WO2017199992A1 - 複合成形品、及びその製造方法 - Google Patents

複合成形品、及びその製造方法 Download PDF

Info

Publication number
WO2017199992A1
WO2017199992A1 PCT/JP2017/018485 JP2017018485W WO2017199992A1 WO 2017199992 A1 WO2017199992 A1 WO 2017199992A1 JP 2017018485 W JP2017018485 W JP 2017018485W WO 2017199992 A1 WO2017199992 A1 WO 2017199992A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded product
groove
resin
molded article
resin molded
Prior art date
Application number
PCT/JP2017/018485
Other languages
English (en)
French (fr)
Inventor
望月 章弘
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN201780028394.3A priority Critical patent/CN109153163B/zh
Priority to JP2017548486A priority patent/JP6499769B2/ja
Publication of WO2017199992A1 publication Critical patent/WO2017199992A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum

Definitions

  • the present invention relates to a composite molded product and a manufacturing method thereof.
  • Patent Document 1 a resin such as glass fiber is mixed with a resin constituting one molded product, and a resin, a plasma, a flame, or the like is bonded to the surface to which the resin constituting the other molded product is bonded. Processed to a thickness of 0.
  • a method has been proposed in which after removing a resin of several ⁇ m to several tens of ⁇ m, the other resin is in contact with the other resin and filled, molded, and bonded.
  • Patent Document 2 a surface of one resin molded product is irradiated with electromagnetic radiation to form a nanostructure on the surface, and then the other resin molded product is contacted with the surface and filled and molded. A method of integrating them has been proposed.
  • Patent Document 3 discloses that a minute groove is formed on the surface of a resin molded product (primary resin molded product) containing an inorganic filler to expose the inorganic filler, and a secondary molded product is formed in the minute groove.
  • the melting point of the material constituting the secondary molded product constitutes the primary resin molded product
  • the ratio of the width of the crest located between the microgrooves to the width of the microgrooves is 1: 1.5-5 (the groove width is crested).
  • the present invention has been made in view of the above-described situation. For example, even when a material having low tensile strength is used for another molded product, the resin molded product and the material having low tensile strength are used.
  • An object of the present invention is to sufficiently bond the other molded product.
  • the present inventors have made extensive studies to solve the above-described problems.
  • a part of the resin of the resin molded product containing the inorganic filler is removed, and a plurality of grooves in which the inorganic filler is exposed are formed on the surface of the resin molded product. It has been found that the surface area of the molded product is formed such that the ratio of the area of the groove occupying the region composed of the plurality of grooves and the peaks located between the plurality of grooves is within a specific range.
  • the other molded product joined to the grooved resin molded product is made of a material having a melting point lower than that of the resin constituting the one resin molded product and a tensile strength of 50% or less of the tensile strength of the resin. Even in this case, it was found that high bonding strength can be achieved, and the present invention has been completed. That is, the present invention provides the following.
  • the present invention contains an inorganic filler and is adjacent to a grooved resin molded product in which a groove in which the inorganic filler is exposed is formed, and a surface of the grooved resin molded product having the groove.
  • the present invention is the composite molded product in which the inorganic filler protrudes from the side wall of the groove and is exposed in the grooved resin molded product of the invention of (1).
  • the present invention is a composite molded product in which the grooves are formed in a lattice shape on the surface of the grooved resin molded product of the invention of (1) or (2).
  • the present invention is a composite molded article according to any one of (1) to (3), wherein the inorganic filler is a fibrous inorganic filler.
  • the present invention is a composite molded product according to any one of the inventions (1) to (4), wherein the groove is formed by laser irradiation.
  • the present invention is a composite molded product according to any one of the inventions (1) to (5), wherein the material constituting the other molded product is an elastomer.
  • the present invention is a composite molded product according to the invention of (6), wherein the elastomer is ethylene ethyl acrylate.
  • the present invention provides a resin having a melting point lower than that of the resin constituting the first resin molded product on the surface of the first resin molded product containing an inorganic filler and having a tensile strength.
  • a molding process in which a melt of the material constituting the molded article is poured and solidified A method for producing a
  • the other molded article is made of a material having a melting point lower than that of the resin constituting one resin molded article and significantly lower tensile strength than the resin constituting one resin molded article. Even if it is a case, one resin molded product and other molded products can fully be joined.
  • FIG. 1 is a schematic diagram of a grooved resin molded product manufactured in Example 1.
  • FIG. (A) is a SEM photograph of the grooved resin molded product produced in Example 1
  • (B) is a SEM photograph of the grooved resin molded product produced in Comparative Example 2.
  • 6 is a SEM photograph of a fracture surface of a grooved resin molded product produced in Example 5.
  • FIG. 1 is a schematic diagram of a grooved resin molded product manufactured in Example 1.
  • FIG. (A) is a SEM photograph of the grooved resin molded product produced in Example 1
  • (B) is a SEM photograph of the grooved resin molded product produced in Comparative Example 2.
  • 6 is a SEM photograph of a fracture surface of a grooved resin molded product produced in Example 5.
  • FIG. 1 is a schematic diagram of an enlarged cross section of a composite molded article 1 according to the present embodiment. As shown in FIG. 1, the composite molded product 1 includes a grooved resin molded product 10 and another molded product 20.
  • FIG. 2 is a view schematically showing a cross section of the grooved resin molded product 10 (also simply referred to as “resin molded product”).
  • the grooved resin molded product 10 contains an inorganic filler 11, and a plurality of grooves 12 (also simply referred to as “grooves”) from which the inorganic filler 11 is exposed are formed on the surface 10 a of the grooved resin molded product 10. ing.
  • channel 12 makes
  • the ratio (A 12 / (A 12 + A 13 )) of the groove area A 12 to the sum of the groove area A 12 and the peak area A 13 formed by the peaks 13 is 75% or more and 97% or less. It is characterized by.
  • the composite molded product 1 is formed by welding the other molded product 20 by making the surface 10a of the resin molded product 10 in which the some groove
  • the type of resin is not particularly limited as long as the groove 12 can be formed by a resin removing means such as laser irradiation or chemical treatment.
  • a resin removing means such as laser irradiation or chemical treatment.
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • PBT polybutylene terephthalate
  • POM polyacetal
  • examples of the chemical treatment include decomposition treatment with acid or alkali, dissolution treatment with a solvent, and the like.
  • an amorphous thermoplastic resin it is easy to dissolve in various solvents, but in the case of a crystalline resin, both solvents are selected and used.
  • PBT polybutylene terephthalate
  • POM polyacetal
  • the resin may be thermoplastic or thermosetting.
  • the inorganic filler 11 is not particularly limited as long as it is exposed to the groove 12 by removing a part of the resin constituting the grooved resin molded product 10 to form the groove 12.
  • the inorganic filler 11 is exposed from the side wall 12a of the formed groove 12 into the space (in the groove) of the groove 12, and the grooved resin molded product 10 and the other molded product 20 are combined with the composite molded product 1 and When it does, it plays the role of the anchor which suppresses those separation (refer FIG. 2). Further, by exposing the inorganic filler 11 to the groove 12 in this way, the inorganic filler 11 itself can be prevented from falling off from the composite molded article 1.
  • the inorganic filler 11 is not particularly limited, and examples thereof include glass fiber, carbon fiber, whisker fiber, glass flake, and mica.
  • the length of the inorganic filler 11 is preferably such that the length in the longitudinal direction is longer than the length in the short direction of the groove 12 (width direction in the sectional view of FIG. 1).
  • the length of the groove 12 in the short direction is preferably shorter than the length of the inorganic filler 11 in the long direction.
  • the average fiber length is preferably longer than the length of the groove 12 in the short direction.
  • the shape is irregular, plate-like, or particulate
  • the long diameter preferably the average particle diameter. Is preferably longer than the length of the groove 12 in the short direction.
  • the inorganic filler 11 exposed in the groove 12 serves as an anchor that suppresses the separation of the joint between the grooved resin molded product 10 and the other molded product 20 as described above. Is. Therefore, in order to fulfill this role, for example, the crests 13 formed by removing a part of the resin between the laser irradiation part and the non-irradiation part are bridged by the inorganic filler 11 exposed in the groove 12. (Bridge) is preferable. And it is preferable that the shape of the inorganic filler 11 is a fibrous form by the point which can be bridge
  • the content of the inorganic filler 11 is not particularly limited, but is preferably in the range of 5 to 80 parts by weight with respect to 100 parts by weight of the resin. If the content is less than 5 parts by weight, even if the inorganic filler 11 is exposed in the groove 12, it may not be able to fulfill the role of an anchor that suppresses the destruction of the grooved resin molded product 10 and other molded products 20. There is. On the other hand, if the content exceeds 80 parts by weight, the grooved resin molded product 10 may not have sufficient strength.
  • a plurality of grooves 12 are formed on the surface 10a of the resin molded product 10, and the inorganic filler 11 is exposed from the side wall (side surface) 12a.
  • the groove 12 is formed by removing a part of the resin constituting the resin molded product 10, and thus removing a part of the resin so that the inorganic filler 11 protrudes from the side wall 12a. Can be exposed.
  • the longitudinal direction of the groove 12 (the direction toward the back side in the cross-sectional view of FIG. 2) is preferably different from the longitudinal direction of the inorganic filler 11.
  • the longitudinal direction of the groove 12 and the longitudinal direction of the inorganic filler 11 are the same, for example, the uneven portions 13 formed by removing a part of the resin by the laser irradiation site and the non-irradiation site.
  • the inorganic filler 11 cannot be suitably placed between them.
  • the inorganic filler 11 is likely to drop off from the grooved resin molded product 10, and there is a possibility that the role of an anchor that suppresses the breakage of the grooved resin molded product 10 and other molded products 20 cannot be sufficiently achieved. Therefore, as shown in the cross-sectional view of FIG. 2, it is preferable to form the groove 12 by performing laser irradiation or the like on the resin so that the longitudinal direction of the groove 12 is different from the longitudinal direction of the inorganic filler 11.
  • one resin molded product with a groove in which a groove is formed referred to as “one resin molded product 50” for convenience of explanation
  • the surface on which the groove referred to as “groove 51” for convenience of explanation
  • a composite molded product referred to as “composite molded product 70” for convenience
  • other molded product 60 is manufactured by welding and integrating other molded products.
  • a material constituting the other molded product 60 a material (for example, an elastomer) having a significantly lower tensile strength than that of the resin constituting the resin molded product 50 may be used.
  • the strength of the other molded product 60 is obtained at the joint portion of the composite molded product obtained by melting (filling) the other molded product 60 into one grooved resin molded product 50.
  • the inorganic filler will be exposed to the groove
  • the ratio of the groove 12 in the surface 10a of the grooved resin molded product 10 is controlled within a predetermined range. Specifically, in the region on the surface 10a composed of the peaks 13 positioned between the plurality of grooves 12, the groove area A12 formed by the grooves 12 and the total peak area A13 formed by the peaks 13 occupy the total. The area of the groove 12 is made large so that the ratio of the groove area A 12 (A 12 / (A 12 + A 13 )) is 75% or more and 97% or less.
  • the groove area A 12 and the mountain area A 13 refer to the area on the surface 10a of the grooved resin molded product 10, and the area (groove area) A 12 of the groove 12 is as indicated by a dotted line X in FIG. It refers to the area of the groove on the surface of the opening of the groove 12 that is on the extension (surface) of the surface (surface 10a) of the peak 13.
  • FIG. 3A shows an electron micrograph of the grooved resin molded product 10 in which the groove 12 is formed on the surface 10a.
  • the area of the groove 12 (groove area) is widened, and the ratio represented by A 12 / (A 12 + A 13 ) is 75% or more and 97 % Or less.
  • the groove area of the groove 12 is thus increased, so that the other molded product 20 has a lower melting point than the resin constituting the grooved resin molded product and has a tensile strength of the resin.
  • strength in the junction part of the said other molded article 20 is securable. Thereby, the resin molded product 10 with a groove
  • each of the grooves 12 and the crests 13 is one set (pitch), and the grooves 12 are formed in a lattice shape with the same vertical and horizontal pitches.
  • a 12 / (A 12 + A 13 ) is in the range of 75% to 97%, the groove 12 and the mountain 13 It can be appropriately determined according to the size of the pitch.
  • the area A 12 of the grooves 12 in the surface 10a of the grooved resin molded article 10 the area A 12 of the groove 12 relative to the sum of the area A 13 of the area A 12 and mountain 13 of the groove 12 is less than 75%
  • the strength of the joint portion of the other molded product 20 (the portion filled in the groove portion of the grooved resin molded product 10 in the other molded product 20) becomes insufficient, and an external force is applied to the composite molded product 1, There is a possibility that the joint portion of the other molded product 20 is broken.
  • the inorganic filler 11 contained in the grooved resin molded product 10 when the area A 12 of the groove 12 is more than 97% of the total of the area A 13 of the area A 12 and mountain 13 of the groove 12, the inorganic filler 11 contained in the grooved resin molded product 10, The portion exposed from the grooved resin molded product 10 is increased, and the inorganic filler 11 is easily removed from the grooved resin molded product 10, whereby the role of the anchor is not sufficiently fulfilled, and external force is applied to the composite molded product 1. Therefore, there is a possibility that the joint portion of the composite molded product 1 is likely to be broken.
  • the area A 12 of the groove 12 it is more preferable to define the area A 12 of the groove 12 so that the ratio represented by “A 12 / (A 12 + A 13 )” is 78 to 95%. 85 to 93% is particularly preferable. Thereby, while improving the intensity
  • the groove 12 may be formed in a lattice shape as shown in FIG. 3 on the surface 10a of the resin molded product 10, or may be formed in a stripe shape.
  • the grooves 12 can be formed in an oblique lattice shape in which the longitudinal direction of the grooves 12 is different from the longitudinal direction of the inorganic filler 11.
  • the melt of the material constituting the other molded product 20 can be poured more reliably into the grooves 12.
  • the area of the grooves 12 and the peaks 13 is A 12 / (A 12 + A 13 ) of 75% or more 97 % As long as the relationship is satisfied.
  • the ratio of the widths of the plurality of grooves 12 and the plurality of peaks 13 in the longitudinal direction (x-axis) and the other longitudinal direction (y-axis) may be the same or different.
  • the depth D of the groove 12 is preferably not less than 1 ⁇ 2 of the length in the short direction of the groove 12 (that is, the width W 12 of the groove 12 ).
  • the inorganic filler 11 exposed to the groove 12 and the other fillers are formed when the composite molded article 1 is formed by bonding with the other molded article 20.
  • a sufficient anchor effect does not occur between the molded product 20 and the grooved resin molded product 10 and the other molded product 20 cannot be firmly brought into close contact with each other.
  • a resin molded product containing the inorganic filler 11 is subjected to laser irradiation, chemical treatment, or the like to partially remove the resin, and a plurality of grooves 12 are formed on the surface 10 a of the resin molded product. It is obtained by doing.
  • the surface 10 a of the resin molded article is partially removed in this way to form the groove 12, whereby the inorganic filler 11 contained in the resin molded article is removed from the side wall 12 a of the groove 12. Exposed from.
  • the laser irradiation is set based on the type of material to be irradiated, the output of the laser device, and the like. However, if the groove 12 is not formed by irradiating the resin with appropriate energy, the inorganic filler 11 is sufficiently exposed. It may be difficult to form a groove 12 having a width W 12 or a depth D as set.
  • the surface 10a of the grooved resin molded article 10 when forming the grooves 12, the surface 10a of the grooved resin molded article 10, the area A 12 of the groove, relative to the total of the peaks of the area A 13 that is located between the grooves, the grooves
  • the ratio of the area A 12 of (A 12 / (A 12 + A 13 )) is 75% or more and 97% or less.
  • the glass fiber or the like as the inorganic filler 11 partially shields the energy of the laser. Therefore, in order to remove the resin deeply, if laser irradiation is performed a plurality of times, it is necessary to give higher energy by the amount of energy absorbed when the laser hits an already exposed glass fiber or the like later. Therefore, when laser irradiation is repeated a plurality of times, it is preferable to include a step of increasing the laser irradiation amount from the previous irradiation amount.
  • the groove 12 in the formation of the groove 12 by chemical treatment, an acid, alkali, organic solvent, or the like corresponding to the characteristics of the resin is selected and used.
  • the groove in a polyacetal resin molded product in which the resin is decomposed by an acid, the groove can be formed by decomposing and removing the position where the groove is provided with an acid.
  • the groove in the case of an amorphous resin molded product that is easily dissolved in an organic solvent, the groove can be formed by previously removing the portion other than the location where the groove is provided on the surface of the molded product and then dissolving and removing the organic solvent.
  • the melting point is lower than the resin constituting the grooved resin molded product 10, and the tensile strength is 50% or less of the tensile strength of the resin constituting the grooved resin molded product 10 (for example, 30% or less) is used.
  • the “tensile strength” in the present invention is measured in accordance with ISO527-1,2.
  • the material constituting the other molded article 20 has a lower melting point than the resin constituting the grooved resin molded article 10 and the tensile strength of the resin constituting the grooved resin molded article 10. Even when a material that is 50% or less is used, the strength of the other molded product 20 at the joint can be increased. In other words, taking a wide area A 12 of the plurality of grooves 12 formed in the grooved resin molded article 10, A 12 / in relation to the area A 13 of the mountain 13 located between the grooves 12 (A 12 + A 13) By satisfying 75% or more and 97% or less, the grooved resin molded product 10 and the other molded product 20 can be effectively joined.
  • the resin constituting the grooved resin molded product 10 is polyphenylene sulfide having a melting point of about 280 ° C. and a tensile strength of about 200 MPa (as a specific example, polyplastic In the case of DURAFIDE (registered trademark) PPS 1140A64, etc., manufactured by SU
  • polybutylene terephthalate, polyacetal which is a material of 200 ° C. or lower, or various elastomers (mostly melting point 150 ° C. or lower, 120 ° C. or lower) contain no reinforcing material such as glass fiber or a small amount.
  • the composite molded product 1 has the surface (surface 10a) having the groove 12 of the resin molded product 10 with grooves as a contact surface, and another molded product 20 is disposed adjacent to the surface.
  • This composite molded product 1 can be obtained by, for example, multiple molding (insert molding).
  • thermoplastic elastomer used as a material constituting another molded product is taken as an example.
  • FIG. 4 is a schematic diagram for explaining a method of obtaining the composite molded article 1 by multiple molding.
  • the primary resin is primary molded to produce a preliminary body 10 ′ of the grooved resin molded product 10 (FIG. 4 (1)).
  • the resin is partially removed from a part of the surface 10a ′ of the preliminary body 10 ′, and a plurality of grooves 12 are formed on the surface 10a ′ (FIG. 4B).
  • channel is produced.
  • the area AW 12 of a plurality of grooves 12 formed is, a percentage of the total of the area A 13 of the mountain 13 which become located between the groove 12 (A 12 /
  • the groove 12 is formed so as to be 75% or more and 97% or less as (A 12 + A 13 ).
  • the grooved resin molded product 10 is put into a mold (not shown), and a secondary surface is formed using the surface 10a having the groove 12 as a contact surface inside the mold.
  • the material (melt of thermoplastic elastomer constituting the other molded article 20) is poured and cooled to solidify it.
  • the flow direction of the secondary material (melt) with respect to the surface 10a of the grooved resin molded product is not particularly limited, but in the longitudinal direction of the groove 12 formed in the grooved resin molded product 10. It is preferable to make it flow so that it may become parallel.
  • the secondary material is caused to flow in a direction orthogonal to the longitudinal direction of the groove 12, the wall of the groove 12 may fall down due to the pressure when the secondary material flows, and the groove may be destroyed.
  • the destruction of the groove 12 can be suppressed and the secondary material can be poured into the groove 12 more effectively. it can.
  • the composite molded product 1 with the thermoplastic elastomer (other molded product 20) can be obtained by multiple molding.
  • the secondary material as an uncured thermosetting elastomer, a composite molded product 1 with a thermosetting elastomer by multiple molding can be obtained.
  • a plurality of grooves were formed on the surface of the resin molded product by laser irradiation under the conditions shown in Table 1 below.
  • the depth of the groove was 100 ⁇ m.
  • pitch refers to a value obtained by combining the width of the groove on the surface of the resin molded product and the width of the peak on one side adjacent to the groove.
  • a 12 / (A 12 + A 13 ) is the groove portion occupying the sum of the areas of the peak portion (convex portion) and the groove portion (concave portion) when the groove portion area A 12 and the peak portion area A 13 are used. It is the ratio of area A 12 width.
  • the “groove shape on the surface” is a shape of the groove on the surface of the resin molded product, and indicates “horizontal stripes” or “lattice shape” as shown in FIG.
  • Example 1 a lattice-shaped groove having A 12 / (A 12 + A 13 ) of 75% is formed at a pitch of 200 ⁇ m with respect to a resin molded product, and thereby a grooved resin molded product is formed. Obtained.
  • the conditions for the laser irradiation treatment were as follows. (Conditions for laser irradiation in groove formation) Oscillation wavelength: 1.064 ⁇ m Maximum rated output: 13W (average) Laser output: 45% Scanning speed: 1000mm / sec Frequency: 40kHz Overwriting: 40 times
  • the surface having the groove formed by laser irradiation is used as a contact surface and inserted into an injection mold.
  • the melting point is lower than that of the resin constituting the grooved resin molded product (specifically, 100 ° C. or less), and the tensile strength is the resin constituting the grooved resin molded product.
  • Example 5 the plasticizer and the crosslinking agent were kneaded into the resin molded product with groove (primary molded product) obtained in the same manner as in Example 1 as another molded product (secondary molded product).
  • first molded product obtained in the same manner as in Example 1 as another molded product (secondary molded product).
  • secondary molded product Using a composite molded product obtained by compression-molding nitrile butadiene rubber (tensile strength 20 MPa) with a mold at 160 ° C., the fracture surface obtained by pulling off the joint was observed, and as shown in FIG. It was confirmed that the rubber that had entered the base material was destroyed and a good bonding state was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

他の成形品に引張強度が低い材料を使用する場合であっても、一の樹脂成形品と該引張強度が低い材料からなる他の成形品とを十分に接合させることができるようにする。 本発明に係る複合成形品は、無機充填剤11を含有し、無機充填剤11が露出された溝12が形成される溝付き樹脂成形品10と、溝付き樹脂成形品10の溝11を有する面上に隣接して配置される他の成形品20とを備える。溝11は、複数あり、溝11がなす溝面積A12と、溝12の間に位置する山13がなす山面積A13との合計に占める溝面積A12の割合は、75%以上97%以下の範囲内にある。また、他の成形品20は、樹脂成形品を構成する樹脂よりも融点が低く、かつ、引張強度が樹脂の引張強度の50%以下である材料からなる。

Description

複合成形品、及びその製造方法
 本発明は、複合成形品、及びその製造方法に関する。
 近年、自動車、電気製品、産業機器等をはじめとした分野では、二酸化炭素の排出量削減、製造コストの削減等の要請に応えるため、金属成形品の一部を樹脂成形品に置き換える動きが広がっている。これに伴い、樹脂成形品と金属成形品とを一体化した複合成形品が広く普及している。また、これに限らず、同種又は異種の材料からなる成形品を一体化した複合成形品も広く普及している。
 一の成形品と他の成形品とを一体化した複合成形品の製造方法としては、例えば、次のようなものが提案されている。すなわち、特許文献1には、一方の成形品を構成する樹脂にガラスファイバー等の充填剤を混入して成形し、他方の成形品を構成する樹脂を接着する面に薬品、プラズマ、炎等の処理を施して厚さ0.数μm~数10μmの樹脂を除去した後、その他方の樹脂を接着する面に他方の樹脂を接して充填、成形して、接着させる方法が提案されている。また、特許文献2には、一方の樹脂成形品の表面に電磁放射線を照射することで、表面にナノ構造を形成し、その後、その表面に他方の樹脂成形品を接して充填、成形して、一体化させる方法が提案されている。
 その他、特許文献3には、無機充填剤を含有した樹脂成形品(1次樹脂成形品)の表面に微小溝を形成して無機充填剤を露出させ、その微小溝内に2次成形品を構成する材料を流し入れることで一体化させて、強度を向上させた複合成形品を製造する方法、及び特許文献4には、2次成形品を構成する材料の融点が1次樹脂成形品を構成する樹脂の融点よりも高い場合に、前記微小溝を、該微小溝の間に位置する山部の幅と該微小溝の幅との比が1:1.5~5(溝の幅が山部の幅よりも広い)となるように、複数形成する方法も提案されている。
特開平01-126339号公報 特開2011-529404号公報 国際公開2014/125999号 国際公開2015/033728号
 しかしながら、一の成形品と他の成形品の材質の組み合わせによっては、接合したときの強度に関してさらなる改良の余地がある。例えば、一の成形品の表面に溝を形成させた場合、かつ他の成形品を構成する材料の融点が、一の成形品を構成する材料の融点より低い場合でも、他の成形品を構成する材料として、一の成形品を構成する材料よりも引張強度が大幅に低い材料(例えばエラストマー)を使用した場合においては、溝部の形状によっては他の成形品の接合部における強度が不足するという理由から、高い強度で接合することができないことがある。
 本発明は、上述した状況に鑑みてなされたものであり、例えば、他の成形品に引張強度が低い材料を使用する場合であっても、一の樹脂成形品と該引張強度が低い材料からなる他の成形品とを十分に接合させることができるようにすることを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、一の樹脂成形品について、無機充填剤を含有する樹脂成形品の樹脂を一部除去して、無機充填剤が露出される溝を、樹脂成形品の表面に複数、かつ、該樹脂成形品の表面において、その複数の溝と、それら複数の溝の間に位置する山とからなる領域に占める、溝の面積の割合が特定の範囲になるように形成することを見出した。これにより、その溝付き樹脂成形品と接合する他の成形品が、一の樹脂成形品を構成する樹脂よりも融点が低く、引張強度が該樹脂の引張強度の50%以下である材料からなる場合であっても、高い接合強度を達成することができることを見出し、本発明を完成するに至った。すなわち、本発明は以下のものを提供する。
 (1)本発明は、無機充填剤を含有し、前記無機充填剤が露出された溝が形成される溝付き樹脂成形品と、前記溝付き樹脂成形品の前記溝を有する面上に隣接して配置される他の成形品とを備え、前記溝は、複数であり、前記溝がなす溝面積と、前記溝の間に位置する山がなす山面積との合計に占める前記溝面積の割合は、75%以上97%以下の範囲内にあり、前記他の成形品は、前記樹脂成形品を構成する樹脂よりも融点が低く、かつ、引張強度が前記樹脂の引張強度の50%以下である材料からなる、複合成形品である。
 (2)また、本発明は、(1)の発明の溝付き樹脂成形品において、前記無機充填剤が前記溝の側壁から突出して露出される複合成形品である。
 (3)また、本発明は、(1)又は(2)の発明の溝付き樹脂成形品の前記表面において、前記溝が格子状に形成されてなる複合成形品である。
 (4)また、本発明は、(1)乃至(3)のいずれかの発明において、前記無機充填剤が繊維状無機充填剤である、複合成形品である。
 (5)また、本発明は、(1)乃至(4)のいずれかの発明において、前記溝がレーザ照射によって形成される、複合成形品である。
 (6)また、本発明は、(1)乃至(5)のいずれかの発明において、前記他の成形品を構成する材料がエラストマーである、複合成形品である。
 (7)また、本発明は、(6)の発明において、前記エラストマーがエチレンエチルアクリレートである、複合成形品である。
 (8)また、本発明は、無機充填剤を含有する第1の樹脂成形品の表面上に、前記第1の樹脂成形品を構成する樹脂よりも融点が低く、かつ、引張強度が前記樹脂の引張強度の50%以下である材料からなる第2の成形品を隣接して配置して複合成形品とする複合成形品の製造方法であって、前記第1の樹脂成形品と前記第2の成形品が隣接する表面に、その側壁から該無機充填剤が突出する溝を複数、前記表面において、前記溝がなす溝面積と、前記溝の間に位置する山がなす山面積との合計に占める前記溝面積の割合が、75%以上97%以下の範囲内となるように形成する溝形成工程と、前記溝が形成された前記第1の樹脂成形品の表面上に、前記第2の成形品を構成する前記材料の溶融物を流し込んで固化させて成形する成形工程と、を有する複合成形品の製造方法である。
 本発明によれば、例えば他の成形品が、一の樹脂成形品を構成する樹脂よりも融点が低く、かつ、一の樹脂成形品を構成する樹脂よりも引張強度が大幅に低い材料からなる場合であっても、一の樹脂成形品と他の成形品とを十分に接合させることができる。
本実施形態の複合成形品の拡大断面を模式的に示した図である。 複合成形品の構成要素である溝付き樹脂成形品の拡大断面を模式的に示した図である。 表面に格子状の溝を形成させた溝付き樹脂成形品の電子顕微鏡(SEM)写真であり、(A)は、溝がなす溝面積と、溝の間に位置する山がなす山面積との合計に占める溝面積の割合を91%にしたときの写真(実施例3に相当)であり、(B)は、前記割合を96%にしたときの写真(実施例4に相当)である。 多重成形(インサート成形)によって複合成形品を得るときの工程を説明するための図である。 実施例1にて製造した溝付き樹脂成形品の模式図である。 (A)は、実施例1にて製造した溝付き樹脂成形品のSEM写真であり、(B)は、比較例2にて製造した溝付き樹脂成形品のSEM写真である。 実施例5にて製造した溝付き樹脂成形品の破断面のSEM写真である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
<1.複合成形品>
 図1は、本実施の形態に係る複合成形品1の拡大断面の模式図である。図1に示すように、複合成形品1は、溝付き樹脂成形品10と、他の成形品20とを備える。
〔溝付き樹脂成形品〕
 図2は、溝付き樹脂成形品10(単に「樹脂成形品」ともいう)の断面を模式的に示した図である。溝付き樹脂成形品10は、無機充填剤11を含有し、その無機充填剤11が露出された溝12(単に「溝」ともいう)が当該溝付き樹脂成形品10の表面10aに複数形成されている。
 そして、この溝付き樹脂成形品10では、その表面10aに形成された複数の溝12と、複数の溝12の間に位置する山13とからなる、表面10a上の領域において、溝12がなす溝面積A12と、山13がなす山面積A13の合計に占める、溝面積A12の割合(A12/(A12+A13))が、75%以上97%以下となるように形成されてなることを特徴としている。
 なお、詳しくは後述するが、複合成形品1は、複数の溝12が形成された樹脂成形品10の表面10aを接触面として、他の成形品20を溶着することで形成される。
[樹脂]
 樹脂の種類としては、レーザ照射又は化学処理等の樹脂除去手段により溝12を形成できるものであれば特に限定されない。例えば、レーザ照射により溝を形成できるものとして、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)等を挙げることができる。
 また、化学処理としては、酸又はアルカリによる分解処理や、溶剤による溶解処理等が挙げられる。非結晶性熱可塑性樹脂の場合は、様々な溶剤に溶解しやすいが、結晶性樹脂の場合は、両溶媒を選択して使用する。例えば、酸又はアルカリを加えることによって溝を形成できるものとして、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)等を挙げることができる。ここで、化学処理においては、溝を形成する部位に限定した化学処理を行い、そして化学処理による生成物を除去することが重要となる。
 なお、樹脂としては、熱可塑性であってもよいし、熱硬化性であってもよい。
[無機充填剤]
 無機充填剤11は、溝付き樹脂成形品10を構成する樹脂の一部を除去して溝12を形成することで、その溝12に露出するものであれば特に限定されない。この無機充填剤11は、形成された溝12の側壁12aから溝12の空間内(溝内)に露出して、この溝付き樹脂成形品10と他の成形品20とで複合成形品1とする際に、それらの分離を抑制するアンカーの役割を果たす(図2参照)。また、このように無機充填剤11を溝12に露出させることで、無機充填剤11そのものが複合成形品1から脱落することを防ぐことができる。
 無機充填剤11としては、特に限定されないが、ガラス繊維、炭素繊維、ウィスカー繊維、ガラスフレーク、マイカ等を挙げることができる。
 また、無機充填剤11の長さは、その長手方向の長さが溝12の短手方向(図1の断面図における幅方向)の長さよりも長いことが好ましい。言い換えると、溝12の短手方向の長さは、無機充填剤11の長手方向の長さよりも短いことが好ましい。例えば、形状が繊維状であれば、平均繊維長が溝12の短手方向の長さよりも長いことが好ましく、形状が不定形、板状、粒子状であれば、長径、好ましくは平均粒子径が溝12の短手方向の長さよりも長いことが好ましい。
 本実施の形態においては、溝12で露出する無機充填剤11は、上述したように、溝付き樹脂成形品10及び他の成形品20の接合部が分離するのを抑制するアンカーの役割を果たすものである。したがって、その役割を果たすにあたって、例えばレーザ照射部位と非照射部位とにより樹脂の一部が除去されることで形成される凹凸の山13同士を、その溝12に露出した無機充填剤11によって架ける(ブリッジする)ようにすることが好ましい。そして、このように無機充填剤11によって架けることができるようにする点で、その無機充填剤11の形状は繊維状であることが好ましい。なお、樹脂に形成される凹凸において、その凹部が溝12であり、複数の溝12に挟まれた凸部が山13となる。
 無機充填剤11の含有量は、特に限定されないが、樹脂100重量部に対して5重量部以上80重量部以下の範囲であることが好ましい。含有量が5重量部未満であると、無機充填剤11が溝12で露出したとしても、溝付き樹脂成形品10及び他の成形品20の破壊を抑えるアンカーの役割を十分に果たせない可能性がある。一方で、含有量が80重量部を超えると、溝付き樹脂成形品10が十分な強度を有するものとはならない可能性がある。
[無機充填剤11を含有する樹脂材料の好適な市販品]
 なお、無機充填剤11を含有する樹脂材料として、ガラス繊維入りPPS(製品名:ジュラファイド(登録商標)PPS 1140A64,ポリプラスチックス社製)、ガラス繊維・無機フィラー入りPPS(製品名:ジュラファイド(登録商標)PPS 6165A7,ポリプラスチックス社製)、ガラス繊維入りLCP(製品名:ラペロス(登録商標)LCP E130i、ポリプラスチックス社製)等が市販されている。
[溝]
 溝12は、樹脂成形品10の表面10aに複数形成されたものであり、その側壁(側面)12aから無機充填剤11が露出されている。この溝12は、樹脂成形品10を構成する樹脂の一部を除去することによって形成され、このように樹脂の一部を除去することによって、無機充填剤11をその側壁12aから突出した状態で露出させることができる。
 なお、図1に示すように、この溝付き樹脂成形品10の溝12を有する面(表面10a)を接触面として他の成形品20と一体化させて複合成形品1を製造するところ、この複合成形品1においては無機充填剤11が露出されていない。本明細書では、複合成形品1において無機充填剤11が露出していない場合であっても、複合成形品1から他の成形品20を取り除いた態様において溝12から無機充填剤11が露出していれば、「溝12において無機充填剤11が露出されている」ものとする。
 溝12の長手方向(図2の断面図における奥側に向かう方向)は、無機充填剤11の長手方向とは異なることが好ましい。溝12の長手方向と無機充填剤11の長手方向とが同じであると、例えばレーザの照射部位と非照射部位とによって樹脂の一部が除去されることで形成される凹凸の山13同士の間に無機充填剤11を好適に架けることができない可能性がある。すると、無機充填剤11が溝付き樹脂成形品10から脱落しやすくなり、溝付き樹脂成形品10及び他の成形品20の破壊を抑えるアンカーの役割を十分に果たすことができない可能性がある。したがって、図2の断面図に示されるように、溝12の長手方向が無機充填剤11の長手方向と異なるように樹脂に対してレーザ照射等を行って溝12を形成することが好ましい。
 ところで、溝が形成された溝付きの一の樹脂成形品(説明便宜上「一の樹脂成形品50」とする)においては、その溝(説明便宜上「溝51」とする)が形成された面に対して、他の成形品(説明便宜上「他の成形品60」とする)を溶着させて一体化することで、複合成形品(説明便宜上「複合成形品70」とする)を製造する。このとき、他の成形品60を構成する材料として、引張強度が一の樹脂成形品50を構成する樹脂に対し大幅に低い材料(例えばエラストマー)を用いる場合がある。このような場合、溝付きの一の樹脂成形品50に対して他の成形品60を溶かして充填(成形)して得られた複合成形品の接合部において、他の成形品60の強度が不足してしまうことがある。このようになると、その溝51に無機充填剤を露出させて、その溝51に他の成形品60を構成する材料の溶融物を充填して、一の樹脂成形品50と他の成形品60とを接合させても、接合部の強度が十分に得られなくなる。
 そこで、本実施の形態では、溝付き樹脂成形品10に形成する溝12において、溝付き樹脂成形品10の表面10aにおける溝12の占める割合を所定の範囲に制御する。具体的には、複数の溝12の間に位置する山13とからなる、表面10a上の領域において、溝12がなす溝面積A12と、山13がなす山面積A13の合計に占める、溝面積A12の割合(A12/(A12+A13))が、75%以上97%以下となるように、溝12の面積を広くとるようにする。
 ここで、溝面積A12、山面積A13は、溝付き樹脂成形品10の表面10aにおける面積をいい、溝12の面積(溝面積)A12は、図1の点線Xで示すような、当該溝12の開口部であって、山13の表面(表面10a)の延長上(面一)に存在する面における溝部の面積をいう。
 図3(A)に、その表面10aに溝12を形成させた溝付き樹脂成形品10の電子顕微鏡写真を示す。この図3(A)に示すように、溝付き樹脂成形品10では、溝12の面積(溝面積)を広くとり、A12/(A12+A13)で表される割合で75%以上97%以下となるようにする。溝付き樹脂成形品10では、このように溝12の溝面積を広くとることで、他の成形品20が、溝付き樹脂成形品を構成する樹脂よりも融点が低く、かつ引張強度が前記樹脂の引張強度の50%以下である材料(例えばエラストマー)からなる場合であっても、当該他の成形品20の接合部における強度を確保することができる。これにより、溝付き樹脂成形品10と他の成形品20を強固に密接(接合)させることができる。
 具体例を挙げると、樹脂成形品10の表面10aにおいて、溝12と山13とのそれぞれ1つずつを1セット(ピッチ)とし、溝12を縦横同一ピッチの格子状に形成する場合、その1ピッチが200μm、溝12の幅W12と山13の幅W13をいずれも100μmとすることができる(なお、この場合、A12/(A12+A13)=75%となる。)。また、200μmのピッチにおいて、例えば、山13の幅W13を50μmとし、溝12の幅W12を150μmとすることができる(なお、この場合、およそA12/(A12+A13)=94%となる。)。
 また、溝12と山13との1ピッチが300μmであったときには、例えば、溝12の幅W12と山13の幅W13をいずれも150μmとすることができる(なお、この場合、A12/(A12+A13)=75%となる。)。また、300μmのピッチにおいて、山13の幅W13を100μmとし、溝12の幅W12を200μmとすることができる(なお、この場合、およそA12/(A12+A13)=89%となる。)。
 なお、これらの具体例は、あくまでも例示であってこれに限られるものではなく、A12/(A12+A13)が75%以上97%以下の範囲であれば、溝12と山13とからなるピッチの大きさに応じて適宜決定することができる。
 溝付き樹脂成形品10の表面10aにおける溝12の面積A12に関して、溝12の面積A12と山13の面積A13との合計に対して溝12の面積A12が75%未満であると、他の成形品20の接合部(他の成形品20において、溝付き樹脂成形品10の溝部に充填されている箇所)の強度が不十分となり、複合成形品1に外力が加わることで、当該他の成形品20の接合部が破壊する可能性がある。一方で、溝12の面積A12と山13の面積A13との合計に対して溝12の面積A12が97%を超えると、溝付き樹脂成形品10に含まれる無機充填剤11について、溝付き樹脂成形品10から露出する部分が多くなり、溝付き樹脂成形品10から無機充填剤11が脱落しやすくなることによりアンカーの役割が十分に果たされず、複合成形品1に外力が加わることで複合成形品1の接合部が破壊しやすくなる可能性がある。
 また、溝12の面積A12に関しては、「A12/(A12+A13)」で表される割合で78~95%となるように溝12の面積A12を規定することが、より好ましく、85~93%となるようにすることが特に好ましい。これにより、接合部における他の成形品20の強度を高めるとともに、溝付き成形品10における無機充填剤11の脱落を抑制し、接合強度の高い樹脂成形品10とすることができる。
 ここで、溝12は、樹脂成形品10の表面10aにおいて、図3に示したような格子状に形成されてもよく、また、縞状に形成されてもよい。溝12を格子状に形成する場合には、溝12の長手方向が無機充填剤11の長手方向とは異なる斜格子状に形成することもできる。図3に示すように、溝12を格子状に形成することで、より確実に他の成形品20を構成する材料の溶融物を溝12に流し込ませることができる。
 溝12を格子状に形成する場合、その表面10aにおける溝12の面積A12と山13の面積A13については、格子形状を形成する複数の溝12のうち最外周の溝で囲まれる領域において、その領域内の複数の溝12と複数の山13について、それぞれの合計の面積を見たときに、その溝12と山13の面積がA12/(A12+A13)が75%以上97%以下の関係を満たしていればよい。
 なお、このように溝12を格子状としたときに、溝12と山13の面積がA12/(A12+A13)=75%以上97%以下を満たしていれば、溝12の一方の長手方向(x軸)及び他方の長手方向(y軸)における複数の溝12と複数の山13の幅の比率は、それぞれ同じ比率であっても、異なる比率であってもよい。
 溝12の深さDは、その溝12の短手方向の長さ(すなわち溝12の幅W12)の1/2以上であることが好ましい。深さDが溝12の幅W12の1/2未満であると、他の成形品20と接合させて複合成形品1を形成する際に、溝12に露出する無機充填剤11と他の成形品20との間に十分なアンカー効果が生じず、溝付き樹脂成形品10と他の成形品20とを強固に密接させることができない可能性がある。
〔溝付き樹脂成形品の製造方法〕
 溝付き樹脂成形品10は、無機充填剤11を含有する樹脂成形品にレーザ照射や化学処理等を行って樹脂を部分的に除去し、その樹脂成形品の表面10aに複数の溝12を形成することによって得られる。溝付き樹脂成形品10では、このようにして樹脂成形品の表面10aを部分的に除去して溝12を形成することで、樹脂成形品内に含まれる無機充填剤11が溝12の側壁12aから露出される。
 レーザの照射は、照射対象材料の種類やレーザ装置の出力等をもとに設定されるが、樹脂に適度のエネルギーを照射して溝12を形成しないと、無機充填剤11が十分に露出しなかったり、設定通りの幅W12や深さDの溝12を形成することが困難になったりするため、複数回に分けて行うことが好ましい。
 本実施の形態においては、その溝12の形成に際して、溝付き樹脂成形品10の表面10aにおいて、溝の面積A12と、溝の間に位置する山部の面積A13の合計に占める、溝の面積A12の割合(A12/(A12+A13))が75%以上97%以下となるようにする。
 本実施の形態においては、このようにして面積A12を広くした溝12を形成することで、他の成形品20が、溝付き樹脂成形品を構成する樹脂の引張強度に対し、50%以下の引張強度であるエラストマーからなる場合であっても、複合成形品1の接合部における他の成形品20の強度を高めることが可能となる。これにより、樹脂成形品10に対して他の成形品20を十分に接合させることができる。
 ここで、レーザ照射により溝12を形成するに際して、無機充填剤11としてのガラス繊維等は、レーザのエネルギーを部分的に遮蔽する。そのため、深くまで樹脂を除去するために、レーザの照射を複数回行おうとすると、後になるほど、レーザが既に露出したガラス繊維等に当たることよって吸収されるエネルギーの分だけ高いエネルギーを与える必要がある。そのため、レーザの照射を複数回繰り返す場合、レーザの照射量を前回の照射量より高める工程を含むことが好ましい。
 また、レーザ光透過性の低い無機充填剤11の背面に位置する樹脂を除去するためには、レーザの照射を、樹脂成形品10の表面10aに対して垂直以外の方向から行うことが好ましい。
 一方で、化学処理による溝12の形成においては、樹脂の特性に応じた酸、アルカリ、有機溶剤等を選択して用いる。酸により樹脂が分解するポリアセタール樹脂成形品では、溝を設ける場所を酸で分解除去することで溝を形成することができる。また、有機溶剤に溶けやすい非結晶性樹脂成形品では、予め成形品の表面に溝を設ける場所以外をマスキングした後、有機溶剤で溶解除去することで溝を形成することができる。
〔他の成形品〕
 図1に戻る。図1に示すように、複合成形品1では、溝付き樹脂成形品10の溝12を有する面(表面10a)を接触面として、その面上に他の成形品20が隣接して配置されている。
 ここで、他の成形品20としては、溝付き樹脂成形品10を構成する樹脂よりも融点が低く、引張強度が前記溝付き樹脂成形品10を構成する樹脂の引張強度の50%以下(例えば30%以下)である材料が用いられる。なお、本発明における「引張強度」とはISO527-1,2に準拠して測定したものである。
 本実施の形態においては、他の成形品20を構成する材料に、溝付き樹脂成形品10を構成する樹脂よりも融点が低く、引張強度が溝付き樹脂成形品10を構成する樹脂の引張強度の50%以下である材料を用いる場合であっても、接合部における他の成形品20の強度を高めることができる。つまり、溝付き樹脂成形品10に形成した複数の溝12の面積A12を広くとり、その溝12の間に位置する山13の面積A13との関係でA12/(A12+A13)が75%以上97%以下を満たすようにすることで、溝付き樹脂成形品10と他の成形品20を有効に接合させることができる。
 例えば、溝付き樹脂成形品10と他の成形品20の材料の組み合わせとして、溝付き樹脂成形品10を構成する樹脂が融点約280℃、引張強度約200MPaのポリフェニレンサルファイド(具体例として、ポリプラスチックス社製 ジュラファイド(登録商標)PPS 1140A64等)であった場合には、他の成形品20を構成する材料としては、融点が260℃以下の材料であるポリエチレンテレフタレート、230℃以下の材料であるポリブチレンテレフタレート、200℃以下の材料であるポリアセタール、あるいは各種エラストマー等(多くは融点150℃以下、より低いものでは120℃以下)に、ガラス繊維等の強化材を含まない、あるいは少量しか含まないもの(そのような材料は通常、引張強度100MPa以下(溝付き成形品10を構成する樹脂の引張強度の50%以下)である)を挙げることができる。なお、他の成形品20に用いうる材料のうち、エラストマーや非晶性樹脂あるいは熱硬化性樹脂には、DSC測定等で測定される特定の「融点」に該当する値を持たないものも存在する(軟化点や流動可能温度等で表現される場合がある)。そのような材料においては、他の成形品を成形する際の加工温度(シリンダ温度や硬化処理温度等)を本願発明における融点とみなすことができる。
<2.複合成形品の製造方法>
 複合成形品1は、上述したように、溝付き樹脂成形品10の溝12を有する面(表面10a)を接触面として、その面上に他の成形品20が隣接して配置されている。この複合成形品1は、例えば、多重成形(インサート成形)により得ることができる。
 以下、多重成形により複合成形品1を製造する方法について詳細に説明する。ここでは、他の成形品を構成する材料として熱可塑性エラストマーを用いる場合を例とする。
〔多重成形による複合成形品の製造〕
 図4は、多重成形によって複合成形品1を得る方法を説明するための概略図である。図4に示すように、先ず、1次樹脂を1次成形して、溝付き樹脂成形品10の予備体10’を作製する(図4(1))。
 続いて、予備体10’の表面10a’の一部に対し、樹脂の部分的除去を行い、その表面10a’において溝12を複数形成する(図4(2))。これにより、溝付き樹脂成形品10を作製する。このとき、本実施の形態においては、形成された複数の溝12の面積AW12が、その溝12の間に位置するようになる山13の面積A13との合計に占める割合(A12/(A12+A13)として75%以上97%以下となるように溝12を形成する。
 続いて、図4(3)に示すように、溝付き樹脂成形品10を金型(図示せず)に入れ、この金型の内部に、溝12を有する表面10aを接触面として、2次材料(他の成形品20を構成する熱可塑性エラストマーの溶融物)を流し込んで冷却し、これを固化させる。
 ここで、溝付き樹脂成形品の表面10aに対する2次材料(溶融物)の流動方向としては、特に限定されるものではないが、溝付き樹脂成形品10に形成された溝12の長手方向に平行となるように流動させて流し込むことが好ましい。溝12の長手方向に対して直交する方向に2次材料を流動させると、その2次材料の流動時の圧力によって溝12の壁が倒れ、溝が破壊してしまう可能性がある。これに対して、溝12の長手方向に対して直交する方向に2次材料を流動させることで、溝12の破壊を抑制して、より効果的に溝12内に2次材料を流し込むことができる。
 以上のような工程を経ることによって、多重成形により熱可塑性エラストマー(他の成形品20)との複合成形品1を得ることができる。なお、同様に、2次材料を未硬化の熱硬化性エラストマーとすることにより、多重成形による熱硬化性エラストマーとの複合成形品1が得られる。
 以下、本発明についての実施例を説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記の実施例及び比較例では、各例について、下記表1に示す面積割合にて溝付き樹脂成形品のサンプルを製造し、その後、溝付き樹脂成形品と他の成形品との複合成形品を製造して、複合成形品の接合強度(MPa)を測定した。
<複合成形品の製造>
〔実施例1〕
[溝付き樹脂成形品の製造]
 ガラス繊維入りPPS(ジュラファイド(登録商標)PPS 1140A64,ポリプラスチックス社製)(融点:約280℃、引張強度:200MPa)を用い、下記の条件で射出成形して射出成形品(樹脂成形品,1次成形品)を得た。
 (1次成形品における射出成形の条件)
  予備乾燥:140℃、3時間
  シリンダ温度:320℃
  金型温度:140℃
  射出速度:20mm/sec
  保圧:50MPa(500kg/cm
 得られた樹脂成形品に対して、下記表1に示すような条件で、その樹脂成形品の表面にレーザ照射により溝を複数形成した。なお、溝の深さは100μmとした。ここで、表1において、「ピッチ」とは、樹脂成形品の表面における溝の溝部の幅とその溝に隣接する一方の側の山部の幅とを合わせた値をいう。また、「A12/(A12+A13)」は、溝部の面積A12、山部の面積A13としたときの山部(凸部)と溝部(凹部)の面積の合計に占める溝部の面積A12幅の割合である。また、「表面における溝形状」とは、樹脂成形品の表面における溝の形状であって、“横縞”、又は、図3に示したような“格子状”であることを示す。
 すなわち、実施例1では、樹脂成形品に対して、200μmのピッチで、A12/(A12+A13)を75%とした格子状の溝を形成し、これにより、溝付き樹脂成形品を得た。
 なお、レーザ照射処理の条件は、以下のようにした。
 (溝形成におけるレーザ照射の条件)
  発振波長:1.064μm
  最大定格出力:13W(平均)
  レーザ出力:45%
  走査速度:1000mm/sec
  周波数:40kHz
  重ね書き:40回
[複合成形品の製造]
 次に、上述のようにして得られた溝付き樹脂成形品(1次成形品)について、レーザ照射により形成された溝を有する面を接触面として、射出成形用金型にインサートし、他の成形品(2次成形品)に係る材料として、融点が溝付き樹脂成形品を構成する樹脂より低く(具体的には100℃以下)、かつ引張強度が溝付き樹脂成形品を構成する樹脂の引張強度の50%以下(具体的には10%以下)である、エチレンエチルアクリレート(NUC-6570,株式会社NUC製、融点:約91℃、引張強度:7MPa)を用いて下記の条件で射出成形し、複合成形品を得た。
 (2次成形品における射出成形の条件)
  予備乾燥:なし
  シリンダ温度(成形温度):220℃
  金型温度:約30℃(常温水冷却)
  射出速度:10mm/sec
  保圧:20MPa
〔実施例2〕
 実施例2では、溝付き樹脂成形品の製造において、300μmのピッチで、A12/(A12+A13)=89%とした格子状の溝を形成したこと以外は、実施例1と同様にして溝付き樹脂成形品を製造し、得られた溝付き樹脂成形品に基づいて複合成形品を製造した。
〔実施例3〕
 実施例3では、溝付き樹脂成形品の製造において、200μmのピッチで、A12/(A12+A13)=91%とした格子状の溝を形成したこと以外は、実施例1と同様にして溝付き樹脂成形品を製造し、得られた溝付き樹脂成形品に基づいて複合成形品を製造した。
〔実施例4〕
 実施例4では、溝付き樹脂成形品の製造において、300μmのピッチで、A12/(A12+A13)=96%とした格子状の溝を形成したこと以外は、実施例3と同様にして溝付き樹脂成形品を製造し、得られた溝付き樹脂成形品に基づいて複合成形品を製造した。
〔比較例1〕
 比較例1では、溝付き樹脂成形品を製造において、300μmのピッチで、A12/(A12+A13)=56%とした格子状の溝を形成したこと以外は、実施例1と同様にして溝付き樹脂成形品を製造し、得られた溝付き樹脂成形品に基づいて複合成形品を製造した。
〔比較例2〕
 比較例2では、溝付き樹脂成形品を製造において、300μmのピッチで、A12/(A12+A13)=72%とした格子状の溝を形成したこと以外は、実施例1と同様にして溝付き樹脂成形品を製造し、得られた溝付き樹脂成形品に基づいて複合成形品を製造した。
<評価>
〔溝付き樹脂成形品の拡大観察〕
 実施例1、比較例2に係る溝付き樹脂成形品(1次成形品)について、溝を有する面を電子顕微鏡(SEM)で拡大観察した。図6(A)は、実施例1にて製造した溝付き樹脂成形品のSEM写真である。図6(B)は、比較例2にて製造した溝付き樹脂成形品のSEM写真である。なお、倍率はそれぞれ200倍とした。
 図6(A)のSEM写真から分かるように、実施例1では、溝面積を広くとった(A12/(A12+A13)=75%)樹脂成形品とした。一方で、図6(B)のSEM写真に示すように、比較例2では、溝面積が狭い(A12/(A12+A13)=72%)樹脂成形品とした。
〔接合強度〕
 実施例及び比較例にて得られた複合成形品の接合強度(1次成形品と2次成形品との接合強度)を評価するために、それらの引張り破壊強度(MPa)を測定した。接合強度の測定は、測定機器としてテンシロンUTA-50kN(オリエンテック社製)を使用して、クロスヘッド速度を1mm/分とし、複合成形品(120mm長さ、20mm幅、2mm厚み)を引張り剥がすことで行った。下記表1に、その接合強度(MPa)の測定結果を、溝付き樹脂成形品の溝の形成条件と併せて示す。
 実施例及び比較例の各例についてサンプルを製造し、それぞれについて下記表1に示すように接合強度(MPa)を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から分かるように、実施例1~4に係る複合成形品では、接合強度が3MPa以上となり、十分な接合強度を有することが確認された。その中でも、溝面積の割合を91%にした実施例3では、より高い接合強度が得られることが分かった。
 一方で、溝面積を広くせず、溝面積の割合を75%未満とした比較例1、2では、接合強度がおよそ3MPa未満と、低い接合強度であった。このことは、複合成形品の接合部における他の成形品(2次成形品)の強度が低いことが原因であると考えられる。これにより、接合部にかかる他の成形品が破壊しやすくなり、低い接合強度になってしまったと考えられる。
 また、実施例5として、実施例1と同様にして得た溝付き樹脂成形品(1次成形品)に、他の成形品(2次成形品)として、可塑剤と架橋剤を練り込んだニトリルブタジエンゴム(引張強度20MPa)を160℃の金型でコンプレッション成形した複合成形品を用いて、接合部を引張り剥がした破断面の観察を行ったところ、図7に示す通り、溝の内部に入り込んだゴムが母材破壊しており、良好な接合状態が得られていることが確認された。
 1   複合成形品
 10  溝付き樹脂成形品
 10a 溝付き樹脂成形品の表面
 11  無機充填剤
 12  溝
 12a 溝の側壁
 13  山
 20  他の成形品

Claims (8)

  1.  無機充填剤を含有し、前記無機充填剤が露出された溝が形成される溝付き樹脂成形品と、
     前記溝付き樹脂成形品の前記溝を有する面上に隣接して配置される他の成形品とを備え、
     前記溝は、複数であり、
     前記溝がなす溝面積と、前記溝の間に位置する山がなす山面積との合計に占める前記溝面積の割合は、75%以上97%以下の範囲内にあり、
     前記他の成形品は、前記樹脂成形品を構成する樹脂よりも融点が低く、かつ、引張強度が前記樹脂の引張強度の50%以下である材料からなる、複合成形品。
  2.  前記無機充填剤が前記溝の側壁から突出して露出される、請求項1に記載の複合成形品。
  3.  前記表面において前記溝が格子状に形成されてなる、請求項1又は2に記載の複合成形品。
  4.  前記無機充填剤が繊維状無機充填剤である、請求項1乃至3の何れかに記載の複合成形品。
  5.  前記溝がレーザ照射によって形成される、請求項1乃至4の何れかに記載の複合成形品。
  6.  前記エラストマーがオレフィン系エラストマーである、請求項1乃至5の何れかに記載の複合成形品。
  7.  前記オレフィン系エラストマーがエチレンエチルアクリレートである、請求項6に記載の複合成形品。
  8.  無機充填剤を含有する第1の樹脂成形品の表面上に、前記第1の樹脂成形品を構成する樹脂よりも融点が低く、かつ、引張強度が前記樹脂の引張強度の50%以下である材料からなる第2の成形品を隣接して配置して複合成形品とする複合成形品の製造方法であって、
     前記第1の樹脂成形品の前記第2の成形品が隣接する表面に、その側壁から該無機充填剤が突出する溝を複数、前記表面において、前記溝がなす溝面積と、前記溝の間に位置する山がなす山面積との合計に占める前記溝面積の割合が、75%以上97%以下の範囲内となるように形成する溝形成工程と、
     前記溝が形成された前記第1の樹脂成形品の表面上に、前記第2の成形品を構成する前記材料の溶融物を流し込んで固化させて成形する成形工程と
    を有する複合成形品の製造方法。
PCT/JP2017/018485 2016-05-18 2017-05-17 複合成形品、及びその製造方法 WO2017199992A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780028394.3A CN109153163B (zh) 2016-05-18 2017-05-17 复合成型品及其制造方法
JP2017548486A JP6499769B2 (ja) 2016-05-18 2017-05-17 複合成形品、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-099942 2016-05-18
JP2016099942 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017199992A1 true WO2017199992A1 (ja) 2017-11-23

Family

ID=60325322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018485 WO2017199992A1 (ja) 2016-05-18 2017-05-17 複合成形品、及びその製造方法

Country Status (3)

Country Link
JP (1) JP6499769B2 (ja)
CN (1) CN109153163B (ja)
WO (1) WO2017199992A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212017A1 (ja) * 2017-05-15 2018-11-22 ポリプラスチックス株式会社 シール性を有する複合成形品
WO2020153220A1 (ja) * 2019-01-25 2020-07-30 ポリプラスチックス株式会社 複合成形品
WO2021140745A1 (ja) * 2020-01-10 2021-07-15 ポリプラスチックス株式会社 複合成形品およびその成形品に使用する部材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952252A (ja) * 1995-08-10 1997-02-25 Toyota Motor Corp 電極を封止する樹脂成形品及びその製造方法
WO2015033728A1 (ja) * 2013-09-09 2015-03-12 ポリプラスチックス株式会社 溝付き樹脂成形品、複合成形品、並びに複合成形品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238137A (ja) * 1999-02-17 2000-09-05 Mitsubishi Heavy Ind Ltd 光造形装置及び光造形方法
DE112014000775T5 (de) * 2013-02-12 2015-10-22 Polyplastics Co., Ltd. Geriefeltes Harz-Formteil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952252A (ja) * 1995-08-10 1997-02-25 Toyota Motor Corp 電極を封止する樹脂成形品及びその製造方法
WO2015033728A1 (ja) * 2013-09-09 2015-03-12 ポリプラスチックス株式会社 溝付き樹脂成形品、複合成形品、並びに複合成形品の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212017A1 (ja) * 2017-05-15 2018-11-22 ポリプラスチックス株式会社 シール性を有する複合成形品
WO2020153220A1 (ja) * 2019-01-25 2020-07-30 ポリプラスチックス株式会社 複合成形品
JP2020116862A (ja) * 2019-01-25 2020-08-06 ポリプラスチックス株式会社 複合成形品
DE112020000517B4 (de) 2019-01-25 2022-11-24 Polyplastics Co., Ltd. Verbundformkörper
WO2021140745A1 (ja) * 2020-01-10 2021-07-15 ポリプラスチックス株式会社 複合成形品およびその成形品に使用する部材
JP2021109378A (ja) * 2020-01-10 2021-08-02 ポリプラスチックス株式会社 複合成形品およびその成形品に使用する部材
CN114929451A (zh) * 2020-01-10 2022-08-19 宝理塑料株式会社 复合成形品和使用于该成形品的构件
JP7365245B2 (ja) 2020-01-10 2023-10-19 ポリプラスチックス株式会社 複合成形品およびその成形品に使用する部材
CN114929451B (zh) * 2020-01-10 2024-03-08 宝理塑料株式会社 复合成形品和使用于该成形品的构件

Also Published As

Publication number Publication date
CN109153163B (zh) 2020-06-16
JP6499769B2 (ja) 2019-04-10
JPWO2017199992A1 (ja) 2018-05-31
CN109153163A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
KR101641652B1 (ko) 홈붙이 수지 성형품
TWI626148B (zh) 複合成形品的製造方法
JP6499769B2 (ja) 複合成形品、及びその製造方法
JP6773824B2 (ja) 複合成形品
JP5744361B1 (ja) 複合成形品の製造方法
JP2009013395A (ja) 選択的レーザー焼結用複合材料粉末
JP6391317B2 (ja) 複合成形品及びその製造方法
TWI538795B (zh) Production method of composite molded body
JP2015205430A (ja) 複合成形品及びその製造方法
JP6377990B2 (ja) 溝付き樹脂成形品及び複合成形品の製造方法、溝付き中空形状樹脂成形品及び複合成形品
JP6198493B2 (ja) 複合成形品
JP6148100B2 (ja) 多層複合成形品
DE112019003666T5 (de) Harzelement und verfahren zur herstellung eines harzelements
WO2019078020A1 (ja) 複合成形品
JP6796165B1 (ja) 成形体、複合成形体および複合成形体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799416

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799416

Country of ref document: EP

Kind code of ref document: A1