WO2017199334A1 - 同期回転機の制御装置および同期回転機の制御方法 - Google Patents

同期回転機の制御装置および同期回転機の制御方法 Download PDF

Info

Publication number
WO2017199334A1
WO2017199334A1 PCT/JP2016/064599 JP2016064599W WO2017199334A1 WO 2017199334 A1 WO2017199334 A1 WO 2017199334A1 JP 2016064599 W JP2016064599 W JP 2016064599W WO 2017199334 A1 WO2017199334 A1 WO 2017199334A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating machine
synchronous rotating
current
saliency
inductance
Prior art date
Application number
PCT/JP2016/064599
Other languages
English (en)
French (fr)
Inventor
陽祐 蜂矢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/064599 priority Critical patent/WO2017199334A1/ja
Publication of WO2017199334A1 publication Critical patent/WO2017199334A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a synchronous rotating machine control device and a synchronous rotating machine control method for controlling a synchronous rotating machine.
  • Patent Document 2 discloses a method for adjusting the voltage amplitude of the synchronous rotating machine. Specifically, in Patent Document 2, an inductance distribution when a specific high-frequency voltage amplitude is superimposed is obtained, a position estimation error is calculated from the inductance distribution, the high-frequency voltage amplitude, and the current detection resolution of the synchronous rotating machine. Until the value exceeds the determination value, the high-frequency voltage amplitude is increased and remeasured.
  • Patent Document 2 calculates a position estimation error using an inductance distribution and repeats the measurement of the inductance distribution until the position estimation error exceeds a threshold value.
  • the inductance distribution is determined by a DC excitation current and a torque current. Therefore, the inductance distribution for calculating the position estimation error is different from the inductance distribution at the time of driving in which the torque current is actually generated. For this reason, there was a problem that sufficient position estimation accuracy could not be obtained.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a control device for a synchronous rotating machine that improves the estimation accuracy of the magnetic pole position of the synchronous rotating machine.
  • a control device for a synchronous rotating machine includes a current detection unit that detects a current flowing through the synchronous rotating machine, and a voltage command for controlling the synchronous rotating machine.
  • the control device for a synchronous rotating machine applies a measurement voltage to the synchronous rotating machine and calculates a saliency index corresponding to the saliency ratio of the inductance based on the detected current. There is an effect that the position estimation accuracy can be improved.
  • Configuration diagram of control device for synchronous rotating machine according to Embodiment 1 of the present invention Sectional drawing of the rotor which comprises the synchronous rotating machine shown in FIG. The figure which showed distribution of periodic inductance when the position of the N pole of the rotor shown in Drawing 2 was made into the origin. Diagram showing vector direction of rotor magnetic flux The flowchart explaining the parameter automatic adjustment method in the control part shown in FIG. The figure for demonstrating the extraction function of the high frequency current amplitude with which the control part shown in FIG. 1 is provided.
  • the figure which shows the change of the inductance at the time of no load of a synchronous rotating machine, and the change of the inductance at the time of load application The figure which shows the example of the calculation operation
  • Sectional drawing of the stator which comprises the synchronous rotating machine shown in FIG. The figure which shows the inductance change at the time of generating a magnetic flux in (theta) direction in the stator shown in FIG.
  • FIG. 1 is a configuration diagram of a control device for a synchronous rotating machine according to Embodiment 1 of the present invention.
  • Control device 100 of synchronous rotating machine 1 according to Embodiment 1 detects current values of three-phase currents iu, iv, and iw, and converts the current values into dq-axis currents ids and iqs on the dq coordinate axis.
  • a detection unit 2 the voltage commands Vu *, Vv *, and a control unit 3 that generates Vw *, the voltage command Vu *, Vv *, Vw * of three-phase AC voltage to drive the synchronous rotary machine 1 based on the output
  • a power conversion unit 4 that performs.
  • the “control device 100 of the synchronous rotating machine 1” may be simply referred to as “control device 100”.
  • the current detection unit 2 detects a current value of the three-phase currents iu, iv, iw flowing through a three-phase connection connecting the power conversion unit 4 and the synchronous rotating machine 1, and outputs a current detector 2a.
  • a coordinate conversion unit 2b that converts iu, iv, and iw into dq axis currents ids and iqs on the dq coordinate axis.
  • a CT Current Transformer
  • current detection means for detecting a current flowing in a bus inside the power conversion unit 4 or detecting a current flowing in a switching element (not shown) constituting the power conversion unit 4. May be used.
  • the control device 100 may omit the w-phase current detection unit.
  • the control device 100 may be configured to obtain the v-phase current from the detected currents for the two phases of the u-phase and the w-phase.
  • the coordinate conversion unit 2b uses the estimated magnetic pole position ⁇ 0, which will be described later, and the dq axis currents ids and iqs on the dq coordinate axes that are orthogonal coordinates that rotate in synchronism with the synchronous rotating machine 1 using the three-phase currents iu, iv, and iw. Convert to The converted d-axis current ids and q-axis current iqs are fed back to the control unit 3a of the control unit 3.
  • the dq axis coordinate system is an orthogonal coordinate system including a d axis and a q axis that rotate at an electrical rotation speed that is an integral multiple of the mechanical rotation speed of the synchronous rotating machine 1.
  • the dq axis coordinate system rotates in synchronization with the rotation of the synchronous rotating machine 1.
  • the current supplied to the stator winding of the synchronous rotating machine 1 is divided into a d-axis current that is a DC excitation current and a q-axis current that is a torque current, and is displayed as a vector.
  • the control unit 3 estimates a parameter that needs to be adjusted in order to estimate the magnetic pole position of the synchronous rotating machine 1 using a high frequency voltage, and calculates a dq axis voltage command V d1 * , V q1 * , and a control A voltage command conversion unit 3b that converts the dq-axis voltage commands V d1 * and V q1 * generated by the unit 3a into voltage commands Vu * , Vv * , and Vw * .
  • the high-frequency voltage refers to a measurement voltage applied to the synchronous rotating machine 1 in order to calculate the saliency index.
  • the controller 3a estimates and drives the magnetic pole position of the synchronous rotating machine 1 using the high frequency voltage
  • the synchronous rotating machine using the high frequency voltage is based on the dq axis current commands Idref and Iqref and the dq axis current ids and iqs.
  • the dq-axis voltage commands V d1 * and V q1 * on the dq coordinate axis are calculated.
  • control unit 3a estimates the magnetic pole position of the rotor of the synchronous rotating machine 1 based on the dq-axis currents ids and iqs and the dq-axis voltage commands V d1 * and V q1 * and outputs the estimated magnetic pole position ⁇ 0.
  • the power converter 4 outputs a voltage to be applied to the synchronous rotating machine 1 based on the dq axis voltage commands V d1 * and V q1 * . That is, the power conversion unit 4 uses the dq axis voltage commands V d1 * and V q1 * to turn on and off a plurality of switching elements (not shown) that constitute the power conversion unit 4 to drive the synchronous rotating machine 1. Output voltage.
  • a synchronous reluctance motor having a salient pole ratio can be used as the synchronous rotating machine 1 in the control device 100 according to the present embodiment. . Details of the salient pole ratio will be described later.
  • FIG. 2 is a sectional view of the rotor constituting the synchronous rotating machine shown in FIG.
  • FIG. 2 illustrates the rotor 10 having two magnetic poles in order to simplify the description.
  • the rotor 10 includes an annular rotor core 11 and a plurality of permanent magnets 13 n and 13 s embedded in each of two magnet insertion holes 12 formed in the rotor core 11.
  • the N pole and the S pole do not exist independently, but for convenience of explanation, in this embodiment, the magnetic pole of the upper permanent magnet 13n in FIG. 2 is the N pole, and the lower permanent magnet 13s in FIG. This magnetic pole is the S pole.
  • the N pole is defined as the dm axis that is the rotor magnetic flux axis, and the axis orthogonal to the dm axis is defined as the qm axis.
  • FIG. 3 is a diagram showing a periodic inductance distribution when the position of the N pole of the rotor shown in FIG. 2 is the origin.
  • the horizontal axis in FIG. 3 is the electrical angle ⁇ of the rotor 10, and the vertical axis is the inductance.
  • the position of the “dm axis” shown on the horizontal axis corresponds to the position of the dm axis shown in FIG.
  • a straight line indicated by a dotted line represents an average value of inductance.
  • the inductance is different between the magnet portion where the inductance is reduced by the magnetic saturation due to the magnet magnetic flux, and the non-magnetized core portion, As shown in FIG. 3, the inductance changes so that peaks and valleys are alternately repeated.
  • the ratio between the maximum value and the minimum value of the inductance is referred to as a “saliency ratio”.
  • a high frequency voltage having a period higher than the driving frequency of the synchronous rotating machine 1 is generated using the electrical saliency of the rotor 10 as shown in FIG. 3. It is used that the high-frequency current generated when applied varies depending on the inductance of the rotor. That is, in the method of estimating the magnetic pole position by applying a high frequency voltage, the magnetic pole position is estimated by superimposing a voltage having a frequency different from the driving frequency of the synchronous rotating machine 1 and detecting the saliency of the inductance. . However, when magnetic saturation occurs inside the rotating machine, the inductance distribution changes to a waveform that is shifted by the angle ⁇ , and the estimated magnetic pole position is shifted by the angle ⁇ similarly to the inductance distribution.
  • FIG. 4 is a diagram showing the vector direction of the rotor magnetic flux.
  • the direction of the magnetic flux vector of the rotor 10 is taken as the dm axis
  • the orthogonal direction of the dm axis is taken as the qm axis
  • the direction ⁇ 0 in which the high frequency voltage is applied is taken as the d axis
  • the orthogonal direction is taken as the q axis.
  • the deviation between the d axis and the dm axis is ⁇ .
  • the synchronous rotating machine 1 normally operates so that the d axis coincides with the dm axis.
  • the second term on the right side of the above equation (2) is the differentiation of the high frequency current, and the differentiation of the high frequency current is multiplied by the angular frequency of the high frequency voltage. Therefore, the second term on the right side >> the first term on the right side. The first term on the right side of the expression can be ignored.
  • Equation (3) can be obtained by developing and organizing the above equation (2) with respect to the differentiation of the high-frequency current.
  • an estimated magnetic pole position ⁇ 0 is calculated such that the deviation ⁇ is zero.
  • the deviation ⁇ can be expressed as a function of the current amplitude.
  • of the orthogonal component i qh of the high-frequency current is used, the following expression (6) can be obtained from the above expression (5).
  • the estimated magnetic pole position ⁇ 0 can be expressed by the following equation (8) using a proportional integrator.
  • K p ⁇ is a proportional gain
  • K i ⁇ is an integral gain
  • the control unit 3a calculates a high frequency current amplitude
  • the detection accuracy and detection resolution of the current detector 2 are increased to improve the detection accuracy of the high-frequency current amplitude
  • V h ⁇ l / ⁇ r / (L ⁇ 2 ⁇ l ⁇ 2) as large as possible is conceivable, and parameters related to this include high-frequency voltage amplitude V h , angular frequency ⁇ r , and inductance L, l It is.
  • the angular frequency ⁇ r is limited in hardware because of hardware restrictions such as a control cycle.
  • the adjustable parameters are the high-frequency voltage amplitude Vh and the inductances L and l.
  • the inductance varies depending on the synchronous rotating machine to be used, but its value changes due to magnetic saturation. Therefore, when the d-axis current Id or the q-axis current Iq flows and the magnetic saturation characteristics change, the inductance is affected. Since the q-axis current Iq is a torque current and changes according to the load, it is difficult to adjust the q-axis current Iq. However, the d-axis current Id changes the inductances L and l by changing the current value. Can be adjusted. Therefore, the parameters that need to be adjusted for magnetic pole position estimation can be considered as the d-axis current Id is a high frequency voltage amplitude V h and the excitation current.
  • Control section 3a automatically adjusting the synchronization when the magnetic pole position of the rotating machine 1 is estimated to drive, adjustment of the high frequency voltage amplitude V h and the exciting current required d-axis current command Idref using a high frequency voltage Execute the measurement sequence.
  • FIG. 5 is a flowchart for explaining an automatic parameter adjustment method in the control unit shown in FIG.
  • Control unit 3a in S1 is the initial value of the RF voltage amplitude V h and d-axis current command Idref.
  • the initial value of the high-frequency voltage amplitude V h may be set to any non-zero value, or may be set from the rotating machine constant of the synchronous rotating machine 1.
  • the relationship between the d-axis voltage Vdh and the high-frequency current i dh when the voltage of the angular frequency ⁇ r is applied in the d-axis direction of the synchronous rotating machine 1 is the synchronous rotating machine 1 expressed by the following equation (9) by the rotating machine constants R and dm-axis inductance L d of.
  • the rotating machine constant R and the dm-axis inductance L d can be grasped in advance by performing preliminary measurement, by calculating X% of the rated current of the synchronous rotating machine 1 as an initial value of the high-frequency current i dh You can set the initial value of the high frequency voltage amplitude V h. As X%, 5% of the rated current can be exemplified.
  • the initial value of the d-axis current command Idref may be measured with an initial value of 0% with respect to the rated current of the synchronous rotating machine 1.
  • the control unit 3a calculates the magnetic pole position when the synchronous rotating machine 1 is stopped, that is, the initial magnetic pole position.
  • the magnetic pole position at which the synchronous rotating machine 1 is stopped can be calculated by using the calculation method described in Japanese Patent No. 4271397.
  • the power conversion unit 4 outputs an excitation current corresponding to the magnitude of the d-axis current command Idref set by the control unit 3a to the synchronous rotating machine 1.
  • the control unit 3a calculates a saliency index.
  • a method for calculating the saliency index will be specifically described below.
  • the controller 3a applies a high-frequency voltage having a high-frequency voltage amplitude V h and an angular frequency ⁇ r as shown in the following equation (10) while the excitation current of S3 is maintained.
  • the control unit 3a measures the dq-axis high-frequency current amplitude
  • FIG. 6 is a diagram for explaining a high-frequency current amplitude extraction function provided in the control unit shown in FIG.
  • the control unit 3a includes a filter 31 that extracts high-frequency currents of the dq-axis currents ids and iqs, an adder / subtractor 32 that subtracts the output of the filter 31 from the dq-axis currents ids and iqs, and a high-frequency current output from the adder / subtractor 32. And an amplitude calculator 33 for calculating high-frequency current amplitudes
  • the filter 31 extracts the same frequency component as the high-frequency voltage from the dq-axis currents ids and iqs, and the filter 31 can be exemplified by a notch filter known as a narrow band stop filter.
  • the filter 31 applies a notch filter for removing the angular frequency ⁇ r of the high-frequency voltage of the following formula (11) to the dq-axis currents ids and iqs to remove the angular frequency ⁇ r component from the dq-axis currents ids and iqs.
  • s is a Laplace operator
  • qx is the depth of the notch.
  • Subtracter 32 dq-axis current ids, by subtracting the output of the filter 31 from iqs, dq axis current ids, calculates a high-frequency current vector of the angular frequency omega r components from iqs.
  • the amplitude calculator 33 calculates the amplitude
  • T in the following equation (12) is a period of i dh .
  • can also be calculated by the same formula as the following formula (12).
  • the above is the method for extracting the high-frequency current amplitude
  • the rotor inductance of the synchronous rotating machine 1 has saliency
  • the dm axis direction of the rotor 10 has a minimum inductance
  • the qm axis direction advanced by 90 degrees represents the inductance. Is the maximum.
  • a voltage such as the above equation (10) is applied, a deviation occurs in the high-frequency current amplitude
  • is calculated as a saliency index.
  • the saliency of the inductance can be calculated by obtaining the inductance of the dm axis and the qm axis, but the calculation of the inductance usually requires division of voltage and current, and considering the voltage application error, An error occurs in the salient pole ratio obtained from the inductance.
  • the saliency index indicating the saliency of the inductance is calculated using the current value that can be directly detected, so that it can be obtained with high accuracy.
  • S5 is the next decision step, the control unit 3a, based on the saliency index calculated in S4, whether it is possible to drive the synchronous rotary machine 1 using a high frequency voltage amplitude V h and d-axis current command Idref set Judge about.
  • V h high frequency voltage amplitude
  • Idref d-axis current command
  • the inventor of the present application specifies the saliency index to make the estimation accuracy of the magnetic pole position large enough to control the driving of the synchronous rotating machine 1. It has been found that it is necessary to set a value above the threshold.
  • An example of the threshold value is 1.2.
  • the controller 3a determines whether or not the saliency index is equal to or greater than a specific threshold value, and determines that the operability can be driven if the saliency index is equal to or greater than the specific threshold value (S5). Yes).
  • the control section 3a stores parameters of the high frequency voltage amplitude V h and d-axis current command Idref set to end the parameter adjustment. Further, the driving of the synchronous rotating machine 1 is started using the high frequency voltage determined to be drivable.
  • the control unit 3a determines that driving is impossible (S5, No). In this case, the control unit 3a recalculates the saliency index after executing the process of S6.
  • the control unit 3a increases at least one of the RF voltage amplitude V h and d-axis current command Idref.
  • the width of the high frequency voltage amplitude V h and d-axis current command Idref increase in the case of the high frequency voltage amplitude V h, based on the above equation (9), the high-frequency current amplitude
  • the high frequency voltage amplitude V h may be increased.
  • the d-axis current command Idref may also be set to increase by 5% with respect to the rated current value of the synchronous rotating machine 1.
  • Control unit 3a when the high frequency voltage amplitude V h and d-axis current command Idref does not reach the upper limit of each parameter does not determine that the truncation of the parameter adjustment (S7, No), repeats the processing in S2, the high-frequency when the voltage amplitude V h and d-axis current command Idref reaches an upper limit of each parameter is determined to abort the parameter adjustment (S7, Yes), the process ends.
  • an arbitrary value may be set as the upper limit value, but if the voltage amplitude command is set to 40% of the rated voltage and the d-axis current command Idref is set to 50% of the rated current of the synchronous rotating machine 1, Good.
  • the control device 100 when the synchronous rotating machine 1 is driven by estimating the magnetic pole position using the high frequency voltage without using the position sensor, the magnetic pole position is estimated. It is possible to automatically adjust the high-frequency voltage amplitude V h and the d-axis current command Idref which are parameters that need to be adjusted. In other words, the synchronous rotating machine 1 can be driven by adjusting the high-frequency voltage amplitude V h and the d-axis current command Idref so that the saliency index necessary for accurately estimating the magnetic pole position can be obtained. .
  • the magnetic pole position of the synchronous rotating machine 1 can be automatically estimated without being affected by the measured value of the inductance distribution, which is necessary depending on the type of the synchronous rotating machine 1.
  • the work of adjusting the parameter settings in advance becomes unnecessary, and the work efficiency associated with the adjustment can be improved.
  • FIG. 7 is a diagram showing a change in inductance when the synchronous rotating machine is not loaded and a change in inductance when a load is applied. When no load is applied, the torque current is not applied. When the load is applied, the torque current is applied.
  • the horizontal axis in FIG. 7 is the electrical angle ⁇ of the rotor, and the vertical axis is the inductance.
  • the solid line represents the inductance when there is no load, and the dotted line represents the inductance when the load is applied.
  • the saliency index shown in the first embodiment is different from the state in which the torque current is flowing, and therefore the synchronous rotating machine is set using the set adjustment parameter.
  • a torque current is generated, which may make driving impossible. This can cause the same problem in the prior art documents.
  • the high frequency voltage amplitude which is a necessary parameter, is estimated when the magnetic pole position is estimated using the high frequency voltage and the synchronous rotating machine 1 is driven. It describes a method for automatically adjusting the V h and d-axis current command Idref.
  • the configuration of the control device 100 according to the second embodiment is the same as that of the control device 100 according to the first embodiment shown in FIG. 1, and only the calculation method of the saliency index in the process of S4 shown in FIG.
  • the operation of S4 in the control device 100 according to Embodiment 2 will be described, and the description of the processing from S1 to S3 and the processing from S5 to S7 will be omitted.
  • the control device 100 calculates the saliency index when torque current is generated, but the synchronous rotating machine 1 may rotate unintentionally when the torque current flows for a long time. Therefore, in order to minimize the application time of the torque current, a voltage command for generating the target torque current is calculated in advance.
  • the dq-axis voltage commands V d1 * and V q1 * for flowing the d-axis current command Idref and the q-axis target current value Iqref, which are target current values, are obtained from the voltage equation on the dq axis of the synchronous rotating machine 1 as follows: It can be expressed by the equation (13). However, R in the following equation (13) is an armature resistance, ⁇ f is a magnet magnetic flux, L d and L q are dm-axis and qm-axis inductances, respectively, which can be set in advance.
  • the q-axis target current value is set to 100% of the motor rated current and the measurement is started.
  • a voltage for calculating the saliency index immediately after the torque current is applied In the method of the first embodiment, a notch filter is used to measure the high-frequency current amplitude
  • a voltage having the same magnitude as the high-frequency voltage is instantaneously applied to the dm axis and qm axis of the synchronous rotating machine 1, and the current change at that time is measured.
  • the voltage on the dq axis for calculating the saliency index is set as V d2 * , V q2 *, and is defined as the following equation (15) using the high frequency voltage amplitude V h .
  • the saliency index is calculated from the difference between the dq-axis current values before and after applying V d2 * and V q2 * .
  • FIG. 8 is a diagram illustrating an example of the calculation operation of the saliency index in the control device according to the second embodiment.
  • a d-axis voltage value, a d-axis current value, a q-axis voltage value, and a q-axis current value are shown in order from the top.
  • Each horizontal axis represents elapsed time.
  • the control unit 3a of the control device 100 according to the second embodiment first applies V d1 * and V q1 * to increase the current of the synchronous rotating machine 1 to the dq axis current commands Idref and Iqref.
  • the dq-axis current values id1 and iq1 after applying V d1 * and V q1 * are measured.
  • the saliency index is represented by ⁇ id / ⁇ iq.
  • the saliency index obtained from the current difference appears from the saliency of the differential inductance, which is different from the saliency index obtained in the first embodiment.
  • the following equation (16) is obtained by extracting the second term on the right side including the inductance.
  • the d-axis current command Idref is considered as the d-axis current value Id.
  • the dm-axis inductance L d is generally a constant that does not change with time, the differentiation is only the current, and is expressed as the following equation (17).
  • differential inductance This is called differential inductance and, as can be seen from the above equations (17) and (18), has a different property from the inductance required in the first embodiment. Normally, it is necessary to consider the differential inductance of the high-frequency voltage. Since the change is small in the region where the magnetic saturation is small as in the first embodiment, it is not necessary to consider it, but it cannot be ignored in the region where the magnetic saturation is large.
  • ⁇ id is an equation relating to differential inductance as shown in equation (19) below.
  • the saliency index relating to the differential inductance can be obtained, and the saliency index of the synchronous rotating machine 1 can be calculated regardless of the change in magnetic saturation.
  • the synchronous rotating machine 1 is driven by estimating the magnetic pole position using the high frequency voltage even if the torque current is generated.
  • a parameter required RF voltage amplitude V h and d-axis current command Idref automatically can be driven without prior adjustment depending on the type of synchronous rotary machine 1 .
  • Embodiment 3 In the first and second embodiments, the estimation of the magnetic pole position based on the saliency of the rotor is targeted. However, depending on the synchronous rotating machine 1, there is a so-called multiple salient pole type synchronous rotating machine 1 in which not only the saliency of the rotor but also the saliency on the stator side affects.
  • the control device 100 targets the synchronous rotating machine 1 having multiple saliency.
  • a method for adjusting the high-frequency voltage amplitude V h and the d-axis current command Idref which are parameters necessary for estimating the magnetic pole position using the high-frequency voltage, will be described.
  • the magnetic characteristics of the rotor 10 are described, and it is described that the magnetic characteristics as shown in FIG. 3 can be obtained.
  • the magnetic characteristics on the stator side will be described.
  • FIG. 9 is a sectional view of a stator constituting the synchronous rotating machine shown in FIG.
  • the stator 20 shown in FIG. 9 includes an annular yoke 21, a plurality of teeth 22 each projecting inward in the radial direction of the yoke 21 from the yoke 21, and a winding 23 wound around each of the plurality of teeth 22.
  • the teeth 22 exemplify the three stators 20 to simplify the description.
  • a slot 24 is formed between the teeth 22 adjacent in the circumferential direction.
  • the lines connecting the respective circumferential center portions of the three teeth 22 and the center of the stator 20 are denoted by the symbols “U”, “V”, and “W” representing the U phase, the V phase, and the W phase. is doing.
  • FIG. 10 is a diagram showing an inductance change when a magnetic flux is generated in the ⁇ direction in the stator shown in FIG.
  • the horizontal axis in FIG. 10 is the electrical angle ⁇
  • the vertical axis is the inductance. Changes in inductance when the magnetic flux is generated in the ⁇ direction shown in FIG. 9 in the stator 20 can be expressed as shown in FIG.
  • an inductance change occurs on the stator 20 side, and the period of the change is 6 times the electrical angle.
  • FIG. 11 is a cross-sectional view of the stator and the rotor constituting the synchronous rotating machine shown in FIG.
  • a synchronous rotating machine 1 shown in FIG. 11 is obtained by combining the rotor 10 shown in FIG. 2 with the stator 20 shown in FIG.
  • a combination of the inductances of the stator 20 and the rotor 10 can be regarded as the inductance in the magnetic path of ⁇ .
  • the magnetic pole position of the permanent magnet 13n of the rotor 10 is in a state advanced by ⁇ 1 with respect to the U phase.
  • FIG. 12 shows the respective distributions of the rotor inductance, the stator inductance, and the combined inductance of these two inductances generated at this time.
  • FIG. 12 is a diagram showing the distribution of inductance generated in the synchronous rotating machine shown in FIG.
  • the horizontal axis in FIG. 12 indicates the position from the U phase.
  • the vertical axis in FIG. 12 shows the fluctuation of the inductance when the reference inductance is 1, and shows the inductance when the rotor 10 is stationary at a position away from the U phase by ⁇ 1.
  • the dotted line represents the rotor inductance
  • the one-dot chain line represents the stator inductance
  • the solid line represents the combined inductance of the two inductances.
  • the stator inductance indicated by the alternate long and short dash line fluctuates with a 60 ° period with respect to the U phase.
  • the rotor inductance indicated by the dotted line varies with a period of 180 ° with reference to ⁇ 1. Since the magnetic pole position is ⁇ 1, the minimum value of the rotor inductance is the position of ⁇ 1.
  • the combined inductance indicated by the solid line is deviated from the rotor inductance indicated by the dotted line.
  • the deviation between the minimum value of the rotor inductance and the minimum value of the combined inductance is shown as ⁇ 2.
  • the stator inductance is fixed with respect to the U phase, the combined inductance also changes as the position of ⁇ 1 varies.
  • FIG. 13 is a diagram showing the inductance when the position of the rotor is stationary at different positions at points A and B.
  • FIG. Point A and point B indicate different positions.
  • the inductance at the rotor position A point is indicated by a solid line
  • the inductance at the rotor position B point is indicated by a dotted line.
  • FIG. 13 it can be seen that by changing the position of the rotor 10, the inductance changes in an uneven shape, and the saliency changes accordingly. That is, the waveform indicating the ⁇ dependence of the inductance changes depending on the position of the rotor, and the maximum value and the minimum value of the inductance also change, so the saliency changes.
  • FIG. 14 is a diagram showing the result of measuring the saliency while rotating the rotor of the synchronous rotating machine as a comparative example.
  • the horizontal axis of FIG. 14 represents the electrical angle ⁇ of the rotor as viewed from the U phase of the stator of the synchronous rotating machine as a comparative example, and the vertical axis of FIG. 14 represents the saliency index.
  • the saliency index changes as the position of the rotor changes. From this, if automatic parameter measurement is performed in a state where the rotor position is at a position where the saliency is high, magnetic pole detection using a high-frequency current may fail at a position where the saliency is low. Therefore, in a synchronous rotating machine having multiple saliency, the magnetic pole position may not be estimated correctly unless automatic parameter adjustment is performed in consideration of the inductance saliency with respect to the rotor position fluctuation.
  • the control unit 3a of the control device 100 rotates the rotor 10 by one revolution, measures the minimum saliency position where the saliency due to the inductance variation of the stator 20 is minimum, and determines the minimum saliency position.
  • the rotor 10 is rotated until the parameter is automatically adjusted.
  • FIG. 15 is a flowchart for explaining an automatic parameter adjustment method in the control unit provided in the synchronous rotating machine control device according to the third embodiment of the present invention.
  • the difference from the flowchart shown in FIG. 5 is that the processes of S12 and S13 are performed instead of the process of S2.
  • S11 shown in FIG. 15 corresponds to the processing of S1 shown in FIG. 5, and the processing from S14 to S18 shown in FIG. 15 corresponds to the processing from S3 to S7 shown in FIG. Since the processes other than S12 and S13 are the same as those in the first embodiment, description thereof is omitted.
  • the control unit 3a measures the position where the saliency is minimized by the rotor position as shown in FIG.
  • the synchronous rotator 1 is rotated by one revolution while applying a voltage for calculating the saliency index.
  • obtained by applying the high-frequency voltage of the above equation (10) to calculate the saliency index as in the first embodiment is calculated.
  • the controller 3a rotates the rotor 10 by one revolution while measuring the saliency index, measures the saliency minimum position where the saliency index is minimum, and stores the rotating machine position as the saliency minimum position.
  • a so-called synchronous current that rotates a current command in synchronization with the rotation of the rotor 10 may be used.
  • control unit 3a rotates the rotor 10 to the minimum saliency position measured in S12 and then stops it.
  • control unit 3a of the control device 100 rotates the rotor 10 by one turn, measures the minimum saliency position where the saliency is minimum due to the variation in inductance, and determines the saliency.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

同期回転機1の制御装置100は、同期回転機1に流れる電流を検出する電流検出部2と、同期回転機1を制御するための電圧指令を生成する制御部3と、同期回転機1の駆動可否を判断するための測定用電圧を電圧指令に基づいて同期回転機1に出力する電力変換部4とを備え、制御部3は、測定用電圧を同期回転機1に印加して得られる電流に基づき同期回転機1のインダクタンスの突極比に対応する突極性指標を演算し、突極性指標に基づき測定用電圧を用いた同期回転機1の駆動可否を判定する。

Description

同期回転機の制御装置および同期回転機の制御方法
 本発明は、同期回転機を制御する同期回転機の制御装置および同期回転機の制御方法に関する。
 同期回転機の制御では、同期回転機を特定の出力または特定の回転数で回転させるため、通常は速度センサまたは位置センサを用いて、回転速度および回転子磁極位置を検出して制御が行われる。しかしながら、これらのセンサは、耐故障性およびメンテナンスの面で不利となるため、従来より、センサを用いることなく同期回転機の回転速度および回転子磁極位置を検出する方法が提案されている。特許文献1に開示される従来技術では、高周波交番電圧を印加して、その直交方向にsin2θに比例した振幅を有する電流が発生することを利用して、高周波電流の振幅がゼロとなるように回転子磁極位置を推定するものが提案されている。特許文献1に代表される磁極位置検出方法では、印加する高周波交番電圧の振幅の設定値を低くしすぎるとS/N比が低下し、磁極位置検出に必要な高周波電流振幅が得られない。電圧振幅を高く設定することにより、検出される高周波電流のS/N比は向上するが、高周波電流によって発生する振動騒音が増加する。高周波電流の振幅は、同期回転機のインダクタンスによって変化するため、駆動する同期回転機によって適切な電圧振幅値が異なる。
 適切な電圧振幅値を設定するため、下記特許文献2には同期回転機の電圧振幅の調整方法が開示されている。具体的には特許文献2では、特定の高周波電圧振幅を重畳した際のインダクタンス分布を求め、インダクタンス分布と高周波電圧振幅と同期回転機の電流検出分解能とから位置推定誤差を算出し、位置検出誤差が判定値を上回るまで、高周波電圧振幅を増加して再測定する構成としている。
特開平7-245981号公報 特開2009-273283号公報
 特許文献2に開示される技術は、インダクタンス分布を用いて位置推定誤差を算出し、位置推定誤差がしきい値を超えるまでインダクタンス分布の測定を繰り返すが、インダクタンス分布は直流励磁電流およびトルク電流によって変化するため、位置推定誤差を算出するインダクタンス分布と、実際にトルク電流が発生する駆動時のインダクタンス分布が異なる。このため、位置推定精度が十分得られないという課題があった。
 本発明は、上記に鑑みてなされたものであって、同期回転機の磁極位置の推定精度を向上した同期回転機の制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の同期回転機の制御装置は、同期回転機に流れる電流を検出する電流検出部と、同期回転機を制御するための電圧指令を生成する制御部と、同期回転機の駆動可否を判断するための測定用電圧を電圧指令に基づいて同期回転機に出力する電力変換部とを備え、制御部は、測定用電圧を同期回転機に印加して得られる電流に基づき同期回転機のインダクタンスの突極比に対応する突極性指標を演算し、突極性指標に基づき測定用電圧を用いた同期回転機の駆動可否を判定することを特徴とする。
 本発明に係る同期回転機の制御装置は、同期回転機に測定電圧を印加し、検出される電流に基づいてインダクタンスの突極比に対応する突極性指標を演算するので、同期回転機の磁極位置の推定精度を向上できるという効果を奏する。
本発明の実施の形態1に係る同期回転機の制御装置の構成図 図1に示す同期回転機を構成する回転子の断面図 図2に示す回転子のN極の位置を原点としたときの周期的なインダクタンスの分布を示した図 回転子磁束のベクトル方向を示す図 図1に示す制御部におけるパラメータの自動調整方法を説明するフローチャート 図1に示す制御部が備える高周波電流振幅の抽出機能を説明するための図 同期回転機の無負荷時のインダクタンスの変化と負荷印加時のインダクタンスの変化とを示す図 実施の形態2に係る制御装置における突極性指標の演算動作の例を示す図 図1に示す同期回転機を構成する固定子の断面図 図9に示す固定子においてθ方向に磁束を発生させる場合のインダクタンス変化を示す図 図1に示す同期回転機を構成する固定子および回転子の断面図 図11に示す同期回転機に発生するインダクタンスの分布を表す図 回転子の位置がA点とB点で異なる位置で静止しているときのインダクタンスを示す図 比較例である同期回転機の回転子を回転させながら突極性を測定した結果を示す図 本発明の実施の形態3に係る同期回転機の制御装置が備える制御部におけるパラメータの自動調整方法を説明するフローチャート
 以下に、本発明の実施の形態に係る同期回転機の制御装置および同期回転機の制御方法を図面に基づき詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係る同期回転機の制御装置の構成図である。実施の形態1に係る同期回転機1の制御装置100は、三相電流iu,iv,iwの電流値を検出して、当該電流値をdq座標軸上のdq軸電流ids,iqsに変換する電流検出部2と、電圧指令Vu,Vv,Vwを生成する制御部3と、電圧指令Vu,Vv,Vwに基づき同期回転機1を駆動するための三相交流電圧を出力する電力変換部4とを備える。以下では「同期回転機1の制御装置100」を単に「制御装置100」と称する場合がある。
 電流検出部2は、電力変換部4と同期回転機1とを接続する三相結線に流れる三相電流iu,iv,iwの電流値を検出して出力する電流検出器2aと、三相電流iu,iv,iwをdq座標軸上のdq軸電流ids,iqsに変換する座標変換部2bとを備える。
 電流検出器2aとしてはCT(Current Transformer)を例示できる。なお制御装置100では、電流検出器2aの代わりに、電力変換部4の内部の母線に流れる電流を検出し、または電力変換部4を構成する図示しないスイッチング素子に流れる電流を検出する電流検出手段を用いてもよい。また三相電流iu+iv+iw=0の関係が成立するため、u相およびv相の2相分の検出電流からw相の電流を求めることもできる。従って制御装置100ではw相の電流検出部を省略してもよい。なお制御装置100は、u相およびw相の2相分の検出電流からv相の電流を求めるように構成してもよい。
 座標変換部2bは、後述する推定磁極位置θ0を用いて、三相電流iu,iv,iwを、同期回転機1に同期して回転する直交座標であるdq座標軸上のdq軸電流ids,iqsに変換する。変換されたd軸電流ids,q軸電流iqsは制御部3の制御部3aへフィードバックされる。dq軸座標系は、同期回転機1の機械的な回転速度の整数倍の電気的な回転速度で回転するd軸とq軸とから成る直交座標系である。dq軸座標系は同期回転機1の回転に同期して回転する。dq軸座標系により、同期回転機1の固定子巻線に供給される電流は、直流励磁電流であるd軸電流とトルク電流であるq軸電流とに分けてベクトル表示される。
 制御部3は、高周波電圧を用いた同期回転機1の磁極位置推定のために調整が必要なパラメータを推定すると共にdq軸電圧指令Vd1 ,Vq1 を演算する制御部3aと、制御部3aで生成されたdq軸電圧指令Vd1 ,Vq1 を電圧指令Vu,Vv,Vwに変換する電圧指令変換部3bとを備える。ここで、高周波電圧とは突極性指標を算出するために同期回転機1に印加される測定用電圧のことを言う。制御部3aは、高周波電圧を用いて同期回転機1の磁極位置を推定して駆動する際、dq軸電流指令Idref,Iqrefおよびdq軸電流ids,iqsに基づき、高周波電圧を用いた同期回転機1の磁極位置推定のために調整が必要なパラメータを推定し、また同期回転機1を制御するためにdq座標軸上のdq軸電圧指令Vd1 ,Vq1 を演算する。また制御部3aは、dq軸電流ids,iqsおよびdq軸電圧指令Vd1 ,Vq1 に基づき、同期回転機1の回転子の磁極位置を推定して推定磁極位置θ0として出力する。
 電力変換部4は、dq軸電圧指令Vd1 ,Vq1 に基づき同期回転機1に印加する電圧を出力する。すなわち電力変換部4は、dq軸電圧指令Vd1 ,Vq1 を用いて、電力変換部4を構成する図示しない複数のスイッチング素子をオンオフ駆動し、同期回転機1を駆動するための交流電圧を出力する。
 本実施の形態では同期回転機1として永久磁石同期電動機を用いているが、本実施の形態に係る制御装置100には、突極比を有する同期リラクタンス電動機を同期回転機1として用いることもできる。突極比の詳細は後述する。
 ここで、高周波電圧を用いた同期回転機1の磁極位置推定の原理と、磁極位置推定のために調整が必要なパラメータとについて説明する。
 図2は図1に示す同期回転機を構成する回転子の断面図である。図2では、説明を簡単化するために2つの磁極を有する回転子10を例示している。図2に示すように回転子10は、環状の回転子鉄心11と、回転子鉄心11に形成された2つの磁石挿入孔12の各々に埋め込まれた複数の永久磁石13n,13sを備える。永久磁石ではN極とS極が単独で存在することはないが、説明の便宜上、本実施の形態では図2の紙面上側の永久磁石13nの磁極をN極とし、紙面下側の永久磁石13sの磁極をS極としている。図2では、N極を回転子磁束軸であるdm軸と定義し、dm軸に直交する軸をqm軸と定義している。
 図3は図2に示す回転子のN極の位置を原点としたときの周期的なインダクタンスの分布を示した図である。図3の横軸は回転子10の電気角θであり、縦軸はインダクタンスである。横軸に示す「dm軸」の位置は図2に示すdm軸の位置に相当する。点線で示す直線はインダクタンスの平均値を表す。ここで、dm軸を基準として、回転子一周分のインダクタンスの変化を考えると、磁石磁束によって磁気飽和することでインダクタンスの小さくなる磁石部分と、磁化されていない鉄心部分とでは、インダクタンスが異なり、図3のようにインダクタンスは山部と谷部が交互に繰り返すように変化する。このインダクタンスの最大値と最小値との比が「突極比」と称される。
 同期回転機1の高周波電圧を用いた磁極位置推定方法では、図3に示されるような回転子10の電気的な突極性を用いて、同期回転機1の駆動周波数より高い周期の高周波電圧を与えたときに発生する高周波電流が、回転子のインダクタンスによって異なることを利用する。すなわち、高周波電圧を印加して磁極位置を推定する方法においては、同期回転機1の駆動周波数とは異なる周波数の電圧を重畳して、インダクタンスの突極性を検出することにより、磁極位置を推定する。しかしながら回転機内部で磁気飽和が発生した場合、インダクタンスの分布は角度θだけずれたような波形に変化し、推定される磁極位置はインダクタンス分布と同様に角度θだけずれたものになる。
 以上のことを数式で説明する。図4は回転子磁束のベクトル方向を示す図である。図4では、回転子10の磁束ベクトル方向をdm軸とし、dm軸の直交方向をqm軸とし、高周波電圧を印加する方向θ0をd軸、その直交方向をq軸とする。またd軸とdm軸との偏差はΔθである。なお同期回転機1は定常的にはd軸がdm軸と一致するよう動作するが、回転機内部で磁気飽和が発生したような場合、図4に示すように瞬時的にΔθの偏差が生じる。このとき、d軸,q軸に印加する高周波電圧Vdh,Vqhは下記(1)式で表すことができる。下記(1)式中のPは微分演算子を表す。
Figure JPOXMLDOC01-appb-M000001
 ここで実施の形態1における高周波電圧による磁極位置の推定は、一般的にゼロ速度または低速度で使用されるため、上記(1)式ではω≒0と定義してもよく、ω≒0と定義した場合、下記(2)式が得られる。
Figure JPOXMLDOC01-appb-M000002
 更に上記(2)式の右辺第2項は、高周波電流の微分であり、高周波電流の微分は高周波電圧の角周波数倍されるため、右辺第2項≫右辺第1項となり、上記(2)式の右辺第1項は無視できる。
 上記(2)式を高周波電流の微分について展開して整理することにより、下記(3)式を得ることができる。
Figure JPOXMLDOC01-appb-M000003
 ここで下記(4)式のように、高周波電圧Vdh,Vqhとして、d軸に高周波電圧振幅Vおよび角周波数ωで振動する高周波電圧を与えた場合、上記(3)式に下記(4)式を代入し、両辺を積分することにより、高周波電流idh,iqhは下記(5)式のように表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 磁極位置推定では偏差Δθを0とするような推定磁極位置θ0が演算される。ここで上記(5)式の高周波電流の振幅成分を利用すれば、偏差Δθを電流振幅の関数で表すことができる。ここでは、高周波電流の直交成分iqhの高周波電流振幅|iqh|を用いると、上記(5)式から下記(6)式を得ることができる。
Figure JPOXMLDOC01-appb-M000006
 また、定常的には偏差Δθがゼロに近づくように動作するため、2Δθ≒0であるため、sin2Δθ≒2Δθとした場合、上記(6)式を偏差Δθの式に変換することにより、下記(7)式が得られる。
Figure JPOXMLDOC01-appb-M000007
 上記(7)式より、偏差Δθをゼロに近づけることは、高周波電流振幅|iqh|をゼロに近づけることに等しい。よって磁極の推定位置をθ0とした場合、推定磁極位置θ0は、比例積分器を用いて下記(8)式で表すことができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、sはラプラス演算子であり、Kpθは比例ゲイン、Kiθは積分ゲインである。
 なお、突極比のない、すなわち突極性を有さない同期回転機においては、上記(6)式においてインダクタンスlが0となるため、高周波電流振幅|iqh|が発生せず、偏差Δθを求めることができない。そのため上記(8)式を用いて磁極の推定位置を求めることができない。以上が、高周波電圧を用いた同期回転機の磁極位置推定の原理である。
 次に、高周波電圧を用いた同期回転機の磁極位置推定のために調整が必要なパラメータについて説明する。
 上記(8)式を用いて磁極位置推定を行う場合、制御部3aは、電流検出部2の出力電流から高周波成分を抽出して高周波電流振幅|iqh|を計算し、上記(7)式を用いて偏差Δθを演算して行う。
 偏差ΔθのS/N比を向上させるには、電流検出部2の検出精度および検出分解能を上げて、高周波電流振幅|iqh|の検出精度を向上させるほか、偏差Δθの演算係数である2・V・l/ω/(L^2-l^2)をなるべく大きく取る方法が考えられ、これに関連するパラメータは、高周波電圧振幅V、角周波数ω、およびインダクタンスL,lである。このうち、電流検出部2の高性能化には限界があり、また角周波数ωについては制御周期といったハードウェア上の制約があるため、調整に限界がある。よって調整可能なパラメータは、高周波電圧振幅VとインダクタンスL,lとなる。インダクタンスは、使用する同期回転機によって異なるが、磁気飽和によってその値が変化するため、d軸電流Idまたはq軸電流Iqが流れて磁気飽和特性が変化すると、その影響を受ける。q軸電流Iqはトルク電流であり、負荷に応じて変化するため、q軸電流Iqの調整は困難であるが、d軸電流Idは、電流値を変更してインダクタンスL,lを変化させることにより、調整できる。従って、磁極位置推定のために調整が必要なパラメータとしては、高周波電圧振幅Vおよび励磁電流であるd軸電流Idと考えることができる。
 制御部3aは、高周波電圧を用いて同期回転機1の磁極位置を推定して駆動する際、調整が必要な高周波電圧振幅Vと励磁電流のd軸電流指令Idrefとを自動的に調整する測定シーケンスを実行する。
 図5は図1に示す制御部におけるパラメータの自動調整方法を説明するフローチャートである。S1において制御部3aは高周波電圧振幅Vおよびd軸電流指令Idrefの初期値を設定する。高周波電圧振幅Vの初期値は非0の任意の値を設定してもよいし、同期回転機1の回転機定数から設定してもよい。同期回転機1が停止状態の場合、同期回転機1のd軸方向に角周波数ωの電圧を与えたときの、d軸の電圧Vdhおよび高周波電流idhとの関係は、同期回転機1の回転機定数Rとdm軸インダクタンスLとにより下記(9)式で表せる。ここで、回転機定数Rとdm軸インダクタンスLは、事前測定を行うことにより、予め把握できるため、同期回転機1の定格電流のX%を高周波電流idhの初期値として計算することにより、高周波電圧振幅Vの初期値を設定できる。X%としては定格電流の5%を例示できる。d軸電流指令Idrefの初期値は、同期回転機1の定格電流に対して0%を初期値として測定を開始するようにすればよい。
Figure JPOXMLDOC01-appb-M000009
 次にS2において、同期回転機1のdm軸方向を把握する必要があるため、制御部3aは同期回転機1の停止中の磁極位置、すなわち初期磁極位置を演算する。同期回転機1が停止中の磁極位置は、特許第4271397号公報に記載された演算方法を用いることにより演算できる。
 出力ステップであるS3において、電力変換部4は、制御部3aで設定されたd軸電流指令Idrefの大きさに対応した励磁電流を同期回転機1に出力する。
 次に測定ステップであるS4において、制御部3aは突極性指標を演算する。以下に突極性指標を演算する方法を具体的に説明する。制御部3aは、S3の励磁電流が維持された状態で、下記(10)式に示すような高周波電圧振幅Vおよび角周波数ωの高周波電圧を印加する。そして制御部3aは、このとき検出されるdq軸電流ids,iqsにより、dq軸の高周波電流振幅|idh|,|iqh|を測定する。
Figure JPOXMLDOC01-appb-M000010
 高周波電流振幅|idh|,|iqh|の抽出方法について図6を用いて説明する。
 図6は図1に示す制御部が備える高周波電流振幅の抽出機能を説明するための図である。制御部3aは、dq軸電流ids,iqsの高周波電流を抽出するフィルタ31と、dq軸電流ids,iqsからフィルタ31の出力を減算する加減算器32と、加減算器32から出力される高周波電流から高周波電流振幅|idh|,|iqh|を演算する振幅演算器33とを備える。
 フィルタ31は、dq軸電流ids,iqsから高周波電圧と同一の周波数成分を抽出し、フィルタ31としては、狭帯域のバンドストップフィルタとして知られているノッチフィルタを例示できる。フィルタ31は、下記(11)式の高周波電圧の角周波数ωを除去するノッチフィルタをdq軸電流ids,iqsに施して、dq軸電流ids,iqsから角周波数ω成分を除去する。下記(11)式中のsはラプラス演算子であり、qxはノッチの深さである。
Figure JPOXMLDOC01-appb-M000011
 加減算器32は、dq軸電流ids,iqsからフィルタ31の出力を減算することにより、dq軸電流ids,iqsから角周波数ω成分の高周波電流ベクトルを演算する。振幅演算器33は、下記(12)式を用いて、加減算器32の出力である高周波電流idhから振幅|idh|を演算する。下記(12)式中のTはidhの周期である。高周波電流振幅|iqh|も下記(12)式と同様の式で演算できる。
Figure JPOXMLDOC01-appb-M000012
 以上が高周波電流振幅|idh|,|iqh|の抽出方法である。
 図2および図3において説明したように、同期回転機1の回転子インダクタンスには突極性があり、回転子10のdm軸方向はインダクタンスが最小となり、そこから90度進んだqm軸方向はインダクタンスが最大となる。上記(10)式のような電圧を印加した場合、回転子インダクタンスの突極性により、高周波電流振幅|idh|,|iqh|には偏差が生じる。本実施の形態では、これらの電流振幅の比|idh|/|iqh|を突極性指標として演算する。
 インダクタンスの突極性は、dm軸およびqm軸のインダクタンスを求めることにより演算できるが、インダクタンスの演算には通常、電圧と電流の除算が必要であり、電圧の印加誤差を鑑みると、従来のようにインダクタンスから求めた突極比には誤差が生じる。一方、本実施の形態においては、直接検出できる電流値を用いてインダクタンスの突極性を示す突極性指標を演算するので、精度高く求めることができる。
 次に判定ステップであるS5において、制御部3aは、S4で演算した突極性指標に基づき、設定した高周波電圧振幅Vおよびd軸電流指令Idrefを用いて同期回転機1を駆動可能か否かについて判定する。理論的には、高周波電流振幅|idh|と|iqh|の偏差、すなわち突極性指標が非1である場合、回転子インダクタンスには突極性があり、磁極位置の推定は可能である。本願の発明者は、突極性指標と磁極位置の推定精度との比較検討の結果、磁極位置の推定精度を、同期回転機1の駆動制御が可能な大きさとするには、突極性指標を特定のしきい値以上に設定することが必要であることを見出した。しきい値としては1.2を例示できる。
 従って、制御部3aは、突極性指標が特定のしきい値以上であるかどうかを駆動可否の判定基準として、突極性指標が特定のしきい値以上であれば駆動可能と判定する(S5,Yes)。この場合、制御部3aは、設定した高周波電圧振幅Vおよびd軸電流指令Idrefのパラメータを記憶してパラメータ調整を終了する。また、駆動可能と判定された高周波電圧を用いて同期回転機1の駆動を開始する。
 一方、制御部3aは、突極性指標が特定のしきい値より小さい値であれば駆動不能と判定する(S5,No)。この場合制御部3aは、S6の処理を実行した後、突極性指標の再演算を行う。
 S6において、制御部3aは、高周波電圧振幅Vおよびd軸電流指令Idrefの少なくとも一方を増加させる。増加させる高周波電圧振幅Vおよびd軸電流指令Idrefの幅は、高周波電圧振幅Vの場合、上記(9)式に基づき、高周波電流振幅|idh|が定格の5%刻みで増加するように高周波電圧振幅Vを増加させればよい。d軸電流指令Idrefの場合も、同期回転機1の定格電流値に対して5%ずつ増加するように設定すればよい。
 高周波電圧振幅Vおよびd軸電流指令Idrefが増加するにつれて同期回転機1の駆動可能性は高くなる。しかしながら高周波電圧振幅Vおよびd軸電流指令Idrefのいずれも増加しすぎることは、同期回転機1の駆動に関係しない余分な電圧を増やすことになるため、効率の低下、余分な電流を印加することによる同期回転機1の振動、および発熱といった問題を引き起こす可能性がある。そのため制御部3aは、S7において、各パラメータに上限を設けて、高周波電圧振幅Vおよびd軸電流指令Idrefの双方が上限値に達しても、測定シーケンスを停止、すなわちパラメータ調整を打ち切る判定を行う。制御部3aは、高周波電圧振幅Vおよびd軸電流指令Idrefが各パラメータの上限に達していない場合にはパラメータ調整の打ち切りとは判定せず(S7,No)、S2の処理を繰り返し、高周波電圧振幅Vおよびd軸電流指令Idrefが各パラメータの上限に達した場合にはパラメータ調整の打ち切りと判定し(S7,Yes)、処理を終了する。
 ここで、上限値としては任意の値を設定すればよいが、電圧振幅指令は定格電圧の40%に設定し、d軸電流指令Idrefは同期回転機1の定格電流の50%に設定すればよい。
 以上に説明したように実施の形態1に係る制御装置100によれば、位置センサを用いることなく高周波電圧を用いて磁極位置を推定して同期回転機1を駆動する際、磁極位置推定のために調整が必要なパラメータである高周波電圧振幅Vおよびd軸電流指令Idrefを自動的に調整することができる。すなわち、磁極位置を精度高く推定するために必要な突極性指標が得られるように、高周波電圧振幅V及びd軸電流指令Idrefを調整し、同期回転機1の駆動を行うことが可能となる。従って実施の形態1に係る制御装置100によれば、インダクタンス分布の測定値に影響されることなく同期回転機1の磁極位置を自動的に推定でき、同期回転機1の種類に応じて必要なパラメータの設定を事前に調整する作業が不要になり、調整に伴う作業効率の向上を図ることができる。
実施の形態2.
 実施の形態1では、同期回転機1のd軸とq軸の高周波電流の比から突極性指標を算出してパラメータの調整を行う方法を示したが、突極性指標は同期回転機1の磁気飽和の影響を受ける。特にq軸の電流、すなわちトルク電流が流れることにより、回転子インダクタンスが大きく変化することがある。図7は同期回転機の無負荷時のインダクタンスの変化と負荷印加時のインダクタンスの変化とを示す図である。無負荷時とはトルク電流を流していないときであり、負荷印加時とはトルク電流を流したときである。図7の横軸は回転子の電気角θであり、縦軸はインダクタンスである。実線は無負荷時のインダクタンスを表し、点線は負荷印加時のインダクタンスを表す。
 dm軸を基準として回転子一周分のインダクタンスの変化を考えたとき、実施の形態1で示す突極性指標は、トルク電流が流れている状態と異なるため、設定した調整パラメータを用いて同期回転機1を駆動する際にトルク電流が発生することにより、駆動不能となることがある。これは、先行技術文献においても同様の問題が発生しうる。実施の形態2では、上記のようにトルク電流が流れた状態であっても、高周波電圧を用いて磁極位置を推定して同期回転機1を駆動する際に、必要なパラメータである高周波電圧振幅Vおよびd軸電流指令Idrefを自動的に調整する方法について述べる。
 実施の形態2に係る制御装置100の構成は、図1に示す実施の形態1に係る制御装置100と同様であり、図5に示すS4の処理における突極性指標の演算方法のみが異なる。以下では、実施の形態2に係る制御装置100におけるS4の動作を述べ、S1からS3の処理およびS5からS7の処理については説明を省略する。
 実施の形態2に係る制御装置100は、トルク電流が発生した場合の突極性指標の演算を行うが、トルク電流を長時間流すことによって、同期回転機1が意図せず回転することがある。そこで、トルク電流の印加時間を最小限にするため、予め目的のトルク電流を発生させるための電圧指令を演算しておく。目的の電流値であるd軸電流指令Idref、q軸目標電流値Iqrefを流すためのdq軸電圧指令Vd1 ,Vq1 は、同期回転機1のdq軸上での電圧方程式から、下記(13)式で表すことができる。ただし、下記(13)式中のRは電機子抵抗、φfは磁石磁束、L,Lはそれぞれdm軸、qm軸のインダクタンスであり、これらは事前に設定することが可能である。
Figure JPOXMLDOC01-appb-M000013
 ここで同期回転機1は静止状態であるからω=0とすると、下記(14)式が得られる。
Figure JPOXMLDOC01-appb-M000014
 q軸目標電流値は、100%までの負荷で同期回転機1の駆動が必要であれば、Iqrefの設定値をモータ定格電流の100%と設定して測定を開始する。トルク電流発生時の突極性指標を演算するには、トルク電流印加直後に突極性指標を演算するための電圧を印加する必要がある。実施の形態1の方法では、上記(10)式の電圧を印加して得られる高周波電流振幅|idh|,|iqh|を測定するためにノッチフィルタを使用しており、電流振幅を精度よく測定するには、少なくとも数周期分電圧を印加し続ける必要があり、トルク電流の印加時間が長くなる。このため実施の形態2に係る制御装置100の制御部3aでは、高周波電圧と同じ大きさの電圧を、同期回転機1のdm軸およびqm軸に瞬時的に印加し、その時の電流変化を測定して突極比指標を演算する。突極性指標を演算するためのdq軸の電圧をVd2 ,Vq2 と置き、高周波電圧振幅Vを用いて下記(15)式のように定義する。
Figure JPOXMLDOC01-appb-M000015
 突極性指標は、Vd2 ,Vq2 を印加した前後のdq軸電流値の差分から演算する。
 図8は実施の形態2に係る制御装置における突極性指標の演算動作の例を示す図である。図8では上から順にd軸電圧値、d軸電流値、q軸電圧値、およびq軸電流値が示される。それぞれの横軸は経過時間を表す。実施の形態2に係る制御装置100の制御部3aは、最初にVd1 ,Vq1 を印加し、同期回転機1の電流をdq軸電流指令Idref,Iqrefまで上昇させる。次に、Vd1 ,Vq1 を印加した後のdq軸電流値id1,iq1を測定する。次に、突極性指標を算出するために必要な測定用電圧Vd2 ,Vq2 を印加し、印加した後のdq軸電流値id2,iq2を測定する。制御部3aは、Vd2 ,Vq2 の電圧印加前後の電流差分Δid,Δiqを、Δid=id2-id1、Δiq=iq2-iq1により演算する。突極性指標はΔid/Δiqで表す。
 ここで、実施の形態2では、電流差分から求める突極性指標が微分インダクタンスの突極性から現れるものであり、実施の形態1で求める突極性指標とは異なるものである。上記(14)式において、インダクタンスを含む右辺第二項を抽出したものが下記(16)式である。ただし、d軸電流指令Idrefはd軸電流値Idとおいて考える。
Figure JPOXMLDOC01-appb-M000016
 磁気飽和を考慮しない場合、一般的にdm軸インダクタンスLは、時間変化のない定数として、微分は電流のみであり、下記(17)式のように表される。
Figure JPOXMLDOC01-appb-M000017
 一方、磁気飽和時にインダクタンスが電流によって変化することを鑑みると、上記(16)式のLとIdの双方が時間変化を持つ項であるから、部分微分を用いて下記(18)式のように変形できる。
Figure JPOXMLDOC01-appb-M000018
 これは微分インダクタンスと呼ばれ、上記(17)式および上記(18)式からも分かるように、実施の形態1において求めるインダクタンスとは性質が異なる。高周波電圧は通常、微分インダクタンスを考慮する必要があり、実施の形態1のように磁気飽和が小さい領域では変化が少ないため考慮しなくともよいが、磁気飽和が大きい領域では無視できなくなる。
 Vd2印加時のd軸の電圧方程式を考えると、電流変化をΔidとし、id1とid2との検出時間の間隔をΔtとすると、dId/dtはΔid/Δtで置き換えることができ、上記(14)式をΔid/Δtで置き換えると、下記(19)式のようにΔidは、微分インダクタンスに関する式であることが分かる。
Figure JPOXMLDOC01-appb-M000019
 すなわち電流差分から突極性指標を求めることにより、微分インダクタンスに関する突極性指標を求めることができ、磁気飽和の変化によらず同期回転機1の突極性指標を演算できる。
 以上の構成により、トルク電流を印加中の電流差分から突極性指標を演算することにより、トルク電流が発生していても、高周波電圧を用いて磁極位置を推定して同期回転機1を駆動する際に、必要なパラメータである高周波電圧振幅Vおよびd軸電流指令Idrefを自動的に調整することができ、同期回転機1の種類に応じて事前の調整を行うことなく駆動することができる。
実施の形態3.
 実施の形態1および2においては、回転子の突極性に基づく磁極位置の推定を対象としていた。しかしながら、同期回転機1によっては、回転子の突極性だけでなく、固定子側の突極性が影響するいわゆる多重突極型の同期回転機1がある。実施の形態3に係る制御装置100は、多重突極性のある同期回転機1を対象としている。実施の形態3では、高周波電圧を用いた磁極位置の推定に必要なパラメータである高周波電圧振幅Vおよびd軸電流指令Idrefを調整する方法について述べる。実施の形態1では、回転子10の磁気的な特性について述べ、図3に示すような磁気的な特性が得られることを述べた。ここで、同様に固定子側の磁気的な特性について説明する。
 図9は図1に示す同期回転機を構成する固定子の断面図である。図9に示す固定子20は、環状のヨーク21と、各々がヨーク21からヨーク21の径方向内向きに突出する複数個のティース22と、複数個のティース22の各々に巻かれる巻線23とを備える。図9では、説明を簡単化するためにティース22が3つの固定子20を例示している。周方向に隣接するティース22の間にはスロット24が形成される。3つのティース22のそれぞれの周方向の中心部と固定子20の中心とを結ぶ線には、U相、V相およびW相を表す「U」、「V」、「W」の符号を付している。
 図9に示すθ方向に磁束を発生させる場合のインダクタンス変化を考えると、図9において点線で示すθ軸を通過する磁路は、固定子20のティース22分とスロット24分とが電気角一周毎に交互に現れる。スロット24は磁石と同様に磁束を発生させ難いため、図2に示す回転子10と同様に、θの位置によってインダクタンスが変化する。
 図10は図9に示す固定子においてθ方向に磁束を発生させる場合のインダクタンス変化を示す図である。図10には、図9に示す固定子20のU相をθ=0°としたときの周期的なインダクタンスの分布を表す。図10の横軸は電気角θであり、縦軸はインダクタンスである。固定子20において図9に示すθ方向に磁束を発生させる場合のインダクタンス変化は図10のように表すことができる。このように固定子20側にもインダクタンス変化が起こり、その変化の周期は電気角の6倍であることが分かる。
 次に図11を用いて同期回転機全体のインダクタンスについて考える。図11は図1に示す同期回転機を構成する固定子および回転子の断面図である。図11に示す同期回転機1は図2に示す回転子10を図9に示す固定子20に組み合わせたものである。同期回転機1の全体では、固定子20および回転子10のインダクタンスを合成したものが、θの磁路におけるインダクタンスとみなすことができる。図11では、回転子10の永久磁石13nの磁極の位置がU相に対してθ1進んだ位置にある状態である。
 このときに発生する回転子インダクタンスと、固定子インダクタンスと、これらの2つのインダクタンスの合成インダクタンスとのそれぞれの分布が図12に示される。図12は図11に示す同期回転機に発生するインダクタンスの分布を表す図である。図12の横軸はU相からの位置を示す。図12の縦軸は、基準インダクタンスを1としたときのインダクタンスの変動を示し、回転子10がU相からθ1離れた位置に静止している場合のインダクタンスを示している。点線は回転子インダクタンスを表し、一線鎖線は固定子インダクタンスを表し、実線は2つのインダクタンスの合成インダクタンスを表す。
 一点鎖線で示す固定子インダクタンスはU相に対して60°周期で変動する。点線で示す回転子インダクタンスはθ1を基準にして180°周期で変動する。磁極位置がθ1であるから、回転子インダクタンスの最小値はθ1の位置になっている。
 一方、実線で示す合成インダクタンスは、点線で示す回転子インダクタンスに対してずれがある。図12では、回転子インダクタンスの最小値と合成インダクタンスの最小値とのずれをθ2として示す。また、固定子インダクタンスはU相に対して固定であるため、θ1の位置が変動することによって、合成インダクタンスも変化する。
 図13は回転子の位置がA点とB点で異なる位置で静止しているときのインダクタンスを示す図である。A点およびB点は異なる位置を示すものであり、図13には、回転子位置A点のインダクタンスが実線で示され、回転子位置B点のインダクタンスが点線で示される。図13に示すように、回転子10の位置を変えることによって、インダクタンスは凹凸状に変化し、それに伴って突極性も変化することが分かる。すなわち、回転子の位置によってインダクタンスのθ依存性を示す波形が変化し、インダクタンスの最大値と最小値も変化するため、突極性が変化する。
 ここで比較例として、パラメータの自動調整を行わずに同期回転機の回転子を回転させたときに測定される突極性に関して説明する。
 図14は比較例である同期回転機の回転子を回転させながら突極性を測定した結果を示す図である。図14の横軸は、比較例である同期回転機の固定子のU相から見た回転子の電気角θを表し、図14の縦軸は突極性指標を表す。図14に示すように、回転子の位置が変わることによって、突極性指標が変化することが分かる。ここから、回転子の位置が、突極性が高く出る位置にある状態でパラメータの自動測定を行うと、突極性が低くなる位置において、高周波電流を用いた磁極検出に失敗する可能性がある。従って、多重突極性を持つ同期回転機においては、回転子の位置変動に対するインダクタンスの突極性を考慮したパラメータの自動調整を行わなければ正しく磁極位置を推定できないことがある。
 ここで、固定子のインダクタンス変動は、自動調整するパラメータである高周波電圧振幅Vおよびd軸電流指令Idrefによる影響を受けないため、突極性指標が低くなる位置は不変である。そこで実施の形態3に係る制御装置100の制御部3aは、回転子10を一周分回転させ、固定子20のインダクタンス変動による突極性が最小となる突極性最小位置を測定し、突極性最小位置まで回転子10を回転させた上で、パラメータの自動調整を実施する。以下では、このように多重突極型の同期回転機1であっても高周波電圧を用いた磁極位置推定の推定に必要なパラメータを自動的に調整する方法について述べる。
 図15は本発明の実施の形態3に係る同期回転機の制御装置が備える制御部におけるパラメータの自動調整方法を説明するフローチャートである。図5に示すフローチャートとの相違点は、S2の処理の代わりにS12およびS13の処理が行われることである。図15に示すS11は図5に示すS1の処理に相当し、図15に示すS14からS18までの処理は図5に示すS3からS7までの処理に相当する。S12およびS13以外の処理は、実施の形態1と同様であるため説明を省略する。
 S12において、制御部3aは、図14に示すような回転子位置によって突極性が最小となる位置を測定する。突極性が最小となる位置を測定するには、同期回転機1に突極性指標を演算するための電圧を印加しながら、一周分回転させる。突極性指標の演算には、実施の形態1と同様に突極性指標を演算するために上記(10)式の高周波電圧を印加して得られる電流振幅比|idh|/|iqh|を計測すればよい。そして制御部3aは、突極性指標を計測しながら回転子10を一周分回転させ、突極性指標が最小となる突極性最小位置を測定し、回転機位置を突極性最小位置として記憶する。同期回転機1を位置センサを用いることなく回転させるには、回転子10の回転に同期して電流指令を回転させる、いわゆる同期電流を用いればよい。
 S13において、制御部3aは、S12で測定した突極性最小位置まで回転子10を回転させた上で、静止させる。
 以上に説明したように実施の形態3に係る制御装置100の制御部3aは、回転子10を一周分回転させ、インダクタンスの変動により突極性が最小となる突極性最小位置を測定し、突極性最小位置まで回転子10を回転させた上で、パラメータの自動調整を実施することにより、多重突極性を持つ同期回転機1においても、良好に動作するパラメータを自動的に調整できる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 同期回転機、2 電流検出部、2a 電流検出器、2b 座標変換部、3,3a 制御部、3b 電圧指令変換部、4 電力変換部、10 回転子、11 回転子鉄心、12 磁石挿入孔、13n,13s 永久磁石、20 固定子、21 ヨーク、22 ティース、23 巻線、24 スロット、31 フィルタ、32 加減算器、33 振幅演算器、100 制御装置。

Claims (9)

  1.  同期回転機に流れる電流を検出する電流検出部と、
     前記同期回転機を制御するための電圧指令を生成する制御部と、
     前記同期回転機の駆動可否を判断するための測定用電圧を前記電圧指令に基づいて前記同期回転機に出力する電力変換部と
     を備え、
     前記制御部は、前記測定用電圧を前記同期回転機に印加して得られる前記電流に基づき前記同期回転機のインダクタンスの突極比に対応する突極性指標を演算し、前記突極性指標に基づき前記測定用電圧を用いた前記同期回転機の駆動可否を判定することを特徴とする同期回転機の制御装置。
  2.  前記制御部は、前記同期回転機に前記測定用電圧を印加した状態で検出される前記電流から前記同期回転機のd軸方向の電流振幅とq軸方向の電流振幅とを演算し、前記d軸方向の電流振幅と前記q軸方向の電流振幅との比から前記突極性指標を演算することを特徴とする請求項1に記載の同期回転機の制御装置。
  3.  前記制御部は、前記同期回転機にトルク電流を流した後に前記測定用電圧を印加して、前記測定用電圧を印加する前後のd軸方向の電流差分とq軸方向の電流差分との比から前記突極性指標を演算することを特徴とする請求項1に記載の同期回転機の制御装置。
  4.  前記制御部は、前記突極性指標がしきい値電圧よりも高い場合に、前記同期回転機の駆動可と判定することを特徴とする請求項1から請求項3の何れか一項に記載の同期回転機の制御装置。
  5.  前記制御部は、前記突極性指標がしきい値電圧よりも低い場合、前記同期回転機のd軸方向の電流または前記測定用電圧の少なくとも一方を増加させて、前記突極性指標を増加させることを特徴とする請求項1から請求項3の何れか一項に記載の同期回転機の制御装置。
  6.  同期回転機を制御するための電圧指令を生成する制御部を備えた制御装置による前記同期回転機の制御方法であって、
     前記制御部は、
     前記同期回転機に励磁電流を出力する出力ステップと、
     前記励磁電流を出力した状態で、特定の振幅の測定用電圧を印加して前記同期回転機のインダクタンスの突極比に対応する突極性指標を測定する測定ステップと、
     前記突極性指標から前記励磁電流と前記測定用電圧とを用いた前記同期回転機の駆動可否を判定する判定ステップと
     を含むことを特徴とする同期回転機の制御方法。
  7.  前記制御部は、
     前記判定ステップにおいて、前記突極性指標がしきい値以上のとき、前記同期回転機を駆動可能と判定することを特徴とする請求項6に記載の同期回転機の制御方法。
  8.  前記制御部は、
     前記同期回転機を一周分回転したときの前記突極性指標が最小となる突極性最小位置を測定するステップと、
     前記突極性最小位置まで前記同期回転機を回転するステップと
     を含むことを特徴とする請求項6または請求項7に記載の同期回転機の制御方法。
  9.  前記制御部は、
     前記励磁電流と前記測定用電圧との少なくとも一方を増加させて、前記突極性指標が特定のしきい値以上となるまで前記出力ステップ、前記測定ステップおよび前記判定ステップを繰り返すことを特徴とする請求項6に記載の同期回転機の制御方法。
PCT/JP2016/064599 2016-05-17 2016-05-17 同期回転機の制御装置および同期回転機の制御方法 WO2017199334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064599 WO2017199334A1 (ja) 2016-05-17 2016-05-17 同期回転機の制御装置および同期回転機の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064599 WO2017199334A1 (ja) 2016-05-17 2016-05-17 同期回転機の制御装置および同期回転機の制御方法

Publications (1)

Publication Number Publication Date
WO2017199334A1 true WO2017199334A1 (ja) 2017-11-23

Family

ID=60324980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064599 WO2017199334A1 (ja) 2016-05-17 2016-05-17 同期回転機の制御装置および同期回転機の制御方法

Country Status (1)

Country Link
WO (1) WO2017199334A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323985A (zh) * 2018-03-30 2019-10-11 株式会社丰田自动织机 车载流体机械及控制方法以及存储介质
JPWO2021172275A1 (ja) * 2020-02-26 2021-09-02

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126352A (ja) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp 制御装置
JP5851662B1 (ja) * 2014-06-12 2016-02-03 三菱電機株式会社 交流回転機の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126352A (ja) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp 制御装置
JP5851662B1 (ja) * 2014-06-12 2016-02-03 三菱電機株式会社 交流回転機の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323985A (zh) * 2018-03-30 2019-10-11 株式会社丰田自动织机 车载流体机械及控制方法以及存储介质
JP2019180223A (ja) * 2018-03-30 2019-10-17 株式会社豊田自動織機 車載流体機械
JP7014014B2 (ja) 2018-03-30 2022-02-01 株式会社豊田自動織機 車載流体機械
US11316466B2 (en) 2018-03-30 2022-04-26 Kabushiki Kaisha Toyota Jidoshokki Onboard fluid machine and method for controlling onboard fluid machine
CN110323985B (zh) * 2018-03-30 2023-01-03 株式会社丰田自动织机 车载流体机械及控制方法以及存储介质
JPWO2021172275A1 (ja) * 2020-02-26 2021-09-02
WO2021172275A1 (ja) * 2020-02-26 2021-09-02 ファナック株式会社 磁極位置検出装置
JP7319454B2 (ja) 2020-02-26 2023-08-01 ファナック株式会社 磁極位置検出装置

Similar Documents

Publication Publication Date Title
JP6324627B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP5761243B2 (ja) モータ制御装置および磁極位置推定方法
JP4687846B2 (ja) 同期電動機の磁極位置推定方法および制御装置
JP4674525B2 (ja) 磁極位置推定方法及びモータ制御装置
TWI587622B (zh) Drive system and inverter device
WO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
JP5527025B2 (ja) 同期機の位置センサレス制御装置
JP2008220096A (ja) 同期電動機のセンサレス制御装置
JP2010063208A (ja) 同期電動機の駆動システム、及びこれに用いる制御装置
JP2015136237A (ja) 回転電機制御装置、回転電機制御方法、及び制御マップの作成方法
JP2013126352A (ja) 制御装置
JP4402600B2 (ja) 同期電動機の駆動システム及び同期電動機の駆動方法
JP6166601B2 (ja) モータ制御装置及び発電機制御装置
TWI565219B (zh) 交流旋轉電機之控制裝置
EP3128668B1 (en) Electric apparatus drive device
JP6248847B2 (ja) 永久磁石形同期電動機の制御装置
JP4120420B2 (ja) モータ制御装置
JP2014110708A5 (ja)
JP2004032907A (ja) 永久磁石式同期モータの制御装置
JP5743344B2 (ja) 同期電動機の制御装置
WO2017199334A1 (ja) 同期回転機の制御装置および同期回転機の制御方法
JP6128330B2 (ja) 永久磁石形同期電動機の制御装置
WO2020115859A1 (ja) 回転機の制御装置および電動車両の制御装置
KR102409792B1 (ko) 영구 자석 동기 전동기의 제어 장치, 마이크로 컴퓨터, 전동기 시스템 및 영구 자석 동기 전동기의 운전 방법
JP6104021B2 (ja) 交流回転機の制御装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP