises vascular inflammation accompanied by hyperlipidemia.
  • a second aspect of the present invention provides a triacetyl-3-hydroxyphenyl adenosine represented by the formula (I) for use in the preparation of a medicament for preventing and/or treating vascular endothelial dysfunction,
  • the vascular endothelial dysfunction includes hyperlipidemia, atherosclerosis, hypertension, coronary heart disease, obesity, insulin resistance or vascular endothelial dysfunction associated with type 2 diabetes.
  • the triacetyl-3-hydroxyphenyladenosine of the present invention can improve endothelial dysfunction by inhibiting inflammatory reaction of leukocyte-endothelial cells in blood vessels, increasing endothelial nitric oxide synthase activity, increasing NO production and Related diseases.
  • a third aspect of the present invention provides a pharmaceutical composition for use in the preparation of a medicament for preventing, alleviating or treating vascular inflammation or endothelial dysfunction, characterized in that the pharmaceutical composition comprises the formula (I) Triacetyl-3-hydroxyphenyl adenosine and a pharmaceutically acceptable carrier,
  • said vascular inflammation comprises acute vascular inflammation or chronic vascular inflammation; said vascular endothelial dysfunction comprising hyperlipidemia, atherosclerosis, hypertension, coronary heart disease, obesity, insulin resistance or type 2 diabetes Endothelial dysfunction.
  • chronic vascular inflammation includes vascular inflammation accompanied by hyperlipidemia.
  • the pharmaceutical composition can be prepared according to methods well known in the art. Any dosage form suitable for human or animal use can be prepared by combining a compound of the invention with one or more pharmaceutically acceptable solid or liquid excipients and/or adjuvants.
  • the content of the compound of the present invention in its pharmaceutical composition is usually from 0.1 to 95% by weight.
  • the pharmaceutical composition of the present invention is in the form of a tablet, a capsule, a pill, an injection, a sustained release preparation, a controlled release preparation or various microparticle delivery systems.
  • Triacetyl-3-hydroxyphenyladenosine can reduce vascular inflammation and increase endothelial nitric oxide synthase activity, improve vascular endothelial dysfunction or its related diseases, independent of its lipid-lowering effect, ie, and the compound There is no correlation between lipid lowering effects.
  • Figure 2IMM-H007 alleviates vascular inflammation in high-fat fed ApoE -/- mice
  • Example 1 Triacetyl-3-hydroxyphenyl (IMM-H007) inhibits early intravascular inflammation in mice with endothelial dysfunction
  • 1.IMM-H007 inhibits vascular inflammation induced by TNF- ⁇ in acute mice (acute inflammation model)
  • IMM-H007 developed by the Institute of Medicine, Chinese Academy of Medical Sciences), metformin hydrochloride tablets (Sino-American Shanghai Squibb Pharmaceutical Co., Ltd.), A769662 (Shanghai Muxiang Biotechnology Co., Ltd.), Murine TNF- ⁇ (Peprotech, INC), Rhodamine-6G (sigma), Pentobarbital Sodium (Serva), sodium carboxymethyl cellulose (Sinopeol Chemicals Co., Ltd.); Dynamic Visual Microvascular Research System (Gene&I-SMC1)
  • mice 60 C57BL/6J mice were randomly divided into 6 groups according to their body weight: normal control group, model control group, IMM-H007 group, positive control AMPK agonist group metformin, A769662 group and atorvastatin group.
  • IMM-H007 100 mg/kg
  • metformin Metalformin, 260 mg/kg
  • atorvastatin lipitor, 10 mg/kg
  • intraperitoneal injection of A769662 (30 mg/kg, difficult to absorb orally
  • TNF- ⁇ 0.3 ⁇ g/only
  • the optic nerve plexus vein was injected.
  • 0.05% Rhodamine-6G 100 ⁇ l of fluorescently labeled leukocytes were injected.
  • the mice were anesthetized with pentobarbital sodium, and the right side of the mouse was fixed on the observation table. A small opening was cut along the abdominal cavity, the mesenteric vascular bed was gently pulled out, the mouse small intestine was fixed in the observation window, and the microscope was opened. Find a clear third-order mesenteric vein under the microscope, then adjust it to 20 times the high power microscope.
  • Leukocyte movement rate (the rate of leukocyte movement is slowed down, and an inflammatory reaction occurs in the reaction vessel, given After the corresponding drug, the change of the rate of leukocyte movement after administration was observed, and the inhibitory effect of the drug on the inflammatory reaction was observed. ): Each mouse was selected for three sections of mesenteric venules. Image pro 6.0 was used to analyze the rate of leukocyte movement. At least 3 observation points were selected for each observation field. Finally, at least 9 observation points were counted for each mouse, and the average was obtained. Calculate the average rate of white blood cell movement.
  • the number of leukocyte-endothelial cell adhesion (increased number of leukocyte adhesions reflects an increase in intravascular inflammatory response, which may cause endothelial dysfunction): The number of leukocyte adhesions is observed at 200 ⁇ m per segment of blood vessels (adhered to endothelial cells within 30 seconds) Adhesion is adhesion).
  • the experimental results are expressed as mean ⁇ SD.
  • the t-student test was performed using Graphpad Prism software, and the difference between groups was performed by one way-ANOVA parameter analysis of variance or non-parametric LSD-t test. P ⁇ 0.05 indicates statistical difference, and P ⁇ 0.01 was significantly different.
  • Inflammatory factors such as TNF- ⁇ cause slowing of intravascular leukocyte movement, and increased white blood cell-endothelial cell adhesion is an important cause of endothelial dysfunction. Endothelial dysfunction can aggravate vascular injury.
  • the results showed that compared with the normal control group, acute intravascular inflammation occurred 4 hours after intraperitoneal injection of TNF- ⁇ (0.3 ⁇ g/mouse), and the white blood cell movement rate decreased and the number of leukocyte adhesion increased in the model control group.
  • IMM-H007 After administration of IMM-H007 (100 mg/kg), the leukocyte movement rate was significantly accelerated and the number of endothelial cell adhesion was significantly decreased compared with the model control group, indicating that IMM-H007 can alleviate the intravascular inflammation induced by the inflammatory factor TNF- ⁇ . (Results are shown in Table 1, Figure 1)
  • IMM-H007 inhibits intravascular inflammatory response induced by TNF- ⁇ in acute mice
  • IMM-H007 developed by the Institute of Medicine, Chinese Academy of Medical Sciences), metformin hydrochloride tablets (Sino-American Shanghai Squibb Pharmaceutical Co., Ltd.), A769662 (Shanghai Muxiang Biotechnology Co., Ltd.), Rhodamine-6G (sigma), Pentobarbital Sodium (Serva), Carboxymethylcellulose sodium (National Pharmaceutical Group Chemical Reagent Co., Ltd.), Mouse TNF- ⁇ ELISA Kit (Andy gene), Mouse VCAM-1 ELISA Kit (Andy gene); Dynamic Visual Microvascular Research System (Gene&I-SMC1), BioTeK Epoch microplate reader.
  • C57BL/6 background ApoE -/- mice male, 6-8 weeks old, 18-20 g
  • C57BL/6 mice were purchased from the Institute of Zoology of the Chinese Academy of Medical Sciences (Beijing Huakang Biotechnology Co., Ltd.).
  • mice were fed ad libitum for 1 week and were randomly divided into 4 groups according to body weight: model control group, A769662 (30 mg/kg, ip), metformin (260 mg/kg), and IMM-H007 (100 mg/kg).
  • 7 rats were given high-fat diet (78.6% basic diet, 10% lard, 1.00% cholesterol, 10% egg yolk powder, 0.4% bile salt), and administered intragastrically according to 0.1 ml/10 g body weight. week.
  • Anesthetize sodium pentobarbital 60mg/kg body weight
  • fix the right side of the mouse on the observation table cut a small opening along the abdominal cavity, gently pull out the mesenteric vascular bed, and fix the small intestine of the mouse to the observation window.
  • Leukocyte movement rate (2) Leukocyte-endothelial cell adhesion number
  • the experimental results are expressed as mean ⁇ SD.
  • the t-student test was performed using Graphpad Prism software, and the difference between groups was performed by one way-ANOVA parameter analysis of variance or non-parametric LSD-t test. P ⁇ 0.05 indicates statistical difference, and P ⁇ 0.01 was significantly different.
  • High-fat diet increases blood LDL cholesterol, stimulates endothelial cells to cause inflammation, leads to slower white blood cell movement, increased white blood cell-endothelial cell adhesion, and causes endothelial dysfunction, which may lead to atherosclerosis.
  • IMM-H007 100 mg/kg
  • the leukocyte movement rate was significantly accelerated and the number of endothelial cell adhesion was significantly decreased compared with the model control group, indicating that IMM-H007 significantly inhibited the high-fat-fed ApoE -/- mouse leukocyte-endothelium.
  • the cellular inflammatory response alleviates vascular inflammation caused by high fat (see Table 2, Figure 2 for the results).
  • C57BL/6 background ApoE -/- mice male, 6-8 weeks old, 18-20 g
  • C57BL/6 mice were purchased from Beijing Huakang Biotechnology Co., Ltd.
  • Animals were fed ad libitum for 1 week and were randomly divided into 7 groups according to body weight: normal control group, model control group A769662 (30 mg/kg) administration group, metformin (260 mg/kg) administration group, IMM-H007 low, medium, High dose group (50, 100, 200mg/kg), 8 rats in each group, given high fat diet (78.6% basic feed, 10% lard, 1.00% cholesterol, 10% egg yolk powder, 0.4% bile salt), Administered according to 0.1ml/10g body weight, The atherosclerosis model was established by continuous administration for 8 weeks.
  • the proximal end is connected to the P1 end, the P2 end of the blood vessel is fixed, and the coil is tightened.
  • the balanced blood vessels slowly rose from 10 mmHg to 60 mmHg, each step being 300 s.
  • the solution in the bath was drained, and the blood vessels were stimulated (10 ml) with a pre-warmed KPSS solution at 37 °C for 2 min to observe changes in vasoconstriction, and then the blood vessels were eluted to the baseline using PSS solution. 60 mmHg Balanced at 37 ° C for 45 minutes, changing every 20 minutes.
  • the experiment was started: the vasodilation response caused by 10 -10 ⁇ 10 -5 MAch after pre-contraction of 2 ⁇ M phenylephrine was observed, and the effect of the drug on vascular endothelial function was evaluated.
  • LD 1 is the diameter of the vasodilatation after administration of different concentrations of Ach or sodium nitroprusside
  • LD 2 is the diameter of the blood vessel after pre-contraction of phenylephrine
  • LD 3 is the maximum diastolic diameter of the blood vessel without any stimulating agent.
  • % Relaxation (LD 1 - LD 2 ) / (LD 3 - LD 2 ) ⁇ 100.
  • mice were anesthetized, and the thoracic aorta was quickly taken from the chest.
  • the surrounding tissue was carefully removed, and the blood vessel ring was cut into a length of about 3 mm.
  • the blood vessel was carefully attached to the tension transducer, and the initial tension was 0.5 g, and the balance was over 90 minutes.
  • the fluid was changed every 20 minutes, and the ventilation was maintained to maintain the temperature at 37 °C.
  • the mixture was equilibrated for about 1 hour and stimulated twice with saturated KCl (60 mM) to detect whether the blood vessel was active. Immediately after the vasoconstriction is stabilized, KCl is washed away.
  • Vascular relaxation rate [vascular tension induced by PE (g) - tension of blood vessel after addition of ACh (g)] ⁇ [tension caused by PE contraction (g) - vascular base tension (g)] ⁇ 100%.
  • AMPK AMPK
  • pAMPK pAMPK
  • peNOS pAMPK
  • eNOS eNOS
  • Caveolin-1 protein The expression of AMPK, pAMPK, peNOS, eNOS and Caveolin-1 protein was detected by Western Blotting, and the activity of total nitric oxide synthase in serum was determined.
  • aortic root oil red O staining and aortic full-length oil red O staining, pathological images were analyzed by Photoshop, Image J, Image-Pro Plus software, pathological grading data using chi-square test for statistical analysis, after comparison P ⁇ 0.05, P ⁇ 0.01 was statistically different.
  • the experimental results are expressed as mean ⁇ SD.
  • the t-student test was performed using Graphpad Prism software, and the difference between groups was performed by one way-ANOVA parameter analysis of variance or non-parametric LSD-t test. P ⁇ 0.05 indicates statistical difference, and P ⁇ 0.01 was significantly different.
  • IMM-H007 was administered to the 100 mg/kg dose group for cholesterol, Triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol had no effect, and the free fatty acid was reduced to a certain extent;
  • the IMM-H007 dose group of 50 mg/kg could significantly improve the microvascular endothelial dysfunction caused by high fat without affecting the blood lipid level; the IMM-H007 dose of 100 mg/kg was not Affects cholesterol, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol, which can significantly improve endothelium-dependent relaxation induced by acetylcholine and improve endothelial dysfunction.
  • the results show that IMM-H007 can be lipid-lowering independently of it. The effect is to improve microvascular endothelial dysfunction (see Tables 5, 6 and Figure 5 for the results).
  • IMM-H007 improves endothelial function through the AMPK-eNOS pathway
  • IMM-H007 reduces the plaque area of ApoE -/- mice
  • Atherosclerosis model ApoE -/- mice were used to give high-fat diet for 10 weeks.
  • the total length of aorta and plaque accumulation in arterial roots were observed, and the effect of IMM-H007 on atherosclerosis was observed.
  • the results showed that IMM-H007 can significantly reduce the deposition of the main aortic arch and aortic plaque.
  • Aortic root section staining showed reduced lipid accumulation in the plaque, indicating that IMM-H007 improved endothelial dysfunction and relieved atherosclerosis.
  • Progress see Table 9 and Figure 8 for the results).
  • IMM-H007 developed by the Institute of Materia Medica, Chinese Academy of Medical Sciences), sodium carboxymethyl cellulose (National Pharmaceutical Group Chemical Reagent Co., Ltd.), sodium chloride, potassium chloride, magnesium sulfate, sodium bicarbonate, glucose, EDTA, acetylcholine (sigma) ), sodium nitroprusside (VETEC), R-(-) phenylephrine (Beijing Bailingwei Technology Co., Ltd.), triglyceride assay kit, total cholesterol assay kit, high-density lipoprotein cholesterol assay kit, low density Lipoprotein Cholesterol Determination Kit (Zhongsheng Beikong Biotechnology Co., Ltd.), Free Fatty Acid Detection Kit (Japan Sekisui Medical Co., Ltd.); Insulin, Glucose, Roche Blood Glucose Test Paper, Analytical Balance, Olympus SZ51 Volume Microscope, Shake Bed, spreader, in vitro microvascular pressure-d
  • Ob/Ob obese mice male, 4 weeks old mice were purchased from the Nanjing Model Animal Institute.
  • Animals were fed ad libitum for 1 week and were randomly divided into two groups according to body weight: model control group, IMM-H007 group (400 mg/kg), 10 rats in each group, fed with normal feed, and administered with 0.1 ml/10 g body weight. The drug was administered continuously for 9 weeks. Record changes in food intake and body weight, and determine routine biochemical indicators such as blood lipids and blood glucose. After 9 weeks of sampling, 3 animals in each group were taken for mesenteric arterioles to measure vascular endothelial function. Method and Example 2 the same.
  • Detection indicators (1) conventional biochemical indicators (2) vascular endothelial function
  • the experimental results are expressed as the mean value X ⁇ SD.
  • the t-student test was performed using Graphpad Prism software, and the difference between groups was performed by one way-ANOVA parameter analysis of variance or non-parametric LSD-t test. P ⁇ 0.05 indicates statistical difference, and P ⁇ 0.01 was significantly different.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Saccharide Compounds (AREA)

Abstract

2',3',5'-三-O-乙酰基-N 6-(3-羟基苯基)腺苷在制备预防和/或治疗血管炎症和血管内皮功能紊乱的药物中的应用。

Description

三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用 技术领域
本发明涉及三乙酰基-3-羟基苯基腺苷及含有其的药物组合物在制备预防和/或治疗血管炎症或/和改善内皮功能紊乱中的应用,属于医药卫生领域。
背景介绍
动脉粥样硬化、高血压、糖尿病等心血管疾病发生、进展及最后靶器官的损伤与血管内炎症及内皮功能紊乱(Endothelial dysfunction,ED)高度相关。内皮细胞通过促进血管舒张、抑制平滑肌增生及抑制血管内炎症反应等一系列血管保护作用来调控血管内稳态的维持。而这些效应主要受内源性血管舒张物质一氧化氮(Nitric Oxide,NO)的影响。NO生成障碍会导致内皮功能紊乱,表现为内皮依赖性舒张功能受损。改善血管内皮功能紊乱对防治动脉粥样硬化、高血压、糖尿病的发生和进展极为重要。临床实验表明他汀类药物通过改善内皮功能障碍降低患者冠心病风险独立于其对血脂的影响,噻唑烷二酮类及血管紧张素转化酶抑制剂均通过独立的改善内皮功能紊乱的作用而降低心血管病风险,因此减轻血管炎症和改善内皮功能紊乱对于降低心血管病风险极为重要。
目前临床上能够改善血管内皮功能的药物主要有他汀类、二甲双胍、噻唑烷二酮、抗高血压药血管紧张素转化酶抑制剂等传统心血管疾病治疗药物,其主要是通过提高一氧化氮合酶活力,增加NO生成发挥作用。但是他汀类药物长期用药引起的肌痛等不良反应使患者很难长期耐受,双胍类药物会引起胃肠障碍或偶尔引起乳酸性酸中毒,噻唑烷衍生物则会引起体液贮留或体重增加、肝功能障碍等严重副作用,因此在使用时必须谨慎。
三乙酰基-3-羟基苯基腺苷(专利号ZL200980101131.6)是中国医学科学院药物研究所在虫草素衍生物中筛选出具有显著调血脂活性的新结构类型化合物,并且具有毒副作用小、药代动力学良好等特性,目前处于临床前研究阶段。目前尚无该化合物在减轻血管炎症和提高内皮型一氧化氮合酶活性改善血管内皮功能紊乱的相关疾病中应用的报道。
发明内容
本发明要解决的一个技术问题是提供如式(Ⅰ)所示的三乙酰基-3-羟基苯基腺苷在制备预防、缓解或治疗血管炎症或内皮功能紊乱药物中的应用。
为解决本发明的技术问题,提供如下技术方案:
本发明技术方案的第一方面是提供如式(Ⅰ)所示的三乙酰基-3-羟基苯基腺苷在制备预防和/或治疗血管炎症药物中的应用,
Figure PCTCN2017085519-appb-000001
其中,所述的血管炎症包括急性血管炎症或慢性血管炎症;所述的慢性血管炎症包括高脂血症伴随的血管炎症。
本发明技术方案的第二方面是提供如式(Ⅰ)所示的三乙酰基-3-羟基苯基腺苷在制备预防和/或治疗血管内皮功能紊乱药物中的应用,
Figure PCTCN2017085519-appb-000002
其中,所述的血管内皮功能紊乱包括高脂血症、动脉粥样硬化、高血压、冠心病、肥胖、胰岛素抵抗或2型糖尿病伴随的血管内皮功能紊乱。
本发明所述的三乙酰基-3-羟基苯基腺苷通过抑制血管内白细胞-内皮细胞炎症反应,提高血管内皮型一氧化氮合酶活性,增加NO的生成,从而改善内皮功能障碍及其相关疾病。
本发明技术方案的第三方面是提供一种药物组合物在制备预防、缓解或治疗血管炎症或内皮功能紊乱药物中的应用,其特征在于,所述的药物组合物包含式(Ⅰ)所述的三乙酰基-3-羟基苯基腺苷和药学上可接受的载体,
Figure PCTCN2017085519-appb-000003
其中,所述的血管炎症包括急性血管炎症或慢性血管炎症;所述的血管内皮功能紊乱包括高脂血症、动脉粥样硬化、高血压、冠心病、肥胖、胰岛素抵抗或2型糖尿病伴随的血管内皮功能紊乱。
进一步的,所述的慢性血管炎症包括高脂血症伴随的血管炎症。
该药物组合物可根据本领域公知的方法制备。可通过将本发明化合物与一种或多种药学上可接受的固体或液体赋形剂和/或辅剂结合,制成适于人或动物使用的任何剂型。本发明化合物在其药物组合物中的含量通常为0.1-95重量%。
本发明所述药物组合物的剂型为片剂、胶囊、丸剂、注射剂、缓释制剂、控释制剂或各种微粒给药系统。
有益的技术效果:
三乙酰基-3-羟基苯基腺苷可以减轻血管炎症和提高内皮型一氧化氮合酶活性,改善血管内皮功能紊乱或其相关疾病,该作用独立于其降脂作用,即和该化合物的降脂作用没有相关性。
附图说明
图1IMM-H007抑制由TNF-α诱导急性小鼠血管内炎症反应
图2IMM-H007减轻高脂喂养ApoE-/-小鼠血管炎症反应
图3IMM-H007对ApoE-/-小鼠血脂水平的影响
图4IMM-H007对ApoE-/-小鼠血清炎症因子TNF-α、VCAM-1的影响
图5IMM-H007对ApoE-/-小鼠肠系膜微血管内皮功能的影响
图6IMM-H007对ApoE-/-小鼠主动脉血管内皮功能的影响
图7IMM-H007通过AMPK-eNOS途径改善内皮功能
图8IMM-H007减少ApoE-/-小鼠动脉斑块
图9IMM-H007改善Ob/Ob肥胖小鼠微血管内皮功能
具体实施方式
下面的实施例用来进一步说明本发明,但这并不意味着对本发明的任何限制。实施例1:三乙酰基-3-羟基苯基(IMM-H007)抑制小鼠内皮功能紊乱早期血管内炎症反应
1.IMM-H007抑制由TNF-α诱导的急性小鼠血管炎症(急性炎症模型)
实验材料及仪器
IMM-H007(中国医学科学院药物所自主研制)、盐酸二甲双胍片(中美上海施贵宝制药有限公司)、A769662(上海瀚香生物科技有限公司)、Murine TNF-α(Peprotech,INC)、Rhodamine-6G(sigma)、Pentobarbital Sodium(Serva)、羧甲基纤维素钠(国药集团化学试剂有限公司);动态可视化微血管研究系统(Gene&Ⅰ-SMC1)
动物及实验设计
SPF级野生型(WildType,WT)C57BL/6J小鼠(雄性,6-8周龄,18-20g)购自北京华阜康生物科技有限公司。
C57BL/6J小鼠60只按体重随机分为6组,分别为正常对照组、模型对照组、IMM-H007组、阳性对照AMPK激动剂组二甲双胍、A769662组及阿托伐他汀组,分别灌胃给予生理盐水、IMM-H007(100mg/kg),二甲双胍(Metformin,260mg/kg),阿托伐他汀(lipitor,10mg/kg),腹腔注射A769662(30mg/kg,口服难以吸收),连续给药7天,第8天,除空白对照组腹腔注射生理盐水外,其它各组均腹腔注射TNF-α(0.3μg/只)诱导血管内急性炎症产生,注射TNF-α4小时后,视神经血管丛静脉注射0.05%Rhodamine-6G 100μl荧光标记白细胞。戊巴比妥钠麻醉小鼠,将小鼠右侧卧固定于观察台上,沿腹腔剪开一小口,将肠系膜血管床轻轻拉出,固定小鼠小肠于观察视窗,打开显微镜,从低倍镜下找到清晰的三阶肠系膜静脉,然后调整至20倍高倍镜下观察,调整亮度及焦距最佳后,关闭白光,打开荧光,采用动态可视化微血管研究系统(Gene&Ⅰ-SMC1)ToupView软件采集各血管段1min白细胞运动视频。白细胞运动速率与白细胞-内皮细胞粘附数量反应了血管内炎症情况,是内皮功能紊乱的早期标志。
检测指标
(1)白细胞运动速率(白细胞运动速率减慢,反应血管内发生了炎症反应,给予 相应药物后观察给药后白细胞运动速率的变化而反应药物对炎症反应的抑制作用。):每只小鼠选择三段肠系膜小静脉观察,采用image pro 6.0分析白细胞运动速率,每段观察视野选择至少3个观察点,每只小鼠最终至少统计9个观察点,求取平均值,计算出白细胞平均运动速率。
(2)白细胞-内皮细胞粘附数量(白细胞粘附数量增多反应了血管内炎症反应加重,可能引起内皮功能障碍):每段血管选择200μm观察白细胞粘附数量(30秒内粘附在内皮细胞不动即为粘附)。
数据统计
实验结果以平均值Χ±SD表示。采用Graphpad Prism软件进行t-student检验,组间差异进行one way-ANOVA参数方差分析或非参数LSD-t法检验。P<0.05表示有统计学差异,P<0.01有显著差异。
实验结果
由炎症因子如TNF-α引起血管内白细胞运动速率减慢,白细胞-内皮细胞粘附数量增加是引起内皮功能紊乱的重要诱因,内皮功能紊乱会加重血管损伤。结果表明,与正常对照组相比,腹腔注射TNF-α(0.3μg/只)4小时后血管内急性炎症产生,模型对照组白细胞运动速率减慢,白细胞粘附数量增加。给予IMM-H007(100mg/kg)后,与模型对照组相比,白细胞运动速率显著加快,内皮细胞粘附数量显著降低,说明IMM-H007可以减轻由炎症因子TNF-α诱导的血管内炎症反应(结果见表1、图1)
表1 IMM-H007抑制由TNF-α诱导急性小鼠血管内炎症反应
Figure PCTCN2017085519-appb-000004
####P<0.0001与正常对照组比;***P<0.001,***P<0.0001与模型对照组比
2.IMM-H007抑制高脂喂养ApoE-/-小鼠血管内炎症反应(慢性炎症模型)
实验材料及仪器
IMM-H007(中国医学科学院药物所自主研制)、盐酸二甲双胍片(中美上海施贵宝制药有限公司)、A769662(上海瀚香生物科技有限公司)、Rhodamine-6G(sigma)、Pentobarbital Sodium(Serva)、羧甲基纤维素钠(国药集团化学试剂有限公司)、Mouse TNF-αELISAKit(Andy gene)、Mouse VCAM-1ELISAKit(Andy gene);动态可视化微血管研究系统(Gene&Ⅰ-SMC1)、BioTeK Epoch酶标仪。
动物及实验设计
C57BL/6背景的ApoE-/-小鼠(雄性,6-8周龄,18-20g)及C57BL/6小鼠购自中国医学科学院动物研究所(北京华阜康生物科技股份有限公司)。
动物适应性喂养1周后,按照体重随机分为4组:模型对照组、A769662(30mg/kg,ip)、二甲双胍(260mg/kg)、IMM-H007(100mg/kg)给药组,每组7只,给予高脂饲料(78.6%基础饲料,10%猪油,1.00%胆固醇,10%蛋黄粉,0.4%胆盐),同时按照0.1ml/10g体重灌胃给药,连续给药喂养8周。戊巴比妥钠(60mg/kg body weight)麻醉,将小鼠右侧卧固定于观察台上,沿腹腔剪开一小口,将肠系膜血管床轻轻拉出,固定小鼠小肠于观察视窗,打开显微镜,从低倍镜下找到清晰的三阶肠系膜静脉,然后调整至20倍高倍镜下观察,调整亮度及焦距最佳后,关闭白光,打开荧光,可见血管内白细胞运动,采用动态可视化微血管研究系统(Gene&Ⅰ-SMC1)ToupView软件采集各血管段1min白细胞运动视频。采用image pro 6.0分析白细胞运动速率及白细胞内皮细胞粘附数量。
检测指标
(1)白细胞运动速率(2)白细胞-内皮细胞粘附数量
数据统计
实验结果以平均值Χ±SD表示。采用Graphpad Prism软件进行t-student检验,组间差异进行one way-ANOVA参数方差分析或非参数LSD-t法检验。P<0.05表示有统计学差异,P<0.01有显著差异。
实验结果
高脂饮食使血中低密度脂蛋白胆固醇增加,刺激内皮细胞引起炎症反应,导致白细胞运动速率减慢、白细胞-内皮细胞粘附数量增加,引起内皮功能紊乱,进而可能导致动脉粥样硬化的发生。给予IMM-H007(100mg/kg)后,与模型对照组相比,白细胞运动速率显著加快,内皮细胞粘附数量显著降低,说明IMM-H007显著抑制高脂喂养ApoE-/-小鼠白细胞-内皮细胞炎症反应,减轻由高脂引起的血管 炎症(结果见表2、图2)。
表2 IMM-H007减轻高脂喂养ApoE-/-小鼠血管炎症反应
Figure PCTCN2017085519-appb-000005
P<0.05,**P<0.01,***P<0.001与模型对照组比
实施例2:三乙酰基-3-羟基苯基(IMM-H007)改善血管内皮功能
实验材料与仪器
IMM-H007(中国医学科学院药物所自主研制)、A769662(上海瀚香生物科技有限公司)、盐酸二甲双胍片(中美上海施贵宝制药有限公司)、Pentobarbital Sodium(Serva)、羧甲基纤维素钠(国药集团化学试剂有限公司)、氯化钠、氯化钾、硫酸镁、碳酸氢钠、葡萄糖、EDTA、乙酰胆碱(sigma)、硝普钠(VETEC)、R-(-)去氧肾上腺素(北京百灵威科技有限公司)、Mouse TNF-αELISA Kit(Andy gene)、Mouse VCAM-1ELISA Kit(Andy gene)、甘油三酯测定试剂盒、总胆固醇测定试剂盒、高密度脂蛋白胆固醇测定试剂盒、低密度脂蛋白胆固醇测定试剂盒(中生北控生物科技股份有限公司)、游离脂肪酸检测试剂盒(日本积水医疗株式会社);分析天平、Olympus SZ51体式显微镜、摇床、摊片机、离体微血管压力-直径测量灌流系统(Pressure Myography system-120CP)、精细显微手术镊子、精细显微手术剪刀、95%O2与5%CO2混合气、手术操作硅胶盘。
动物及实验设计
C57BL/6背景的ApoE-/-小鼠(雄性,6-8周龄,18-20g)及C57BL/6小鼠购自北京华阜康生物科技股份有限公司。
动物适应性喂养1周后,按照体重随机分为7组:正常对照组、模型对照组A769662(30mg/kg)给药组、二甲双胍(260mg/kg)给药组、IMM-H007低、中、高给药组(50、100、200mg/kg),每组8只,给予高脂饲料(78.6%基础饲料,10%猪油,1.00%胆固醇,10%蛋黄粉,0.4%胆盐),同时按照0.1ml/10g体重灌胃给药, 连续给药喂养8周,建立动脉粥样硬化模型。
检测指标
(1)IMM-H007对ApoE-/-小鼠血脂水平的影响:总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL)、高密度脂蛋白胆固醇(HDL)、游离脂肪酸(FFA)
按试剂盒说明书操作
(2)IMM-H007对ApoE-/-小鼠血清炎症因子TNF-α、VCAM-1的影响
按试剂盒说明书操作
(3)IMM-H007对ApoE-/-小鼠肠系膜微血管内皮功能的影响
按说明书配置PSS及KPSS溶液,当日使用当日配置。实验开始之前先取出PSS溶液,预充氧20min左右。高脂喂养同时给药10周的ApoE-/-小鼠,戊巴比妥钠麻醉,将小鼠仰卧固定,沿正中线打开腹腔,分离肠系膜血管床,置于预通氧20分钟的PSS缓冲液中,体视显微镜下,仔细分离一段约3mm长的三阶肠系膜小动脉。首先将血管固定于P1端玻璃插管,扎紧线圈。注意近心端连接在P1端,固定P2端血管,扎紧线圈。将Chamber放置于显微镜载物台上,查收Chamber与Interface之间的数据连接线。盖上浴槽盖,打开通氧。排除管道内空气。显微镜下找到血管图像,然后将显微镜调至相机模式。(目镜边的旋钮旋转至graph即可)。打开MyoVIEW软件。点击Camera窗口Capture开始显示血管图像。平衡血管从10mmHg缓慢升至60mmHg,每一步为300s。待平衡程序全部结束之后,排掉浴槽内的溶液,使用37℃预热的KPSS溶液对血管进行刺激(10ml)2min,观察血管收缩变化,然后使用PSS溶液洗脱血管至基线。60mmHg 37℃平衡45分钟,期间每20分钟换液一次。开始实验:观察给予2μM去氧肾上腺素预收缩后,10-10~10-5MAch引起的血管舒张反应,评价药物对血管内皮功能的影响。实验结束后,换新鲜37℃预热的PSS缓冲液平衡30min,给予2μM去氧肾上腺素预收缩后10-10~10-3M硝普钠引起的血管舒张反应,评价药物对血管平滑肌功能的影响。LD1为给予不同浓度Ach或硝普钠后血管舒张后直径,LD2为给予去氧肾上腺素预收缩后的血管直径,LD3表示不加任何刺激剂时血管的最大舒张直径。
去氧肾上腺素预收缩后给予Ach和硝普钠的舒张反应以血管外径增加百分率表示:%Relaxation=(LD1-LD2)/(LD3-LD2)×100。
(4)IMM-H007对ApoE-/-小鼠胸主动脉内皮功能的影响
小鼠麻醉,迅速胸取胸主动脉,仔细剥除周围组织,剪成3mm左右长的血管 环,小心将血管环挂到张力换能器上,给予初张力0.5g,平衡90分钟以上。在平衡过程中,每20分钟换液一次,保持通气,维持温度在37℃。平衡1小时左右,用饱和KC1(60mM)刺激两次以检测血管是否具有活性。血管收缩稳定后,立即洗掉KCl。最后一次换液后,平衡20分钟,给予苯氧肾上腺素1μM刺激血管收缩,血管收缩稳定后,累积给予乙酰胆碱(Ach,1×10-10~1×10-5)及硝普钠(SNP,10-10~10-4M)记录血管舒张曲线。
血管舒张率=[PE引起的血管张力(g)-加ACh后血管的张力(g)]÷[PE收缩引起的张力(g)-血管基础张力(g)]×100%。
(5)IMM-H007对改善内皮功能的机制探讨
Western Blotting分析检测AMPK、pAMPK、peNOS、eNOS、Caveolin-1蛋白表达量,测定血清中总一氧化氮合酶活力。
(6)IMM-H007对ApoE-/-小鼠斑块面积的影响
主动脉根部油红O染色及主动脉全长油红O染色,病理图片采用Photoshop、Image J、Image-Pro Plus软件分析,病理学分级数据使用卡方检验进行统计分析,经比较P<0.05,P<0.01具有统计学差异。
数据统计
实验结果以平均值Χ±SD表示。采用Graphpad Prism软件进行t-student检验,组间差异进行one way-ANOVA参数方差分析或非参数LSD-t法检验。P<0.05表示有统计学差异,P<0.01有显著差异。
实验结果
(1)IMM-H007对ApoE-/-小鼠血脂水平的影响
结果表明,给予高脂饲料喂养8周后,模型对照组与正常对照组比较总胆固醇、甘油三酯、低密度脂蛋白胆固醇及游离脂肪酸均升高,高密度脂蛋白胆固醇降低。IMM-H007给药50mg/kg剂量组对总胆固醇、甘油三酯、低密度脂蛋白胆固醇、游离脂肪酸均、高密度脂蛋白胆固醇均无影响;IMM-H007给药100mg/kg剂量组对胆固醇、甘油三酯、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇无影响,对游离脂肪酸有一定程度的降低;IMM-H007给药200mg/kg剂量组与模型对照组比较,总胆固醇、低密度脂蛋白、游离脂肪酸降低(结果见表3,图3)。
表3 IMM-H007对ApoE-/-小鼠血脂水平的影响
Figure PCTCN2017085519-appb-000006
#P<0.05,##P<0.01,###P<0.001,####P<0.0001与正常对照照组比;P<0.05,**P<0.01,***P<0.001与模型对照组比
(2)IMM-H007对ApoE-/-小鼠血清炎症因子TNF-α、VCAM-1的影响
结果表明,与模型对照组比较,IMM-H007的50、100、200mg/kg剂量均可减少ApoE-/-小鼠血清VCAM-1的水平,IMM-H007的50mg/kg剂量减少ApoE-/-小鼠血清TNF-α的表达,说明,给予IMM-H007可减轻血清中相关炎症因子的水平(结果见表4,图4)。
表4 IMM-H007对ApoE-/-小鼠血清炎症因子TNF-α、VCAM-1的影响
Figure PCTCN2017085519-appb-000007
P<0.05,**P<0.01,***P<0.001与模型对照组比
(3)IMM-H007对ApoE-/-小鼠肠系膜微血管内皮功能的影响
结果表明,预给予2μM去氧肾上腺素预收缩血管后,给予不同浓度梯度的(10-10~10-5M)乙酰胆碱引起的血管舒张反应,可以评价药物对血管内皮功能的影响。与模型对照组相比,IMM-H007给药50mg/kg剂量组在不影响血脂水平的情况下,可显著改善由高脂引起的微血管内皮功能紊乱;IMM-H007给药100mg/kg剂量在不影响胆固醇、甘油三酯、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇的情况下可显著改善乙酰胆碱引起的内皮依赖性舒张反应,改善内皮功能紊乱,结果说明,IMM-H007可独立于其降脂作用而改善微血管内皮功能紊乱(结果见表5、 6及图5)。
表5 IMM-H007对ApoE-/-小鼠微血管乙酰胆碱内皮依赖性舒张功能的影响
Figure PCTCN2017085519-appb-000008
P<0.05,**P<0.01模型对照组比
表6 IMM-H007对ApoE-/-小鼠微血管硝普钠非内皮依赖性舒张功能的影响
Figure PCTCN2017085519-appb-000009
(4)IMM-H007对ApoE-/-小鼠胸主动脉内皮功能的影响
结果表明,预给予1μM去甲肾上腺素预收缩血管后,给予不同浓度梯度的(10-10~10-5M)乙酰胆碱引起的血管舒张反应,可以评价药物对血管内皮功能的影响,与模型对照组相比,IMM-H007给药50mg/kg剂量组在不影响血脂水平的情况下,可显著改善由高脂引起的主动脉血管乙酰胆碱的内皮依赖性舒张反应,改善内皮功能紊乱,说明IMM-H007可独立于其降脂作用而改善血管内皮功能紊乱(结果表7、8及图6)。
表7 IMM-H007对ApoE-/-小鼠主动脉血管乙酰胆碱内皮依赖性舒张功能的影响
Figure PCTCN2017085519-appb-000010
*P<0.05,**P<0.01,***P<0.001与模型对照组比
表8 IMM-H007对ApoE-/-小鼠主动脉血管硝普钠非内皮依赖性舒张功能的影响
Figure PCTCN2017085519-appb-000011
(5)IMM-H007通过AMPK-eNOS途径改善内皮功能
采用Western Blotting分析检测AMPK、pAMPK、peNOS、eNOS、Caveolin-1蛋白表达量,测定是血清中总一氧化氮合酶活力,分析IMM-H007独立于降血脂作用改善内皮功能的可能机制。实验发现:IMM-H007主要通过激活AMPK-eNOS通路,提高了一氧化氮合酶活力,增加NO生成改善血管功能(结果见图7)。
(6)IMM-H007减少ApoE-/-小鼠斑块面积
AMPK-eNOS蛋白水平升高,血管内皮功能紊乱的改善有利于缓解动脉粥样硬化的发生和发展。本研究采用动脉粥样硬化模型ApoE-/-小鼠,给予高脂饲料喂养10周,观察主动脉全长及动脉根部斑块堆积,进而观察IMM-H007对动脉粥样硬化的作用。实验结果发现:IMM-H007能够显著减少主动脉弓部和主动脉全长斑块 的沉积,主动脉根部切片染色发现斑块部位脂质堆积减少、表明IMM-H007改善内皮功能紊乱可缓解动脉粥样硬化的进展(结果见表9及图8)。
表9 IMM-H007减少ApoE-/-主动脉全长及主动脉根部斑块面积
Figure PCTCN2017085519-appb-000012
P<0.05,**P<0.01,***P<0.001与模型对照组比
实施例3三乙酰基-3-羟基苯基(IMM-H007)改善Ob/Ob肥胖小鼠血管内皮功能实验材料与仪器
IMM-H007(中国医学科学院药物所自主研制)、羧甲基纤维素钠(国药集团化学试剂有限公司)、氯化钠、氯化钾、硫酸镁、碳酸氢钠、葡萄糖、EDTA、乙酰胆碱(sigma)、硝普钠(VETEC)、R-(-)去氧肾上腺素(北京百灵威科技有限公司)、甘油三酯测定试剂盒、总胆固醇测定试剂盒、高密度脂蛋白胆固醇测定试剂盒、低密度脂蛋白胆固醇测定试剂盒(中生北控生物科技股份有限公司)、游离脂肪酸检测试剂盒(日本积水医疗株式会社);胰岛素、葡萄糖、罗氏血糖测定试纸、分析天平、Olympus SZ51体式显微镜、摇床、摊片机、离体微血管压力-直径测量灌流系统(Pressure Myography system-120CP)、精细显微手术镊子、精细显微手术剪刀、95%O2与5%CO2混合气、手术操作硅胶盘。
动物及实验设计
Ob/Ob肥胖小鼠(雄性,4周龄)小鼠购自南京模式动物研究所。
动物适应性喂养1周后,按照体重随机分为两组:模型对照组、IMM-H007组(400mg/kg),每组10只,给予普通饲料喂养,同时按照0.1ml/10g体重灌胃给药,连续给药喂养9周。记录摄食、体重的变化,测定血脂、血糖等常规生化指标,9周取材后,每组取3只动物,取肠系膜小动脉测定血管内皮功能,方法与实施例2 相同。
检测指标(1)常规生化指标  (2)血管内皮功能
数据统计
实验结果以平均值X±SD表示。采用Graphpad Prism软件进行t-student检验,组间差异进行one way-ANOVA参数方差分析或非参数LSD-t法检验。P<0.05表示有统计学差异,P<0.01有显著差异。
实验结果
结果表明,Ob/Ob肥胖小鼠普通饲料喂养9周后,血糖与胰岛素水平测定表明形成胰岛素抵抗模型,胰岛素抵抗是导致内皮功能紊乱的重要诱因,因此,我们测定9周Ob/Ob小鼠的微血管内皮功能,研究发现:IMM-H007(400mg/kg)剂量组可以改善微血管内皮功能(实验结果见表10、11、12及图9)。
表10 IMM-H007对Ob/Ob肥胖小鼠生化指标的影响
Figure PCTCN2017085519-appb-000013
P<0.05,***P<0.001与模型组相比
表11 IMM-H007对Ob/Ob肥胖小鼠微血管乙酰胆碱内皮依赖性舒张功能的影响
Figure PCTCN2017085519-appb-000014
P<0.05,与模型对照组比
表12 IMM-H007对Ob/Ob肥胖小鼠微血管硝普钠非内皮依赖性舒张功能的影响
Figure PCTCN2017085519-appb-000015

Claims (10)

  1. 如式(Ⅰ)所示的三乙酰基-3-羟基苯基腺苷在制备预防和/或治疗血管炎症药物中的应用,
    Figure PCTCN2017085519-appb-100001
  2. 如式(Ⅰ)所示的三乙酰基-3-羟基苯基腺苷在制备预防和/或治疗血管内皮功能紊乱药物中的应用,
    Figure PCTCN2017085519-appb-100002
  3. 根据权利要求1所述的应用,其特征在于,所述的血管炎症包括急性血管炎症或慢性血管炎症。
  4. 根据权利要求3所述的应用,其特征在于,所述的慢性血管炎症包括高脂血症伴随的血管炎症。
  5. 根据权利要求2所述的应用,其特征在于,所述的血管内皮功能紊乱包括高脂血症、动脉粥样硬化、高血压、冠心病、肥胖、胰岛素抵抗或2型糖尿病伴随的血管内皮功能紊乱。
  6. 一种药物组合物在制备预防、缓解或治疗血管炎症或内皮功能紊乱药物中的应用,其特征在于,所述的药物组合物包含式(Ⅰ)所述的三乙酰基-3-羟基苯基腺苷和药学上可接受的载体,
    Figure PCTCN2017085519-appb-100003
  7. 根据权利要求6所述的应用,其特征在于,所述的血管炎症包括急性血管炎症或慢性血管炎症;所述的血管内皮功能紊乱包括高脂血症、动脉粥样硬化、高血压、冠心病、肥胖、胰岛素抵抗或2型糖尿病伴随的血管内皮功能紊乱。
  8. 根据权利要求7所述的应用,其特征在于,所述的慢性血管炎症包括高脂血症伴随的血管炎症。
  9. 根据权利要求6-8任一项所述的应用,其特征在于,所述的药物组合物为片剂、胶囊、丸剂、注射剂。
  10. 根据权利要求6-8任一项所述的应用,其特征在于,所述的药物组合物为缓释制剂、控释制剂或各种微粒给药系统。
PCT/CN2017/085519 2016-05-24 2017-05-23 三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用 WO2017202297A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020187035525A KR102483150B1 (ko) 2016-05-24 2017-05-23 혈관 염증의 치료 또는 혈관 내피 기능 개선에 있어서의 트리아세틸-3-하이드록시 페닐 아데노신의 용도
RU2018143953A RU2783498C2 (ru) 2016-05-24 2017-05-23 Пути применения триацетил-3-гидроксифениладенозина в лечении воспалительных процессов в сосудах или улучшении функций эндотелия сосудов
US16/303,739 US11324768B2 (en) 2016-05-24 2017-05-23 Applications of triacetyl-3-hydroxyl phenyl adenosine in treating vascular inflammations or improving vascular endothelium functions
EP17802143.2A EP3466433B1 (en) 2016-05-24 2017-05-23 Triacetyl-3-hydroxyl phenyl adenosine for use in treating acute vascular inflammations
CA3025109A CA3025109A1 (en) 2016-05-24 2017-05-23 Use of triacetyl-3-hydroxyl phenyl adenosine in treating vascular inflammation or improving vascular endothelium functions
JP2018560192A JP7442263B2 (ja) 2016-05-24 2017-05-23 白血球の接着を阻害する医薬の調製におけるトリアセチル-3-ヒドロキシフェニルアデノシンの使用
AU2017270864A AU2017270864B2 (en) 2016-05-24 2017-05-23 Applications of triacetyl-3-hydroxyl phenyl adenosine in treating vascular inflammations or improving vascular endothelium functions
ZA2018/08646A ZA201808646B (en) 2016-05-24 2018-12-20 Applications of triacetyl-3-hydroxyl phenyl adenosine in treating vascular inflammations or improving vascular endothelium functions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610346541.9A CN107412248A (zh) 2016-05-24 2016-05-24 三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用
CN201610346541.9 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017202297A1 true WO2017202297A1 (zh) 2017-11-30

Family

ID=60411094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085519 WO2017202297A1 (zh) 2016-05-24 2017-05-23 三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用

Country Status (9)

Country Link
US (1) US11324768B2 (zh)
EP (1) EP3466433B1 (zh)
JP (1) JP7442263B2 (zh)
KR (1) KR102483150B1 (zh)
CN (1) CN107412248A (zh)
AU (1) AU2017270864B2 (zh)
CA (1) CA3025109A1 (zh)
WO (1) WO2017202297A1 (zh)
ZA (1) ZA201808646B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874036A (zh) * 2008-10-06 2010-10-27 中国医学科学院药物研究所 三乙酰基-3-羟基苯基腺苷及其调血脂的用途
CN102125580A (zh) * 2011-01-17 2011-07-20 泰山医学院 三乙酰基-3-羟基苯基腺苷thpa在制药中的应用
CN106573072A (zh) * 2014-06-02 2017-04-19 阿尔莫生物科技股份有限公司 降低血清胆固醇的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484808A (en) 1995-02-09 1996-01-16 Eli Lilly And Company Methods of inhibiting cell-cell adhesion
CN104546887B (zh) 2013-10-09 2018-10-30 中国医学科学院药物研究所 虫草素衍生物治疗炎症疾病的用途
CN107334775A (zh) 2016-03-14 2017-11-10 中国医学科学院药物研究所 三乙酰基-3-羟基苯基腺苷在制备治疗动脉粥样硬化药物中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874036A (zh) * 2008-10-06 2010-10-27 中国医学科学院药物研究所 三乙酰基-3-羟基苯基腺苷及其调血脂的用途
CN102125580A (zh) * 2011-01-17 2011-07-20 泰山医学院 三乙酰基-3-羟基苯基腺苷thpa在制药中的应用
CN106573072A (zh) * 2014-06-02 2017-04-19 阿尔莫生物科技股份有限公司 降低血清胆固醇的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, XIANGPING: "Dyslipidemia and Dysfunction of Vascular Endothelium", FOREIGN MEDICAL SCIENCES (PATHOPHYSIOLOGY AND CLINICAL MEDICINE, vol. 18, no. 2, 28 June 1998 (1998-06-28), CN, pages 146 - 148, XP009517135, ISSN: 1001-1773 *
See also references of EP3466433A4 *

Also Published As

Publication number Publication date
CA3025109A1 (en) 2017-11-30
JP7442263B2 (ja) 2024-03-04
KR20190009321A (ko) 2019-01-28
US20200316101A1 (en) 2020-10-08
EP3466433A1 (en) 2019-04-10
ZA201808646B (en) 2020-05-27
AU2017270864A1 (en) 2018-12-06
JP2019519505A (ja) 2019-07-11
US11324768B2 (en) 2022-05-10
CN107412248A (zh) 2017-12-01
RU2018143953A (ru) 2020-06-25
AU2017270864B2 (en) 2022-08-04
KR102483150B1 (ko) 2023-01-03
EP3466433A4 (en) 2020-01-15
RU2018143953A3 (zh) 2020-06-25
EP3466433B1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
RU2281764C2 (ru) Лекарственные средства для лечения осложнений, связанных с диабетом, и невропатии и их применения
JP2014205696A (ja) 細胞ストレス応答の調節を通したアルツハイマー病および関連障害の処置のための新たな治療アプローチ
CN110191724A (zh) 纤维化的治疗
US7402611B1 (en) Use of amino acids for making medicines for treating to insulin-resistance
TWI464147B (zh) 吲哚氫胺酸和吲哚啉氫胺酸於治療心臟衰竭或神經損傷的用途
WO2016172205A1 (en) Managing ebola viral infections
JP2019521160A (ja) C反応性タンパク質関連疾患の治療のための1−メチルニコチンアミド
WO2017202297A1 (zh) 三乙酰基-3-羟基苯基腺苷在治疗血管炎症或改善血管内皮功能中的应用
EA016885B1 (ru) Применение индазолметоксиалкановой кислоты для лечения заболевания, связанного с уровнями триглицерида, холестерина и/или глюкозы и способ лечения указанных заболеваний
TW202345796A (zh) 阿替卡普蘭(aticaprant)之形式
US20240189311A1 (en) Combination Therapy of Obicetrapib and Ezetimibe for Use in Statin Intolerant Patients Suffering from Hyperlipidemia or Mixed Dyslipidaemia
WO2019152765A1 (en) N-acetylcysteine attenuates aortic stenosis progression by inhibiting shear-mediated tgf-beta activation and signaling
US9283243B2 (en) CD36 inhibition to control obesity and insulin sensitivity
RU2783498C2 (ru) Пути применения триацетил-3-гидроксифениладенозина в лечении воспалительных процессов в сосудах или улучшении функций эндотелия сосудов
EA018442B1 (ru) Применение l-карнитина для лечения гипертензии, для снижения систолического или пульсового давления крови у субъектов с предиабетом
TW202110432A (zh) 包含15—HEPE及/或15—HETrE之組合物及治療或預防心血管代謝疾病、代謝症候群及/或相關疾病之方法
TW200539859A (en) Methods for increasing neurotransmitter levels using hydroxycitric acid
JP2021502952A (ja) 間質性膀胱炎の処置方法
CN110831597A (zh) 肝细胞癌的治疗
US20240197688A1 (en) Combination medicine for preventing/treating dyslipidemia or cardiovascular disease
JP2019011320A (ja) ペマフィブラートを含有する医薬
US20240100069A1 (en) Methods and Compositions for Treating Amyotrophic Lateral Sclerosis
WO2024060359A1 (zh) 甘油磷脂类化合物在预防和治疗高血脂、动脉粥样硬化、非酒精性脂肪肝和肥胖中的用途
US20220184023A1 (en) Dicarboxylic acid esters for inducing an analgesic effect
CN117298126A (zh) 一种天然五碳糖在制备抗抑郁药物中的应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560192

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3025109

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017270864

Country of ref document: AU

Date of ref document: 20170523

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187035525

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017802143

Country of ref document: EP

Effective date: 20190102