WO2017199618A1 - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
WO2017199618A1
WO2017199618A1 PCT/JP2017/014164 JP2017014164W WO2017199618A1 WO 2017199618 A1 WO2017199618 A1 WO 2017199618A1 JP 2017014164 W JP2017014164 W JP 2017014164W WO 2017199618 A1 WO2017199618 A1 WO 2017199618A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
oxide semiconductor
secondary battery
voltage
type metal
Prior art date
Application number
PCT/JP2017/014164
Other languages
English (en)
French (fr)
Inventor
和之 津國
友和 斎藤
祐樹 佐藤
光 高野
Original Assignee
株式会社日本マイクロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/302,927 priority Critical patent/US20190273278A1/en
Application filed by 株式会社日本マイクロニクス filed Critical 株式会社日本マイクロニクス
Priority to KR1020207035719A priority patent/KR102310986B1/ko
Priority to CA3024489A priority patent/CA3024489A1/en
Priority to EP21150665.4A priority patent/EP3828945A1/en
Priority to KR1020187036767A priority patent/KR20190046719A/ko
Priority to EP17799052.0A priority patent/EP3460862A4/en
Priority to CN201780029956.6A priority patent/CN109314183A/zh
Publication of WO2017199618A1 publication Critical patent/WO2017199618A1/ja
Priority to US17/111,842 priority patent/US20210091400A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an all-solid secondary battery.
  • a secondary battery and a capacitor as a device having a power storage function.
  • a secondary battery is a device utilizing a chemical reaction and is characterized by a large capacity.
  • a capacitor is characterized in that it can be charged in a short time because it accumulates electric charges with an insulator sandwiched between electrodes.
  • Secondary batteries include nickel / cadmium batteries and lithium ion secondary batteries.
  • Examples of the capacitor include a super capacitor (also called an electric double layer capacitor) and a MOS capacitor.
  • a lithium ion secondary battery which is a typical secondary battery, has a three-layer structure in which a separator is sandwiched between a positive electrode and a negative electrode, and these components are covered with an electrolyte that can flow lithium ions.
  • the positive electrode and the negative electrode are materials capable of absorbing and releasing lithium ions and electrons, and charging / discharging is performed as lithium ions travel between the positive electrode and the negative electrode through the electrolyte inside the lithium ion battery.
  • Patent Document 1 The structure disclosed in Patent Document 1 as a laminated structure of a solid lithium ion secondary battery includes a positive electrode layer having a positive electrode active material in and out of lithium ions, a negative electrode layer having a negative electrode active material in and out of lithium ions, and a positive electrode A solid electrolyte layer disposed between the layer and the negative electrode layer.
  • the solid electrolyte layers of two adjacent stacked bodies are connected by an insulating layer. Furthermore, two adjacent laminated bodies are laminated so that the negative electrode layers constituting each laminated body or the positive electrode layers constituting each laminated body 4 are in contact with each other.
  • Patent Document 2 discloses a quantum battery as a secondary battery based on a new principle. “Quantum battery” is the name given to the secondary battery disclosed in Patent Document 2.
  • FIG. 14 is a diagram showing a cross section of the quantum battery 100.
  • a conductive first electrode 312 is formed on a substrate, and a charge layer 114 for charging a charge, a p-type metal oxide semiconductor layer 116, and a second electrode 118 are stacked.
  • the charge layer 114 is filled with a fine particle n-type metal oxide semiconductor covered with an insulating film, and a photoexcited structure change phenomenon is caused by ultraviolet irradiation to newly enter the band gap of the n-type metal oxide semiconductor. Energy levels are formed.
  • Patent Document 3 discloses a new secondary battery in which an electrochromic display device function and a secondary battery are integrated using a semiconductor.
  • An active layer comprising a substrate, a first electrode, a porous layer made of a semiconductor metal oxide, and a composite of a semiconductor metal oxide and an insulating metal oxide, which causes a redox reaction reversibly upon voltage application
  • the electron blocking layer and the second electrode and the structure is the same as that of the quantum battery shown in FIG.
  • the active layer is an electrochromic display / secondary battery integrated solid state element that accumulates or releases charges by an oxidation-reduction reaction, and the light transmittance changes in conjunction with the accumulation or release of charges.
  • the charging layer is structurally a composite of a semiconductor metal oxide and an insulating metal oxide. And a new energy level is not formed in the band gap of the n-type metal oxide semiconductor by ultraviolet irradiation. Due to these differences, in the latter, the principle of charge / discharge is also based on a reversible redox reaction between the semiconductor metal oxide and the insulating metal oxide.
  • the composite oxide thin film is changed to active by performing a photoexcitation structure change process on the composite oxide thin film.
  • a photoexcitation structure change process an ultraviolet irradiation method is used. It is possible to use.
  • the processes performed after forming the secondary battery include an aging process and a conditioning process.
  • a lithium secondary battery is formed by putting an electrode body including a positive electrode and a negative electrode into a battery case, injecting a non-aqueous electrolyte, and then sealing the battery case. After the formation of the lithium secondary battery, it is manufactured by performing a so-called aging process in which it is stored at a predetermined temperature as it is, and then performing a conditioning process for adjusting the battery to a state where it can be actually used by charging and discharging (See Patent Document 4).
  • the present invention relates to an electrical process performed on a secondary battery after formation, and by examining the electrical conditions of the secondary battery, the discharge capacity can be increased from the initial discharge capacity.
  • the object is to provide a manufacturing method.
  • the value of the positive voltage applied to the second electrode in the first process includes at least a value equal to or higher than the charging voltage of the oxide semiconductor secondary battery.
  • the positive voltage applied between the first electrode and the second electrode in the first process may be set to a different voltage value for each cycle.
  • the positive voltage application time for applying the positive voltage in the first process is increased with the increase in the discharge capacity of the oxide semiconductor secondary battery.
  • the manufacturing method includes a third process for measuring the discharge capacity of the oxide semiconductor secondary battery, and the first unit cycle is a predetermined number of cycles. After the repetition, the third process is executed, and the voltage application is terminated when it is measured that the discharge capacity of the oxide semiconductor secondary battery is equal to or greater than a predetermined threshold value.
  • the intermediate insulating layer is formed by applying a silicone oil or a silicone oil to which a resistance adjusting agent is added on the surface of the charging layer, baking, and then irradiating the ultraviolet ray after baking to UV cure. To form.
  • the intermediate insulating layer is formed on the charging layer by sputtering using silicon (Si) as a target.
  • the insulator of the intermediate insulating layer is SiO x (0 ⁇ x ⁇ 2).
  • the p-type metal oxide semiconductor is nickel oxide (NiO).
  • the manufacturing method of the oxide semiconductor secondary battery which concerns on 1 aspect of this invention is the 1st electrode, the n-type metal oxide semiconductor layer which consists of an n-type metal oxide semiconductor, and an n-type metal oxide semiconductor and insulation.
  • a charging layer made of a body an intermediate insulating layer mainly composed of an insulator, a p-type metal oxide semiconductor layer made of a p-type metal oxide semiconductor, and a second electrode in this order
  • a fifth process for applying a positive voltage between the first electrode and the second electrode with reference to the electrode and a sixth process for applying a negative voltage between the first electrode and the second electrode with reference to the first electrode The process is a second unit cycle, and a predetermined number of second unit cycles are repeated.
  • the present invention includes an n-type metal oxide semiconductor layer, a charging layer composed of an n-type metal oxide and an insulator, an intermediate insulating layer, and a p-type metal oxide semiconductor sandwiched between a conductive first electrode and a second electrode. And based on an oxide semiconductor secondary battery having a power storage function.
  • a layer in which an element of the insulating layer is taken into the p-type metal oxide semiconductor between the intermediate insulating layer and the p-type metal oxide semiconductor layer by performing electrical treatment on the oxide semiconductor secondary battery having this structure By forming (hereinafter referred to as a mixed layer), the discharge capacity could be increased.
  • the electrical process is a process in which, after the secondary battery is formed, the application of a positive voltage and the application of 0 V or the application of positive and negative electrodes is repeated on the second electrode side with respect to the first electrode.
  • FIG. 1 shows the structure of an oxide semiconductor secondary battery 10 manufactured according to the present invention.
  • the oxide semiconductor secondary battery 10 includes a first electrode 12, an n-type metal oxide semiconductor layer 14, a charging layer 16, an intermediate insulating layer 18, a mixed layer 20, a p-type metal oxide semiconductor layer 22,
  • the two electrodes 24 have a laminated structure in which they are laminated in this order.
  • the material of the first electrode 12 for example, a metal such as chromium (Cr) or titanium (Ti) can be used.
  • the first electrode 12 can also be a silver (Ag) alloy film containing aluminum (Al) or the like as another metal electrode.
  • the first electrode 12 may have a laminated structure in which a plurality of metal layers are laminated.
  • the first electrode needs to be made of a material having a low resistivity, and is preferably made of a material having a resistivity of 100 ⁇ ⁇ cm or less, for example.
  • a metal foil such as copper, aluminum or stainless steel can be used also as the substrate of the oxide semiconductor secondary battery 10.
  • n-type metal oxide semiconductor layer 14 As a material of the n-type metal oxide semiconductor layer 14, for example, an n-type metal oxide semiconductor such as titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ) can be used as the material. .
  • the n-type metal oxide semiconductor layer 14 is formed by forming an n-type metal oxide semiconductor on the first electrode 12.
  • the charge layer 16 is composed of an n-type metal oxide semiconductor and an insulator.
  • the material for the insulator it is preferable to use a silicon compound (silicone) having a main skeleton formed of siloxane bonds such as silicon oxide.
  • n-type metal oxide semiconductor of the charging layer 16 n-type metal oxide semiconductors such as titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ) can be used.
  • the fine particles can be contained in the insulator.
  • a precursor of an n-type metal oxide semiconductor for example, titanium stearate that is a precursor of titanium oxide can be used.
  • the intermediate insulating layer 18 includes an insulator or an insulator to which a resistance adjusting agent is added.
  • a resistance adjusting agent is added.
  • silicon oxide SiO 2 , silicon nitride Si 3 N 4 , silicon oxide SiO x (0 ⁇ x ⁇ 2), or the like can be used.
  • the intermediate insulating layer 18 can be adjusted in insulation resistance value by adding a resistance adjusting agent such as metal, metal oxide or semiconductor substance to silicon oxide, silicon nitride or silicone oil.
  • a resistance adjusting agent such as metal, metal oxide or semiconductor substance to silicon oxide, silicon nitride or silicone oil.
  • the intermediate insulating layer 18 needs to be an insulator or a layer including an insulator in which a resistance adjusting agent is added to the insulator.
  • a resistance adjusting agent a metal, a metal oxide, a semiconductor substance, or the like can be used.
  • the p-type metal oxide semiconductor layer 22 is composed of a p-type metal oxide semiconductor.
  • a material of the p-type metal oxide semiconductor nickel oxide (NiO), copper aluminum oxide (CuAlO 2 ), or the like can be used.
  • chromium (Cr), copper (Cu), or the like can be used as the material of the second electrode 24 chromium (Cr), copper (Cu), or the like.
  • a silver (Ag) alloy containing aluminum (Al) or the like can be used as the material of the second electrode 24 .
  • a transparent conductive electrode can be used as the second electrode 24.
  • a conductive film of indium tin oxide (ITO) doped with tin can be used as the second electrode 24.
  • ITO indium tin oxide
  • the second electrode needs to be made of a material having a low resistivity, and is preferably made of a material having a resistivity of 100 ⁇ ⁇ cm or less, for example.
  • the structure of the oxide semiconductor secondary battery 10 according to the present invention has been described above.
  • a method for electrically forming the mixed layer 20 will be described.
  • the method includes: laminating the first electrode 12, the n-type metal oxide semiconductor layer 14, the charging layer 16, the intermediate insulating layer 18, the p-type metal oxide semiconductor layer 22 and the second electrode 24 in this order, The laminate is placed in an environment with a humidity within 35 to 65 percent.
  • a method for electrically forming the mixed layer will be described in detail.
  • FIG. 2 shows the structure of the oxide semiconductor secondary battery 10 before and after applying a positive and 0 V cycle voltage.
  • FIG. 2A shows an oxidation in which a first electrode 12, an n-type metal oxide semiconductor layer 14, a charge layer 16, an intermediate insulating layer 18, a p-type metal oxide semiconductor layer 22 and a second electrode 24 are stacked in this order.
  • 1 shows the structure of a physical semiconductor secondary battery 10-1. That is, FIG. 2A shows the oxide semiconductor secondary battery 10-1 before the mixed layer 20 is formed.
  • a positive and 0V cycle voltage is applied between the first electrode 12 and the second electrode 24 by a voltage source.
  • the mixed layer 20 is formed between the intermediate insulating layer 18 and the p-type metal oxide semiconductor layer 22.
  • the oxide semiconductor secondary battery 10 in which the mixed layer 20 is formed as illustrated in FIG. 2B is manufactured.
  • the formation of the mixed layer 20 by the application of the cycle voltage is a layer found experimentally, and a result of increasing the discharge capacity by the formation of the mixed layer 20 is obtained.
  • FIG. 3 is a flowchart for explaining a manufacturing process of the oxide semiconductor secondary battery according to the present invention.
  • the first electrode 12 is formed on a substrate (not shown).
  • the metal foil itself becomes the first electrode 12.
  • a metal foil such as copper, aluminum, or stainless steel can be used.
  • the first electrode 12 can also be formed by forming a conductive metal such as chromium, titanium, or titanium nitride on an insulating substrate.
  • a conductive metal such as chromium, titanium, or titanium nitride
  • a flexible resin sheet such as glass or a polyimide film can be used.
  • Examples of the method for producing the first electrode 12 include vapor phase film forming methods such as sputtering, ion plating, electron beam vapor deposition, vacuum vapor deposition, and chemical vapor deposition.
  • the metal is the first electrode 12, it can be formed by an electrolytic plating method, an electroless plating method, or the like.
  • copper, copper alloy, nickel, aluminum, silver, gold, zinc, tin or the like can be used as a metal used for plating.
  • step S ⁇ b> 2 the n-type metal oxide semiconductor layer 14 is formed on the first electrode 12.
  • an n-type metal oxide semiconductor film such as titanium oxide, tin oxide, and zinc oxide is formed on the first electrode 12 by a method such as sputtering deposition.
  • a charging layer 16 made of an n-type metal oxide semiconductor and an insulator is formed on the n-type metal oxide semiconductor layer.
  • the charging layer 16 is formed by mixing a mixture of a precursor such as titanium oxide, tin oxide or zinc oxide, which is an n-type metal oxide semiconductor, and silicone oil, which is an insulator, with a spin coating method or slit coating. After coating on the n-type metal oxide semiconductor layer 14 by a method or the like, it is formed by drying and firing.
  • the precursor for example, titanium stearate which is a precursor of titanium oxide can be used. Titanium oxide, tin oxide, and zinc oxide are formed by decomposition from an aliphatic acid salt that is a metal precursor.
  • the charging layer 16 after drying and firing may be UV-cured by irradiating with ultraviolet rays.
  • titanium oxide, tin oxide, zinc oxide, and the like may be formed from a metal precursor, and these nanoparticles may be used. Nanoparticles such as titanium oxide, tin oxide and zinc oxide are mixed with silicone oil, further mixed with a solvent to adjust the viscosity, and formed by spin coating, slit coating, etc., followed by drying, baking, and UV irradiation. Do and form.
  • an intermediate insulating layer 18 mainly composed of an insulator is formed on the charging layer 16.
  • the intermediate insulating layer 18 is formed on the charge layer 16 by sputtering deposition or plasma enhanced chemical vapor deposition (PECVD) using silicon oxide, silicon nitride, or the like. It can also be formed on the charge layer 16 by sputtering using silicon as a target. Alternatively, it may be formed by applying silicone oil on the charging layer 16 and then baking the silicone oil. The baked silicone oil may be irradiated with ultraviolet rays for UV curing.
  • PECVD plasma enhanced chemical vapor deposition
  • step S ⁇ b> 5 the p-type metal oxide semiconductor layer 22 is formed on the intermediate insulating layer 18.
  • a material for the p-type oxide semiconductor nickel oxide (NiO) or the like can be used.
  • the second electrode 24 is formed on the p-type metal oxide semiconductor layer 22.
  • the second electrode 24 is formed on the p-type metal oxide semiconductor layer 22 by sputtering deposition of aluminum, palladium, titanium nitride, aluminum, and titanium nitride.
  • the method of forming the second electrode 24 is not limited to the sputtering deposition method, and a thin film forming method such as an evaporation method, an ion plating method, or an MBE (Molecular Beam Epitaxy) method may be used.
  • the second electrode 24 may be formed using a coating formation method such as a printing method or a spin coating method.
  • the p-type metal oxide semiconductor layer 22 is p-type between the intermediate insulating layer 18 and the p-type metal oxide semiconductor layer 22.
  • a micro interface is formed by the material diffused from the insulator of the metal oxide semiconductor and the intermediate insulating layer 18. This interface layer is the mixed layer 20.
  • the cycle voltage may be a positive voltage and a negative voltage.
  • FIG. 4 shows an example of an implementation circuit of the cycle voltage application system.
  • the cycle voltage application system includes a voltage source 30, a voltmeter 32, an ammeter 34, a control device 36, and a resistor 38.
  • the voltage source 30 is connected between the first electrode 12 and the second electrode 24 of the voltage applied secondary battery 39.
  • a voltmeter 32 and an ammeter 34 are connected between the voltage source 30 and the voltage applied secondary battery 39.
  • a resistor 38 is connected between the voltage source 30 and the voltage-applied secondary battery 39.
  • the voltage applied secondary battery 39 is, for example, the oxide semiconductor secondary battery 10 having the structure shown in FIG.
  • the control device 36 is connected to a voltage source 30, a voltmeter 32, and an ammeter 34.
  • the control device 36 controls the voltage source 30.
  • the control device 36 uses the first electrode 12 as a reference (ground), the first process for applying a positive voltage between the first electrode and the second electrode, and the first electrode as a reference.
  • a process of repeating a second process of applying 0 V between one electrode and the second electrode in this order is defined as a first unit cycle, and a predetermined number of first unit cycles are repeated.
  • Positive voltage value applied to the first process, application time for applying positive and 0 V cycle voltages in the first process and the second process (hereinafter abbreviated as “unit cycle information”), and repeated cycles
  • unit cycle information Positive voltage value applied to the first process, application time for applying positive and 0 V cycle voltages in the first process and the second process
  • unit cycle information The number is stored in the control device 36 as cycle information.
  • the control device 36 controls the voltage source 30 based on the stored cycle information.
  • the voltage source 30 applies a cycle voltage of positive and 0 V between the first electrode 12 and the second electrode 24 via the resistor 38 based on a control signal from the control device 36.
  • the positive voltage output from the voltage source 30 is applied to the voltage applied secondary battery 39 via the resistor 38.
  • This voltage applied secondary battery 39 is substantially the same as the oxide semiconductor secondary battery 10-1 without the mixed layer 20 shown in FIG.
  • the first electrode 12 is grounded (that is, the first electrode 12 is 0V), and the output voltage from the voltage source 30 is applied to the second electrode 24 with respect to the first electrode 12. Is applied.
  • a voltmeter 32 and an ammeter 34 are connected to the control device 36.
  • the voltage value measured by the voltmeter 32 and the current value measured by the ammeter 34 are fed back to the control device 36.
  • the control device 36 controls the positive and 0 V cycle voltage output from the voltage source 30 by controlling the voltage source 30 based on the fed back voltage value, current value, and previously stored cycle information.
  • the voltage output from the voltmeter 32 is the charging voltage charged in the voltage applied secondary battery 39. It becomes.
  • the voltage source 30 sets the maximum current flowing through the voltage-applied secondary battery 39 to a predetermined current in order to prevent an excessive current from being generated when the voltage is switched and the discharge capacity of the voltage-applied secondary battery 39 increases. It has a current limiting function to limit.
  • the voltage source 30 can also control the voltage output to the voltage applied secondary battery 39 independently of the control from the control device 36.
  • FIG. 5 shows an example of a positive and 0V voltage waveform 40-1.
  • the unit cycle is to be a voltage applied secondary battery 39, it is applied between the positive voltage V11 application time t 11, a voltage waveform 40-1 is applied between the application time t 12 to 0V.
  • the mixed layer 20 can be formed between the intermediate insulating layer 18 and the p-type metal oxide semiconductor layer 22.
  • the mixed layer 20 formed in this way can increase the discharge capacity of the voltage applied secondary battery 39 relative to the initial discharge capacity.
  • the initial discharge capacity is the discharge capacity before applying a positive and 0 V cycle voltage or a positive and negative cycle voltage to the voltage applied secondary battery 39.
  • the cycle of applying a positive voltage after applying 0 V may be set as a unit cycle by reversing the order in which the voltages are applied.
  • the value of the positive voltage applied to the second electrode 24 preferably includes at least a value equal to or higher than the charging voltage of the voltage applied secondary battery 39.
  • the positive voltage application time t 11 applying a positive voltage V11 is the voltage applied two It can also be set longer as the discharge capacity of the secondary battery 39 increases. With increasing discharge capacity, can be charged sufficiently by increasing the positive voltage application time t 12 applying a positive voltage V11, it is possible to increase the thickness of the efficiently mixed layer 20.
  • the positive voltage application time t 1 for applying a positive voltage V11 can be set to a time to reach the set voltage value the voltage value of the voltage applied secondary battery 39 is predetermined.
  • the mixed voltage layer 20 is efficiently formed by setting the set voltage value to be equal to or lower than the charging voltage of the voltage-applied secondary battery 39 or higher than the charging voltage of the voltage-applied secondary battery 39. This set voltage combination is obtained experimentally.
  • the voltage application secondary battery 39 is set by setting the set voltage value to be lower than the charging voltage of the voltage applied secondary battery 39 or higher than the charging voltage of the voltage applied secondary battery 39.
  • the mixed layer 20 can be formed efficiently by shortening the time.
  • FIG. 6 shows an example of a two-cycle voltage waveform 40-2 in which unit cycles of different positive voltages are combined.
  • the voltage waveform 40-2 is shown by a unit cycle of applied for applying 0V time t 14. That is, every time the unit cycle is repeated, the value of the positive voltage, the time for applying the positive voltage, and the time for applying 0 V are different.
  • the mixed layer 20 can be efficiently formed by the voltage waveform 40-2 by such a unit cycle, and the discharge capacity of the voltage applied secondary battery 39 can be increased with respect to the initial discharge capacity.
  • the voltage application The discharge capacity of the secondary battery 39 can be increased with respect to the initial discharge capacity.
  • a cycle voltage in which the order in which the voltages are applied is reversed and a unit cycle in which a positive voltage is applied after 0 V is applied may be repeated for two cycles may be employed. In this case, a different positive voltage may be set for each cycle.
  • the application time t 11 and the application time t 13 for applying the positive voltage may be a time for holding the state where the positive voltage is applied to the voltage applied secondary battery 39 for a certain period of time.
  • the application time t 12 and the application time t 14 for applying 0 V may be any time that allows the charge charged in the voltage-applied secondary battery 39 to be discharged.
  • the voltage applied between the first electrode 12 and the second electrode 24 so that the value of the current flowing between the first electrode 12 and the second electrode 24 does not exceed a predetermined current value can also be controlled in each process applying a unit cycle. By controlling the current so as not to exceed a current value that is predetermined in each process, it is possible to prevent an excessive current from being applied to the voltage-applied secondary battery 39.
  • the positive voltage application time for applying the positive voltage can be increased as the discharge capacity of the voltage applied secondary battery 39 increases. As the discharge capacity increases, the thickness of the mixed layer 20 can be efficiently increased by increasing the positive voltage application time for applying a positive voltage.
  • FIG. 7 shows a voltage waveform example 40-3 at the second electrode 24 actually measured by the voltmeter 32 with respect to the voltage waveform 40-2 shown in FIG.
  • the voltage source 30 limits the output current value independently of the control of the control device 36 for the purpose of preventing a sudden change in current. Therefore, the voltage value of the second electrode 24 gradually approaches the positive voltage V11.
  • step S21 to measure charge-discharge characteristics of the voltage applied secondary battery 39 before applying the cycle voltage to obtain the initial discharge capacity determination value E 0.
  • the charge / discharge characteristics are obtained by applying a constant voltage of positive voltage V1 to the second electrode 24 with the first electrode 12 as a reference, and charging the voltage-applied secondary battery 39, and then the voltage to 0 V in real time. The discharge is continued until the voltage value to be measured falls below the threshold value. And charging capacity of the voltage applied secondary battery 39, the total energy at the time of discharge is calculated from the time or the like until the charge is discharged, to obtain the initial discharge capacity determination value E 0. Furthermore, when the obtained initial discharge capacity determination value E 0 is equal to or less than a specified value, the voltage-applied secondary battery 39 can be determined as a defective product.
  • step S22 initial setting is performed.
  • an applied voltage and an application time that is, cycle information stored in the control device 36 in the initial stage.
  • the time during which the voltage of the second electrode 24 of the secondary battery 39 to be applied with voltage is maintained at the set 0V (hereinafter referred to as “0V holding time” (t 12 in FIG. 5)) is periodically
  • the number of determination 1 execution cycles N j1 is set. This is set in order to periodically check whether the potential on the second electrode 24 side is maintained at 0 V for a certain time or more.
  • 0V retention time determination value t j is the time as a reference used to compare with 0V retention time t 0.
  • the determination 1 execution cycle number N j1 is determined when the 0V holding time t 0 does not reach the negative voltage holding time determination value t j when the cycle number N is executed the number of times specified by the determination 1 execution cycle number N j1 . This is the reference cycle number for changing the voltage waveform.
  • the final discharge capacity determination value Ee is set to determine whether a sufficient discharge capacity has been obtained.
  • the determination 2 execution cycle number N j2 confirms the discharge capacity by measuring charge / discharge after the cycle number N is executed the number of times specified by the determination 2 execution cycle number N j2 . Discharge capacity voltage application cycle upon reaching the final discharge capacity determination value E e terminates.
  • the maximum number of cycles N max is also set to end the voltage application cycle. If the discharge capacity does not reach the final discharge capacity judgment value E e even when the maximum number of cycles N max is reached, the voltage-applied secondary battery 39 can be treated as a defective product.
  • 0V retention time t 0 is the reference 0V retention time determination value t j or less, and change the voltage waveform at the step S26, the flow returns to step S23 for applying a modified voltage waveform.
  • the oxide semiconductor secondary battery 10 glass as an insulating material was used as a substrate.
  • the first electrode 12 was formed to a thickness of 100 to 300 nm using a sputtering deposition method with chromium as a target.
  • an RF sputtering apparatus was used as a manufacturing apparatus.
  • the first electrode 12 is preferably made of a material having a resistivity of, for example, 100 ⁇ ⁇ cm or less in order to facilitate the flow of current.
  • the n-type metal oxide semiconductor layer 14 laminated on the first electrode 12 was formed by depositing titanium oxide by a sputtering deposition method.
  • the film thickness of the n-type metal oxide semiconductor layer 14 was 50 nm to 200 nm.
  • an intermediate insulating layer 18 made of an insulating material was formed by sputtering deposition with a silicon oxide thin film using silicon as a target.
  • the intermediate insulating layer 18 has an insulation resistance value controlled by its thickness, and has a thickness of 10 to 100 nm.
  • a nickel oxide film was formed on the p-type metal oxide semiconductor layer 22 made of a p-type metal oxide semiconductor by a sputtering deposition method.
  • a nickel oxide film having a thickness of 120 to 300 nm is formed as the p-type metal oxide semiconductor layer 22.
  • the formation method of the p-type metal oxide semiconductor layer 22 is not limited to the sputtering deposition method, and a thin film formation method such as an evaporation method, an ion plating method, or an MBE method can be used.
  • the second electrode 24 is formed by sputtering deposition using aluminum as a material, for example, aluminum having a thickness of 100 to 300 nm is formed.
  • a cycle voltage of positive and 0 V is repeatedly applied between the first electrode 12 and the second electrode 24 by a cycle voltage application system. Thereby, the mixed layer 20 is formed, and the oxide semiconductor secondary battery 10 in the final form is manufactured.
  • FIG. 9 shows an example of the voltage waveform of the unit cycle actually applied.
  • the applied positive voltage is 3.0V.
  • Each positive voltage was applied for 6 seconds, and then 6 V was set to 0V. That is, the unit cycle is a positive voltage pulse waveform with an application time of 12 seconds and a duty of 50%.
  • the discharge capacity ratio further increases as the time for applying the unit cycle increases, and the discharge capacity ratio is 1.53 in 400 minutes when the number of applied unit cycles is 2000.
  • the discharge capacity ratio became 2.06 in 800 minutes when the number of applied unit cycles was 4000. This is because the formation of the mixed layer 20 is accelerated by increasing the positive voltage.
  • the damage to the voltage applied secondary battery 39 is the relationship between the voltage value and the application time.
  • an overvoltage occurs, it can be dealt with by shortening the application time, which shortens the formation time of the mixed layer 20. Suggests the possibility to do.
  • the formation time of the mixed layer 20 can be further shortened by the combination with the negative voltage.
  • the discharge capacity ratio shown in FIG. 10 is an example.
  • the time for increasing the discharge capacity ratio can be shortened.
  • the time when the discharge capacity ratio is 2.0 or more is about 800 minutes, but the time when the discharge capacity ratio is 2.0 or more is 120 minutes as shown in FIG. It can also be shortened.
  • FIG. 11 shows an example of a voltage waveform 40-4 of a unit cycle in which a positive voltage and a negative voltage are combined.
  • a positive voltage V1 is applied between the application time t 1 to the voltage applied secondary battery 39, and then applied during the application time t 2 a negative voltage -V2 Has been shown to do.
  • the mixed layer 20 can be formed between the intermediate insulating layer 18 and the p-type metal oxide semiconductor layer 22.
  • a cycle voltage in which a positive voltage is applied after a negative voltage is applied can be adopted by reversing the order in which the voltages are applied.
  • FIG. 12 shows a voltage waveform example 40-5 of a unit cycle using a positive voltage and a negative voltage.
  • a voltage waveform in which positive and negative voltages having different application times and application times are applied for two cycles is defined as a unit cycle.
  • a positive voltage of 3V is applied for 5 seconds, and then a negative voltage of -3V is applied for 2 seconds. Further, after applying a positive voltage of 5V for 0.5 seconds, a negative voltage of -1V is applied for 4.5 seconds.
  • the unit cycle time is 12 seconds in total.
  • the charging voltage of the manufactured oxide semiconductor secondary battery is 2.2 to 2.3 V, and the positive voltage is a voltage higher than the charging voltage when applied twice.
  • the negative voltage in the first cycle has an absolute value equal to or higher than the charging voltage.
  • the reason why the positive voltage of 5 V in the second cycle is applied for 0.5 seconds is to apply the high voltage in a short time and shorten the formation time of the mixed layer 20.
  • the current limit value was 20 mA / cm 2 in both the positive and negative directions.
  • the positive and negative voltages in this unit cycle were repeatedly applied to the oxide semiconductor secondary battery 10.
  • a cycle voltage in which the order in which the voltages are applied is reversed and the unit cycle in which the positive voltage is applied after the negative voltage is applied may be repeated two cycles may be employed.
  • a different positive voltage and negative voltage may be set for each cycle.
  • FIG. 13 shows the relationship between time and discharge capacity when the positive and negative voltages shown in FIG. 12 are repeatedly applied. Since the unit cycle time is 12 seconds, the number of cycles per hour is the same as in FIG.
  • the discharge capacity was measured every 30 minutes and expressed as a ratio to the initial discharge capacity.
  • the discharge capacity was about 1.5 times the initial discharge capacity after 30 minutes and doubled after 120 minutes.
  • the positive voltage shown in FIG. 10 is 3.0 V
  • the time for doubling the discharge capacity is 800 minutes, whereas in the voltage waveform example 40-5, it is 120 minutes. Shortening has been realized.
  • the time for forming the mixed layer 20 can be further shortened by appropriately modifying the voltage waveform based on experimental data.
  • the voltage applied secondary battery 39 When applying a positive and 0V cycle voltage and a positive and negative cycle voltage to the voltage applied secondary battery 39, the voltage applied secondary battery 39 is placed in a predetermined humidity environment.
  • the discharge capacity of the voltage-applied secondary battery 39 can be further increased with respect to the initial discharge capacity.
  • the humidity is preferably 35 to 65 percent, for example.
  • a positive voltage and a cycle voltage of 0 V can be applied to the oxide semiconductor secondary battery 10 used for a certain period, or a cycle voltage of a positive voltage and a negative voltage can be applied. Thereby, the discharge capacity of the oxide semiconductor secondary battery 10 reduced by use can be regenerated to a predetermined value.
  • Oxide semiconductor secondary battery 12 First electrode 14: N-type metal oxide semiconductor layer 16: Charging layer 18: Intermediate insulating layer 22: P-type metal oxide semiconductor layer 24: Second electrode 30 : Voltage source 32: Voltmeter 34: Ammeter 36: Controller 38: Resistor 39: Secondary battery 40, 40-1, 40-2, 40-3, 40-4, 40-5: Voltage waveform

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】放電容量を増大させることのできる二次電池の製造方法を提供する。 【解決手段】本願発明に係る二次電池の製造方法は、第一電極12と、n型金属酸化物半導体からなるn型金属酸化物半導体層14と、n型金属酸化物半導体と絶縁体からなる充電層16と、絶縁体を主成分とする中間絶縁層18と、p型金属酸化物半導体からなるp型金属酸化物半導体層22と、第二電極24と、をこの順序で積層した後に、第一電極12を基準として第一電極12と第二電極24との間に正電圧を印加する第一のプロセスと、第一電極12を基準として第一電極12と第二電極24との間に0Vを印加する第二のプロセスと、をこの順序でくり返すプロセスを第1単位サイクルとし、予め定められた数の第1単位サイクルを繰り返す。

Description

二次電池の製造方法
 本発明は、全固体二次電池の製造方法に関する。
 蓄電機能を有するデバイスとしては、二次電池とキャパシタがある。二次電池は、化学反応を利用したデバイスであり、大容量であることが特徴となっている。キャパシタは、電極間に絶縁体を挟んで電荷を蓄積するため、短時間で充電可能なことが特徴となっている。二次電池としては、ニッケル・カドミウム電池やリチウムイオン二次電池などがある。キャパシタとしては、スーパーキャパシタ(電気二重層キャパシタとも呼ばれている。)とMOSキャパシタなどがある。
 代表的な二次電池であるリチウムイオン二次電池は、正極と負極の間にセパレータを挟んだ三層構造であり、これらの構成要素がリチウムイオンを流すことができる電解質で覆われている。正極と負極は、リチウムイオンと電子の吸収・放出が可能な材料であり、リチウムイオン電池内部で、リチウムイオンが電解質を介して正極と負極の間を行き来することで、充放電が行われる。
 固体リチウムイオン二次電池の積層構造として特許文献1に開示されている構造は、リチウムイオンが出入りする正極活物質を有する正極層、リチウムイオンが出入りする負極活物質を有する負極層、及び、正極層と負極層との間に配設された固体電解質層を備えている。隣り合う2つの積層体の固体電解質層は、絶縁層によって接続されている。さらに、隣り合う2つの積層体は、それぞれの積層体を構成する負極層同士、又は、それぞれの積層体4を構成する正極層同士が接触するように、積層されている。
 新たな原理に基づく二次電池として、特許文献2では量子電池が開示されている。「量子電池」は、特許文献2で開示された二次電池に付けられた名称である。
 図14は、量子電池100の断面を示す図である。量子電池100は、基板に、導電性の第1電極312が形成され、さらに、電荷を充電する充電層114、p型金属酸化物半導体層116と第2電極118が積層されている。充電層114には、絶縁性の被膜に覆われた微粒子のn型金属酸化物半導体が充填され、紫外線照射により光励起構造変化現象を生じさせて、n型金属酸化物半導体のバンドギャップ内に新たなエネルギー準位を形成している。
 さらに特許文献3には、半導体を利用してエレクトロクロミック表示装置機能と二次電池を一体構造とした新たな二次電池が開示されている。基板と、第一電極と、半導体金属酸化物からなる多孔質層と、半導体金属酸化物と絶縁性金属酸化物との複合体からなり電圧印加によって可逆的に酸化還元反応を起生する活性層と、電子ブロック層と、第二電極とを備え、構造的には図14で示した量子電池と同様の構造となっている。活性層は酸化還元反応により電荷を蓄積または放出し、電荷の蓄積または放出に連動して光透過率が変化するエレクトロクロミック表示装置・二次電池一体型固体素子としている。
 特許文献2で開示された量子電池と、特許文献3で開示された二次電池との相違点は、後者では、構造的には充電層が半導体金属酸化物と絶縁性金属酸化物との複合体であること、そして、紫外線照射によってn型金属酸化物半導体のバンドギャップ内に新たなエネルギー準位を形成しないことである。これらの相違により、後者では、充放電の原理も、半導体金属酸化物と絶縁性金属酸化物との可逆的な酸化還元反応を基本としている。
 特許文献3で開示された二次電池は、複合酸化物薄膜に対して光励起構造変化処理を行うことによって複合酸化物薄膜を活性と変化させており、光励起構造変化処理としては、紫外線照射による方法を用いることが可能であるとしている。
 二次電池形成後に行われる処理には、エージング処理やコンディショニング処理がある。
 リチウム二次電池は、正極および負極を備えてなる電極体を電池ケースに入れ、非水電解液を注入した後、電池ケースを密閉して形成される。リチウム二次電池の形成後は、そのまま所定の温度下で保存するいわゆるエージング処理を行い、その後、充放電を行うことにより電池を実使用可能な状態に調整するコンディショニング処理を行って製造される(特許文献4参照)。
 コンディショニングは、電池性能を安定させる等の目的から、形成後の二次電池に対して、充電・放電のサイクルを複数回繰り返すものである。負極活物質として炭素質材料等を用いたリチウム二次電池のコンディショニングを行うと、リチウムを含む化合物等からなるSEI(Solid Electrolyte Interphase)皮膜が負極表面に形成される。いったん負極表面を覆ったSEI被膜はほとんど成長しないため、SEI皮膜の状態が変わらなければこの段階で電池容量は安定する。
 特許文献5には、金属酸化物半導体を用いた量子電池(特許文献2参照)に対し、コンディショニングを行う充放電装置が開示されている。複数の量子電池の充放電を同時並列で行うと電源のピーク電流が増大するため、この充電装置では、複数の量子電池の充放電が重複しないように、切替手段により、量子電池と電源とを順次接続させている。
WO2010/089855号公報 WO2012/046325号公報 特開2014-032353号公報 特開2004-208440号公報 WO2014/016900号公報
 全固体二次電池は、電解液を用いたリチウムイオン電池等に比べて、小型で発熱による発火もなく安全性が高い反面、充電可能な容量が小さく、更なる改良が求められている。このため、全固体二次電池の分野では、従来から材料や積層構造の検討が行われている。
 また、二次電池を実使用可能な状態に調整するため、二次電池の形成後に行われる電気的な処理であるエージング処理やコンディショニング処理が行われている。これら電気的な処理は、上記背景技術で述べたように、従来は初期充電機能を安定化させるために行っており、放電容量の増大といった性能を向上させるものではなかった。
 このため、放電容量を増大させるための電気的な処理が望まれている。
 本発明は、形成後の二次電池に対して行われる電気的な処理に関し、その電気的な条件を検討することにより、放電容量を、初期放電容量よりも増大させることのできる二次電池の製造方法を提供することを目的としている。
 本願発明の一態様に係る酸化物半導体二次電池の製造方法は、第一電極と、n型金属酸化物半導体からなるn型金属酸化物半導体層と、n型金属酸化物半導体と絶縁体からなる充電層と、絶縁体を主成分とする中間絶縁層と、p型金属酸化物半導体からなるp型金属酸化物半導体層と、第二電極と、をこの順序で積層した後に、第一電極を基準として第一電極と第二電極との間に正電圧を印加する第一のプロセスと第一電極を基準として第一電極と第二電極との間に0Vを印加する第二のプロセスを合わせて第1単位サイクルとし、予め定められた数の第1単位サイクルを繰り返す。
 上記製造方法では、第一電極をグランド接続した場合、第一のプロセスにおける第二電極に印加する正電圧の値は、少なくとも酸化物半導体二次電池の充電電圧以上の値が含まれる。
 また、上記製造方法では、第一のプロセスには、第一電極と第二電極との間に、正電圧が印加された状態を一定時間保持するプロセスが含まれ、第二のプロセスには、第一電極と第二電極との間に0Vが印加された状態を一定時間保持するプロセスが含まれる。
 また、上記製造方法では、第一のプロセスにおいて、第一電極と第二電極との間に印加する正電圧は、サイクル毎に異なる電圧値が設定されていてもよい。
 また、上記製造方法では、第一のプロセスにおいて、第一電極と第二電極との間を流れる電流の値が、第一のプロセスで予め定められている電流値を超えないように、第一電極と第二電極との間に印加する正電圧を各プロセスで制御する。
 また、上記製造方法では、第一のプロセスにおける、正電圧を印加する正電圧印加時間は、酸化物半導体二次電池の放電容量の増加とともに長くする。
 また、上記製造方法では、正電圧を印加する正電圧印加時間は、酸化物半導体二次電池の電圧値が予め定められた設定電圧値に達するまでの時間である。
 また、上記製造方法では、第一のプロセス及び第二のプロセスに加えて、酸化物半導体二次電池の放電容量を測定する第三のプロセスを有し、第1単位サイクルを、所定のサイクル数繰り返した後に、第三のプロセスを実行し、酸化物半導体二次電池の放電容量が予め定められた閾値以上であることが測定された場合に電圧の印加を終了させる。
 また、上記製造方法では、第一のプロセス及び第二のプロセスに加えて、酸化物半導体二次電池の放電容量を測定する第三のプロセスと、第三のプロセスで測定された放電容量に基づき、酸化物半導体二次電池の放電容量の増加率を所定の時間間隔で算出する第四のプロセスとを有し、第1単位サイクルを、所定のサイクル数繰り返した後に、第三のプロセス、及び第四のプロセスを実行し、放電容量の増加率が予め定められた閾値以下である場合に電圧の印加を終了させる。
 また、上記製造方法では、中間絶縁層は、シリコーンオイル又は抵抗調整剤が添加されたシリコーンオイルを、充電層の表面上に塗布した後、焼成し、焼成後に紫外線を照射してUV硬化させることにより形成する。
 また、上記製造方法では、中間絶縁層は、シリコン(Si)をターゲットとするスパッタリングにより充電層の上に形成する。
 また、上記製造方法では、中間絶縁層の絶縁体は、SiO(0≦x≦2)である。
 また、上記製造方法では、p型金属酸化物半導体は、酸化ニッケル(NiO)である。
 更に、本願発明の一態様に係る酸化物半導体二次電池の製造方法は、第一電極と、n型金属酸化物半導体からなるn型金属酸化物半導体層と、n型金属酸化物半導体と絶縁体からなる充電層と、絶縁体を主成分とする中間絶縁層と、p型金属酸化物半導体からなるp型金属酸化物半導体層と、第二電極とをこの順序で積層した後に、第一電極を基準として第一電極と第二電極との間に正電圧を印加する第五のプロセスと第一電極を基準として第一電極と第二電極との間に負電圧を印加する第六のプロセスを第2単位サイクルとし、予め定められた数の第2単位サイクルを繰り返す。
 本発明は、導電性の第一電極と第二電極に挟まれて、n型金属酸化物半導体層、n型金属酸化物と絶縁物からなる充電層、中間絶縁層、p型金属酸化物半導体層とから構成され、蓄電機能を備えた酸化物半導体二次電池を基にしている。この構成の酸化物半導体二次電池に対して、電気的な処理を施し、中間絶縁層とp型金属酸化物半導体層の間に、p型金属酸化物半導体に絶縁層の元素を取り込んだ層(以下、混在層という)を形成することにより、放電容量を増大させることができた。
 電気的な処理とは、二次電池を形成した後に、第一電極を基準として第二電極側に正電圧の印加と0Vの印加、或いは正負の電極の印加を繰り返す処理である。
 この電気的な処理により、p型金属酸化物半導体と中間絶縁層の界面に新たな層が形成される事実は、実験的に見出された結果である。新たな層は、p型金属酸化物半導体と中間絶縁層から拡散した物質によるミクロな界面として層が形成されている混在層である。新たな層である混在層によりプラス電荷(正孔)の蓄積容量が増加し、蓄積容量が増加したと考えられる。また、電気的な処理によりn型金属酸化物半導体と絶縁物質の焼成により形成された充電層内においても物質の再配置などの変化が起こり、マイナス電荷(電子)の蓄積量が増加したことも考えられる。このため、例えば、電気的な処理後に放電容量が2倍に増加する結果が得られている。
本発明により製造された酸化物半導体二次電池の構造を示す。 正と0Vのサイクル電圧印加前後の酸化物半導体二次電池の構造を示す。 本発明による酸化物半導体二次電池の製造工程を説明するフローチャート。 サイクル電圧印加システムの実施回路の一例を示す。 正と0Vの電圧波形の一例を示す。 2サイクルの電圧波形の一例を示す。 図6で示した電圧波形に対し、電圧計で測定された第二電極での電圧波形例を示す。 電圧波形を印加するプロセスを説明するフローチャート。 図5に示した正の電圧を繰り返す単位サイクルの実施例である。 図9に示した正の電圧を繰り返し印加した場合の時間と放電容量の関係を示す図。 正と負の電圧波形の一例を示す図。 正と負の電圧波形の他の一例を示す図。 図11に示した正負の電圧を繰り返し印加した場合の時間と放電容量の関係を示す図。 従来例を説明するための図。
 図1は、本発明により製造された酸化物半導体二次電池10の構造を示している。
 図1において、酸化物半導体二次電池10は、第一電極12、n型金属酸化物半導体層14、充電層16、中間絶縁層18、混在層20、p型金属酸化物半導体層22、第二電極24と、がこの順に積層された積層構造を有している。
 第一電極12の材料として、例えば、クロム(Cr)、又はチタン(Ti)等の金属を使用することができる。また、第一電極12は、他の金属電極として、アルミニウム(Al)を含む銀(Ag)合金膜等を使用することもできる。また、第一電極12は、複数の金属層が積層された積層構造を有していてもよい。第一電極は、抵抗率の低い材料とすることが必要であり、例えば、100μΩ・cm以下の抵抗率を有する材料とすることが好ましい。
 第一電極12の材料として、酸化物半導体二次電池10の基板を兼ねて、銅やアルミ又はステンレス等の金属箔を使用することもできる。
 n型金属酸化物半導体層14の材料として、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、及び酸化スズ(SnO)等のn型金属酸化物半導体を材料として使用することができる。n型金属酸化物半導体層14は、第一電極12上にn型金属酸化物半導体を成膜することにより形成される。
 充電層16は、n型金属酸化物半導体と絶縁体から構成される。絶縁体の材料としては、シリコン酸化物などのシロキサン結合による主骨格を持つシリコン化合物(シリコーン)を使用することが好ましい。充電層16のn型金属酸化物半導体としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、及び酸化スズ(SnO)等のn型金属酸化物半導体を使用することができ、ナノサイズの微粒子として絶縁体に含ませることができる。また、n型金属酸化物半導体に代えて、n型金属酸化物半導体の前駆体、例えば、酸化チタンの前駆体であるチタニウムステアレートを用いることができる。
 中間絶縁層18は、絶縁体又は抵抗調整剤が添加された絶縁体を含んで構成される。絶縁体の材料としては、酸化シリコンSiO、シリコン窒化物Si、シリコン酸化物SiO(0≦x≦2)等を使用することができる。
 中間絶縁層18は、シリコン酸化物、シリコン窒化物又はシリコーンオイルに、金属、酸化金属又は半導体物質等の抵抗調整剤を添加することにより、絶縁抵抗値を調整することができる。中間絶縁層18の絶縁抵抗値、つまり、中間絶縁層18を流れる電流値が、酸化物半導体二次電池10の放電容量に影響する事実は、実験的に明らかになった結果である。
 従って、中間絶縁層18の絶縁抵抗値を調整することにより、酸化物半導体二次電池としての放電容量を最適値に調整する必要がある。例えば、中間絶縁層18を所定値以下の厚みで作成する場合、シリコン酸化物を主成分とした層でよい。しかし、中間絶縁層18を所定値、即ち、放電容量が低下する厚さ以上の厚みで作成する場合、シリコン酸化物に金属又は半導体物質等の抵抗調整剤を添加して、中間絶縁層18の絶縁抵抗値を下げ、中間絶縁層18に流れる電流を所定値以下にする必要がある。すなわち、中間絶縁層18を、絶縁体、又は、絶縁体に抵抗調整剤が添加された絶縁体を含む層とする必要がある。抵抗調整剤は、金属、酸化金属又は半導体物質等を使用することができる。
 混在層20は、p型金属酸化物半導体、金属、及び絶縁体が混在して構成されている層である。この混在層20の状態は、p型金属酸化物半導体と絶縁体が混在した状態、絶縁体にp型金属酸化物半導体を構成する金属元素が取り込まれた状態、あるいは、p型金属酸化物半導体に絶縁物質の元素を取り込んだ状態のいずれの状態であってもよい。
 p型金属酸化物半導体層22は、p型金属酸化物半導体から構成される。p型金属酸化物半導体の材料としては、酸化ニッケル(NiO)、及び銅アルミ酸化物(CuAlO)等を使用することができる。
 第二電極24の材料としては、クロム(Cr)又は銅(Cu)等を使用することができる。他の材料として、アルミニウム(Al)を含む銀(Ag)合金等を使用することができる。
 また、第二電極24として、透明な導電性電極を使用することもできる。例えば、第二電極24として、スズをドープした酸化インジュームITO(Indium Tin Oxide)の導電膜を使用することができる。第二電極は、抵抗率の低い材料とすることが必要であり、例えば、100μΩ・cm以下の抵抗率を有する材料とすることが好ましい。
 以上、本発明による酸化物半導体二次電池10の構造について説明した。以下の説明では、混在層20を電気的に形成する方法を説明する。
 その方法は、第一電極12、n型金属酸化物半導体層14、充電層16、中間絶縁層18、p型金属酸化物半導体層22と第二電極24とを、この順序に積層した後に、この積層体を35~65パーセント以内の湿度の環境内に配置させる。次に、第一電極12と第二電極24の間に、電圧源から正電圧と0Vのサイクル電圧繰り返し印加する方法、及び電圧源から正電圧と負電圧のサイクル電圧繰り返し印加する方法である。以下、混在層を電気的に形成する方法を詳細に説明する。
<混在層の概要>
 図2は、正と0Vのサイクル電圧印加前後の酸化物半導体二次電池10の構造を示す。
 図2(A)は、第一電極12、n型金属酸化物半導体層14、充電層16、中間絶縁層18、p型金属酸化物半導体層22と第二電極24を、この順に積層した酸化物半導体二次電池10-1の構造を示している。つまり、図2(A)は、混在層20を形成する前の酸化物半導体二次電池10-1を示している。
 図2(A)に示した構成の酸化物半導体二次電池10-1を形成後、第一電極12と第二電極24の間に、電圧源により正と0Vのサイクル電圧を印加することにより、中間絶縁層18とp型金属酸化物半導体層22の間に、混在層20が形成される。これにより、図2(B)で示した、混在層20が形成された酸化物半導体二次電池10が作製される。サイクル電圧の印加による混在層20の形成は、実験的に見出された層であり、混在層20の形成により放電容量が増大する結果が得られている。
<混在層の詳細説明>
 以下、混在層20を備える酸化物半導体二次電池10の製造方法を、フローチャートを用いて詳細に説明する。
 図3は、本発明による酸化物半導体二次電池の製造工程を説明するフローチャートである。
 ステップS1では、基板(図省略)の上に第一電極12を形成する。基板として導電性の金属箔を使用した場合は、金属箔そのものが第一電極12となる。例えば、銅やアルミニウム、又は、ステンレス等の金属箔が利用できる。
 第一電極12は、絶縁性の基板に、クロム、チタン、窒化チタンなどの導電性の金属を成膜して形成することもできる。基板の材料としては、ガラスや、ポリイミドフィルム等のフレキシブルな樹脂シートが使用可能である。
 第一電極12の製造方法としては、スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等の気相成膜法を挙げることができる。また、金属を第一電極12とする場合は、電解メッキ法、無電解メッキ法等により形成することができる。メッキに使用される金属としては、一般に銅、銅合金、ニッケル、アルミ、銀、金、亜鉛又はスズ等を使用することができる。
 ステップS2では、第一電極12上に、n型金属酸化物半導体層14を形成する。n型金属酸化物半導体層14は、酸化チタン、酸化スズ、及び酸化亜鉛等のn型金属酸化物半導体膜をスパッタデポシション等の方法で、第一電極12上に形成する。
 ステップS3では、n型金属酸化物半導体層14上に、n型金属酸化物半導体と絶縁体からなる充電層16を形成する。充電層16は、n型金属酸化物半導体である酸化チタン、酸化スズ、酸化亜鉛などの前駆体と、絶縁体であるシリコーンオイルの混合物に溶媒を混合した混合液を、スピン塗布法、スリットコート法などでn型金属酸化物半導体層14上に塗布した後、乾燥、及び焼成して形成する。前駆体は、例えば酸化チタンの前駆体であるチタニウムステアレートが使用できる。酸化チタン、酸化スズ、酸化亜鉛は、金属の前駆体である脂肪族酸塩から分解して形成される。乾燥、及び焼成した後の、充電層16に対して、紫外線照射を行いUV硬化させてもよい。
 なお、酸化チタン、酸化スズ、酸化亜鉛などは金属の前駆体からの形成によらず、これらのナノ粒子を使用する方法もある。酸化チタン、酸化スズ、酸化亜鉛などのナノ粒子をシリコーンオイルと混合し、さらに溶媒を混合して粘度調整し、スピン塗布法、スリットコート法などで形成した後、乾燥、焼成、及びUV照射を行い形成する。
 ステップS4では、充電層16上に、絶縁体を主成分とする中間絶縁層18を形成する。中間絶縁層18は、シリコン酸化物、シリコン窒化物などをスパッタデポジション、あるいはプラズマエンハンスドケミカルベイパーデポジション(PECVD)法などで、充電層16上に成膜する。また、シリコンをターゲットとするスパッタリングにより充電層16上に形成することもできる。また、充電層16上に、シリコーンオイルを塗布し、その後シリコーンオイルを焼成して形成することもできる。焼成後のシリコーンオイルに対して紫外線を照射し、UV硬化させてもよい。
 中間絶縁層18に流れる電流値を所定の値にするため、中間絶縁層18の層厚、及び絶縁体に添加する抵抗調整剤の量及び種類を変更し、中間絶縁層18の絶縁抵抗値を調整する。抵抗調整剤は、例えば、金属やn型半導体等でよい。n型半導体としては、シリコンに不純物としてリンを微量加えてn型半導体とした物質、酸化チタン、及び酸化亜鉛等がある。
 ステップS5では、中間絶縁層18上にp型金属酸化物半導体層22を形成する。p型酸化物半導体の材料としては、酸化ニッケル(NiO)等を使用することが可能である。
 ステップS6では、p型金属酸化物半導体層22上に第二電極24を形成する。アルミニウム、パラジウムや、窒化チタン、アルミニウム、及び窒化チタンの積層などをスパッタデポジション法で、第二電極24をp型金属酸化物半導体層22上に成膜する。第二電極24を形成する方法は、スパッタデポジション法に限らず、蒸着法、イオンプレーティング法、MBE(Molecular Beam Epitaxy)法等の薄膜形成方法を用いてもよい。さらには、印刷法やスピンコート法などの塗布形成方法を用いて、第二電極24を形成してもよい。
 ステップS7では、ステップS1からステップS6で作製された酸化物半導体二次電池10に、正と0Vのサイクル電圧を繰り返し印加して、中間絶縁層18とp型金属酸化物半導体層22の間に新たな層を形成する。この新たな層が、混在層20である。
 酸化物半導体二次電池10に正と0Vのサイクル電圧を繰り返し印加することにより、中間絶縁層18とp型金属酸化物半導体層22との間に、p型金属酸化物半導体層22のp型金属酸化物半導体と中間絶縁層18の絶縁体から拡散した物質によるミクロな界面が形成される。この界面層が、混在層20である。
 正と0Vのサイクル電圧を繰り返し印加することにより、酸化物半導体二次電池10の放電容量が増大する結果が得られているが、これは、混在層20の存在が、プラス電荷(正孔)の蓄積容量を増加させ、充電層16内における酸化チタンと絶縁物質の再配置が、マイナス電荷(電子)の蓄積容量を増加させているからと考えられる。なお、サイクル電圧は、正と負の電圧であってもよい。
 次に、酸化物半導体二次電池10に対して正と0Vのサイクル電圧を印加するサイクル電圧印加システムと、正と0Vのサイクル電圧波形の例を説明する。
<電圧印加システム>
 図4は、サイクル電圧印加システムの実施回路の一例を示す。
 サイクル電圧印加システムは、電圧源30と、電圧計32と、電流計34と、制御装置36と、抵抗38とを備える。電圧源30は、被電圧印加二次電池39の第一電極12と第二電極24との間に接続されている。電圧源30と被電圧印加二次電池39との間に、電圧計32と電流計34が接続されている。また、電圧源30と被電圧印加二次電池39との間に、抵抗38が接続されている。被電圧印加二次電池39は、例えば図2(A)に示した構造の酸化物半導体二次電池10である。
 制御装置36は、電圧源30、電圧計32、及び電流計34に接続されている。制御装置36は、電圧源30を制御する。具体的には、制御装置36は、第一電極12を基準(接地)として、第一電極と第二電極との間に正電圧を印加する第一のプロセスと、第一電極を基準として第一電極と第二電極との間に0Vを印加する第二のプロセスと、をこの順序でくり返すプロセスを第1単位サイクルとし、予め定められた数の第1単位サイクルを繰り返す。
 第一のプロセス印加される正電圧値、及び第一のプロセス及び第二のプロセスで正と0Vのサイクル電圧を印加する印加時間(以下、「単位サイクル情報」と略記する)と、繰り返されるサイクル数は、サイクル情報として、制御装置36に記憶されている。制御装置36は、記憶されているサイクル情報に基づいて電圧源30を制御する。
 電圧源30は、制御装置36からの制御信号に基づき、第一電極12と第二電極24との間に抵抗38を介して、正と0Vのサイクル電圧を印加する。
 次に、被電圧印加二次電池39に対して、正と0Vのサイクル電圧を印加する方法を説明する。
 電圧源30から出力された正電圧は、抵抗38を介して被電圧印加二次電池39に印加される。この被電圧印加二次電池39は、図2(A)で示した混在層20の無い酸化物半導体二次電池10-1と実質的に同様である。被電圧印加二次電池39には、第一電極12を接地し(即ち、第一電極12は0Vである)、第一電極12を基準として、第二電極24に電圧源30からの出力電圧が印加される。
 制御装置36には、電圧計32と電流計34が接続されている。電圧計32で測定した電圧値、及び電流計34で測定した電流値が制御装置36へフィードバックされる。制御装置36は、フィードバックされた電圧値、電流値、及び予め記憶されたサイクル情報に基づいて、電圧源30を制御することにより電圧源30から出力される正と0Vのサイクル電圧を制御する。
 抵抗38を介して電圧源30からの電圧が、被電圧印加二次電池39に印加されているため、電圧計32から出力される電圧は、被電圧印加二次電池39に充電された充電電圧となる。
 電圧源30は、電圧の切り替わり時、及び被電圧印加二次電池39の放電容量が増加することによる過大電流の発生を防ぐために、被電圧印加二次電池39に流れる最大電流を所定の電流に制限する電流制限機能を備えている。電圧源30は、制御装置36からの制御から独立して、被電圧印加二次電池39へ出力する電圧を制御することもできる。
 次に、被電圧印加二次電池39に印加する電圧波形の例を示す。
<電圧波形の例>
 図5は、正と0Vの電圧波形40-1の一例を示す。
 この単位サイクルは、被電圧印加二次電池39に、正電圧V11を印加時間t11の間印加し、0Vを印加時間t12の間印加する電圧波形40-1である。この単位サイクルを予め定められた数だけ繰り返すことにより、中間絶縁層18とp型金属酸化物半導体層22との間に、混在層20を形成することができる。このように形成された混在層20は、被電圧印加二次電池39の放電容量を初期放電容量に対して増大させることができる。ここで、初期放電容量とは、被電圧印加二次電池39に対して、正と0Vのサイクル電圧、又は正と負のサイクル電圧を印加する前の放電容量である。なお、図は省略するが、電圧を印加する順番を逆にして、0Vを印加した後に正電圧を印加するサイクル電圧を単位サイクルとしてもよい。
 第一電極12をグランド接続した場合、第二電極24に印加する正電圧の値は少なくとも被電圧印加二次電池39の充電電圧以上の値を含むことが好ましい。
 また、電圧波形40-1では、正電圧V11を正電圧印加時間t11の間だけ保持することが示されているが、正電圧V11を印加する正電圧印加時間t11は、被電圧印加二次電池39の放電容量の増加とともに長く設定することもできる。放電容量の増加に伴って、正電圧V11を印加する正電圧印加時間t12を長くすることにより十分な充電が行え、効率的に混在層20の厚みを増やすことができる。
 また、正電圧V11を印加する正電圧印加時間tは、被電圧印加二次電池39の電圧値が予め定められた設定電圧値に達するまでの時間に設定することができる。この設定電圧値を、被電圧印加二次電池39の充電電圧以下に設定したり、被電圧印加二次電池39の充電電圧以上に設定したりすることで混在層20を効率的に形成する。この設定電圧の組み合わせは、実験的に求められる。
 被電圧印加二次電池39の充電電圧以下に設定すると、正電圧V11を印加した際の被電圧印加二次電池39のダメージを最小とすることができる。また、設定電圧値を、被電圧印加二次電池39の充電電圧以上に設定することもできる。この場合、所望の厚みの混在層20が形成されるまでの時間を短縮することができる。このために、設定電圧値を、被電圧印加二次電池39の充電電圧以下に設定したり、被電圧印加二次電池39の充電電圧以上に設定したりすることにより、電圧印加二次電池39へのダメージが無く、時間を短くして効率的に混在層20を形成することができる。
 図6は、異なる正電圧の単位サイクルを組み合わせた2サイクルの電圧波形40-2の一例を示す。
 この単位サイクル情報では、被電圧印加二次電池39に、正電圧V11を印加時間t11の間印加、0Vを印加時間t12の間印加する単位サイクル、及び、電圧V12を印加時間t13の間印加、0Vを印加時間t14の間印加する単位サイクルによる電圧波形40-2が示されている。つまり、単位サイクルを繰り返す毎に、正電圧の値、正電圧を印加する時間、及び0Vを印加する印加時間が異なっている。このような単位サイクルによる電圧波形40-2により効率的に混在層20が形成でき、被電圧印加二次電池39の放電容量を初期放電容量に対して増大させることができる。全ての単位サイクルにおいて正電圧及びその印加時間が異なるようする、或いは、正電圧と正電圧のペアを複数種類用意し、全行程中で少なくとも2種類のペア使うようにしても、被電圧印加二次電池39の放電容量を初期放電容量に対して増大させることができる。なお、図は省略するが、電圧を印加する順番を逆にして、0Vを印加した後に正電圧を印加する単位サイクルを2サイクル繰り返すサイクル電圧を採用することもできる。この場合、サイクル毎に異なる正電圧が設定されていてもよい。
 ここで、正電圧を印加する印加時間t11、印加時間t13は、被電圧印加二次電池39に正電圧が印加された状態を一定時間保持する時間であれば良い。また、0Vを印加する印加時間t12、印加時間t14は、被電圧印加二次電池39に充電された電荷が放電できる時間であれば良い。
 電圧波形40-2では、被電圧印加二次電池39に対して、一定の正電圧V11を印加時間t11、及び一定の正電圧V12を印加時間t13だけ印加しているが、V11及びV12を、印加時間t11と印加時間t13をサイクル毎に変化させてもよい。
 また、第一電極12と第二電極24との間を流れる電流の値が、予め定められている電流値を超えないように、第一電極12と第二電極24との間に印加する電圧を単位サイクルを印加するそれぞれのプロセスで制御することもできる。各プロセスで予め定められていた電流値を超えないように、電流を制御することで、過剰な電流が被電圧印加二次電池39に加わるのを防止することができる。
 正電圧を印加する正電圧印加時間は、被電圧印加二次電池39の放電容量の増加とともに長くすることができる。放電容量の増加に伴って、正電圧を印加する正電圧印加時間を長くすることにより、効率的に混在層20の厚みを増やすことができる。
 図7は、図6で示した電圧波形40-2に対し、実際に電圧計32で測定された第二電極24での電圧波形例40-3を示している。
 電圧源30は、急激な電流の変化を防止することを目的として、制御装置36の制御とは独立して、出力される電流値を制限する。そのため第二電極24の電圧値は徐々に正電圧V11に近づく。
 例えば、正電圧V11から0Vに切り替えた時、大きな電圧変化があり、被電圧印加二次電池39へ放電が急激に行われるために、電圧源30による電流制限が働く。この電流制限により充電された電荷の放出が制限される。
 正電圧保持時間t110、t130、及び0V保持時間t120、t140の累積時間は、新たな層を形成するために、それぞれ一定時間以上が必要である。正電荷保持時間、及び0V保持時間の累積時間が少ないと、新たな層を形成することができない。そこで、第一電極12と第二電極24との間に、正と0Vのサイクル電圧を所定の数だけ繰り返した後に、被電圧印加二次電池39の放電容量を測定するプロセスを実行する。被電圧印加二次電池39の放電容量が或る閾値以上であることが測定された場合、正と0Vのサイクル電圧の繰り返しを終了させる。これにより、正電圧保持時間t110、t130、及び0V保持時間t120、t140の十分な累積時間を確保しながら、被電圧印加二次電池39における中間絶縁層18とp型金属酸化物半導体層22の界面に、所望する厚みの混在層20を形成することができる。
 また、上記の被電圧印加二次電池39の放電容量を測定するプロセスに加えて、測定された放電容量に基づき、被電圧印加二次電池39の放電容量の増加率を所定の時間間隔で算出するプロセスを実行することもできる。そして、放電容量の増加率が予め定められた閾値以下である場合に、正と0Vのサイクル電圧の印加を終了させると、被電圧印加二次電池39に対する不要な電圧の印加を終了させることができる。放電容量が増加しない被電圧印加二次電池39は、不良品、或いはグレードの低い二次電池として分類することもできる。
 図8は、電圧波形を印加するプロセスを説明するフローチャートである。
 まず、ステップS21では、サイクル電圧を印加する前に被電圧印加二次電池39の充放電特性を測定し、初期放電容量判定値Eを得る。
 例えば、充放電特性は、第一電極12を基準として第二電極24に正電圧V1を一定電圧印加して、被電圧印加二次電池39の充電を行い、その後、電圧を0Vへとリアルタイムで変更させ、測定される電圧値が閾値以下になるまで継続して放電を行う。被電圧印加二次電池39の充電容量と、電荷が放電されるまでの時間等から放電時の総エネルギー量を計算し、初期放電容量判定値Eを得る。さらに、得られた初期放電容量判定値Eが、規定値以下の場合は、被電圧印加二次電池39を不良品と判断することもできる。
 ステップS22では、初期設定を行う。ここでは、印加電圧と印加時間(つまり、初期段階で制御装置36に記憶されるサイクル情報)を設定する。
 また、被電圧印加二次電池39の第二電極24の電圧が、設定された0Vに維持される時間(以下、「0V保持時間」(図5におけるt12)と言う)、を定期的に判断するために、判定1実施サイクル数Nj1を設定する。これは、定期的に第二電極24側の電位が一定時間以上、0Vに維持されているかをチェックするために設定される。
 0V保持時間判定値tは、0V保持時間tと比較するために用いられる基準となる時間である。判定1実施サイクル数Nj1は、サイクル数Nが判定1実施サイクル数Nj1で規定された回数だけ実行した時に、0V保持時間tが負電圧保持時間判定値tに達しない場合に、電圧波形を変更するための基準となるサイクル数である。
 最終放電容量判定値Eeは十分な放電容量が得られたか判定するために設定する。判定2実施サイクル数Nj2は、サイクル数Nが判定2実施サイクル数Nj2で規定された回数だけ実行した後に、充放電を測定することにより放電容量を確認する。放電容量が最終放電容量判定値Eに達した時点で電圧印加サイクルは終了する。
 一定以上のサイクル数を行っても、放電容量が十分に得られない場合に、電圧印加サイクルを終了させるため最大サイクル数Nmaxも設定する。最大サイクル数Nmaxに達しても放電容量が最終放電容量判定値Eに達しない場合は、その被電圧印加二次電池39を不良品として扱うことができる。
 ステップS23では、単位サイクルで設定された電圧波形を被電圧印加二次電池39に印加し、サイクル数Nに1を加える。ステップS24では、サイクル数Nが、判定1実施サイクル数Nj1の整数倍数(n×Nj1,n=1,2,3・・・)なっているかを判断する。なっていなければ、再度単位サイクル電圧を印加する。サイクル数Nが、判定1実施サイクル数Nj1の整数倍数と等しければ、ステップS25で、0V保持時間tを判定する。
 0V保持時間tが基準となる0V保持時間判定値t以下であれば、ステップS26で電圧波形を変更し、変更された電圧波形を印加するステップS23に戻る。
 0V保持時間tが基準となる0V保持時間判定値t以上であれば、ステップS27で、サイクル数Nが判定2実施サイクル数Nj2の整数倍数(n×Nj2,n=1,2,3・・・)と等しいかどうかを判断する。サイクル数Nが判定2実施サイクル数Nj2の倍数と等しくなければ、ステップS23に戻り、単位サイクル電圧を印加する。サイクル数Nが判定2実施サイクル数Nj2の整数倍数と等しい場合は、ステップS29で充放電特性を測定する。
 ステップS29では、測定した充放電特性から放電容量Eを求め、基準となる最終放電容量判定値Eと比較する。放電容量Eが最終放電容量判定値E以上であれば電圧の印加を終了する。この時、新たな層として、混在層20が形成された酸化物半導体二次電池10となっている。
 放電容量Eが最終放電容量判定値E以下であれば、ステップS30でサイクル数Nを最大サイクル数Nmaxと比較し、サイクル数Nが最大サイクル数Nmax以下であれば、ステップS23に戻り、さらに電圧波形を印加する。サイクル数Nが最大サイクル数Nmax以上であれば、電圧の印加を終了するが、被電圧印加二次電池39は、性能が目標に達せず、不良品として処理される。
 以上、酸化物半導体二次電池10において、中間絶縁層18とp型金属酸化物半導体層22との間に、混在層20を電気的に形成する方法について説明した。
 次に、本発明による酸化物半導体二次電池10の作製方法を具体的に説明する。
<作製方法>
 酸化物半導体二次電池10の作製にあたっては、絶縁性物質であるガラスを基板とした。まず、第一電極12は、クロムをターゲットとしてスパッタデポジション法を用いて、100~300nmの膜厚で成膜した。製造装置としては、RFスパッタリング装置を用いた。なお、第一電極12は電流を流しやすくするため、例えば、100μΩ・cm以下の抵抗率を有する材料とすることが好ましい。
 その後、第一電極12に積層するn型金属酸化物半導体層14は、酸化チタンを、スパッタデポジション法により成膜した。n型金属酸化物半導体層14の膜厚は、50nm~200nmとした。
 充電層16の作製方法は、まず、脂肪酸チタンとシリコーンオイルの混合液を、成膜したn型金属酸化物半導体層上に塗布した。塗布は、第一電極12とn型金属酸化物半導体層が積層されたガラス基板をスピンコートで回転させながら、混合液滴下するスピンコート法で行い、0.3~2μm程度の厚さの塗布膜を形成した。
 さらに、塗布膜を50℃で10分程度乾燥した後、300℃~400℃で10分から1時間焼成した。続いて、焼成した後の塗布膜にUV照射装置を用い、紫外線照射することにより、シリコーンオイルを硬化させた。
 次に絶縁物質からなる中間絶縁層18は、シリコンをターゲットとし、酸化シリコンの薄膜をスパッタデポジション法により成膜した。中間絶縁層18は、厚さによって絶縁抵抗値をコントロールし、10~100nmの厚さであるとした。
 さらに、p型金属酸化物半導体からなるp型金属酸化物半導体層22は、スパッタデポジション法により酸化ニッケル膜を形成した。例えば、厚さ120~300nmの酸化ニッケル膜をp型金属酸化物半導体層22として成膜した。なお、p型金属酸化物半導体層22の形成方法は、スパッタデポジション法に限らず、蒸着法、イオンプレーティング法、MBE法等の薄膜形成方法を用いることができる。
 第二電極24はアルミニウムを材料としてスパッタデポジション法により成膜し、例えば厚さ100~300nmのアルミニウムを成膜している。
 次に、第一電極12と第二電極24間に、サイクル電圧印加システムにより、正と0Vのサイクル電圧を繰り返し印加する。これにより、混在層20が形成され、最終形態の酸化物半導体二次電池10が作製される。
 図9は、実際に印加した単位サイクルの電圧波形の例を示している。印加した正電圧は、3.0Vである。それぞれの正電圧を6秒間印加し、その後6秒間を0Vとした。即ち、単位サイクルは、印加時間が12秒で、デューティ50%の正電圧パルス波形である。
 図10は、正電圧を3.0Vとした単位サイクルを印加した時間と、初期放電容量に対する放電容量比を示している。時間は分の単位であり、1分間に5回の単位サイクルが印加されている。
 正電圧を3.0Vとすると、放電容量比は、単位サイクルを印加する時間の増加と共にさらに増加し、印加される単位サイクルのサイクル数が2000回となる400分で放電容量比が1.53、印加される単位サイクルのサイクル数が4000回となる800分で放電容量比が2.06となった。正電圧を高くすることにより、混在層20の形成も加速されるためである。
 正電圧が過電圧の場合は、返って放電容量が減少するが、被電圧印加二次電池39へのダメージが発生したことの影響と思われる。
 被電圧印加二次電池39へのダメージは、電圧値と印加時間の関係であり、過電圧となった場合は、印加時間を短くすることで対応でき、これは、混在層20の形成時間を短くする可能性を示唆している。さらに、負電圧との組み合わせにより、混在層20の形成時間をより短くすることができる。
 図10で示されている放電容量比は、一例であり、例えば、単位サイクルの周期、及び正電圧の波形の適正化を行う事で、放電容量比が増加する時間を短縮することができる。例えば、図10において、放電容量比が2.0以上となる時間は約800分であるが、後述の図13で示される様に、放電容量比が2.0以上となる時間を120分に短縮することもできる。
 図11は、正電圧と負電圧を組み合わせた単位サイクルの電圧波形40-4の一例を示す。
 電圧波形40-4では、第一のプロセスとして、被電圧印加二次電池39に最初に正電圧V1を印加時間tの間印加し、次に負電圧‐V2を印加時間tの間印加することが示されている。このような、正と負のサイクル電圧を被電圧印加二次電池39に印加しても、中間絶縁層18とp型金属酸化物半導体層22の間に混在層20を形成することができる。なお、図は省略するが、電圧を印加する順番を逆にして、負電圧を印加した後に正電圧を印加するサイクル電圧を採用することもできる。
 図12は、正電圧と負電圧のサイクル電圧を用いた単位サイクルの電圧波形例40-5である。印加電圧と印加時間が異なる正負の電圧を2サイクル印加する電圧波形を単位サイクルとしている。
 まず3Vの正電圧を5秒間印加し、次に-3Vの負電圧を2秒間印加する。さらに5Vの正電圧を0.5秒間印加した後、-1Vの負電圧を4.5秒間印加する。単位サイクルの時間は、トータルで12秒である。作製した酸化物半導体二次電池の充電電圧は2.2~2.3Vであり、正電圧は2回の印加時に充電電圧以上の電圧を印加している。最初のサイクルでの負電圧は、絶対値を充電電圧以上としている。2サイクル目の5Vの正電圧を0.5秒間印加するのは、高電圧を短時間に印加して、混在層20の形成時間を短縮するためである。また、電流の制限値は、プラス方向、マイナス方向ともに20mA/cmとした。
 この単位サイクルでの正負の電圧を、繰り返して酸化物半導体二次電池10に印加した。なお、図は省略するが、電圧を印加する順番を逆にして、負電圧を印加した後に正電圧を印加する単位サイクルを2サイクル繰り返すサイクル電圧を採用することもできる。この場合、サイクル毎に異なる正電圧、及び負電圧が設定されてもよい。
 図13は、図12に示した正負の電圧を繰り返し印加した場合の時間と放電容量の関係を示す。単位サイクルの時間は12秒であるから、時間当たりのサイクル数は、図10の場合と同じである。
 放電容量は30分ごとに測定し、初期放電容量に対しての比で表している。放電容量は、30分後には初期放電容量の約1.5倍となり、120分後には2倍となった。図10で示した正電圧が3.0Vの場合には、放電容量が2倍になる時間は800分であったのに対して、電圧波形例40-5では120分であり、大幅な時間短縮が実現できている。さらに電圧波形を、実験データを基に適宜変形することにより、混在層20の形成時間もより短縮できる。
 被電圧印加二次電池39に、正と0Vのサイクル電圧、及び正と負のサイクル電圧を印加する場合において、被電圧印加二次電池39を所定の湿度環境下に配置した状態で行うと、被電圧印加二次電池39の放電容量を初期放電容量に対して更に増大させることができる。湿度は、例えば、35~65パーセントが好適である。
 また、一定期間使用した酸化物半導体二次電池10に対して、正電圧と0Vのサイクル電圧を印加、又は正電圧と負電圧のサイクル電圧を印加することもできる。これにより、使用により減少した酸化物半導体二次電池10の放電容量を、所定の値に再生することができる。
 以上、本発明の実施形態を説明したが、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態による限定は受けない。
 10,10-1:酸化物半導体二次電池
 12:第一電極
 14:n型金属酸化物半導体層
 16:充電層
 18:中間絶縁層
 22:p型金属酸化物半導体層
 24:第二電極
 30:電圧源
 32:電圧計
 34:電流計
 36:制御装置
 38:抵抗
 39:被電圧印加二次電池
 40,40-1,40-2,40-3、40-4、40-5:電圧波形
 

 

Claims (15)

  1.  第一電極と、
     n型金属酸化物半導体からなるn型金属酸化物半導体層と、
     n型金属酸化物半導体と絶縁体からなる充電層と、
     絶縁体を主成分とする中間絶縁層と、
     p型金属酸化物半導体からなるp型金属酸化物半導体層と、
     第二電極と、
    をこの順序で積層した後に、
     前記第一電極を基準として前記第一電極と前記第二電極との間に正電圧を印加する第一のプロセスと、
     前記第一電極を基準として前記第一電極と前記第二電極との間に0Vを印加する第二のプロセスを第1単位サイクルとし、予め定められた数の前記第1単位サイクルを繰り返すこと、
    を特徴とする酸化物半導体二次電池の製造方法。
  2.  前記第一電極をグランド接続した場合、前記第一のプロセスにおける前記第二電極に印加する正電圧の値は、少なくとも前記酸化物半導体二次電池の充電電圧以上の値を含むこと、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  3.  前記第一のプロセスには、前記第一電極と前記第二電極との間に、正電圧が印加された状態を一定時間保持するプロセスが含まれ、
     前記第二のプロセスには、前記第一電極と前記第二電極との間に0Vが印加された状態を一定時間保持するプロセスが含まれていること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  4.  前記第一のプロセスにおいて、
     前記第一電極と前記第二電極との間に印加する正電圧は、サイクル毎に異なる電圧値が設定されること、
    を特徴とする請求項3に記載の酸化物半導体二次電池の製造方法。
  5.  前記第一のプロセスにおいて、
     前記第一電極と前記第二電極との間を流れる電流の値が、前記第一のプロセスで予め定められている電流値を超えないように、前記第一電極と前記第二電極との間に印加する正電圧を各プロセスで制御すること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
     
  6.  前記第一のプロセスにおける、正電圧を印加する正電圧印加時間は、前記酸化物半導体二次電池の放電容量の増加とともに長くすること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  7.  正電圧を印加する正電圧印加時間は、
     前記酸化物半導体二次電池の電圧値が予め定められた設定電圧値に達するまでの時間であること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  8.  前記第一のプロセス及び前記第二のプロセスに加えて、
     前記酸化物半導体二次電池の放電容量を測定する第三のプロセスを有し、
     前記第1単位サイクルを、所定のサイクル数繰り返した後に、前記第三のプロセスを実行し、
     前記酸化物半導体二次電池の放電容量が予め定められた閾値以上であることが測定された場合に電圧の印加を終了させること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  9.  前記第一のプロセス及び前記第二のプロセスに加えて、
     前記酸化物半導体二次電池の放電容量を測定する第三のプロセスと、
     前記第三のプロセスで測定された放電容量に基づき、前記酸化物半導体二次電池の放電容量の増加率を所定の時間間隔で算出する第四のプロセスと、
    を有し、
     前記第1単位サイクルを、所定のサイクル数繰り返した後に、前記第三のプロセス、及び前記第四のプロセスを実行し、
     前記放電容量の増加率が予め定められた閾値以下である場合に電圧の印加を終了させること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  10.  前記中間絶縁層は、シリコーンオイル又は前記抵抗調整剤が添加されたシリコーンオイルを、前記充電層の表面上に塗布した後、焼成し、焼成後に紫外線を照射してUV硬化させることにより形成すること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  11.  前記中間絶縁層は、シリコン(Si)をターゲットとするスパッタリングにより前記充電層の上に形成すること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  12.  前記中間絶縁層の絶縁体は、SiO(0≦x≦2)であること、
    を特徴とする請求項1に記載の酸化物半導体二次電池の製造方法。
  13.  前記p型金属酸化物半導体は、酸化ニッケル(NiO)であること、
    を特徴とする請求項1又は13に記載の酸化物半導体二次電池の製造方法。
  14.  第一電極と、
     n型金属酸化物半導体からなるn型金属酸化物半導体層と、
     n型金属酸化物半導体と絶縁体からなる充電層と、
     絶縁体を主成分とする中間絶縁層と、
     p型金属酸化物半導体からなるp型金属酸化物半導体層と、
     第二電極と、
    をこの順序で積層した後に、
     前記第一電極を基準として前記第一電極と前記第二電極との間に正電圧を印加する第五のプロセスと、
     前記第一電極を基準として前記第一電極と前記第二電極との間に負電圧を印加する第六のプロセスとを第2単位サイクルとし、予め定められた数の前記第2単位サイクルを繰り返すこと、
    を特徴とする酸化物半導体二次電池の製造方法。
  15.  湿度が35~65パーセント以内の湿度環境下で、前記第一電極と前記第二電極との間に電圧を印加すること、
    を特徴とする請求項1又は14に記載の酸化物半導体二次電池の製造方法。
     
     

     
PCT/JP2017/014164 2016-05-19 2017-04-05 二次電池の製造方法 WO2017199618A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/302,927 US20190273278A1 (en) 2016-05-19 2017-04-04 Method for manufacturing secondary battery
KR1020207035719A KR102310986B1 (ko) 2016-05-19 2017-04-05 2차 전지의 제조 방법
CA3024489A CA3024489A1 (en) 2016-05-19 2017-04-05 Method for manufacturing secondary battery
EP21150665.4A EP3828945A1 (en) 2016-05-19 2017-04-05 Method for manufacturing secondary battery
KR1020187036767A KR20190046719A (ko) 2016-05-19 2017-04-05 2차전지의 제조 방법
EP17799052.0A EP3460862A4 (en) 2016-05-19 2017-04-05 METHOD FOR MANUFACTURING RECHARGEABLE BATTERY
CN201780029956.6A CN109314183A (zh) 2016-05-19 2017-04-05 二次电池的制造方法
US17/111,842 US20210091400A1 (en) 2016-05-19 2020-12-04 Method for manufacturing secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016100875 2016-05-19
JP2016-100875 2016-05-19
JP2017049257A JP6872388B2 (ja) 2016-05-19 2017-03-15 二次電池の製造方法
JP2017-049257 2017-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/302,927 A-371-Of-International US20190273278A1 (en) 2016-05-19 2017-04-04 Method for manufacturing secondary battery
US17/111,842 Division US20210091400A1 (en) 2016-05-19 2020-12-04 Method for manufacturing secondary battery

Publications (1)

Publication Number Publication Date
WO2017199618A1 true WO2017199618A1 (ja) 2017-11-23

Family

ID=60474940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014164 WO2017199618A1 (ja) 2016-05-19 2017-04-05 二次電池の製造方法

Country Status (8)

Country Link
US (2) US20190273278A1 (ja)
EP (2) EP3460862A4 (ja)
JP (1) JP6872388B2 (ja)
KR (2) KR20190046719A (ja)
CN (1) CN109314183A (ja)
CA (1) CA3024489A1 (ja)
TW (1) TWI658618B (ja)
WO (1) WO2017199618A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168493A1 (ja) * 2017-03-15 2018-09-20 株式会社日本マイクロニクス 蓄電デバイス
WO2018168495A1 (ja) * 2017-03-16 2018-09-20 株式会社日本マイクロニクス 二次電池
JP2019165109A (ja) * 2018-03-20 2019-09-26 株式会社日本マイクロニクス 二次電池、及びその製造方法
JP2019207907A (ja) * 2018-05-28 2019-12-05 株式会社日本マイクロニクス 二次電池、及びその製造方法
JP2020080368A (ja) * 2018-11-13 2020-05-28 株式会社日本マイクロニクス 二次電池、及び製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140053A (ja) * 2018-02-15 2019-08-22 株式会社日本マイクロニクス 二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208440A (ja) 2002-12-26 2004-07-22 Shindengen Electric Mfg Co Ltd 制御回路
WO2010089855A1 (ja) 2009-02-04 2010-08-12 トヨタ自動車株式会社 全固体電池及びその製造方法
WO2012046325A1 (ja) 2010-10-07 2012-04-12 グエラテクノロジー株式会社 二次電池
WO2013065093A1 (ja) * 2011-10-30 2013-05-10 株式会社日本マイクロニクス 繰り返し充放電できる量子電池
WO2014016900A1 (ja) 2012-07-24 2014-01-30 株式会社日本マイクロニクス 充放電装置
JP2014032353A (ja) 2012-08-06 2014-02-20 Ricoh Co Ltd エレクトロクロミック表示装置・二次電池一体型固体素子
WO2015087388A1 (ja) * 2013-12-10 2015-06-18 株式会社日本マイクロニクス 二次電池及びその製造方法
JP2016014128A (ja) * 2014-06-09 2016-01-28 出光興産株式会社 二次電池及びそれに用いる構造体
JP2016082125A (ja) * 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831538A3 (en) * 1996-09-19 1999-07-14 Canon Kabushiki Kaisha Photovoltaic element having a specific doped layer
US6229285B1 (en) * 1997-10-03 2001-05-08 Georgia Tech Research Corporation Detector for rapid charging and method
JP3740323B2 (ja) * 1998-07-31 2006-02-01 キヤノン株式会社 二次電池の充電方法及びその装置
US20100164437A1 (en) * 2008-10-24 2010-07-01 Mckinley Joseph P Battery formation and charging system and method
WO2013065094A1 (ja) * 2011-10-30 2013-05-10 株式会社日本マイクロニクス 半導体プローブによる量子電池の試験装置及び試験方法
US9197089B2 (en) * 2011-11-14 2015-11-24 Auburn University Rapid battery charging method and system
CA2872228C (en) * 2012-05-31 2017-03-28 Kabushiki Kaisha Nihon Micronics Semiconductor probe, testing device and testing method for testing quantum battery
CN104428899B (zh) * 2012-06-06 2017-10-03 日本麦可罗尼克斯股份有限公司 固态型二次电池的电极结构
US8988047B2 (en) * 2012-08-30 2015-03-24 General Electric Company Method of charging an electrochemical cell
EP2724766A1 (en) * 2012-10-26 2014-04-30 Alstom Technology Ltd A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
WO2014168234A1 (ja) * 2013-04-12 2014-10-16 株式会社セルモエンターティメントジャパン 光電変換素子、蓄放電機能を有する光電変換素子および二次電池
JP6351963B2 (ja) * 2013-12-10 2018-07-04 株式会社日本マイクロニクス 二次電池及びその製造方法
JP6367575B2 (ja) * 2014-02-25 2018-08-01 株式会社日本マイクロニクス 二次電池搭載回路チップ及びその製造方法
JP2016028408A (ja) * 2014-03-24 2016-02-25 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208440A (ja) 2002-12-26 2004-07-22 Shindengen Electric Mfg Co Ltd 制御回路
WO2010089855A1 (ja) 2009-02-04 2010-08-12 トヨタ自動車株式会社 全固体電池及びその製造方法
WO2012046325A1 (ja) 2010-10-07 2012-04-12 グエラテクノロジー株式会社 二次電池
WO2013065093A1 (ja) * 2011-10-30 2013-05-10 株式会社日本マイクロニクス 繰り返し充放電できる量子電池
WO2014016900A1 (ja) 2012-07-24 2014-01-30 株式会社日本マイクロニクス 充放電装置
JP2014032353A (ja) 2012-08-06 2014-02-20 Ricoh Co Ltd エレクトロクロミック表示装置・二次電池一体型固体素子
WO2015087388A1 (ja) * 2013-12-10 2015-06-18 株式会社日本マイクロニクス 二次電池及びその製造方法
JP2016014128A (ja) * 2014-06-09 2016-01-28 出光興産株式会社 二次電池及びそれに用いる構造体
JP2016082125A (ja) * 2014-10-20 2016-05-16 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460862A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168493A1 (ja) * 2017-03-15 2018-09-20 株式会社日本マイクロニクス 蓄電デバイス
JP2018152311A (ja) * 2017-03-15 2018-09-27 株式会社日本マイクロニクス 蓄電デバイス
JP7075717B2 (ja) 2017-03-15 2022-05-26 株式会社日本マイクロニクス 蓄電デバイス
WO2018168495A1 (ja) * 2017-03-16 2018-09-20 株式会社日本マイクロニクス 二次電池
JP2018156778A (ja) * 2017-03-16 2018-10-04 株式会社日本マイクロニクス 二次電池
JP7023049B2 (ja) 2017-03-16 2022-02-21 株式会社日本マイクロニクス 二次電池
JP2019165109A (ja) * 2018-03-20 2019-09-26 株式会社日本マイクロニクス 二次電池、及びその製造方法
JP2019207907A (ja) * 2018-05-28 2019-12-05 株式会社日本マイクロニクス 二次電池、及びその製造方法
JP2020080368A (ja) * 2018-11-13 2020-05-28 株式会社日本マイクロニクス 二次電池、及び製造方法
JP7138020B2 (ja) 2018-11-13 2022-09-15 株式会社日本マイクロニクス 二次電池、及び製造方法

Also Published As

Publication number Publication date
EP3828945A1 (en) 2021-06-02
US20190273278A1 (en) 2019-09-05
JP6872388B2 (ja) 2021-05-19
CN109314183A (zh) 2019-02-05
CA3024489A1 (en) 2017-11-23
KR102310986B1 (ko) 2021-10-07
US20210091400A1 (en) 2021-03-25
KR20200141544A (ko) 2020-12-18
JP2017212430A (ja) 2017-11-30
EP3460862A1 (en) 2019-03-27
KR20190046719A (ko) 2019-05-07
TW201813144A (zh) 2018-04-01
TWI658618B (zh) 2019-05-01
EP3460862A4 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2017199618A1 (ja) 二次電池の製造方法
JP2017212430A5 (ja)
US20230387392A1 (en) Electrode for non-aqueous electrolyte secondary battery
EP2791989B1 (de) Gehäuse für eine batteriezelle mit einer lackbeschichtung zur elektrischen isolation, batteriezelle, batterie sowie kraftfahrzeug
CA3034996C (en) Secondary battery
EP3596765B1 (fr) Accumulateur déformable
EP3696891B1 (en) Method for producing electrode for nonaqueous electrolyte secondary battery
KR20160022376A (ko) 코발트 옥시하이드록사이드를 포함하는 전기화학 소자 전극
CN106549190A (zh) 蓄电元件及其制造方法
WO2012111783A1 (ja) 固体電解質電池
EP3696887B1 (en) Electrode for non-aqueous electrolyte secondary battery
EP3696888A1 (en) Non-aqueous electrolyte secondary battery electrode
Hussain et al. Ion irradiation induced electrochemical stability enhancement of conducting polymer electrodes in supercapacitors
TWI577072B (zh) 雙面式全固態薄膜鋰電池及其製作方法
DE102011078478B4 (de) Dünnschichtsystem zum Speichern elektrischer Energie und Solarmodul mit Energiespeicher
US20150325878A1 (en) Putting into service of a lithium ion battery
DE102010056338B4 (de) Anordnung mit mindestens einer Farbstoffsolarzelle
Brodeală et al. Storage and usage system of electrostatic energy with EDCL
UA115716C2 (uk) Генератор електроенергії
Wan et al. Vanadium Oxide Based RRAM Device
EP3155677A1 (de) Elektrodenmaterial für einen elektrochemischen speicher, verfahren zur herstellung eines elektrodenmaterials sowie elektrochemischer energiespeicher
KR20110099084A (ko) 박막전지 제조장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3024489

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036767

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017799052

Country of ref document: EP

Effective date: 20181219