WO2019078020A1 - 複合成形品 - Google Patents

複合成形品 Download PDF

Info

Publication number
WO2019078020A1
WO2019078020A1 PCT/JP2018/037196 JP2018037196W WO2019078020A1 WO 2019078020 A1 WO2019078020 A1 WO 2019078020A1 JP 2018037196 W JP2018037196 W JP 2018037196W WO 2019078020 A1 WO2019078020 A1 WO 2019078020A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molded product
molded article
mass
resin molded
Prior art date
Application number
PCT/JP2018/037196
Other languages
English (en)
French (fr)
Inventor
望月 章弘
高士 見置
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2019078020A1 publication Critical patent/WO2019078020A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams

Definitions

  • the present invention relates to a grooved first resin molded product, a composite molded product using the grooved first resin molded product, and a method of manufacturing the same.
  • Patent Document 1 discloses that the surface of a first resin molded product containing an inorganic filler is irradiated with a laser as a method of manufacturing a composite molded product in which the first resin molded product and the second molded product are integrated. Thus, it has been proposed to form a groove structure in which the inorganic filler is exposed on the surface, and thereafter, the other resin molded product is in contact with the surface to be filled, molded, and integrated.
  • the inorganic filler and / or between the molding shots of the first resin molded product Dispersion of the compounding agent and / or variation in the orientation state tends to affect the formation of the groove structure, and as a result, there are cases in which variation occurs in the bonding strength, resulting in a composite molded article with poor yield and inferior productivity.
  • the present invention has been made to solve the problems as described above, and an object thereof is to perform molding while maintaining the strength when the first resin molded product and the second molded product are joined. It is an object of the present invention to provide a composite molded article in which the strength between shots is stable and the variation is small.
  • the glass fiber is mixed in an amount of 20 to 38% by mass with respect to the entire resin composition constituting the first resin molded product, and the laser absorbing material is contained in the entire resin composition constituting the first resin molded product.
  • the composite molded article according to the above which is mixed at 0.35 to 9% by mass. 3.
  • the present embodiment will be described in detail with reference to the drawings.
  • the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the composite molded article of the present invention comprises a resin composition containing at least a resin, glass fibers and a laser absorbing material, and a grooved first resin molded article having a groove in which the glass fibers are exposed; And a second molded article disposed adjacent to the grooved surface of the resin molded article, wherein the glass fiber is the resin in the first resin molded article.
  • FIG. 1 is a schematic view of a schematic enlarged cross section of a composite molded article of the present invention.
  • the composite molded article 1 includes a grooved first resin molded article 10 and a second molded article 20 having a convex portion. Inside the groove of the grooved first resin molded product 10, the glass fiber protrudes from the side surface. Then, the convex portion of the second molded product 20 is inserted into the groove of the grooved first resin molded product 10 so as to surround the projecting glass fiber.
  • FIG. 2 is a schematic enlarged cross-sectional view of the grooved first resin molded product 10.
  • the grooved first resin molded product 10 contains glass fibers 11. Further, the grooved first resin molded product 10 has a groove 12 in which the glass fiber 11 protrudes from the side surface and is exposed. Some of the glass fibers are in the grooves. [resin]
  • the resin used for the resin composition constituting the grooved first resin molded product 10 of the present invention is not particularly limited as long as it can be removed by laser irradiation and as a result, the groove 12 can be formed. It may be thermoplastic or thermosetting.
  • As a suitable material of resin polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyacetal (POM), polyamide (PA) etc. are mentioned, for example.
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • POM polyacetal
  • PA polyamide
  • the glass fiber 11 of the present invention protrudes from the side surface of the groove and is exposed in the groove formed in the grooved first resin molded product 10 by removing a part of the resin of the resin molded product.
  • the average fiber length of the glass fiber 11 is not particularly limited, but is preferably 0.1 to 5 mm, more preferably 0.5 to 3.5 mm before being melt-kneaded in a resin, and the average diameter is preferably Is characterized by being 3 to 20 ⁇ m, more preferably 8 to 15 ⁇ m.
  • the glass fiber content (% by mass) is the same and the diameters are different, the smaller the average diameter of the glass fibers, the more the number of glass fibers present in the same volume.
  • mechanical properties tend to be high, in the present invention, when the average diameter of the glass fibers is too small, the number of glass fibers increases as described above, and therefore, attenuation by reflection or scattering of laser light is likely to occur.
  • the resin removal efficiency decreases, which may affect the formation of the groove that is the source of the anchor effect, so the bonding strength between the grooved first resin molded product and the second molded product decreases. Variations in bonding strength between products may increase.
  • the average diameter of the glass fiber is too large, it may be difficult to sufficiently improve the mechanical properties of the resin composition itself. From these viewpoints, it is desirable to set the average diameter of the glass fiber in the above-mentioned appropriate range.
  • Glass fiber 11 Content of glass fiber is 12 mass% or more and 45 mass% or less with respect to the whole resin composition which comprises the 1st resin molded product with a groove
  • the laser beam irradiated for forming the groove 12 is susceptible to the attenuation by the glass fiber 11, and the grooved first resin molded product 10 and the second molded product 20 There may be a large variation in the joint strength of
  • the content of the glass fiber is preferably 15% by mass to 40% by mass, more preferably 20% by mass to 38% by mass, and still more preferably 25% by mass to 35% by mass.
  • Average fiber length, average diameter can be determined by reading the values of 100 samples in an electron micrograph and taking an average value.
  • the glass fibers 11 may be used alone or in combination, and may be used in the form of non-fibrous glass flakes, inorganic fillers such as mica, talc, glass beads, other additives, modifiers, etc. It may be blended to such an extent that it does not interfere with expression.
  • the glass fiber 11 exposed in the groove 12 plays the role of an anchor for suppressing the breakage of the grooved first resin molded product 10 and the second molded product 20, a part of the resin is removed in the groove 12 It is preferable that the glass fiber 11 suitably bridge
  • the laser absorbing material is contained in an amount of 0.25 to 10% by mass of the entire resin composition constituting the grooved first resin molded product 10, so that the resin can be easily removed at the time of laser irradiation (grooves Can be appropriately adjusted, and variations in bonding strength can be suppressed.
  • the content is less than 0.25% by mass, laser reflection by the glass fiber or attenuation due to scattering is likely to occur, and the formation state of the grooves tends to vary, and when it exceeds 10% by mass, the laser absorbing material In the area where agglutinates are formed or where the laser absorbing material is condensed to a high concentration, the laser generates overheating and carbides are generated, and they become fracture origins as foreign matter, and also variation in bonding strength It becomes easy to occur.
  • the content of the laser absorbing material is preferably 0.35% by mass or more and 9% by mass or less, and is 0.4% by mass or more and 8% by mass or less of the entire resin composition constituting the first resin molded product. It is more preferable that it is 0.5 mass% or more and 6 mass% or less.
  • the laser absorbing material of the present invention is not particularly limited as long as it can absorb laser light, and for example, pigments and dyes are used, and pigments, particularly inorganic pigments, in terms of absorption efficiency of laser light. Among them, carbon black is preferable. [groove]
  • Grooves 12 are formed on the surface of the grooved first resin molded product 10 of the present invention.
  • the glass fiber 11 is exposed.
  • the groove 12 is formed by partially removing the resin and forming a groove 12 and removing a part of the glass fiber that is exposed from the side surface on at least the surface side of the groove and partially shields the laser irradiated to the groove.
  • the glass fiber 11 can be exposed from the groove 12a in a state of protruding from the groove side surface. By removing at least a part of the glass fiber 11, it is possible to enhance an anchor effect when composite molding with another resin molded product is performed.
  • the composite molded product 1 is manufactured by integrating the grooved first resin molded product 10 with the second molded product 20 with the surface having the grooves 12 of the grooved product as the contact surface.
  • the fibers 11 are no longer exposed.
  • the glass fiber 11 is exposed from the groove 12 in a mode in which the second molded article 20 is removed from the composite molded article 1. Then, it is assumed that "the glass fiber 11 is exposed in the groove 12".
  • the longitudinal direction of the groove 12 is the longitudinal direction of the glass fiber 11 in that a sufficient anchor effect is more effectively obtained by projecting and exposing the glass fiber from the side surface of the groove when composite molding with the second molded product is performed. It is preferred that the direction is different. In addition, the bonding effect is further enhanced when the glass fiber is in the groove.
  • the groove 12 formed on the surface of the resin molded product 10 further enhances the effect of the anchor by providing a plurality of grooves 12.
  • each of the plurality of grooves 12 may be formed individually, or a groove consisting of a plurality of concavities and convexities is formed at a time in the manner of one-stroke writing It may be The distance between the grooves may be appropriately set in consideration of the ease of entering the convex portion of the second molded product, the difficulty of falling off the exposed glass fiber, the structural strength of the uneven portion, and the like.
  • the plurality of grooves 12 may be formed by arranging the grooves 12 connected at both ends like contour lines, or may be formed in a stripe shape that does not intersect, or may be formed in a grid shape in which the grooves 12 intersect.
  • the longitudinal direction of the grooves 12 it is preferable that the longitudinal direction of the grooves 12 be formed in a diagonal lattice different from the longitudinal direction of the glass fiber.
  • the shape of the grooves 12 may be a diamond shape.
  • the length of the groove 12 is not particularly limited, and when the groove 12 is short, the shape of the opening may be square, round or oval. In order to obtain an anchor effect, it is preferable that the groove 12 be long.
  • the depth of the groove 12 is not particularly limited, but the depth of the groove 12 is preferably deep in that a higher anchor effect can be obtained.
  • the depth is shallow, when forming the composite molded product 1 by joining the second molded product 20 with the groove 12, sufficient between the glass fiber 11 exposed to the groove 12 and the second molded product 20 Since the anchor effect is not produced, the grooved first resin molded product 10 and the second molded product 20 may not be firmly in close contact with each other.
  • the material forming the second molded article 20 of the present invention is not particularly limited as long as it is in an uncured fluid state and can enter the groove 12 in which the glass fiber 11 is exposed.
  • it may be made of any of thermoplastic resin, curable resin (thermosetting resin, photocurable resin, radiation curable resin etc.), rubber, adhesive, metal, etc., from the viewpoint of processability
  • thermoplastic resin which can be shaped by injection molding, a thermosetting resin, and a resin composition containing a rubber are preferable, and a thermoplastic resin composition containing a thermoplastic resin is more preferable.
  • the second molded product 20 has a convex portion in contact with the groove 12, and the convex portion is in the groove 12.
  • the convex portion is preferably arranged to surround the glass fiber 11 inside the groove 12.
  • the content and average diameter of glass fibers contained in the resin composition constituting the first resin molded product with grooves, the content of the laser absorbing material, and the material constituting the second molded product mutually influences the bonding strength of the resulting composite molded article.
  • the relationship between the diameter and the amount of glass fiber is as described above, for example, when the diameter of the glass fiber contained in the first grooved resin molded product is small and the content is large, the groove formation is disadvantageously deteriorated due to the laser attenuation. However, in this case, by increasing the content of the laser absorbing material to such an extent that the problem of aggregation does not occur, the removal of the resin by the laser can be promoted and the influence of the attenuation of the laser can be mitigated. .
  • the convex portion of the second molded product can easily enter the groove even if the groove formation state is disadvantageous. It can be advantageous in terms of bonding strength.
  • the grooved first resin molding is required to match the mechanical characteristics and color of the first grooved resin molded product and the second molded product.
  • the amount of glass fiber and laser absorbing material such as carbon black contained in the material constituting the second molded product may be increased.
  • the second molded product is constructed.
  • the material has a high melt viscosity due to an increase in the content of the additive, and it is difficult for the material to get into the groove portion of the grooved first resin molded product, and thus the bonding strength may be disadvantageous.
  • the amount and average diameter of glass fibers contained in the resin composition constituting the grooved first resin molded product considering the influence of the laser absorber and each component on each other, and the laser absorber
  • the relation between the addition amount and the melt viscosity of the material constituting the second molded product is “[ ⁇ the amount of glass fiber contained in the resin composition constituting the first resin molded product with groove (mass%) ⁇ 0.9 ⁇ + ⁇ amount of laser absorbing material contained in resin composition constituting first resin molded product with groove (mass%) ⁇ 1.4 ⁇ ] ⁇ ⁇ second molded product Melt viscosity (Pa ⁇ s) of the material + 360 ⁇ ⁇ ⁇ average diameter of glass fibers contained in the resin composition constituting the first resin molded product with grooves ( ⁇ m) ⁇ 0.8 ⁇ Is preferably 700 or more and 2,500 or less, and preferably 1,000 or more and 2300 or less. Properly, and more preferably 1200 or more 2100 or less.
  • melt viscosity refers to the melt viscosity at 1000 sec ⁇ 1 measured in accordance with ISO 11443 for the material constituting the molded article, and the measurement temperature thereof constitutes the molded article.
  • component thermoplastic resin etc.
  • the main component has a melting point like a crystalline resin, its melting point + 30 ° C., clear like an amorphous resin When it does not have a melting point, it shall measure at glass transition temperature +120 degreeC.
  • LCP LCP
  • ECS03T-786H average fiber length 3 mm, average diameter 10.5 ⁇ m, hereinafter also described as “GF10.5”
  • CB carbon black # 3030B manufactured by Mitsubishi Chemical Corporation as a laser absorber
  • a 13 mm ⁇ 6.5 mm surface of this injection molded article was irradiated with a laser in the form of a diagonal lattice from the direction perpendicular to the surface of the injection molded article so that the number of irradiations was 10 times.
  • the grooved first resin molded product is inserted into a 130 mm ⁇ 13 mm ⁇ 6.5 mm cavity injection molding die, with the grooved surface formed by laser irradiation as the contact surface, and the first resin
  • the material constituting the second molded product is selected so as to be a combination of the same materials as the resin composition constituting the molded product, and injection molded under the same molding conditions as the first resin molded product,
  • the second molded product was laminated by filling the remaining 65 mm ⁇ 13 mm ⁇ 6.5 mm space to obtain a 130 mm ⁇ 13 mm ⁇ 6.5 mm composite molded product sample.
  • the melt viscosity (Pa ⁇ s) at 1000 sec -1 measured at 310 ° C in accordance with ISO 11443 for each material constituting the second molded product of each sample is shown in parentheses beside each evaluation result and each Regarding the sample, [[ ⁇ amount of glass fiber contained in the resin composition constituting the first resin molded product with grooves (mass%) ⁇ 0.9 ⁇ + ⁇ first grooved resin molded product] Amount of laser absorbing material contained in the resin composition (mass%) ⁇ 1.4 ⁇ ] ⁇ ⁇ melt viscosity (Pa ⁇ s) of material constituting second molded product + 360 ⁇ ⁇ ⁇ grooved The calculated values of the average diameter ( ⁇ m) ⁇ 0.8 ⁇ of the glass fiber contained in the resin composition constituting the first resin molded product are shown in the second row of each evaluation result.
  • a 13 mm ⁇ 6.5 mm surface is irradiated with a laser to produce a grooved first resin molded product in the same manner as the LCP-based embodiment described above, and the surface having the grooves is
  • the second molded product is inserted into a 130 mm ⁇ 13 mm ⁇ 6.5 mm cavity injection molding die as a contact surface, and a combination of the same materials as the resin composition constituting the first resin molded product is obtained.
  • the melt viscosity (Pa ⁇ s) at 1000 sec -1 measured at 310 ° C according to ISO 11443 for the material constituting the second molded product of each sample is shown in parentheses beside each evaluation result, and each sample About [[ ⁇ the amount of glass fiber contained in the resin composition constituting the first resin molded product with groove (mass%) ⁇ 0.9 ⁇ + ⁇ constitute the first resin molded product with groove ⁇ Amount of the laser absorber contained in the resin composition (mass%) ⁇ 1.4 ⁇ ] ⁇ ⁇ melt viscosity (Pa ⁇ s) of material constituting the second molded article + 360 ⁇ ⁇ ⁇ grooved first The calculated value of the average diameter ( ⁇ m) ⁇ 0.8 ⁇ of the glass fiber contained in the resin composition constituting the resin molded product of 1 is shown in the second stage of each evaluation result.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、第1の成形品と第2の成形品とを一体化した複合成形品において、接合強度が高く、かつ成形品のショット間における複合成形品の接合強度が安定でバラツキの少ない樹脂成形品を提供することを目的とする。 少なくとも樹脂、ガラス繊維およびレーザ吸収材を含有し、該ガラス繊維が露出した溝を有する溝付きの第1の樹脂成形品と、該第1の樹脂成形品の該溝を有する面上に隣接して配置される第2の成形品、とを備えた複合成形品であって、該第1の樹脂成形品において、該ガラス繊維は該樹脂成形品を構成する樹脂組成物全体に対し12~45質量%が混合され、該レーザ吸収材は該樹脂組成物全体に対し0.25~10質量%混合され、かつ特定の配合範囲にある複合成形品。

Description

複合成形品
 本発明は、溝付きの第1の樹脂成形品、この溝付きの第1の樹脂成形品を用いた複合成形品、及びこれらの製造方法に関する。
 近年、自動車、電気製品、産業機器等をはじめとした分野では、二酸化炭素の排出量削減、製造コストの削減等の要請に応えるため、金属成形品の一部を樹脂成形品に置き換える動きが広がっている。これに伴い、樹脂成形品と金属成形品とを一体化した複合成形品が広く普及している。これに限らず、同種又は異種の材料からなる成形品を一体化した複合成形品も広く普及している。
 第1の樹脂成形品と第2の成形品とを一体化した複合成形品の製造方法として、特許文献1には、無機充填材を含有する第1の樹脂成形品の表面にレーザを照射することで、該表面に無機充填材が露出した溝構造を形成し、その後、該表面に他方の樹脂成形品を接して充填、成形し、一体化させることが提案されている。
国際公開第2015/146767号
 しかしながら、レーザの照射により樹脂成形品に溝構造を形成する場合、樹脂に混合するガラス繊維等の無機充填剤やレーザを吸収する配合剤等の形状や添加量によって、レーザの吸収や散乱による減衰の状態が変化するため、溝構造の形成状態、ひいては複合成形品の接合状態に影響が生じることになる。
 特に、樹脂部の劣化を避けるため、あるいは設備上の制約等の事情から、レーザ照射の出力を抑えなければならない場合には、第1の樹脂成形品の成形ショット間における無機充填剤及び/又は配合剤の分散及び/又は配向状態のバラツキが、溝構造の形成に影響しやすくなり、その結果、接合強度にバラツキが生じ、歩留まりが悪く生産性に劣る複合成形品となる場合があった。
 本発明は、以上のような課題を解決するためになされたものであり、その目的は、第1の樹脂成形品と第2の成形品とを接合したときの強度を維持しながらも、成形ショット間での強度が安定でバラツキの少ない複合成形品を提供することである。
 本発明の目的は、下記によって達成された。
1.少なくとも樹脂、ガラス繊維およびレーザ吸収材を含有し、該ガラス繊維が露出した溝を有する溝付きの第1の樹脂成形品と、
 該第1の樹脂成形品の該溝を有する面上に隣接して配置される第2の成形品、
とを備えた複合成形品であって、
 該第1の樹脂成形品において、該ガラス繊維は、該樹脂組成物全体に対し12~45質量%が混合され、該レーザ吸収材は、該樹脂組成物全体に対し0.25~10質量%混合されており、かつ、[{第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量(質量%)×0.9}+{第1の樹脂成形品を構成する樹脂組成物に含有されるレーザ吸収材の量(質量%)×1.4}]×{第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の平均直径(μm)×0.8}が、700以上2500以下を満たす、複合成形品。
2.前記ガラス繊維が、前記第1の樹脂成形品を構成する樹脂組成物全体に対し20~38質量%混合され、前記レーザ吸収材が、前記第1の樹脂成形品を構成する樹脂組成物全体に対し0.35~9質量%混合されている、前記1に記載の複合成形品。
3.[{前記第1の樹脂成形品を構成する樹脂組成物に含有される前記ガラス繊維の量(質量%)×0.9}+{前記第1の樹脂成形品を構成する樹脂組成物に含有される前記レーザ吸収材の量(質量%)×1.4}]×{前記第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{前記第1の樹脂成形品を構成する樹脂組成物に含有される前記ガラス繊維の平均直径(μm)×0.8}が1200以上2100以下を満たす、前記1又は2に記載の複合成形品。
 本発明によれば、第1の樹脂成形品と第2の成形品とを接合したときの強度を維持しながらも、ショット間の接合強度が安定でバラツキのない樹脂成形品を得ることができる。
本実施形態の複合成形品1の拡大断面を模式的に示した図である。 複合成形品の構成要素である溝付きの第1の樹脂成形品の拡大断面を模式的に示した図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
<複合成形品>
 本発明の複合成形品は、少なくとも樹脂、ガラス繊維およびレーザ吸収材を含有する樹脂組成物からなり、該ガラス繊維が露出した溝を有する溝付きの第1の樹脂成形品と、該第1の樹脂成形品の該溝を有する面上に隣接して配置される第2の成形品、とを備えた複合成形品であって、該第1の樹脂成形品において、該ガラス繊維は、該樹脂組成物全体に対し12~45質量%が混合され、該レーザ吸収材は該樹脂組成物全体に対し0.25~10質量%混合されており、かつ、[{第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量(質量%)×0.9}+{第1の樹脂成形品を構成する樹脂組成物に含有されるレーザ吸収材の量(質量%)×1.4}]×{第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の平均直径(μm)×0.8}が700以上2500以下を満たすことを特徴とする。
 図1は本発明の複合成形品の概略拡大断面の模式図である。複合成形品1は、溝付きの第1の樹脂成形品10と、凸部を有する第2の成形品20とを備える。溝付きの第1の樹脂成形品10の溝内部には、ガラス繊維が側面より突出している。そして、第2の成形品20の凸部は、該突出したガラス繊維を囲むようにして溝付きの第1の樹脂成形品10の溝に入り込んでいる。
 ≪溝付きの第1の樹脂成形品10≫
 図2は、溝付きの第1の樹脂成形品10の概略拡大断面模式図である。溝付きの第1の樹脂成形品10は、ガラス繊維11を含有する。また、溝付きの第1の樹脂成形品10は、ガラス繊維11が側面より突出し露出された溝12を有する。ガラス繊維の一部は、溝に架かっている。
 [樹脂]
 本発明の溝付きの第1の樹脂成形品10を構成する樹脂組成物に用いる樹脂は、レーザの照射により除去され、結果として溝12を形成できるものであれば、特に限定されるものではなく、熱可塑性であってもよいし、熱硬化性であってもよい。樹脂の好適な材質として、例えば、ポリフェニレンスルフィド(PPS)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリアミド(PA)等が挙げられる。
 [ガラス繊維]
 本発明のガラス繊維11は、樹脂成形品の樹脂の一部を除去することにより、溝付きの第1の樹脂成形品10に形成される溝において溝の側面より突出し露出されるものである。そしてガラス繊維11の平均繊維長は特に限定されないが、樹脂に溶融混練される前の状態で、好ましくは0.1~5mm、より好ましくは0.5~3.5mmであり、平均直径は好ましくは3~20μm、より好ましくは8~15μmであることを特徴とする。
 通常、ガラス繊維の含有量(質量%)が同じでその径が異なる場合、ガラス繊維の平均直径が細い方ほど、同一容積内に存在するガラス繊維の本数が多くなることから、引張強度等の機械的特性が高くなる傾向にあるが、本発明においては、ガラス繊維の平均直径が細すぎると、上述の通りガラス繊維の本数が多くなることから、レーザ光の反射や散乱による減衰が生じやすくなり、樹脂の除去効率が低下し、アンカー効果のもととなる溝の形成に影響を及ぼしうるため、溝付きの第1の樹脂成形品と第2の成形品の接合強度が低下したり、製品ごとの接合強度のバラツキが大きくなったりする場合がある。
 一方、ガラス繊維の平均直径が太すぎる場合、樹脂組成物自体の機械的特性を十分高めることが難しくなる場合がある。これらの観点から、ガラス繊維の平均直径を上記の適切な範囲とすることが望ましい。
 ガラス繊維の含有量は、溝付きの第1の樹脂成形品を構成する樹脂組成物全体に対して12質量%以上45質量%以下である。12質量%未満であると、ガラス繊維11が溝12で露出したとしても、このガラス繊維11が溝付きの第1の樹脂成形品10及び第2の成形品20の破壊を抑えるアンカーの役割を十分に果たせない可能性がある。
 45質量%を超えると、溝12の形成のために照射したレーザ光が、ガラス繊維11による減衰の影響を受けやすくなり、溝付きの第1の樹脂成形品10と第2の成形品20との接合強度にバラツキが大きくなる場合がある。ガラス繊維の含有量は15質量%以上40質量%以下であることが好ましく、20質量%以上38質量%以下がより好ましく、25質量%以上35質量%以下がさらに好ましい。平均繊維長、平均直径は、電子顕微鏡写真において100個の試料の値を読み取り平均値を出すことにより定めることができる。
 ガラス繊維11として、単独もしくは混合して用いることができ、繊維状以外のガラスフレーク、マイカ、タルク、ガラスビーズなどの無機充填剤やその他の添加剤や改質剤などが、本発明の効果の発現を妨げない程度に配合されていても構わない。
 溝12で露出するガラス繊維11が溝付きの第1の樹脂成形品10及び第2の成形品20の破壊を抑えるアンカーの役割を果たすにあたり、溝12においては、樹脂の一部が除去されることにより形成される凹凸の山13同士をガラス繊維11が好適に架けていることが好ましい。
 [レーザ吸収材]
 本発明では、レーザ吸収材を溝付きの第1の樹脂成形品10を構成する樹脂組成物全体の0.25~10質量%含有させることにより、レーザ照射時の樹脂の除去しやすさ(溝の形成しやすさ)を適宜調整することができ、接合強度のバラツキを抑制することができる。0.25質量%よりも少ない場合は、ガラス繊維によるレーザの反射や散乱による減衰が発生しやすく、溝の形成状態にバラツキを発生しやすくなり、10質量%を超えた場合は、レーザ吸収材の凝集物が生じたり、またレーザ吸収材が凝集し高濃度となった箇所で、レーザによる過熱が発生し炭化物が生成したりすることで、それらが異物として破壊起点となり、やはり接合強度のバラツキを発生しやすくなる。
 レーザ吸収材の含有量は、第1の樹脂成形品を構成する樹脂組成物全体の0.35質量%以上9質量%以下であることが好ましく、0.4質量%以上8質量%以下であることがより好ましく、0.5質量%以上6質量%以下であることがさらに好ましい。
 本発明のレーザ吸収材としては、レーザ光を吸収することができるものであれば特に限定されず、例えば顔料や染料といったものが用いられ、レーザ光の吸収効率の点では顔料、特に無機顔料が好ましく、中でもカーボンブラックが好ましい。
 [溝]
 本発明の溝付きの第1の樹脂成形品10の表面には溝12が形成されている。溝12では、ガラス繊維11が露出している。そして、樹脂の一部除去により溝12を形成するとともに溝の少なくとも表面側において側面から露出し溝に照射されるレーザを一部遮蔽するガラス繊維の一部を除去することにより、溝12の側面12aからガラス繊維11を溝側面より突出した状態で露出させることができる。ガラス繊維11の少なくとも一部を除去することで、他の樹脂成形品と複合成形したときのアンカー効果を高めることができる。
 また、第2の成形品と一体化して複合成形品を得る際、少なくとも表面側において露出するガラス繊維の端部を突出する状態で一部を除去し、とりわけ溝の中央部のガラス繊維を除去することで、流動状態にある第2の成形品の溝への入り込みを容易にし、高いアンカー効果を得ることができる。
 本発明は、溝付きの第1の樹脂成形品10の溝12を有する面を接触面として第2の成形品20と一体化して複合成形品1を製造するが、この複合成形品1においてガラス繊維11はもはや露出されていない。
 本明細書では、複合成形品1においてガラス繊維11が露出されていない場合であっても、複合成形品1から第2の成形品20を取り除いた態様において溝12からガラス繊維11が露出していれば、「溝12においてガラス繊維11が露出されている」ものとする。
 第2の成形品と複合成形したときに溝の側面からガラス繊維が突出して露出することで十分なアンカー効果がより効果的に得られる点で、溝12の長手方向は、ガラス繊維11の長手方向とは異なることが好ましい。また、ガラス繊維が溝に架かっているとさらに接合効果が高くなる。
 樹脂成形品10の表面に形成される溝12は、複数の溝12を設けることにより、アンカーの効果がより高まる。溝12を複数形成する際、これら複数の溝12は、各々の溝が個別に形成されたものであってもよいし、一筆書きの要領で複数の凹凸からなる溝が一度に形成されたものであってもよい。溝の間隔は第2の成形品の凸部の入り込み易さ、露出したガラス繊維の脱落し難さ、凹凸部の構造強度などを考慮して適宜設定すればよい。
 複数の溝12は両端が繋がった溝12を等高線のように並べて設けても良いし、交差しない縞状に形成されても、溝12が交差する格子状に形成されてもよい。溝12を格子状に形成する場合は、溝12の長手方向がガラス繊維の長手方向とは異なる斜格子状に形成することが好ましい。また、溝12を格子状に形成する場合、溝12の形状はひし形状であっても良い。
 溝12の長さは特に限定されるものでなく、溝12が短い場合、開口部の形状は四角形であってもよいし、丸形や楕円形であってもよい。アンカー効果を得るためには、溝12は長い方が好ましい。
 また、溝12の深さについても特に限定されるものではないが、より高いアンカー効果を得られる点で、溝12の深さは深い方が好ましい。深さが浅いと、溝12で第2の成形品20と接合して複合成形品1を形成する際に、溝12に露出するガラス繊維11と第2の成形品20との間に十分なアンカー効果を生じないことから、溝付きの第1の樹脂成形品10と第2の成形品20とを強固に密接できないことがある。
<第2の成形品および複合成形品>
 本発明の第2の成形品20を形成する材料は、未硬化の流動状態であって、ガラス繊維11が露出された溝12に入ることが可能なものであれば特に限定されるものでなく、熱可塑性樹脂、硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、放射線硬化性樹脂等)、ゴム、接着剤、金属等のいずれからなるものであってもよいが、加工性の点から、射出成形で賦形することができる熱可塑性樹脂、熱硬化性樹脂、ゴムを含む樹脂組成物が好ましく、熱可塑性樹脂を含む熱可塑性樹脂組成物であることがより好ましい。
 本発明では、第2の成形品20は、溝12に接する凸部を有し、この凸部は、溝12に入り込んでいる。凸部は、溝12の内部において、ガラス繊維11を囲むように配置されることが好ましい。
 第1の樹脂成形品に第2の成形品が積層されることにより、本発明の複合成形品が形成される。
<レーザ吸収材と各成分の関係>
 本発明では、溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の含有量と平均直径、レーザ吸収材の含有量、および第2の成形品を構成する材料の溶融粘度が、得られる複合成形品の接合強度に相互に影響を及ぼす。
 ガラス繊維の直径と量の関係は前述の通りだが、例えば溝付きの第1の樹脂成形品に含まれるガラス繊維の直径が細く、かつ含有量が多い場合、レーザの減衰により溝形成が不利になるものの、その場合はレーザ吸収材の含有量を、凝集の問題が起こらない程度の範囲で多めにすることにより、レーザによる樹脂の除去を促進し、レーザの減衰の影響を緩和することができる。
 また、第2の成形品を構成する材料として、溶融粘度が低いものを用いれば、溝の形成状態が不利な場合でも、第2の成形品の凸部が溝内に入り込みやすくなることにより、接合強度面で有利となりうる。
 一方で、製品設計や意匠性の観点からは、溝付きの第1の樹脂成形品と第2の成形品の機械的特性や色目を合わせたいとの要求により、溝付きの第1の樹脂成形品に合わせて、第2の成形品を構成する材料に含まれるガラス繊維や、カーボンブラック等のレーザ吸収材の量を多くする場合があり、そのような場合、第2の成形品を構成する材料は、添加剤の含有量が多くなることで溶融粘度が高くなり、溝付きの第1の樹脂成形品の溝部に入り込みにくくなるため接合強度が不利となりうる。
 本発明において、レーザ吸収材と各成分が相互に与える影響を考慮すると、溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量と平均直径、レーザ吸収材の添加量および第2の成形品を構成する材料の溶融粘度の関係は、「[{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量(質量%)×0.9}+{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるレーザ吸収材の量(質量%)×1.4}]×{第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の平均直径(μm)×0.8}」により求められる値が、700以上2500以下であり、1000以上2300以下であることが好ましく、1200以上2100以下であることがより好ましい。
 なお、本発明において「溶融粘度(Pa・s)」とは、成形品を構成する材料について、ISO11443に準拠して測定した1000sec-1における溶融粘度を指し、その測定温度は、成形品を構成する材料に主に含まれる成分(熱可塑性樹脂など)を基準として、当該主成分が結晶性樹脂のように融点を持つものである場合はその融点+30℃、非晶性樹脂のように明確な融点を持たないものである場合はガラス転移温度+120℃にて測定するものとする。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
<溝付きの第1の樹脂成形品>
 ポリプラスチックス株式会社製、融点280℃、ISO11443に準拠し310℃で測定した1000sec-1における溶融粘度45Pa・sの液晶ポリマー(以下「LCP」とも記載)に、日本電気硝子株式会社製ガラス繊維ECS03T-786H(平均繊維長3mm、平均直径10.5μm、以下「GF10.5」とも記載)およびレーザ吸収材として三菱化学株式会社製カーボンブラック#3030B(以下「CB」とも記載)を表1に記載の量(LCPをベースとした樹脂組成物全体に対し、GF10.5を5~50質量%、CBを0.01~5.00質量%)混合し、下記条件で65mm×13mm×6.5mmの棒状成形品を射出成形した。この射出成形品の13mm×6.5mmの面に、照射回数が10回になるように、射出成形品の表面に対して垂直方向から斜格子状にレーザを照射した。
 すべての試料に対する照射条件は同じであり、レーザの発振波長は1.064μm、最大定格出力は13W(平均)とし、出力は90%、周波数は40kHz、走査速度は1000mm/sとした。これにより、溝幅が100μmで格子状の溝付きの第1の樹脂成形品を得た。 
<溝付きの第1の樹脂成形品の成形条件(LCPベース)>
 予備乾燥:140℃、3時間
 シリンダ温度:290℃
 金型温度:80℃
 射出速度:100mm/sec
 保圧:80MPa(800kg/cm) 
<第2の成形品の積層による複合成形品の製造>
 上記溝付きの第1の樹脂成形品について、レーザの照射によって形成された溝を有する面を接触面として130mm×13mm×6.5mmのキャビティの射出成形用金型にインサートし、第1の樹脂成形品を構成する樹脂組成物と同じ材料同士の組合せになるように、第2の成形品を構成する材料を選択し、第1の樹脂成形品と同じ成形条件で射出成形し、キャビティ内の残りの65mm×13mm×6.5mmの空間に充填することで第2の成形品を積層し、130mm×13mm×6.5mmの複合成形品の試料を得た。
<評価>
 上記試料について各10サンプルを取り出し、23℃50%RHの雰囲気下、オリエンテック社製テンシロンUTA-50kN(クロスヘッド速度10mm/分)にて引張試験を行い、複合成形品の接合強度及びそのバラツキを評価した。評価基準は下記の通りとした。B以上であれば、実用上の問題は発生しないレベルである。
A:10個のうち10個が接合強度12MPa以上
B:10個のうち10個が接合強度10MPa以上12MPa未満
C:10個のうち8~9個が接合強度10MPa以上、他が10MPa未満
D:10個のうち3個以上が接合強度10MPa未満
 なお、各試料の第2の成形品を構成する各材料について、ISO11443に準拠し310℃で測定した1000sec-1における溶融粘度(Pa・s)を各評価結果の横にカッコ書きで、また各試料について、「[{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量(質量%)×0.9}+{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるレーザ吸収材の量(質量%)×1.4}]×{第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の平均直径(μm)×0.8}」を計算した値を各評価結果の2段目に、それぞれを示す。
Figure JPOXMLDOC01-appb-T000001
 次いで、ポリプラスチックス株式会社製、融点280℃、ISO11443に準拠し310℃で測定した1000sec-1における溶融粘度130Pa・sのポリフェニレンサルファイド樹脂(以下「PPS」とも記載)に、日本電気硝子株式会社製ガラス繊維ECS03T-786H(平均繊維長3mm、平均直径10.5μm、以下「GF10.5」とも記載)または日本電気硝子株式会社製ガラス繊維ECS03T-717(平均繊維長3mm、平均直径13μm、以下「GF13」とも記載)、およびレーザ吸収材として三菱化学株式会社製カーボンブラック#3030B(以下「CB」とも記載)を表2に記載の量(PPSをベースとした樹脂組成物全体に対し、GF10.5またはGF13をそれぞれ5~35質量%、CBを5.0質量%)混合し、下記条件にて、65mm×13mm×6.5mmの棒状成形品を射出成形した。
 この射出成形品について、上述のLCPベースの実施例と同様にして、13mm×6.5mmの面にレーザを照射して溝付きの第1の樹脂成形品を作製し、当該溝を有する面を接触面として130mm×13mm×6.5mmのキャビティの射出成形用金型にインサートし、第1の樹脂成形品を構成する樹脂組成物と同じ材料同士の組合せになるように、第2の成形品を構成する材料を選択し、第1の樹脂成形品と同じ成形条件で射出成形し、キャビティ内の残りの65mm×13mm×6.5mmの空間に充填することで第2の成形品を積層し、130mm×13mm×6.5mmの複合成形品の試料を得た。
<PPSベースの樹脂成形品の成形条件>
 予備乾燥:140℃、3時間
 シリンダ温度:320℃
 金型温度:140℃
 射出速度:30mm/sec
 保圧:80MPa(800kg/cm) 
<評価>
 上記試料について各10サンプルを取り出し、23℃50%RHの雰囲気下、オリエンテック社製テンシロンUTA-50kN(クロスヘッド速度10mm/分)にて引張試験を行い複合成形品の接合強度及びそのバラツキを評価した。評価基準は下記の通りとした。B以上であれば、実用上の問題は発生しないレベルである。
 A:10個のうち10個が接合強度40MPa以上
 B:10個のうち10個が接合強度30MPa以上40MPa未満
 C:10個のうち8~9個が接合強度30MPa以上、1~2個が30MPa未満
 D:10個のうち3個以上が接合強度30MPa未満
 なお、各試料の第2の成形品を構成する材料について、ISO11443に準拠し310℃で測定した1000sec-1における溶融粘度(Pa・s)を各評価結果の横にカッコ書きで、また各試料について、「[{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量(質量%)×0.9}+{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるレーザ吸収材の量(質量%)×1.4}]×{第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{溝付きの第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の平均直径(μm)×0.8}」を計算した値を各評価結果の2段目に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、本発明の範囲では、接合強度が高い複合成形品を得ることができ、また接合強度のバラツキを小さくすることができた。
 1   複合成形品
 10  溝付きの第1の樹脂成形品
 11  無機充填剤
 12  溝
 12a 溝の側壁
 13  山
 20  第2の成形品
 D   溝の深さ
 W   山の幅

 

Claims (3)

  1.  少なくとも樹脂、ガラス繊維およびレーザ吸収材を含有し、該ガラス繊維が露出した溝を有する溝付きの第1の樹脂成形品と、
     該第1の樹脂成形品の該溝を有する面上に隣接して配置される第2の成形品、
    とを備えた複合成形品であって、
     該第1の樹脂成形品において、該ガラス繊維は、該樹脂組成物全体に対し12~45質量%が混合され、
    該レーザ吸収材は該樹脂組成物全体に対し0.25~10質量%混合されており、かつ、[{第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の量(質量%)×0.9}+{第1の樹脂成形品を構成する樹脂組成物に含有されるレーザ吸収材の量(質量%)×1.4}]×{第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{第1の樹脂成形品を構成する樹脂組成物に含有されるガラス繊維の平均直径(μm)×0.8}が、700以上2500以下を満たす、複合成形品。
  2.  前記ガラス繊維が、前記第1の樹脂成形品を構成する樹脂組成物全体に対し20~38質量%混合され、前記レーザ吸収材が、前記第1の樹脂成形品を構成する樹脂組成物全体に対し0.35~9質量%混合されている、請求項1に記載の複合成形品。
  3.  [{前記第1の樹脂成形品を構成する樹脂組成物に含有される前記ガラス繊維の量(質量%)×0.9}+{前記第1の樹脂成形品を構成する樹脂組成物に含有される前記レーザ吸収材の量(質量%)×1.4}]×{前記第2の成形品を構成する材料の溶融粘度(Pa・s)+360}÷{前記第1の樹脂成形品を構成する樹脂組成物に含有される前記ガラス繊維の平均直径(μm)×0.8}が1200以上2100以下を満たす、請求項1又は2に記載の複合成形品。

     
PCT/JP2018/037196 2017-10-20 2018-10-04 複合成形品 WO2019078020A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203511 2017-10-20
JP2017203511A JP6509299B1 (ja) 2017-10-20 2017-10-20 複合成形品

Publications (1)

Publication Number Publication Date
WO2019078020A1 true WO2019078020A1 (ja) 2019-04-25

Family

ID=66173661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037196 WO2019078020A1 (ja) 2017-10-20 2018-10-04 複合成形品

Country Status (2)

Country Link
JP (1) JP6509299B1 (ja)
WO (1) WO2019078020A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100796A1 (ja) * 2021-12-03 2023-06-08 住友化学株式会社 液晶ポリエステル組成物及びその成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126339A (ja) * 1987-11-12 1989-05-18 New Japan Radio Co Ltd 樹脂の接着方法
JP2015205430A (ja) * 2014-04-18 2015-11-19 ポリプラスチックス株式会社 複合成形品及びその製造方法
JP2016007836A (ja) * 2014-06-26 2016-01-18 ポリプラスチックス株式会社 複合成形品及びその製造方法
JP2016032917A (ja) * 2014-07-31 2016-03-10 ポリプラスチックス株式会社 溝付き樹脂成形品及び複合成形品の製造方法、溝付き中空形状樹脂成形品及び複合成形品
JP2016043382A (ja) * 2014-08-22 2016-04-04 オムロン株式会社 接合構造体の製造方法および接合構造体
US20160167353A1 (en) * 2014-12-12 2016-06-16 GM Global Technology Operations LLC Systems and methods for joining components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126339A (ja) * 1987-11-12 1989-05-18 New Japan Radio Co Ltd 樹脂の接着方法
JP2015205430A (ja) * 2014-04-18 2015-11-19 ポリプラスチックス株式会社 複合成形品及びその製造方法
JP2016007836A (ja) * 2014-06-26 2016-01-18 ポリプラスチックス株式会社 複合成形品及びその製造方法
JP2016032917A (ja) * 2014-07-31 2016-03-10 ポリプラスチックス株式会社 溝付き樹脂成形品及び複合成形品の製造方法、溝付き中空形状樹脂成形品及び複合成形品
JP2016043382A (ja) * 2014-08-22 2016-04-04 オムロン株式会社 接合構造体の製造方法および接合構造体
US20160167353A1 (en) * 2014-12-12 2016-06-16 GM Global Technology Operations LLC Systems and methods for joining components

Also Published As

Publication number Publication date
JP6509299B1 (ja) 2019-05-08
JP2019077048A (ja) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6773824B2 (ja) 複合成形品
TWI522230B (zh) A resin molded product having a groove
JP5918451B2 (ja) 複合成形品及びその製造方法
JP5938527B2 (ja) 2種以上の樹脂及びガラス長繊維を含む組成物
JP6509299B1 (ja) 複合成形品
JP5744361B1 (ja) 複合成形品の製造方法
CN109153163B (zh) 复合成型品及其制造方法
JP6355405B2 (ja) 複合成形品及びその製造方法
EP3695932A1 (en) Method for producing a bonded body of different materials
JP2021178432A (ja) 複合成形品および溝付き樹脂成形品
WO2021006041A1 (ja) 成形体、複合成形体および複合成形体の製造方法
JP6377990B2 (ja) 溝付き樹脂成形品及び複合成形品の製造方法、溝付き中空形状樹脂成形品及び複合成形品
CN109414854B (zh) 树脂复合成形体的制造方法
JP2021098315A (ja) 複合成形品、複合成形品の製造方法および溝付き樹脂成形品
JPWO2018216804A1 (ja) 樹脂成形品の接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868143

Country of ref document: EP

Kind code of ref document: A1